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Abstract This chapter gives an overview of the use of inverse methods in damage 
detection and location, using measured vibration data. Inverse problems require the 
use of a model and the identification of uncertain parameters of this model. Damage 
is often local in nature and although the effect of the loss of stiffness may require 
only a small number of parameters, the lack of knowledge of the location means that 
a large number of candidate parameters must be included. This leads to potential 
ill-conditioning problems, and this topic is reviewed in this chapter. This chapter 
then goes on to discuss a number of problems that exist with the inverse approach 
to structural health monitoring, including modelling errors, environmental effects, 
damage localisation, regularisation, models of damage and sensor validation. 

1 Introduction to Inverse Methods 

Inverse methods combine an initial model of the structure and measured data to im-

prove the model or test an hypothesis. In practice the model is based on finite element 

analysis and the measurements are acceleration and force data, often in the form of a 

modal database, although frequency response function (FRF) data may also be used. 

The estimation techniques are often based on the methods of model updating, which 

have had some success in improving models and understanding the underlying dynamics, 

especially for joints (Friswell and Mottershead, 1995; Mottershead and Friswell, 1993). 

Model updating methods may be classified as sensitivity or direct methods. Sensitivity 

type methods rely on a parametric model of the structure and the minimisation of some 

penalty function based on the error between the measured data and the predictions from 

the model. These methods offer a wide range of parameters to update that have physical 

meaning and allow a degree of control over the optimisation process. The alternative is 

direct updating methods that change complete mass and/or stiffness matrices, although 

the updated models obtained are often difficult to interpret for health monitoring appli-

cations. These methods will be considered in more detail later. However it should be 

emphasised that a huge number of papers have been written on the application of inverse 

methods to damage identification, and this chapter aims to give an overview of the ap-

proaches rather than a complete literature review. This chapter will also consider some 

of the difficulties that occur when inverse methods are used for damage identification 

(Friswell, 2007; Doebling et al., 1998). 

The four stages of damage estimation, first given by Rytter (1993), are now well 

established as detection, location, quantification and prognosis. Detection is readily 
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performed by pattern recognition methods or novelty detection (Worden, 1997; Worden 

et al., 2000). The key issue for inverse methods is location, which is equivalent to error 

locaUsation in model updating. Once the damage is located, it may be parameterised 

with a limited set of parameters and quantification, in terms of the local change in 

stiffness, is readily estimated. Prognosis requires that the underlying damage mechanism 

is determined, which may be possible using inverse methods using hypothesis testing 

among several candidate mechanisms. This questions is considered in more detail later 

in the chapter. However, once the damage mechanism is determined, the associated 

model is available for prognosis, and this is a great advantage of model based inverse 

methods. 

1.1 Objective Functions 

Friswell and Mottershead (1995) discussed sensitivity based methods in detail. The 

approach minimises the difference between modal quantities (usually natural frequencies 

and less often mode shapes) of the measured data and model predictions. This problem 

may be expressed as the minimization of J , where 

J(e) = | K - z ( ^ ) f = e^e (1.1) 

and 

e = Zm-z{e). (1.2) 

Here z ^ and z{6) are the measured and computed modal vectors, ^ is a vector of all 

unknown parameters, and e is the modal residual vector. The modal vectors may consist 

of both natural frequencies and mode shapes, although often mode shapes are only used 

to pair individual modes. If mode shapes are included then they must be carefully 

normalised, the sensor locations must be carefuly matched to the finite element degrees 

of freedom and weighting should be applied to Equation (1.1). 

Frequency response functions may also be used, although a model of damping is 

required, and the penalty function is often a very complicated function of the parameters 

with many local minima, making the optimisation very difficult, dos Santos et al. (2005) 

presents an example of such a method for damage in a composite structure. 

1.2 Sensitivity Methods 

Sensitivity based methods allow a wide choice of physically meaningful parameters 

and these advantages has led to their widespread use in model updating. The approach 

is very general and relies on minimising a penalty function, which usually consists of the 

error between the measured quantities and the corresponding predictions from the model. 

Parameters are then chosen that are assumed uncertain, and these are usually estimated 

by approximating the penalty function using a truncated Taylor series and iterating 

to obtain a converged solution. If there are sufficient measurements and a restricted 

set of parameters then the identification may be well-conditioned. Often some form of 

regularisation must be applied, and this is considered in detail later. Other optimisation 

methods may be used, such as quadratic programming, simulated annealing or genetic 

algorithms, but these are not considered further in this chapter. Problems will also arise 
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if an incorrect or incomplete set of parameters is chosen, or even worse, if the structure 

of the model is wrong. 

The modal residual in Equation (1.1) is a non-linear function of the parameters and 

the minimization is solved using a truncated linear Taylor series and iteration. Thus the 

Taylor series is 

z ^ = Zj + Sj60j + higher order terms (1.3) 

where 

Zj = z{6j), Sj = SiOj), 56j = em- Oj. (1.4) 

The matrix S^ consists of the first derivatives of the modal quantities with respect to the 

model parameters, index j denotes the j t h iteration and 6m is the parameter vector that 

gives the measured outputs. Standard methods exist to calculate the modal derivatives 

required (Priswell and Mottershead, 1995; Adhikari and Friswell, 2001). By neglecting 

higher order terms in Equation (1.3), an iterative scheme may be derived, using the hnear 

approximation, 

Szj = Sj56j (1.5) 

where 5zj = z^ — Zj and 56j = 6j^i — 6j. Often, for damage location studies, only 

the residual and sensitivity matrix for the initial model are used. Avoiding iteration 

reduces the computation required, particularly where multiple parameter sets have to be 

estimated. However, particularly if the damage is severe, there is a risk that the wrong 

location is identified. 

As indicated above, one of the problems with sensitivity methods is the need for 

a parameteric model of the damage. Mottershead et al. (1999) proposed an approach 

where the system was constrained so that unknown stiffnesses are replaced with rigid 

connections. The constraint is not imposed physically but the behaviour inferred from 

the unconstrained measurements. The best fit between the measured and predicted data 

is obtained when the damage is located in the substructure that is made rigid. 

1.3 Model Parameters 

One of the key aspects of a model based identification method is the parameterisation 

of the candidate damage. Since inverse approaches rely on a model of the damage, the 

success of the estimation is dependent on the quality of the model used. The type of 

model used will depend on the type of structure and the damage mechanism, which leads 

to an increase either in local or distributed flexibility. The damage model may be simple 

or complex. For example, a cracked beam may be modelled as a reduction in stiffness in 

a large finite element or substructure, or alternatively using a very detailed model from 

fracture mechanics. Whether such a detailed model is justified will often depend on the 

requirements of the estimation procedure and the quality of the measured data. Using a 

measured modal model consisting of the lower natural frequencies and associated mode 

shapes will mean that only a coarse model of the damage may be identified. The simple 

example used for illustration will use element stiffnesses as the parameters and is the 

simplest form of equivalent model for the damage. More detailed models of damage will 

be considered in Section 3. 
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1.4 Optimisation Procedures and Ill-Conditioning 

When the parameters of a model are unknown, they must be estimated using measured 

data. Usually the measured response will be a non-linear function of the parameters. In 

these cases, minimizing the error between the measured and predicted response will 

produce a non-linear optimisation problem, with the usual questions about convergence 

and local minima. The most common approach is to linearise the residuals, obtain 

a least squares solution and iterate. If the identification problem is well posed then 

this simple approach will be adequate. The usual response to problems encountered 

in the optimisation is to try more advanced algorithms, but often the issue is that the 

estimation problem has not been posed correctly, and including some physical insight 

into the problem provides a much better solution. 

Probably the most important difficulty in parameter estimation is ill-conditioning. In 

the worst case this can mean that there is no unique solution to the estimation problem, 

and many sets of parameters are able to fit the data. Many optimization procedures 

result in the solution of linear equations for the unknown parameters. The use of the sin-

gular value decomposition (SVD) (Golub and van Loan, 1996) for these linear equations 

enables ill-conditioning to be identified and quantified. The options are then to increase 

the available data, which is often difficult and costly, or to provide extra conditions on the 

parameters. These can take the form of smoothness conditions (for example, the trun-

cated SVD), minimum norm parameter values (Tikhonov regularization) or minimum 

changes from the initial estimates of the parameters (Hansen, 1992, 1994). 

Black box methods are often not considered as model based approaches. However 

any simulation of an input-output relationship must make some assumptions about the 

underlying process, and hence essentially has an underlying model. For example a neural 

network is essentially a very sophisticated curve fitting algorithm, and ill-conditioning is 

a major problem, evidenced by over-fitting and a lack of generalisation. The advantage 

of neural networks is that the class of input-output relationships that may be fitted 

is huge. However, better results will always be obtained if physical insight is used to 

guide the modelling and estimation process. Indeed there is often a need to reduce the 

number of input nodes to present to a neural network, and understanding is vital to 

obtain the correct feature extraction and data reduction. Another use of physical models 

is the generation of training or test data for these identification schemes. Typically 

experimental data for a sufficient range of events is diflacult or expensive to obtain. Since 

running a model many times is relatively easy and cheap, these simulations may be used 

to increase the quantity of the test data. However it is vital that this simulated data 

correctly reproduces the important features of the real structure, and hence requires a 

validated and, if necessary, updated model. 

Neural networks and genetic algorithms have been viewed as potential saviours for 

the solution of the difficult problems in damage location. Although these methods may 

be useful in some circumstances they do not deal with the root cause of the problem. 

Genetic algorithms have some advantage in finding a global minimum in very difficult 

optimisation problems, particularly where there are many local minima as is often the 

case in damage location. That said, the method still requires that the dynamics of 

the structure changes sufficiently and predictably enough for the optimisation to be 



Damage Identification using Inverse Methods 17 

meaningful. The crucial decision and difficulty is what to optimise, not the optimisation 

method used. 

Neural networks are able to treat damage mechanisms implicitly, so that it is not 

necessary to model the structure in so much detail. The method can also deal with 

non-linear damage mechanisms easily. Models are still required to provide the training 

cases for the networks, and this is their major problem. There will always be systematic 

errors between the model used for training and the actual structure. For success, neural 

networks require that the essential features in the damaged structure were represented 

in the training data. The robustness of networks to these errors has not been tested 

sufficiently. Of course, the other major problem with both genetic algorithms and neural 

networks is that they require a huge amount of computation for structures of practical 

complexity, although these methods are well suited to parallel computation. 

1.5 Problems and Errors in Damage Identification 

The discussion thus far has indicated some of the problems with damage identification. 

There are always errors in the measured data and the numerical model that affect all of 

the algorithms. These errors, and the adequacy of the data, are now discussed. Damage 

identification algorithms should always be tested on realistic experimental examples, as 

many methods that work well on simulated data often fail due to the problems highlighted 

in this section. As a first step, methods may be tested using simulated data, but even 

then realistic systematic errors should be incorporated. 

Modelling errors One of the major problems in damage location is the reliance on 

the finite element model. This model is also an important strength because the very 

incomplete set of measured data requires extra information from the model to be able 

to identify damage location. There will undoubtedly be errors even in the model of the 

undamaged structure. Thus if the measurements on the damaged structure are used 

to identify damage locations, the methods will have great difficulty in distinguishing 

between the actual damage sites and the location of errors in the original model. If 

suitable parameters are not included to allow for the undamaged model errors then the 

result will be a systematic error between the model and the data. Identification schemes 

generally have considerable difficulty with systematic errors. It is very likely that the 

original errors in the model will produce frequency changes that are far greater than 

those produced by the damage. There are two basic approaches to reducing this problem, 

although both rely on having measured data from an undamaged structure. The first 

is to update the finite element model of the undamaged structure to produce a reliable 

model (Priswell and Mottershead, 1995). Obviously the quality of the damage location 

assessment is critically dependent upon the updated model being physically meaningful 

(Friswell et al., 2001; Link and Friswell, 2003). Generally, this requires model validation 

using a control set of data not used for the updating. The second alternative uses 

differences between the damaged and undamaged response data in the damage location 

algorithm (Parloo et al., 2003; Titurus et a l , 2003b). To first order, any error in the 

undamaged model of the structure that is also present in the damaged structure will be 

removed. This does rely on the structure remaining unchanged, except for the damage. 
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between the two sets of measurements. 

Another potential source of error is the mismach between the measurement locations 

and the model degrees of freedom. Such a mismatch makes the direct comparison of fre-

quency response functions and mode shapes impossible, and the generation of residuals, 

inaccurate. The magnitude of the errors involved will depend on the mesh density in 

the sensor region and the complexity of the mode shapes. The best solution is to ensure 

nodes in the model exist at the sensor locations. Alternatively interpolation techniques 

may be used. 

