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ABSTRACT

This paper explores the application of statistical pattern
recognition and machine learning techniques to vibration-
based damage detection. First, the damage detection
process is described in terms of a problem in statistical
pattern recognition. Next, a specific example of a
statistical-pattern-recognition-based damage detection
process using a linear discriminant operator, ‘Fisher’s
Discriminant”, is applied to the problem of identifying
structural damage in a physical system. Accelerometer
time histories are recorded from sensors attached to the
system as that system is excited using a measured input.
Linear Prediction Coding (iPC) coefficients are utilized to
convert the accelerometer time-series data into multi-

; dimensional samples representing the resonances of the
system during a brief segment of the time series. Fisher%
discriminant is then used to find the linear projection of the
LPC data distributions that best separates data from
undamaged and damaged systems. The method is

applied to data from concrete btidge columns as the
- -columns are progressively damaged. For this case, the

method captures a clear distinction between undamaged
and damaged vibration profiles. Further, the method
assigns a probability of damage that can be used to rank
systems in order of priority for inspection.

1. INTRODUCTION

Damage detection as determined from changes in the

vibration characteristics of a system has been a popular
research topic for the last thirty years. Numerous papers
have appeared at past IMAC conferences related to this
topic, and this subject was the theme for IMAC XV.
Doebling, et al. (1996) [1], present a review of vibration-

based damage identification methods. Few of the

references cited in this review take a statistical approach
to the damage detection process. However, because all
vibration-based damage detection processes rely on
experimental data with their inherent uncertainties,
statistical analysis procedures are necessary if one is to
state in any quantifiable manner that changes in the