Environmental and other non-stationary effects One very difficult aspect of dam-

age assessment is the change in the measured data due to environmental effects. This is 

one undesirable non-stationary effect and makes damage location very difficult. Of course 

progressive damage is also a non-stationary phenomenon, and damage can be difficult 

to identify if other non-stationary effects are also present. Typical environmental effects 

are demonstrated by highway bridges, especially those constructed using concrete, which 

have been the subject of many studies in damage location. For example, temperature 

changes can cause the stiffness properties of a bridge to change significantly, and the 

difficulty is to predict the effects of temperature from readily available measurements. 

Peeters and de Roeck (2001) reported on measurements of the Z24 bridge over a whole 

year and suggested a black box model to predict the temperature variation. Sohn et al. 

(1999) considered the effect of temperature on the Alamosa Canyon Bridge. Sohn et al. 

(2002) used a combination of time series analysis, neural networks and statistical infer-

ence to determine damage state for structures affected by the environmental conditions. 

Mickens et al. (2003) corrected frequency response function measurements by assuming 

the temperature affected the global stiffness of the structure. On a highway bridge, the 

changing traffic conditions cause different mass loading effects that can change the nat-

ural frequencies by as much as 1% (Zhang et al., 2002). There are further difficulties with 

highway bridges because they are highly damped with low natural frequencies. They are 

in a noisy environment and are difficult to excite. The frequency resolution in the mea-

surements is invariably quite low, leading to considerable difficulties in detecting small 

frequency changes due to damage. 

Typical of environmental effects are those in highway bridges. These bridges have been 

the subject of many studies in damage location, but in the UK, where most bridges are 

constructed using concrete, such identification has considerable problems with changes 

due to environmental factors (Wood, 1992). For example, concrete absorbs considerable 

moisture during damp weather, which considerably increases the mass of the bridge. 

Temperature changes the stiffness properties of the road surface, known as the black-top^ 

significantly. On a hot summer's day in the UK, the road surface will provide little 

stiffness, but on a cold winter's day the stiffness contribution is considerable. The diffi-

culty is trying to predict the effects of temperature and moisture absorption from readily 

available measurements. Figure 1 shows the variation of the first 4 natural frequencies 

of a concrete highway bridge in Birmingham, UK with soffit temperature (Wood, 1992). 

Soffit temperature is the variable that correlates best with the frequencies, but even then 

relatively large, unexplained variations in frequency occur. 
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Figure 1. Variation of the 4 lowest natural frequencies of the New Haymills Bridge, 

Birmingham, UK. 

The effect of frequency range The range of frequencies employed in damage location 

has a great influence on the resolution of the results and also the physical range of 

application. The great advantage in using low frequency vibration measurements is 

that the low frequency modes are generally global and so the vibration sensors may 

be mounted remotely from the damage site. Equally fewer sensors may be used. The 

problem with low frequency modes is that the spatial wavelengths of the modes are large, 

and typically are far larger than the extent of the damage. The spatial resolution of 

the damage identification scheme requires that there is a significant change in response 

between two adjacent potential damage sites. If low frequency modes are used then 

this resolution is closely related to the spatial wavelengths of the modes. Using high 

frequency excitation uses very local modes which are able to accurately locate damage, 

but only very close to the sensor and actuator position. Estimating accurate models at 

these high frequency ranges is also very difficult, and often changes in the response are 

used for damage identification. For example. Park et al. (2000, 2001) used changes in 

measured impedance to identify damage in civil structures and pipeline systems. Schulz 

et al. (1999) used high frequency transmissability to detect delaminations in composite 

structures. 

Moving to even higher frequencies can also yield good results. Acoustic emission 

(Rogers, 2001) is a transient elastic wave, typically in the region of 50 to 500kHz, and is 

able, for example, to detect the energy released when cracks propagate. One approach 

to damage assessment is to use physical models to deduce quantitative relationships be-

tween measured acoustic emission signals and the damage mechanism that cause them. 

Significant research has been undertaken to obtain a physical understanding of various 

source mechanisms (Scruby and Buttle, 1991) and the radiation pattern of bulk shear 

and longitudinal acoustic waves that they produce (Ono, 1991). The diflSculty in using 

these models in inverse estimation procedures is the accuracy of these high frequency 
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models, and the huge computational requirements. In recent years a pattern recogni-

tion philosophy has dominated, that relies on using large databases of empirical data 

from which correlations between measured acoustic emission signals and damage mecha-

nisms are inferred. Many advanced signal processing algorithms have been employed to 

interpret experimental data. Damage location is often determined using time of flight 

methods, that require the events to be well separated in time, the wave speed to be ap-

proximately equal in all parts of the structure, and the effects of reflection and refraction 

to be insignificant. Examples of the use of acoustic emission for health monitoring are 

given by Rogers (2001), Atherton et al. (2004) and (Holford et al., 2001). 

Damage magnitude A frequent problem that arises in model-based vibration-based 

damage detection, whether parametric or non-parametric, is the need for a very accurate 

mathematical model, so that it correctly captures the actual structural dynamic behav-

iour in some predetermined frequency range. Often in structural health monitoring the 

changes in the measured quantities caused by structural damage are smaller than those 

observed between the healthy (i.e. undamaged) structure and the mathematical model. 

Consequently, it becomes almost impossible to discern between inadequate modelling and 

actual changes due to damage. There are two alternative approaches to this problem. 

The first is to update the healthy model so that the correlation between the model and 

the measured data is improved. This approach requires that the errors that remain after 

updating are smaller in magnitude than the changes due to the damage. Furthermore the 

changes to the model should be physically meaningful, so that the updating process cor-

rects actual model errors, and doesn't merely reproduce the measured data. The second 

approach is based on the use of (relative) differences between data measured on healthy 

and potentially damaged structure. In this case, assuming that the only changes in the 

structure are due to damage, the problem may be reduced to finding those parameters 

that reproduce the measured changes. 

Non-linearity Many forms of damage cause a change in the stiffness non-linearity 

that qualitatively and quantitatively affects the dynamic response of a structure. For 

example, Nichols et al. (2003a,b) used the features of the chaotic response of a structure 

to detect changes in a joint. Adams and Nataraju (2002) gave a variety of features 

based on the non-linear dynamic response. Kerschen et al. (2003) considered model 

based estimation methods and identified the form of nonlinearity that is most hkely 

present in the measured data. Meyer and Link (2003) identified a parametric non-linear 

model using harmonic balance and a model updating approach. A breathing crack, 

which opens and closes, can produce interesting and comphcated non-linear dynamics. 

Brandon (1998) and Kisa and Brandon (2000) gave an overview of some of the techniques 

that may be applied. Many techniques to analyse the resulting non-linear dynamics are 

based on approximating the bilinear stiffness when the crack opens and closes. Linear 

approaches to damage estimation approximates a local reduction in the stiffness matrix 

of the beam. Since the non-linearity introduced by a crack is often weak, many of 

the common testing techniques will tend to linearise the response (Friswell and Penny, 

2002). Sinusoidal forcing will tend to emphasise the non-hnearity, and damage detection 
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methods based on detecting harmonics of the forcing frequency have been proposed (Shen, 

1998). In rotor dynamic appHcations these approaches are useful because the forcing is 

inherently sinusoidal (Dimarogonas, 1996). However in structural health monitoring 

applications this approach requires considerable hardware and software to implement, 

and also requires a lengthy experiment. Johnson et al. (2004) used a transmissibility 

approach that was insensitive to boundary condition non-linearities. Neild et al. (2003) 

investigated the potential of a time frequency analysis procedure to identify damage in 

concrete beams. 

Although using the non-linear response has a huge potential in health monitoring, 

model based inverse approaches have a number of difficulties because of the high number 

of degrees of freedom required, and therefore the computational burden imposed. In 

practice, any realistic multi degree of freedom non-linear analysis would have to be based 

on a reduced order model of the structure. Furthermore, many of the difficulties outlined 

in this section for linear systems, are also a problem for non-linear systems. 

Strength vs. stiffness The philosophy of damage detection using measured vibration 

data is based on the premise that the damage will change the stiffness of the structure. 

In some instances there is a significant difference between strength and stiffness. Indeed, 

estimating the remaining useful life of a component based on conclusions from a dynamic 

analysis is very difficult. For example, a concrete highway bridge will have steel reinforce-

ment cables running in channels in the concrete. The cables are tensioned, either before 

or after the concrete has set, to ensure that the concrete remains in compression. One 

major failure mechanism is by the corrosion of these cables. Once the cables have failed 

the concrete has no strength in tension and so the bridge is liable to collapse. Unfortu-

nately the stiffness of the bridge is mainly due to the concrete, and so the progressive 

corrosion of the cables is very difficult to identify from stiffness changes. Essentially the 

dynamics of the bridge do not change until it collapses. 

1.6 The Role of Simulation and Physical Testing 

Many of the algorithms suggested for damage location are tested on simulated data. 

It is necessary to fully test any method on both simulated and real data. The simulated 

tests are able to fully exercise the location methods, with the benefit that the answer is 

known. In simulation, far more damage cases may be used and the effect of errors may 

be fully investigated. The need for real testing arises because experimental work always 

produces errors and problems that are unexpected. For simulation to be useful, the errors 

that might be expected in real structures must be simulated. Thus, adding random noise 

to a model of the structure and then using the same model to identify the damage in not 

enough! Most identification schemes are able to cope very well with random noise, and 

although such simulations are important parts of the overall performance assessment of 

an algorithm, they are not sufficient. It is vital that systematic type errors are included in 

the simulation. Thus, discretisation errors may be included by generating the simulated 

measurements using a fine finite element model; the damage mechanism introduced to 

generate the measurements may be different to those modelled for the identification; or 

boundary conditions on the structure could be changed between the measured data set 
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and the identification. 

1.7 A Simple Cantilever Beam Example 

A simulated cantilever beam example will be used to demonstrate some of the prob-

lems. Although the example is somewhat artificial it will highlight how easily methods 

fail even on very simple structures. Any practical method would have to be robust and 

should therefore succeed on simple structures, even though some systematic errors are 

included. This example also demonstrates the use of simulation in damage identifica-

tion. Not all of the methods are tried and this example is not supposed to represent an 

extensive scientific evaluation of the methods. Its purpose is for illustration. 

The beam has a cross section of 25mm x 50mm, a length of Im and is assumed to 

be rigidly clamped at one end. Only motion in the plane of the thinner beam dimension 

is considered. The beam has a Young's modulus of 210GN/m and a mass density of 

7800kg/m^ 

The first test of any method is its application to a simulated example with no noise 

or systematic errors. Any parameter changes in the model should be identified exactly. 

The simulated measurements are assumed to be the relative changes in the lower natural 

frequencies of the beam and are taken from a model with 20 elements. The undamaged 

natural frequencies are taken from the uniform beam, whilst the damaged frequencies are 

derived from a model where the stiffness of element 4 has been reduced by 30%. Table 1 

gives the damaged and undamaged natural frequencies, showing that the 30% damage 

only results in a 2.4% change in natural frequency at most. These small frequency changes 

are typical in damage location and are one of the major diSiculties in the identification 

of the location of damage. Measurement noise, environmental factors and structure non-

stationarity can easily lead to incorrect conclusions on damage location. 

Table 1. Natural frequencies of the simulated undamaged and damaged beam. 

Mode No. 

1 

2 

3 

4 

5 

6 

7 

8 

Undamaged (Hz) 

20.96 

131.3 

367.7 

720.6 

1191 

1780 

2487 

3313 

Damaged (Hz) 

20.45 

131.1 

366.6 

711.3 

1172 

1762 

2479 

3303 

Difference(%) 

2.39 

0.15 

0.31 

1.29 

1.61 

1.02 

0.32 

0.30 

The standard sensitivity approach based on modal data will now be used to identify 

the damage. The set of candidate parameters is chosen to be relatively large and consists 

of the stiflFness of each of the 20 elements. If the relative changes to the first 8 natural 

frequencies are used as the measurements then the identification of the parameters is 

under determined. In this case some form of regularisation must be employed. Figure 2 

shows the change in element stiffness required to reproduce the damaged natural frequen-

cies, using a minimum norm constraint on the parameter changes. Although the largest 
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stiffness change occurs at element 4 the identified damage is spread over the whole beam, 

and there are some significant increases in stiffness. Note that this is the ideal case with 

no measurement noise or modelling errors. Suppose that, by some means, the damage 

is known to be somewhere in the eight elements closest to the fixed end. The number 

of parameters is now reduced to eight, the same as the number of natural frequencies. 

There is now a unique solution to the estimation problem and this solution is given in 

Figure 3. Note that the stiffness of elements 9 to 20 cannot change, but are included in 

Figure 3 for easy comparison. The damage has clearly been correctly located to element 

4. However the magnitude of the damage is incorrect because the estimation is based on 

the sensitivity matrix which is a linear approximation to the residual. The other seven 

parameters are non-zero for the same reason. 

1 5 10 15 20 
Element Number 

Figure 2. The change in element stiffness estimated for the cantilever beam example 

with no noise and a minimum norm constraint. 

2 Regularisation 

The advantages of sensitivity type model updating methods have been highlighted in this 

chapter. However there are significant differences in the application of these methods in 

model updating and damage location, which necessitates different methods of regularisa-

tion. In both cases the number of potential parameters is very large and the estimation 

process is likely to be ill-conditioned unless the physical understanding can be used to 

introduce extra information. 

In model updating, the number of parameters may be reduced by only including 

those parameters that are likely to be in error. Thus if a frame structure is updated, the 

beams are hkely to be modelled accurately but the joints are more difficult to model. It 

would therefore be sensible to concentrate the uncertain parameters to those associated 

with the joints. Even so, a large number of potential parameters may be generated, the 

measurements may still be reproduced and the parameters are unlikely to be identified 
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Element Number 

Figure 3. The change in element stiffness estimated for the cantilever beam example 

with no noise, but only 8 non-zero parameters. 

uniquely. In this situation all the parameters are changed, and regularisation must be 

applied to generate a unique solution (Friswell et al., 2001). Regularisation generally 

applies extra constraints to the parameter estimation problem to ensure a unique solution. 

Applying the standard Moore-Penrose pseudo inverse is a type of regularisation where 

the parameter vector with the minimum norm is chosen. The parameter changes may be 

weighted separately to give a weighted least squares problem, where the penalty function 

is a weighted sum of squares of the measurement errors and the parameter changes. Such 

weighting may also be extended to include minimising the difference between equivalent 

parameters that are nominally equal in different substructures such as joints. Although 

using parametric models can reduce the number of parameters considerably, for damage 

location there will still be a large number of parameters. Most regularisation techniques 

rely on minimum norm type solutions that will tend to spread the identified damage over 

a large number of parameters. Using subset selection, where only the optimum subset 

of the parameters are used for the estimation (Friswell et al., 1997), has been used for 

model updating and also for damage location. 

2.1 Tikhonov Regularisation 

The treatment of ill-conditioned, noisy systems of equations is a problem central to 

finite element model updating (Ahmadian et al., 1998). Such equations often arise in the 

correction of finite element models by using vibration measurements. The regularisation 

problem centres around the linear equation. 

Ax = b (2.1) 

where x is a vector of the m parameter changes we wish to determine, and b is a 

vector of n residual quantities derived from the measured data and the current estimate 

of the model. Note that the iteration index j has been dropped from the expressions 

0 
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in Section 1.2, and 59 has been replaced by x. In model updating the relationship 

between the measured output (for example, natural frequencies, mode shapes, or the 

frequency response function) is generally non-linear. In this case the problem is linearised 

using a Taylor series expansion and iteration performed until convergence. When b is 

contaminated with additive, independent random noise with zero mean, it is well known 

that the least-squares solution, X£,5, is unique and unbiased provided that rank (A) = m. 

When A is close to being rank deficient then small levels of noise may lead to a large 

deviation in the estimated parameters from its exact value. The solution is said to be 

unstable and Equation (2.1) is ill-conditioned 

A different problem occurs when m > n so that Equation (2.1) is under-determined 

and there are an infinite number of solutions. The Moore-Penrose pseudo-inverse in the 

form, 

X L 5 - A ^ [ A A ^ ] " ' b (2.2) 

provides the solution of minimum norm, as does singular value decomposition (SVD). 

For the case when rank (A) = r < min (m, n), the SVD will again result in the minimum 

norm solution. This is a form of regularisation which has been widely apphed in the model 

updating community. Unfortunately minimum norm solutions rarely lead to physically 

meaningful updated parameters. 

Side Constraints Model updating often leads to an ill-conditioned parameter esti-

mation problem, and an effective form of regularisation is to place constraints on the 

parameters. This could be that the deviation between the parameters of the updated 

and the initial model are minimised, or differences between parameters could be min-

imised. For example, in a frame structure a number of 'T' joints may exist that are 

nominally identical. Due to manufacturing tolerances the parameters of these joints 

will be slightly different, although these differences should be small. Therefore a side 

constraint is placed on the parameters, so that both the residual and the differences 

between nominally identical parameters are minimised. Thus if Equation (2.1) generates 

the residual, the parameter is sought which minimises the quadratic cost function, 

J (x) = IIAx - b f + Â  IJCx - d f (2.3) 

for some matrix C, vector d and regularisation parameter A. The regularisation para-

meter is chosen to give a suitable balance between the residual and the side constraint. 

For example, if there were only two parameters, which were nominally equal, then 

C = [ l - 1 ] (2.4) 

Minimising Equation (2.3) is equivalent to minimising the residual of 

A 

AC M^U (2.5) 

Equation (2.5) then replaces Equation (2.1), although with the significant difference 

that Equation (2.5) is generally over-determined, whereas Equation (2.1) if often under-

determined. The constraints should be chosen to satisfy Morozov's complementation 
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condition 

rank | ^ = m (2.6) 

which ensures that the coefficient matrix in Equation (2.5) is full rank. 

The Singular Value Decomposition The singular value decomposition (SVD) of A 

may be written in the form, 

m 

A = USV^ = Y, ^i^i^I (2-7) 

where U = [uiU2 ...Un] and V = [viV2 . . . v^] are nxn and mxm orthogonal matrices 

and 

S = diag (cTi, cr2,..., am) (2.8) 

where the singular values, cr̂ , are arranged in descending order ((TI > 0-2 ^ • • • > ^m)- In 

ill-posed problems two commonly occurring characteristics of the singular values have 

been observed; the singular values decay steadily to zero with no particular gap in the 

spectrum, and the left and right singular vectors u^ and v^ tend to have more sign changes 

in their elements as the index i increases. 

The solution for the parameters using the SVD is 

Thus the components of A corresponding to the low singular values have only a small 

contribution to A but a large contribution to the estimated parameters. The elements of 

these singular vectors (corresponding to the low singular values) are also generally highly 

oscillatory. Equation (2.9) shows the noise will be amplified when cr̂  < u ^ b , and this 

may be used to decide where to truncate the singular values. If A does not contain noise 

then the singular values will decay to zero whereas the u ^ b terms will decay to the noise 

level. Ahmadian et al. (1998); Hemez and Farhat (1995) consider this approach in more 

detail. 

The standard SVD is incapable of taking account of the side constraint, as this requires 

the generalised SVD. Space does not permit a full explanation of the generalised SVD, 

and the reader is referred to Hansen (1994) for more complete detail of the decomposition. 

In Equation (2.5), A and C are decomposed as 

A = U 
I 0 

0 S 
"-1 r« _ \7- r n A4-1 Y - i C = V [ 0 M ] X - i (2.10) 

where X is a non-singular mxm matrix. U and V are n x m and p x p respectively, 

and their columns are orthogonal (but they are not related to the matrices U and V of 

the standard SVD) and n>m>p. The matrices E and M are 

S = diag (^1,^2, ....oTp) M = diag (//i, /X2, • • •, Â p) (2.11) 
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where 1 > cri > (J2 > •.. > cr̂  > 0 and 0 < /xi < /X2 < . •. < /Xp < 1, and ai and /Xi are 

normahsed so that, 

<r^ + nl = l. (2.12) 

The p generahsed singular values of 
A 

C 
, in decreasing order, are then 

Mi 
(2.13) 

The solution to Equation (2.5) is then 

- - E r 2 ^ ^ v ^ + Y: ( u 7 b ) v . (2.14) 

The regularisation parameter. A, has the effect of damping the effect of the lower 

singular values (lower than about A) and thus smoothing the solution. The expansion 

in terms of the SVD, (2.14), may also be used to specify a solution as a truncated SVD. 

If, instead of specifying A, the series is truncated by only keeping the largest k singular 

values, then the solution is 

k y , m 

''-E^^^+ E K̂ b)v,. (2.15) 

uTb 
Picard's condition may be used to choose fc, and the expansion is truncated when —̂ — 

becomes large. 

'L ' Curves One way of obtaining the optimum value of the regularisation parameter 

in the presence of correlated noise is to define an upper bound for the side constraint 

and minimise the residue, 

min II Ax - b| | subject to ||Cx - d|| < 7, (2.16) 
X 

or alternatively to set a limit for the residue and minimise the deviation from the side 

constraint, 

min jjCx - djj subject to || Ax - bjj < e. (2.17) 

Of course the success of this approach is highly dependent on the physical insight of the 

analyst in determining the allowable constraint violation or measurement error (residue 

magnitude). 

A different approach is to plot the norm of the side constraint, | | C x - d | | , against 

the norm of the residue, ||Ax — b| | , obtained by minimising the penalty function Equa-

tion (2.3) for different values of A. Hansen (1992) showed that the norm of the side 

constraint is a monotonically decreasing function of the norm of the residue, and any 

point (£,7) on the curve is a solution to the two constrained least-squares problems 
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Equations (2.16) and (2.17). He pointed out that for a reasonable signal-to-noise ra-

tio and the satisfaction of the Picard condition, the curve is approximately vertical for 

A < Aopt, and soon becomes a horizontal line when A > Aopt, with a corner near the 

optimal regularisation parameter Aopt- The curve is called the 'L'-curve because of this 

behaviour. The optimum value of the regularisation parameter, Aopt, corresponds to the 

point with maximum curvature at the corner of the log-log plot of the 'L'-curve. This 

point represents a balance between confidence in the measurements and the analyst's 

intuition. 

Cross-Validation The idea of cross-validation is to maximise the predictability of the 

model by choice of the regularisation parameter A. A predictability test can be arranged 

by omitting one data point, 6^, at a time and determining the best parameter estimate 

using the other data points, by minimising Equation (2.3). Then for each of the estimates, 

predict the missing data and find the value of A that on average predicts the bk best, in 

the sense of minimising the cross-validation function 

Vo{X) = -Y,[bk-h{X)) (2.18) 
^ k=i 

where bk{X) is the estimate of bk obtained from the remaining data. This is the method 

of cross-validation. Equation (2.18) is equivalent to (Ahmadian et al., 1998), 

Vo (A) - ^ ||[diag(I - R(A)) ] - ' [Ax (A) - b ] | | ' (2.19) 

where 

R (A) = A [A"^A + A^C'^C] "^ A"^ (2.20) 

and diag denotes the matrix with zeros assigned to the ofi-diagonal terms. 

2.2 Subset Selection 

One solution to the problem of ill-conditioning is to select only a subset of the pa-

rameters for updating (Friswell et al., 1997). The parameters that are chosen are those 

to which the response data is sensitive, but the parameters must also be able to correct 

the errors in the model. Parameter subset selection is a technique that selects the best 

subset of parameters from a candidate set, utilising some application dependent cost 

function that provides a measure of goodness of each subset. Often, these techniques 

only obtain a sub-optimal estimate of the best subsets in some sense due to the excessive 

computational burden posed by the original problem. These techniques are firmly rooted 

in statistics and related fields (Millar, 1990), although recently applications in structural 

mechanics have appeared. Friswell et al. (1997) gave an overview of subset selection 

and also proposed the use of this technique for damage detection. They suggested an 

approach based on forward parameter subset selection, which is especially suited to local 

damage, and applied the method to a simulated cantilever beam example with physical 

parameters corresponding to either element or node properties. Different selection and 

iteration strategies were evaluated, and the case where multiple measurement sets are 
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available was handled by computing the principal angles between two vector subspaces. 

Fritzen et al. (1998) used a orthogonalisation scheme for subset selection. 

In damage location statistical methods and performance measures have been used 

that work on a similar principle (Cawley and Adams, 1979; Cawley et al., 1978; Friswell 

et al., 1994). Only a limited number of sites are assumed to be damaged, and the model 

updated based on the reduced number of parameters. This process is repeated for all 

possible combinations of damage site, and possibly even damage mechanism. The results 

from all the updated models are compared and the one that best matches the measured 

data is chosen. 

The major problem with both subset selection and the statistical type approach, 

is that many smaller model updating exercises have to be performed. To optimally 

derive the best set of parameters, or the best damage location, requires the evaluation of 

many subsets of parameters. With a large number of parameters evaluating all subsets 

of even 2 or 3 parameters can become daunting. Thus sub-optimal methods must be 

used to derive good, but not necessarily the best, subsets of the parameters. In the 

forward approach parameters are chosen one at a time, and the parameters selected 

previously are retained. However there is no guarantee that the optimal subset will 

be found. The number of candidate damage locations may be controlled based on the 

expected reduction in the residual (Millar, 1990). The addition of a parameter to a 

previously selected subset inevitably reduces the residual terms, and thus there is a trade 

off between the number of parameters selected and the magnitude of the residual. Often 

only a single damage location will be required, in which case the optimal parameter may 

be determined. Often a reasonable number of parameter subsets (say between 3 and 20) 

are selected for more detailed study (Millar, 1990). Friswell et al. (1997) reviewed the 

relationship between subset selection and matrix decomposition, and also expanded the 

methods to parameter groups using subspace angles. Titurus et al. (2003b) considered the 

weighting requirements within the inner product defining the subspace angles, following 

the work of Knyazev and Argentati (2002). 

The process of subset selection will now be described. It should be highlighted that 

the standard approach to subset selection is not iterative, but only uses Equation (2.1), 

evaluated at the initial parameter values. It would be possible to update each candidate 

parameter set until convergence, and then compare the performance of the different sub-

sets, although it practice the computational cost is prohibitive. As the model parameters 

are usually local in nature and may also allow for different damage mechanisms, para-

meter subset selection selects parameters from x that identify both the damage location 

and mechanism. This formulation requires the selection of the optimum parameter sub-

set from X. The most straightforward approach is to use an exhaustive search where all 

(2^ — 1) possible cases have to be searched. The number of cases renders this approach 

computational intensive and thus impractical in many real situations. Consequently 

sub-optimal schemes have to be used. An additional problem is that the addition of a 

parameter to a previously selected subset inevitably reduces the residual generated by 

Equation (2.1). Thus there is a trade off between the number of parameters selected and 

the magnitude of the residual. 
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Equation (2.1) may be written as 

A x = [a i ,a2 , . . . , a ,^]x = b. (2.21) 

The case of a single damage location leads to a simplified version of above philosophy. 

When only one parameter is selected, the optimum parameter is that which best fits the 

changes due to damage characterised by the vector b in Equation (2.21). Thus, the goal 

is to find the column a^ of matrix A that minimises 

J = \\h-SijXjf (2.22) 

where Xj is the least squares estimate of the j th parameter in x. Friswell et al. (1997) 

showed that minimising Equation (2.22) is equivalent to finding the column of A that 

minimises the angle with b. Hence the best parameter is the j th and found by 

min({'0i ,^2, .- . ,^m}) => Xj,aLj (2.23) 

where 

cos^ ̂ i = j ^ \ - ^ i = l,2,...,m 2.24) 
{^i az) (b^b) 

and ipi is the angle between vectors â  and b . This step is part of a general technique 

used in damage detection (Friswell et al., 1997) and is called forward parameter subset 

selection. This is a sub-optimal technique of subset selection, starting with the above step 

and continuing by additional parameter searches where the already selected parameters 

are retained. For subsequent steps a new modified problem is created, respecting the 

previous parameter selections. Suppose the single parameter with index j i has been 

chosen, then the parameter estimate Xj^ and residual s are 

a j b 
Xj, = - ^ ^ => €  = h - Xj.^j,. (2.25) 

Note that £ is orthogonal to a^ .̂ A new parameter is then sought by considering 

the subspace defined by columns of A, but orthogonal to a-̂ .̂ The modified problem is 

defined as (Friswell et al., 1997), 

^j -" ^3 - ^j^ji•> b -^ b - Xj,3.j, (2.26) 

where 

o^i = {^l^i)/{^W)- (2-27) 

A second parameter may now be selected by means of the modified problem defined 

by Equation (2.26), where j ^ ji. Further parameters may be selected in the same 

way. An algorithm is thus created to search for the best parameter subset, denoted by 

[xj,,Xj2,. • • ,%p] , that minimises the cost function, 

jp — "-E-
i = l 

(2.28) 

file:////h-SijXjf
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This cost function is also employed in Efroymson's algorithm for forward subset se-

lection, which focuses on adding or removing parameter selections from chosen subsets. 

Thus the number of candidate damage locations may be controlled based on the expected 

reduction in the residual (Millar, 1990; Priswell et al., 1997). Since only single damage 

location cases will be examined in detail here this subject will not be considered further. 

Weighting The final theoretical aspect is the need for weighting when Equation (1.5) is 

used for damage location, and two types of weighting will be considered. First, weighting 

is needed to handle the different numerical values corresponding to the different modal 

quantities. Thus, only relative, or percentage changes in the modal quantities, due to 

damage, will be employed. The second type of weighting arises as a result of combin-

ing two different entities in the sensitivity matrix, namely natural frequencies and mode 

shapes for complete damage location. The experimental origin of the measurements 

means that the errors in mode shape estimation are usually greater than the errors in 

natural frequency estimation. This weighting is employed in the calculation of the sub-

space angles between the vector 5z and the columns of the matrix A, Equation (2.23), 

and is based on the weighted scalar product (Knyazev and Argentati, 2002). The pro-

cedure is also called the scalar A-based product and has its origins in statistics (note 

that the A in the name of this product has nothing to do with the matrix A in Equa-

tion (2.21)). Knyazev and Argentati (2002) studied this scalar product in the context 

of the numerically stable computation of principal angles between two linear subspaces. 

The scalar A-based inner product is defined as 

(x, y )^ = (x, Awy) = y^ A H / X (2.29) 

where x ,y G 3?'̂  are vectors, and Aw G SR^̂ '̂  is a symmetric, positive definite matrix. 

A-based vector and matrix norms, ||.. .||^, may be defined as 

V(x ,x ) , A^/^x l|B|U = (2.30) 

where B G SR"̂ "̂̂  is an arbitrary matrix. 

The applicability of this type of product for damage location based on the additional 

use of mode shape sensitivities in S and mode shape differences due to damage will be 

studied for an experimental, geometrically symmetric structure in a later section. Since 

5z is derived from experimental data, and assuming that the mass distribution does not 

change with damage, no additional scaling of individual mode shapes, with respect to 

other modes, will be employed. Since the natural frequencies are measured much more 

accurately than the mode shapes, the natural frequencies should be used to determine 

the candidate damage locations. The A weighting on the mode shapes is then used for 

geometrically symmetric structures to ensure that the most likely damage location from 

among the candidate locations identified from the natural frequencies is chosen. The 

weighting of the mode shapes is increased until a perceptible difference occurs between 

these candidate locations, but is kept as low as possible to reduce the effect of the noise 

on the mode shapes. 
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2.3 The Simple Cantilever Beam Example Revisited 

The simple cantilever beam example of Section 1.7 will be used to demonstrate some 

of the properties of the methods given in this section. Candidate parameters now include 

element mass, and discrete mass and springs, as well as the element stiffness. Figure 4 

show ŝ the angles between the columns of the sensitivity matrix of the initial finite element 

model and the vector of the relative changes in the first 8 natural frequencies due to the 

damage. Clearly the column relating to the stiffness of element 4 has a small angle, 

although it is not zero because the method is based on a first order approximation 

and the extent of the damage (30%) is large. Changing the mass of element 17 is also 

able to model the measured changes accurately. This is a problem that relates to the 

symmetry of the beam, and the fact than no spatial information is incorporated into the 

measurements. Mode shapes could also be incorporated into the measurement vector, 

although the accuracy with which they could be measured may be insufficient to show a 

change in mode shape due to damage. This is an example of the more general problem, 

where damage or changes of parameters at more than one location causes the same 

changes in the lower natural frequencies. 

m 
60 

40 

20 

n 

Element Stiffiiess 

Element Mass 

Discrete Stiffness 

Discrete Mass 

£•11 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
Element or Node Number 

Figure 4. Subspace angles for a 30% change to the stiffness of element 4. 

Subset selection is next demonstrated on an example where damage is introduced at 

2 locations. A 0.1kg mass is added to node 12, in addition to the 30% stiffness change to 

element 4. This example does not include any measurement noise or modelhng errors. 

Table 2 shows the results when the best subsets of 1, 2 and 3 parameters are chosen. The 

parameters are specified by type and element or node number. Thus {pA)-^^ is the mass 

/ unit length of element 17, (EI)^ is the stiffness of element 4, ki is a discrete spring at 

node 1 and mi2 is a discrete mass at node 12. At each stage the 2 best parameters are 

chosen. The residuals under the first 2 parameters relate to the values when a subset of 

size 1 or 2 is selected. Also shown are the residuals after convergence based on optimising 

the values of the chosen parameters. From the values of the residuals, it is clear that the 

two correct parameters should be selected. A number of other parameter subsets have 

small residuals and the addition of random noise would make the selection of the best 

subset more difficult. 
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Table 2. The selection of three parameters for the beam example. 

Parameter 1 

(/>^)l7 

(EI), 

Res-

idual 

154.6 

154.7 

Conv-

erged 

160.4 

160.5 

Parameter 2 

m i 2 

mg 

m i 2 

ms 

Res-

idual 

1.49 

8.70 

1.49 

8.70 

Conv-

erged 

0.782 

4.76 

0.000 

5.40 

Parameter 3 

mg 

(P^) l2 
mi2 

M ) l 2 
mg 

(P^)l2 
mi2 

(M)l2 

Res-

idual 

1.21 

1.48 

1.21 

8.68 

1.20 

1.48 

1.20 

8.69 

Conv-

erged 

0.701 

0.286 

0.701 

4.75 

0.000 

0.000 

0.000 

5.35 

3 Parameterisation of Models of Damage 

Damage usually causes a reduction in the local stiffness of the structures. One option is 

to model this a reduction in stiffness at the element or substructure level. This equiv-

alent modelling approach is often sufficient for the identification of local damage using 

low frequency vibration measurements. This section considers more detailed models of 

damage that have parameters that may be identified using inverse methods. 

3.1 Crack Models 

The modelling of cracks in beam structures and rotating shafts has been a signifi-

cant research topic. The models fall into three main categories; local stiffness reduction, 

discrete spring models, and complex models in two or three dimensions. Dimarogonas 

(1996); Ostachowicz and Krawczuk (2001) gave comprehensive surveys of crack mod-

elling approaches. The simplest methods for finite element models reduce the stiffness 

locally, for example by reducing a complete element stiffness to simulate a small crack in 

that element (Mayes and Davies, 1984). This approach suffers from problems in match-

ing damage severity to crack depth, and is affected by the mesh density. An improved 

method introduces local fiexibility based on physically based stiffness reductions, where 

the crack position may be used as a parameter for identification purposes. The second 

class of methods divides a beam type structure into two parts that are pinned at the 

crack location and the crack is simulated by the addition of a rotational spring. These 

approaches are a gross simplification of the crack dynamics and do not involve the crack 

size and location directly. The alternative, using beam theory, is to model the dynamics 

close to the crack more accurately, for example producing a closed form solution giving 

the natural frequencies and mode shapes of cracked beam directly or using differential 

equations with compatible boundary conditions satisfying the crack conditions (Chris-

tides and Barr, 1984; Sinha et al., 2002; Lee and Chung, 2001). Friswell and Penny (2002) 

compared several of the simple cracks models that may be used for health monitoring, 

for both the linear and non-linear response. Alternatively two or three dimensional finite 

element meshes for beam type structures with a crack may be used. Meshless approaches 
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may also be used, but are more suited to crack propagation studies. No element con-

nectivity is required and so the task of remeshing as the crack grows is avoided, and 

a growing crack is modelled by extending the free surfaces corresponding to the crack 

(Belytschko et al., 1995). However the compuational cost of these meshless methods 

generally exceeds that of conventional finite element analysis (FEA). Rao and Rahman 

(2001) avoided this difficulty by coupling a meshless region near the crack with an FEA 

model in the remainder of the structure. The two and three dimensional approaches pro-

duce detailed and accurate models but are a complicated and computational intensive 

approach to model simple structures like beams, and are unlikely to lead to practical 

algorithms for damage identification. 

Models of open cracks Although the geometry of a crack can be very comphcated, 

the contention in this paper is that for low frequency vibration only an effective reduction 

in stiffness is required. Thus, for comparison, a simple model of an open crack, which is 

essentially a saw cut, will be used. This will allow the comparison of models using beam 

elements, with those using plate elements. Only a selection of beam models will be used, 

that illustrate the fact that many beam models are able to model the effect of the crack 

at low frequencies. 

Two standard approaches using beam elements are shown in Figure 5. In the first 

approach, the stiffness of a single element is reduced, which requires a fine mesh, and also 

the derivation of the effect of a crack on the element stiffness. In the second approach, 

the beam is separated into two halves at the crack location. The beam sections are 

then pinned together and a rotational spring used to model the increased flexibility due 

to the crack. Translational springs may also be used in place of the pinned constraint. 

The major difficulties with this approach is that a finite element node must be place 

at the crack location, requiring remeshing for health monitoring applications, and the 

relationship between the spring stiffness and crack depth needs to be derived. 

Reduction in Element Stiffness 

Pinned Joint at Crack Location 

Figure 5. Simple crack models for beam elements. 
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For illustration, the open crack will be modeled using plate elements. The geometry 

is modeled by removing elements where the crack is located. Figure 6 shows this in the 

case of plate elements, and shows the side view of the mesh used. Clearly more complex 

methods may be used, and the review papers quoted earlier give further details. 

h 

Figure 6. A simple crack model using plate elements. 

The approach of Christides and Barr Clearly some of the material adjacent to the 

crack will not be stressed and thus will offer only a limited contribution to the stiffness. 

The actual form of this increased flexibility is quite complicated, but in this paper we 

approximate this phenomenon as a variation in the local flexibility. In reality, for a crack 

on one side of a beam, the neutral axis will change in the vicinity of the crack, but this 

will not be considered here. Shen and Pierre (1994); Carneiro and Inman (2001, 2002) 

have extended this approach to consider single edge cracks. Christides and Barr (1984) 

considered the effect of a crack in a continuous beam and calculated the stiffness, £ / , 

for a rectangular beam to involve an exponential function given by 

EI{x) 
Eh 

1 -f- Cexp (—2a |a: — ô d 1^ 
(3.1) 

W^ d^ 
where C = {IQ ~ Ic) /h- h = -j^r and Ic = 

w{d — dc) 
are the second moment of 

areas of the undamaged beam and at the crack, w and d are the width and depth of the 

undamaged beam, and dc is the crack depth, x is the position along the beam, and Xc the 

position of the crack, a is a constant that Christides and Barr estimated from experiments 

to be 0.667. The inclusion of the stiffness reduction of Christides and Barr (1984) into 

a finite element model of a structure, using beam elements, is complicated because the 

flexibility is not local to one or two elements, and thus the integration required to produce 

the stiffness matrix for the beam would have to be performed numerically every time 

the crack position changed. Furthermore, for complex structures, without uniform long 

beams, Equation (3.1) would only be approximate. Sinha et al. (2002) used a simplified 

approach, where the stiffness reduction of Christides and Barr was approximated by a 

triangular reduction in stiffness. An example of this approximation is shown in Figure 7, 

for a crack of depth 5%, located at x = 0. The advantage of this simplified model is that 

the stiffness reduction is now local, and the stiffness matrix may be written as an explicit 

function of the crack location and depth. For cracks of small depth a good approximation 

to the length of the beam influenced by the crack is 2d/a. 
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Figure 7. The variation in beam stiffness for the approaches of Christides and Barr 

(1984) (sohd Hne) and Sinha et al. (2002) (dashed hne). 

Fracture mechanics approach An alternative approach is to estimate the increased 

flexibihty caused by the crack, using empirical expressions of stress intensity factors 

from fracture mechanics. Lee and Chung (2001) gave such an approach based on the 

relationships given by Tada et al. (1973). Only a summary of the relevant equations will 

be given here. The element stiffness matrix is given by 

K , = : T ' C - ^ T 

where the transformation, T, is 

- 1 0 

0 - 1 

1 0 

0 1 

(3.2) 

(3.3) 

The flexibility matrix, C, for an element containing the crack in the middle, is given by 

6EI 

2il Ml 

3£? %L + 
ISTT (1 - v'^) 

Ewd? 2L 
24 
4 ]

rdc/d 

/3Ffil3)d(3. (3.4) 

where £e is the element length and u is Poisson's ratio. Fj {(3) is the correction factor for 

the stress intensity factor, and may be approximated as 

FiiH) 
/tan (7r/3/2) 0.923 + 0.199 [1 - sin (7r/3/2)]^ 

7r/?/2 cos (7r/3/2) 
(3.5) 

This formulation does give the stiffness matrix of the element containing the crack 

explicitly in terms of the crack depth. There are two difficulties with using this approach 

for structural health monitoring. The main problem is that the crack is located at the 

centre of the element, requiring that the finite element mesh be redefined as the crack 

moves. Furthermore the stiffness matrix of the crack is a complicated function of the 

crack depth, and does not depend on the crack location explicitly. 

- 4 - 2 0 2 4 
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A numerical comparison of the models The approaches to crack modelhng will be 

compared using a simple example of a steel cantilever beam Im long, with cross section 

25 X 50mm. Bending in the more flexible plane is considered. The crack is assumed to 

be located at a distance 200mm from the fixed end, and has a constant depth of 10mm 

across the beam width. 

The beam is modelled using 20 Euler-BernouUi beam elements, and gives the natural 

frequencies shown in Table 3. For the plate elements the length is split into 401 elements 

and the depth into 10 elements. Thus the elements are approximately 2.5mm square. A 

large number of elements is required because an element with linear shape functions is 

used. Table 3 shows the estimated natural frequencies using the Quad4 element in the 

Structural Dynamics Toolbox (Balmes, 2000). 

Table 3. Natural frequencies (in Hz) for the undamaged beam. 

Number DoF 

1 

2 

Modes 3 

4 

5 

Beam 

40 

20.709 

129.78 

363.40 

712.16 

1177.4 

Plate 

13233 

20.707 

129.39 

360.62 

701.96 

1150.6 

The damaged beam was also modelled using the approaches discussed earlier, and 

the results are shown in Table 4. The beam models all contain 20 elements, and the 

nodes are arranged such that the crack occurs in the middle of an element. Of course 

in the case of the discrete rotational spring a node is placed at the crack location. The 

reduction in the element stiffness is adjusted so that the percentage change in the first 

natural frequency is the same as that for the plate model. The other beam models are 

adjusted in a similar way. In the plate model, the crack is simulated by removing 4 

elements and thus represents a saw cut 10 mm deep. The row of elements below the 

crack is also made thinner, so that the crack has negligible width. The differences in 

the lower natural frequencies are very similar for all models, and these differences are 

smaller than the changes that would occur due to small modelling errors, or changes due 

to environmental effects. Of course the accuracy at higher frequencies becomes less since 

the modes are influenced more by local stiffness variations. 

Comparison with experimental results The previous section has shown that the 

natural frequencies predicted from different models are very close. Of course the question 

is whether the differences in these predictions are smaller than the measurement errors. 

As a demonstration the example of Rizos et al. (1990) will be used. Kam and Lee (1992) 

and Lee and Chung (2001) also used these results. The example is a steel cantilever 

beam of cross-section 20 x 20mm and length 300mm. Table 5 shows the measured and 

predicted frequencies of the uncracked beam. Rizos et al. (1990) propagated cracks at a 

number of different positions and depths, but here only a crack 80mm from the cantilever 

root, and depths of 2 and 6mm will be considered. Table 5 also shows the measured 
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Table 4. The percentage changes in the natural frequencies for the damaged beam. 

1 

2 

Modes 3 

4 

5 

Element Stiffness 

Reduction 

4.18 

0.07 

1.24 

2.99 

2.37 

Beam 

Discrete 

Spring 

4.18 

0.04 

1.23 

3.08 

2.45 

Sinha et 

al. (2002) 

4.18 

0.08 

1.24 

2.98 

2.37 

Lee and 

Chung (2001) 

4.18 

0.04 

1.20 

2.99 

2.34 

Plate 

4.18 

0.04 

1.22 

3.07 

2.69 

natural frequencies for these crack depths. The damaged cantilever beam is modelled 

using the beam methods described earlier. The depth of the crack is optimised so that the 

percentage change in the first mode matches the experimental result, to allow for possible 

errors in measuring the crack depth. Tables 6 and 7 show the measured and predicted 

frequency changes for the 2 crack depths. The results clearly show that the differences 

in the natural frequencies predicted by the models are smaller than the measurement 

errors. Thus the simple models for cracked beams may be used with confidence in health 

monitoring applications. 

Table 5. The natural frequencies (in Hz) for the experimental cantilever beam example. 

1 

Modes 2 

3 

FE Model 

Undamaged 

185.1 

1159.9 

3247.6 

Undamaged 

185.2 

1160.6 

3259.1 

Experimental 

2 mm Crack 

184.0 

1160.0 

3245.0 

6 mm Crack 

174.7 

1155.3 

3134.8 

Table 6. The percentage changes in the natural frequencies for the damaged beam with 

a 2 mm crack. 

1 

Modes 2 

3 

Element Stiffness 

Reduction 

0.648 

0.065 

0.606 

Discrete 

Spring 

0.648 

0.063 

0.610 

Sinha et 

al. (2002) 

0.648 

0.130 

0.604 

Lee and 

Chung (2001) 

0.648 

0.063 

0.606 

Experi-

mental 

0.648 

0.052 

0.433 

3.2 Composi te S t ruc tures 

Composite structures have an excellent performance, although this deteriorates sig-

nificantly with damage. Unfortunately damage, due to impact events for example, are 

difiicult to detect visually, and hence some method of non-destructive testing of these 

structures is required. Zou et al. (2000) reviewed the vibration based methods that are 

available to monitor composite structures. Since this paper considers inverse methods for 



1 

Modes 2 

3 

Element Stiffness 
Reduction 

5.67 

0.56 

4.92 

Discrete 

Spring 

5.67 

0.54 

4.95 

Sinha et 

al. (2002) 

5.67 

0.88 

4.49 

Lee and 

Chung (2001) 

5.67 

0.54 

4.92 

Experi-

mental 

5.67 

0.46 

3.81 

damage estimation, this section will only consider the parameterisation of the damage in 

composite structures, and in particular the modelling of delaminations. Although com-

posite structures have other modes of failure, such as matrix cracking, fibre breakage or 

fibre-matrix debonding (Ostachowicz and Krawczuk, 2001), these damage mechanisms 

produce similar changes in the vibration response to that obtained for damage in metallic 

structures. However delamination is a serious problem in composite structures, and has 

no parallel to damage mechanisms in other materials. Once the damage is parameterised 

then inverse methods, such as sensitivity analysis, may be applied. 

Zou et al. (2000) reviewed methods to model delaminations, and here we will con-

centrate on simple models. For example, if a structure is modelled with beam or plate 

elements, then only beam or plates elements should be used to model the structure 

with delaminations. Delamination occurs when adjacent plies in a laminated compos-

ite debond. For beam structures the simpliest case of a through width delamination, 

parallel to the beam surface, was modelled using four beam segments (Majumdar and 

Suryanarayan, 1988; Tracy and Pardoen, 1989). Separate beam elements were used above 

and below the delamination, and the constraints to join these elements to those of the 

undamaged parts of the beam needed to be applied carefully. Zou et al. (2000) detailed 

further development of these models. One difiiculty with using these models for para-

meter based identification is that changing the length and position of a delamination 

requires the model to be remeshed, and care must be exercised in calculating the associ-

ated sensitivity matrices. The techniques detailed by Sinha et al. (2002) for the position 

of cracks might be extended to this case. Paolozzi and Peroni (1990) highlighted that 

the most sensitive modes are those whose wavelength is approximately the same size as 

the delamination. Luo and Hanagud (1995) used a sensitivity based method to detect 

delaminations, and they also discovered that some modes split to give two closely spaced 

natural frequencies. 

3.3 Joint Models and Generic Elements 

One major difficulty in parametric approaches is that a model is required that accu-

rately refiects the effect of damage on the mass and stiffness matrices. To some extent 

the situation is helped when low frequency vibration measurements are used because any 

local stiffness reduction will have a very similar effect on the dynamic response. Thus it is 

possible to use equivalent parameters, such as element stiffnesses, to model the damage. 

Generic elements (Gladwell and Ahmadian, 1995; Friswell et al., 2001) take this approach 

further by allowing changes to the eigenvalues and eigenvectors of the stiffness matrices 

Table 7. The percentage changes in the natural frequencies for the damaged beam with 

a 6 mm crack. 
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of structural elements or substructures. These changes are usually constrained so that 

properties such as the rigid body modes and the geometric symmetry are retained. 

Generic elements introduce flexibility into the joint in a controlled way. Other equiv-

alent models, such as discrete rotational springs, offset parameters or changing element 

properties may also be used, although generic parameters do have advantages (Friswell 

et al., 2001). In particular, all models prejudge how the damage will affect the full model 

of the structure, whereas the generic element approach automatically finds the likely low 

frequency motion of the joint. Consider a two dimensional T joint constructed from three 

beam elements. Each node has three degrees of freedom and, since the substructure has 

four nodes, the substructure stiffness matrix has three rigid body eigenvectors and nine 

flexible eigenvectors (Titurus et al., 2003a). The lower eigenvectors have much simpler 

deformation shapes that are more likely to represent the motion the substructure would 

undergo in many of the global modes of the structure. Thus reducing the eigenvalues 

corresponding to these eigenvectors makes the joint substructure more flexible in the 

frequency range of the global dynamics, and may be used to model damage. Higher fre-

quency eigenvectors of the substructure may also be included if the motion of the joint 

is more complex, however the lower eigenvectors of the joint are likely to adequately 

characterise the low frequency dynamics of the structure. 

Generic elements have been developed for use in model updating and may be consid-

ered as equivalent models of elements or substructures (Gladwell and Ahmadian, 1995). 

Law et al. (2001) applied generic elements to the finite element model updating of the 

Tsing Ma bridge in Hong Kong. Wang et al. (1999) used generic elements in damage 

detection, dealing with the simulated problem of damage detection in a frame structure 

with flexible L-shaped and T-shaped structural joints. 

The form of generic element parameterisation assumes that the damage only influences 

the stiffness properties and that the mass properties are modelled correctly. Thus only 

changes in the stiffness matrices are allowed. The eigenvalue problem for any selected 

sub-structure or element stiffness matrix can be written as 

0 0 

0 As 
(3.6) (K^U^ - A,I) 0, = 0, (^SUB>)T j^sUB^SUB ^ 

where 

*SUB ^ [ < ^ i , . . . , 0 „ ^ , ^ „ ^ ^ l , . . . , 0 „ ^ ^ J = [ * ^ , * 5 ] e SftnsuB^nsus^ (3.7) 

and riR < 6. K^^^ is a sub-structure stiffness matrix, ^^^^ is the eigenvector matrix 

of K^^^, \i and (j)i are the ith eigenvalue and eigenvector of matrix K^^^, respectively. 

Sub-matrix As is a diagonal matrix of non-zero eigenvalues of matrix K^^^. The di-

mensions of these matrices depend on the size of the chosen sub-structure, where nsuB 

is a number of degrees of freedom of substructure and TIR < 6 is the number of rigid 

body modes, *i?, $ 5 are sub-matrices of *^^^ corresponding to the rigid and structural 

modes, respectively. 

A modified set of sub-structure eigenvectors may be obtained by a linear transforma-

tion, as 

S R SRS 
I^OR, ^os] = [*i?, * 6 

0 
(3.8) 
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where the index 0 denotes the original quantities and matrices without index 0 repre-

sent modified quantities. Notice that in Equation (3.8) the modified rigid body modes 

do not contain any of the structural modes. By rearranging Equation (3.6) and using 

Equation (3.8), the modified sub-structure stiffness matrix may be written as 

K^™ ^ ^^^slAsSs^L = ^ ̂os 

1^1,1 "' ^l,{nsuB-nR) 

b l M ^{nsuB-nR),{nsuB-nR) J 

*5s- (3.9) 

Equation (3.9) is the basis for generic element parameterisation for damage detec-

tion, /^i^i,... 1 K,{nsuB-nR),{nsuB-nR) ^^^ ^^c most general parameters for this parame-

terisation. Employing additional assumptions related to the geometric symmetry or anti-

symmetry of the corresponding eigenvectors will significantly reduce the total number of 

parameters. The sensitivity of natural frequencies with respect to these parameters is 

— = 6^ — 
dxj ^ dxj 

( Np \ 
dKr (xr) 

dxj 
(pi (3.10) 

where Np is a number of parameterised substructures or elements, x/ is a group of para-

meters corresponding to /th substructure or element with corresponding stiffness matrix 

K/, x is a vector of all parameters, KQ is non-parameterised part of the global stiffness 

matrix, Â  is the ith eigenvalue and Xj is j t h parameter of a chosen parameterisation 

that is associated with the rth substructure or element. 

Consider a two dimensional T joint constructed from three beam elements. Each node 

has three degrees of freedom and, since the substructure has four nodes, the substructure 

stiffness matrix has three rigid body eigenvectors and nine fiexible eigenvectors. Figure 8 

shows the nine flexible eigenvectors for this substructure, where the circles and dots 

represent the nodes and the dotted line is the undeformed joint. The finite element shape 

functions have been used to produce smooth deformation shapes. The lower eigenvectors 

have much simpler deformation shapes that are more likely to represent the motion the 

substructure would undergo in many of the global modes of the structure. Thus reducing 

the eigenvalues corresponding to these eigenvectors makes the joint substructure more 

fiexible in the frequency range of the global dynamics. Higher frequency eigenvectors 

of the substructure may also be included if the motion of the joint is more complex, 

how^ever the first two eigenvectors of the T joint were found to characterise the dynamics 

of the frame structure considered later. Gladwell and Ahmadian (1995) gave further 

explanation of the physical meaning of generic elements. 

3.4 Distributed Damage 

Teughels et al. (2002) presented a sensitivity-based finite element updating method for 

damage assessment that minimised differences between the experimental and predicted 

modal data. The parameterisation of the damage (both localisation and quantification) 

was represented by a reduction factor of the element bending stiffness. The number of 

unknown variables was reduced to obtain a physically meaningful result, by using a set of 
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Figure 8. Substructure eigenvectors for a T joint. 

damage functions to determine the spatial bending stiffness distribution. The updating 

parameters were then the multipHcation factors of the damage functions. The procedure 

was illustrated on a reinforced concrete beam and on a highway bridge (Teughels and 

Roeck, 2004). 

4 An Example of Subset Selection using Generic Elements 

The proposed strategy is evaluated on a structure consisting of four thin-walled tubes 

connected to each other by four fillet welds. These joints were intentionally manipulated 

to produce one healthy and six damage cases. Titurus et al. (2003a) gave a detailed 

discussion of the identification results for the healthy/undamaged structure and Titurus 

et al. (2003b) described the estimation of the damage cases. Figure 9 shows the ex-

perimental structure, and Figure 10 shows the discretisation and experimental (EMA) 

measurement locations (the response was measured at the FE nodes). The finite element 

(FEM) nodes were placed at the measurement locations. Thus 32 degrees of freedom 

were measured, whereas the FE model contained 96 degrees of freedom (three degrees 

of freedom per node). The in-plane dynamics of the structure were measured, and the 

structure was supported in the free-free condition by elastic bands. 
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Figure 9. The outline of the H-frame structure (dimensions in mm). 
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12 

Figure 10. The discretisation of the H-frame structure. 

4.1 Damage cases 

Figure 11 gives a detailed description of all of the damage cases. These cases were 

produced by the intentional incompleteness of one or more of the fillet welds used to 

interconnect the four tubular parts of the structure. The shaded lines show the welds 

completed for each of the four joints, for each damage state. Note that State VII has 

all welds in place and hence is the undamaged structure. A distinctive feature of this 

structure is its geometrical symmetry, which is likely to cause problems for damage 

location based on measured natural frequencies alone. Two different approaches will be 

evaluated; the first assumes that the influence of the transducer mass will be suflBcient 

to break the symmetry, whilst the second uses the measured mode shapes and their 

associated sensitivities. However, partial damage location will be tried, based on the use 

of natural frequencies alone. 

These damage cases were selected to give a reasonable coverage of all possible combi-

nations of damage cases, within practical constraints. This section concentrates on the 

32 

Sensor no.2 27 
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single location damage case, and so only State VII, State VI and State V from Figure 11 

will be studied in detail. 

Figure 11. An overview of the damage cases considered. 

4.2 Identification results for the damage cases 

A full modal test was performed for each of the damage cases shown in Figure 11, 

however as the number of results is large only a selection will be considered here. The 

measurements were performed in the frequency range from 0 to 625 Hz. Table 8 gives 

the first nine measured natural frequencies for all of the damage cases. The fifth and 

sixth modes swap order between damage states III and IV. The last column corresponds 

to the undamaged/healthy structure, that is the structure with fully welded joints. Gen-

erally, the natural frequencies decrease with increasing level of damage, as a result of 

the decreasing stiff'ness of the structure. However, some small increases were observed 

in some natural frequencies from one case to another. One possible reason might be a 

small decrease in mass due to the absence of some weld material. Alternatively, tak-

ing the structure from the free-free suspension to undertake the welding may give small 

frequency changes due to slightly different suspension conditions. 

Table 8. The natural frequencies (Hz) of the healthy (State VII) and damaged (State I 

to VI) structure. Note that modes 5 and 6 swap between States HI and IV due to the 

damage. 

Mode 

i 
2 

3 

4 

5 

6 

7 

8 

9 

State I 

27.63 

118.64 

126.38 

169.77 

264.77 
279.64 

298.91 

393.61 

550.55 

State II 

33.57 

120.94 

129.92 

172.28 

275.73 

280.38 

312.58 

396.78 

551.78 

State III 

34.18 

120.74 

130.64 

172.32 

275.42 

280.24 

317.15 

399.06 

552.71 

State IV 

48.60 

125.04 

138.97 

174.77 

280.09 

300.44 

342.10 

418.68 

560.06 

State V 

50.26 

124.82 

139.63 

175.42 

280.33 
301.72 

347.97 

420.05 

560.63 

State VI 

60.06 

126.60 

147.86 

175.86 

280.81 

319.60 

359.55 

436.24 

565.93 

State VII 

60.57 

126.53 

147.05 

175.89 

280.76 

320.56 

360.70 

437.72 

566.52 
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Figure 12 shows the modal assurance criteria (MAC) matrices between the reference 

mode shapes of the healthy structure and mode shapes corresponding to the damaged 

cases. It is clear that the fifth and sixth modes interact and swap over between damage 

states I and VII. Another interesting feature shown by the MAC matrices is the relative 

insensitivity of the mode shapes to increasing damage, despite large changes in the natural 

frequencies. Titurus et al. (2003a) gave other experimental results, in particular the mode 

shapes corresponding to the healthy structure and further discussion of modelling issues. 

Figure 12. MAC criterion between State VII and damage State I. The rows of each 

MAC matrix correspond to mode shapes of State VII while columns correspond to mode 

shapes of State I. 

4.3 Parameterisation overview 

Section 3.3 provided a detailed explanation of parameterisations to be used for damage 

location, however, for the sake of completeness, a summary is provided here. Parameter-

isation A is expressed in terms of two groups of generic elements. The first group consists 

of one generic substructure that models the parts of the structure containing the fillet 

welds, and two parameters are required for each substructure, as shown in Figure 13. The 

other group consists of three different generic elements, each requiring one parameter, as 

shown in Figure 13. Thus, parameterisation A requires the parameter vector x given by 

y:=[xi,X2,xs,X4,xs] = [i^n, i^l2^ i4i^ ^41^'^ii] (4-1) 

where /̂ ^̂  denotes the (j, k) element of the matrix of the ith element/substructure, based 

on generic elements as detailed in Equation (3.9). The values of these parameters may 

be determined by model updating. This parameterisation allows partial localisation to 

the type of region where damage has occurred. 

Parameterisation B allows similar elements or substructures to have independent val-

ues of the corresponding generic parameters, to enable complete damage localisation. 

Parameterisation B requires 28 parameters for the H-shaped structure, as shown in Fig-
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parameter: KSI, K 2̂2 

parameter: K^H 

parameter: K^l 

parameter: K̂ Ĥ 

Figure 13. Parameterisation A of the baseline model of the thin-walled H structure. 

ure 14, and these are defined as, 

X2i—l — f^iii X2i — f^22i ^ ~ -'•5'^5'^5 4 , 

(4.2) 
x^+4 = /^ii, j = 5,6, . . . ,24. 

parameter: KH, K2 

parameter: KH 

parameter: KH 

parameter: KH 

P9 PlO PhP2 Pll Pl2 Pis PhP4 Pl4 Pl5 

Figure 14. Parameterisation B of the baseline model of the thin-walled H structure. 

4.4 Partial damage location - natural frequencies alone 

In this section, parameterisation A will be used for partial damage localisation, using 

only the measured natural frequencies. This simplified form of damage localisation is 

chosen as a first step in the damage detection of a geometrically symmetric structure. 

The first seven natural frequencies corresponding to the healthy and damaged structures, 

as well as the sensitivity matrix S, determined at the updated parameters values (Titurus 

et al., 2003a), were used to test the subset selection approach proposed in Section 2.2. 
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Both the sensitivity matrix and the measured frequency differences for the considered 

damage cases, were normahsed by the corresponding measured natual frequencies. Since 

single-location damage states are of primary interest, State VI and State V will be used, 

as they represent two levels of damage in one fillet weld. State IV and State II will also 

be considered, as these are multi-location damage states with different levels of damage 

(see Figure 11). 

The results of damage location, in the form of subspace angles, are shown in Figure 15. 

Individual groups of columns correspond to particular model parameters. Within each 

group, corresponding to each parameter, the columns represent different comparisons of 

the damage cases (State II, IV, V, VI) with the healthy structure (State VII). Figure 15 

suggests that the damage corresponds to parameter xi = KJI , which corresponds to 

the generic substructures containing the welded joints. Thus the damage is correctly 

localised to the welded joint. An important feature of this study is that even relatively 

small damage corresponding to State VI is readily observable and clearly identifiable. An 

increasing level of damage, represented here by State V, leads to improved and clearer 

identification of damage location or damage type. 

Figure 15. Subspace angles for partial localisation, parameterisation A. 

The results disagree with the expectation that the increasing level of damage should 

lead to increasing subspace angles and consequently to a deteriorating quality of damage 

localisation, due to the increasing error in the linearisation of the original non-linear 

problem. However the level of damage for State VI is relatively small (the maximum 

difference between State VII and State VI is —0.83% for the first natural frequency, see 

Table 8) and therefore susceptible to measurement error. State V is characterised by a 

larger extent of damage, and therefore large differences in the natural frequencies (the 

maximum difference for this combination is —17.02% for the first natural frequency), 

produces smaller subspace angles. Figure 15 also gives the subspace angles for State II 

and State IV, and the angles corresponding to parameter 1 are smaller still. Although 

these are multi-damage cases, the damage still lies in the joints. Another noticeable 

and beneficial feature of the results is the insensitivity of the subspace angles from other 

parameters due to damage in the welded joints, reducing the possibility of false alarms. 

Figure 16 provides additional information in terms of a selection tree. A selection 

tree is a representation of the forward parameter subset selection where each node of the 
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tree corresponds to a selected subset and its colour represents the numerical value of the 

residual. The root of the tree represents the initial system, Equation (4.2). The branching 

factor and the depth of the tree are decided in advance and in our case results in binary 

selection trees with three levels corresponding to the selected parameter subsets. All three 

figures are determined using the first seven natural frequencies. The second best single 

parameter would be X5, a parameter that also effectively monitors the stiffness in the 

regions connected with welded joints. The important relative indicators of damage level 

for a given situation are the absolute values of the residuals provided by the amplitude 

bar on the left of the Figure 16, as the ability to reproduce the measurement vector 

decreases with increasing damage level and consequently the magnitude of residuals also 

increases. 

Figure 16. Binary tree representing forward selection. State VII vs. State VI. 

4.5 Complete damage detection - natural frequencies and mode shapes 

The only way to deal with damage localisation for geometrically symmetric structures 

is to use spatial information in the form of mode shapes. Once again the analysis was 

limited to the single location damage case, i.e. State VII (healthy), State VI (level 1 

damage at welded joint 4, see Figure 9) and State V (level 2 damage at welded joint 

4). The subspace angles corresponding to the individual parameters (parameterisation 

B) were computed by the techniques presented in Section 2.2. However, since the vector 

5z and the sensitivity matrix S contain elements corresponding to both the natural 

frequencies and the mode shapes, additional weighting must be included to represent the 

relative importance of the natural frequency and mode shape information, as presented 

in Section 2.2. 

There are problems in using mode shape information, particularly since the accuracy 

of their estimation from measured data is worse than for natural frequencies. This is 
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compounded since the proposed approach uses the differences between the measured 

damaged and measured undamaged mode shapes. Thus only mode shapes that are 

sensitive to the candidate damage sites should be chosen. Table 8 shows the changes 

in the natural frequencies for the different damage states, and gives a good indication 

of this sensitivity. However the table shows the sensitivity of the natural frequencies, 

which is not necessarily the same as the sensitivity of the mode shapes. Certainly, if the 

natural frequencies change very little with damage, then the corresponding mode shapes 

will not be sensitive. Thus, of the first seven modes, modes 2, 3, 4 and 5 are unlikely 

to give useful spatial information (note that mode 3 has been excluded because of the 

slight increase in the natural frequency in State VI). The sensitivity of the mode shapes 

to damage also increases with mode number, as the mode shapes corresponding to higher 

frequencies, contain more local deformation. Mode 1 is a global mode and therefore its 

shape is insensitive to damage. 

The proposed approach using mode shapes will be demonstrated using spatial in-

formation from mode 6. Relative errors in the first seven natural frequencies and the 

difference in the mode shape elements were used. No further weighting was included, as 

similar results were obtained with other weighting values. Figure 17 shows the subspace 

angles corresponding to damage State V, and provides the correct indication of damage 

location, corresponding to parameter xj. This parameter belongs to the fourth generic T 

substructure, representing fillet weld number 4 (see Figure 14). Other significant para-

meters indicated by the subspace angles are parameters X2^ to X28, which are located on 

the crossbar neighbouring the damaged region. However the results from the frequency 

only estimation clearly indicated that the damage is located in the joints. Thus damage 

in welded joint 4 may be confidently predicted. 

Figure 17. Subspace angles corresponding to State V, using seven natural frequencies 

and mode shape 6. 

5 Methods using Mode Shapes 

This section considers a different approach where changes in the measured modes shapes 

are used directly to detect and locate damage. Farrar and Jauregui (1998a,b) compared 

several of these methods, such as the damage index method (Stubbs et al., 1992), mode 



50 M.I. Friswell 

shape curvatures (Pandey et al., 1991), the change in flexibihties (Pandey and Biswas, 

1994) or the change in stiffness (Zimmerman and Kaouk, 1994). The example used was 

a road bridge with a concrete deck and steel supports. Different levels of damage were 

introduced, but the damage was only clearly located with most methods at the most 

severe level where the first natural frequency changed by over 7%, and the mode shapes 

changed significantly. The damage index method (basically a measure of changes in 

modal strain energy) was found to be the most promising. Other methods based on 

pattern recognition, often using neural networks, are also popular (Sohn et al., 2001, 

2002; Trendafilova and Heylen, 2003). These methods essentially provide curve fits using 

interpolation functions and are not based on physical models. The lack of a physical 

model also limits the scope for damage prognosis. 

One of the major problems with methods using mode shapes is the incompleteness of 

the mode shapes. The number of measured degrees of freedom is always far smaller that 

the number of analytical degrees of freedom. Thus the mode shapes must be expanded 

or the analytical model must be reduced. In either case errors will be introduced because 

the model without damage is generally used for this reduction or expansion. The other 

source of incompleteness is the measured frequency range, which means that only a small 

number of modes will be measured. If damage causes a change in the stiffness matrix, 

this is further complicated because the high frequency modes have most effect on the 

elements of the stiffness matrix, but the lower frequency modes are generally measured. 

A huge number of different methods have been proposed and only a selection of the 

available methods will now be described. 

5.1 COMAC 

Perhaps the simplest method is the Coordinate Modal Assurance Criterion (COMAC). 

The usual Modal Assurance Criterion (MAC) correlates modes shapes by summing over 

the measured degrees of freedom. The COMAC sums over the modes and thus gives 

information about the correlation of the degrees of freedom (Lieven, 1988). If (puij is 

the j t h element of the zth mode shape vector for the undamaged structure, and (t)dij is 

the corresponding quantity for the damaged structure, then the COMAC for degree of 

freedom j is 

IILi4>uij(pui,j\\ Wl^i(pdij(pdij\\ 

Damage location is determined by those degrees of freedom with a low correlation 

between the healthy and damaged states. Note that local damage will affect all of the 

degrees of freedom to some extent, and so the changes in the mode shapes will not 

necessarily be local. 

5.2 Balancing the Eigenvalue Equation 

Suppose that the first r natural frequencies and mode shapes are measured. If Â ^ 

are the eigenvalues and (j)di the mode shapes of the damaged structure, then 

[X^Md + Xdi^d + Kd](t>di = 0, i = 1 , . . . , r, (5.2) 
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where M^, D^ and K^ are the mass, damping and stiffness matrices of the damaged 

structure, which are of course unknown. Suppose that damage only affects the stiffness 

matrix, then M^ = M^, D^ = D-̂  and K^ = K^ — SK where M-u, Du -̂nd K^ are the 

mass, damping and stiffness matrices of the undamaged structure, which are assumed 

to be known. In practice model updating may be used to ensure that the model of the 

undamaged structure accurately represents the measured dynamics. SK is the unknown 

change in the stiffness matrix due to damage. Equation (5.2) then becomes, 

Li = [XdiMu + XdiBu 4- K^] (f)di = 5K(l)di, i = 1 , . . . , r. (5.3) 

In Equation (5.3) the vector L^ on the left side of the equation may be calculated. 

If the change in the stiffness matrix due to damage is local then only those parts of the 

wStiffness matrix corresponding to the affected degrees of freedom will be non-zero, and 

hence the damage may be localised by the non-zero elements of the vector Lj. If more 

than one mode is measured then the contribution from each mode may be averaged using 

the root mean square for each degree of freedom. 

5.3 Modal Strain Energy 

Zhang et al. (1998) presented a method which compared the modal strain energy 

within the elements. For element j , with corresponding element stiffness K j , the element 

modal strain energy ratio for the iih mode (SERij) is 

0.' K0i CO-

where (j)i is the ith mass normalised mode shape, Ui is the ith natural frequency and K 

is the stiffness matrix of the structure. A damage indicator Pij is then defined as the 

difference of the element modal strain energy ratio before and after damage as, 

d% ut 

where the subscripts u and d denote the healthy and damaged structures. 

5.4 Direct and Minimum Rank Update Methods 

Consider first the direct updating methods. The goal is often to reproduce the mea-

sured data (usually the modal model), by changing the stiffness matrix as little as possible 

(in some minimum norm sense). Historically these method were among the earliest in 

model updating (Priswell and Mottershead, 1995) and a number of generalisations have 

been proposed, depending on what is considered to be the reference quantities (Kenigs-

buch and Halevi, 1998). A number of problems exist with the direct methods. There is no 

guarantee that the resulting matrices are positive definite (or semi-definite for structures 

with free-free modes), and extra modes may be introduced into the frequency range of 

interest. The standard methods do not enforce the connectivity of the structure, repre-

sented by the handedness of the matrices and the pattern of zero terms, although Kabe 
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(1985) gave a method that enforced the expected connectivity. More fundamental is that 

forcing the model to reproduce the data does not allow for the errors that will be present 

in the measured data. Mode shapes, in particular, can only be measured with a limited 

accuracy. The major problem for damage location, and indeed for error location in model 

updating, is that all elements in the matrices may be changed. If only a small number of 

sites are modelled incorrectly (or are damaged) then only a small number of the matrix 

elements will be changed. Generally, because of the minimum norm optimisation in the 

updating method, all the matrix elements would be changed a little, rather than a small 

number of elements changed substantially. Thus the effect of any damage present would 

be spread over all the degrees of freedom making location difficult. 

Zimmerman and Kaouk (1994) and Kaouk and Zimmerman (1994) proposed that 

the change in the stiffness matrix should be low rank. This does not ensure that the 

change in stiffness will be local, as the stiffness change could be global but low rank. The 

method requires the rank of the stiffness change to be less than or equal to the number of 

measured modes used in the update. Zimmerman et al. (1995) gave an overview of this 

approach, and discussed issues such as the number of measured modes to use. Doebling 

(1996) extended the method by updating the elemental parameter vector rather than the 

global stiffness matrix. Abdalla et al. (1998, 2000) developed methods by minimising 

the change in the stiffness matrix, while enforcing constraints such as symmetry, sparsity 

and positive definiteness. 

The development begins by combining Equation (5.3) for all r measured modes to 

give, 

5KVd = MuVdAl + BuVdAd + KuVd = B, (5.6) 

where V^ = [^di (t>d2 --- (pdr] and A^ = diag [A^i Xd2 ^ - ̂ dr] 

It may be proved (Zimmerman and Kaouk, 1994; Kaouk and Zimmerman, 1994) that 

the minimum rank of SK. is r, and that this minimum rank solution to Equation (5.6) is 

SK = B[B'^Vd]~^B'^. (5.7) 

5.5 Change in Flexibility 

The flexibility matrix is the inverse of the stiffness matrix. In terms of the mode 

shapes the flexibility matrix C is 

c = E \4>i4>J (5.8) 
a;2 

i=i ' 

where Aj and (pi are the ith natural frequency and mass normahsed mode shape and n is 

the number of degrees of freedom in the model. Note that the lower (measured modes) 

have the largest influence on the flexibility matrix. The flexibility method (Pandey and 

Biswas, 1994) compares the flexibihty matrices for the healthy and damaged structure, 

based on the r measured modes, as 

(5C = C„ - Cd (5.9) 
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where 

A measure in terms of degrees of freedom is obtained by taking the maximum along each 

column of 5C 

6 Sensor Validation 

The correct functioning of structural health monitoring systems requires that the sensors 

be functioning. Errors introduced by faulty sensors can cause undamaged areas to be 

identified as damaged. In many civil structures applications for health monitoring (such 

as bridges), ambient loads must be used for excitation. These loads are not known 

and may be measured or estimated as part of the health monitoring algorithm, which 

requires a large number of sensors. Sensor validation, where the sensors are confirmed 

to be functioning during operation, seems to have received little attention. The critical 

aspect in structural health monitoring is that there are usually more sensors than excited 

modes. This redundancy may be used, together with a modal model of the structure, to 

validate the sensor functionality. 

The control and chemical engineering community have considered the sensor valida-

tion problem, and have used models and sensor redundancy to good effect. However, 

these approaches usually use the faulty sensor to predict the response and look for errors 

between predictions and measurement. Clearly using the faulty sensor in the predic-

tion process will propagate errors to the predicted responses. Often neural networks, or 

artificial intelligence approaches are used for the analysis. 

Friswell and Inman (1999) assumed that only the lower modes of the structure are 

usually excited, producing a large redundancy in the data. This has similarities to the 

principal component analysis used in chemical plant (Dunia et al., 1996; Dunia and Qin, 

1998). Moreover, the approach seems to work only under the assumption of additive 

faults while giving erroneous results for the multiplicative faults case. Physically addi-

tive faults might arise from DC offsets in the electronic equipment and multiplicative 

faults might arise from calibration errors. The alternative used here, is to generate new 

residuals using the modal filtering approach which has similarities to the approach of 

Friswell and Inman. It is shown that these new residuals have interesting fault isolation 

properties. The approach is demonstrated on a subframe structure, although the method 

is completely general and may be applied to any structure for which a modal model is 

available. If necessary, such a model could be obtained from an identification experiment. 

For fault isolation a correlation index is proposed which is shown to correctly identify 

the faulty sensor. 

Faults may cause a variety of changes in the dynamic response of a sensor, and many 

of these are difficult to model. However the two most common faults, namely additive 

and multiplicative faults, are relatively straightforward to model. Physically additive 

faults might arise from DC offsets in the electronic equipment and multiplicative faults 

might arise from calibration errors. In this section the sensor faults are assumed to be 

additive and modelled as a constant signal added to the sensor response. The problem of 
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detecting sensor faults is then transformed into the problem of the detection of the change 

in the mean of a Gaussian variable with known covariance matrix, which switches from 

zero under the no-fault condition to a mean value with unknown magnitude under the 

fault condition. This problem may be solved using a Ukehhood ratio test resulting in a 

X^ distributed variable which is then compared to a threshold. In order to decide which 

sensor or subset of sensors is most likely to be responsible for the fault, the so-called 

sensitivity tests are computed, which are also y^ distributed. 

6.1 Sensor Validation Concepts 

Although there is redundancy in the data, based on the number of sensors and the 

number of modes excited, it is still not straightforward to identify those sensors that are 

damaged. When all sensors are working it is possible to estimate the modal contributions 

to the response and therefore produce a predicted response that will give some idea of the 

accuracy of the model of structure and the extent of the measurement noise. However if a 

sensor is damaged, then using data from this sensor to estimate the modal participation 

factors will propagate the errors from the faulty channel through the estimate of the 

modal response to the estimate of the response in all channels. Thus to predict faulty 

sensors the sensors are split into two groups. If S represents the set of all sensors then 

these two groups are. 

Si — {sensors assumed to be faulty} 
(6.1) 

Sw = {sensors assumed to be working} 

Note that these two sets are disjoint so that 

SfnS^ = {}, SfUS^ = S. (6.2) 

Note that the distribution of faulty and working sensors seems to have been deter-

mined at the outset. In practice which sensors will be faulty is unknown and so every 

potential subset of faulty sensors must be tried. This approach has parallels with the 

subset selection technique in parameter estimation (Friswell et al., 1997; Millar, 1990). 

The difSculty in sensor validation, as in parameter estimation, is to determine which 

sensor or parameter subset is optimal. Note that for sensor validation, the number of 

assumed working sensors should be at least as great as the number of modes of interest. 

6.2 Validation via Modal Filtering 

Central to the proposed strategy for sensor validation is a modal model of the structure 

and also the estimation of the modal participation factors during operation. At any time 

instant, t^, the measured output is 

y {tk) =yk = H * q {tk) = H^rCLr (tk) + H^dCLd {tk) (6.3) 

where the modes have been split into those that are retained, ^^^ ^nd those that will be 

discarded, *d- If H-̂ ; picks out those outputs that are assumed to be working (i.e. are 

elements of 5,^;), then we need to estimate qr,k = Qr (tk) from 

Yw.k = H^*rqr,fc + H^*dqd,fc (6.4) 
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where yw.k denotes the response at the fully functioning sensors at time tk and qd,fc = 

Qd {tk). Clearly the discarded modes in Equation (6.4) could be neglected and the pseudo 

inverse used to estimate cy^k from the resulting over-determined set of equations, as 

q̂ ,fc = (H^*^)V^,/c (6.5) 

where {j denotes the usual Moore-Penrose pseudo inverse. This gives an estimate of the 

response at the functioning sensors as 

Yw.k = H ^ * r (fi-w^r)^ Yw.k = ^Yw^k- (6.6) 

There will be an error introduced because 

( H ^ * , ) ^ H ^ $ d ^ O (6.7) 

and a better estimate may be obtained by using the orthogonality of the modes as 

q,,fe = (* jH ; ; ;M^ , ,Hz .* r ) " ' ^InlM^^rYw.k (6.8) 

where M^̂ ;̂ ^ is the mass matrix reduced to the degrees of freedom corresponding to the 

functioning sensors in the set Sy^. Given that the mode shapes are assumed known, 

SEREP would be the most appropriate reduction method (O'Callahan et al., 1989). 

However, if the discarded modes lie outside the frequency range of interest then the esti-

mator based on the pseudo inverse. Equation (6.5), will be adequate. The corresponding 

estimate of the response is 

Yw^k = H ^ * r ( * 7 H ^ M ^ , 3 i ^ ^ r ) ~ ^ ^JlilM^^rYw^k = ^Yw^k- (6.9) 

Both approaches give a projector matrix P from the response space to the space of 

the lower modes. The quality of the model may be determined by reconstructing the 

response at the functioning sensors and producing the error as 

5̂ ,fc = ( I -P )y^ , f e . (6.10) 

Reconstructing the responses of the faulty sensors gives the error as 

/̂,fc = Yf,k - Hf^Ark (6.11) 

where H / picks out those outputs that are assumed to be faulty (i.e. are elements of 

Sf). 

In practice we do not know which sensors are working and which are faulty. Therefore 

the errors in Equations (6.10) and (6.11) are generated for all possible sets S^j and Sf. 

Of course the estimation of the modal participation factors has been performed at every 

time step, and so the errors will be produced at every time step. The average error over 

the time range of interest may be easily computed. The projector matrix, P , is constant 

for a particular choice of sets Sw and Sf and only needs to be computed once. Those sets 

where the error in the faulty sensor(s) is much greater than the error in the functioning 

sensors are then used to locate the faulty sensors. 
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6.3 The Parity Space Approach 

Abdelghani and Friswell (2001) introduced a different approach to treating the resid-

uals, that performs better on systems with multiplicative sensor errors. Three residuals 

are required. The first is related to the modal residuals given above, and is essentially 

the negative of the residual in Equation (6.10), and is 

7fc = [ H ^ * r (Rw^r)^ - l ] y^^,fe. (6 .12) 

The second residual is similar, but the complete set of sensors (including any faulty 

sensor) is used to calculate the modal quantities. Thus 

7^ = H ^ * ^ (*^)^ Yk - y^,fc. (6.13) 

The final residual is the difference between the two, namely 

a = 7 f e - 7 f e . (6.14) 

The damage correlation index is then given by 

p^-^.21 (6.15) 

where the expected value is over the time index k. This correlation index may be com-

puted for each potentially faulty sensor, and hence any faulty sensor determined. 

6.4 Example 

The structure considered in this study consists of a suspended steel subframe used 

extensively in modal identification studies (Abdelghani et al., 1997). The structure was 

excited at two different locations using random noise inputs, and 28 accelerometers were 

used to measure the time response. The analysis was performed in the 0 — 500 Hz 

frequency range and 32000 data points per channel were collected at 1024 Hz sampling 

frequency. 

All 28 sensors were used to identify the experimental natural frequencies, damping 

ratios and mode shapes from the first 3000 data samples. The Balanced Realization 

algorithm using data correlations was used for the identification (Abdelghani et al., 1999). 

Only the 5 first modes were retained (up to 300 Hz) and the natural frequencies and 

damping ratios are given in Table 9. The corresponding real mode shapes were then 

used to generate the residuals. Faults are added to the measured signals to simulate 

realistic behaviour. For all cases the data samples 3000-4000 were used to generate the 

residuals. 

Suppose that an additive fault is simulated, where of 50% of the maximum response 

is added to sensor 6. Figure 18 shows the results using modal residuals and demonstrates 

that additive faults may be detected. 

Next a multiplicative fault to sensor 6 is introduced: the time responses are multiplied 

by a factor of 1.5. The modal residuals perform poorly on multiplicative faults. Figure 19 
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Table 9. Frequencies and damping ratios identified using the Balanced Reahsation al-

gorithm. 

Frequency (Hz) 

60.72 

156.32 

190.66 

229.19 

287.11 

Damping (%) 

0.13 

0.17 

0.16 

0.20 

0.10 

1 5 10 15 20 25 
Sensor Number 

Figure 18. Correlation coefficient ratio under faulty and non-faulty conditions using 

modal residuals: Sensor 6 has an additive fault. 

gives the results using modal residuals and clearly the fault has not been detected. Fig-

ure 19 shows the results of the parity space approach and shows that the technique is able 

to clearly isolate multiplicative faults. Furthermore it seems from these experiments that 

the neighbouring correlation ratios are not influenced by the faulty sensor (s). Figure 21 

shows the results for a complete loss of sensor 8. Only the ratio of the corresponding 

sensor changes, while the others stay relatively unchanged. Finally the correlation ratio 

seems to be related to the amount of damage introduced to the sensors. 

All of the above results are based on five modes and 28 sensor locations. As the number 

of modes used increases, the subspace in which the response hes increases, whereas the 

subspace in which the errors lie decreases. Thus the performance of the fault location 

scheme decreases. Similarly using more sensors improves the results, since by increasing 

the number of sensors the redundancy in the data is increased, which improves the 

detection and isolation of the faults. As an example a smaller number of sensors was 

used for the experiment, and more modes were included. Figure 22 shows the results 

using 10 sensors and nine modes, for the fault at sensor 8, and should be compared to 

Figure 21. Fault detection has now failed. 

1.5 

1 

0.5 

0 
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1 5 10 15 20 25 
Sensor Number 

Figure 19. Correlation coefficient ratio under faulty and non-faulty conditions using 

modal residuals. Sensor 6 has a multiplicative fault. 

1 5 10 15 20 25 
Sensor Number 

Figure 20. Correlation coefficient ratio under faulty and non-faulty conditions. Sensor 

6 has a multiplicative fault. 
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1 5 10 15 20 25 
Sensor Number 

Figure 21 . Correlation coefficient ratio under faulty and non-faulty conditions: complete 

loss of sensor 8. 

1 2 5 8 12 13 16 20 22 26 
Sensor Number 

Figure 22. Correlation ratio under faulty and non-faulty conditions: Sensor 8 faulty. 

Nine modes used for the 10 sensors. 
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7 Conclusions 

This chapter has given a brief introduction to the huge Hterature available on the ap-

proaches of damage identification based on inverse methods. The sensitivity based meth-

ods to identify physical parameters using subset selection for error localisation has been 

suggested as a viable approach. However, many difficulties remain to be fully solved, such 

as the modelling error between the model and the physical structure, and the influence 

of environmental factors. The most promising route is to include measurements of tem-

perature, humidity and other environmental variables within the model, although this 

requires more stringent conditions on modelling error. At the very least these errors give 

a lower bound on the level of damage that can be detected and localised, and this can be 

formalised using statistics from the response of the undamaged structure in its normal 

operating environment. One scenario is that damage location using low frequency vibra-

tion is undertaken to identify those areas where more detailed local inspection should be 

concentrated. The application of robust damage detection and location algorithms based 

on monitoring the in-service response of a structure remains a challenge, although the 

availability of a model does open the way to more accurate prognosis and the estimation 

of the remaining life. 
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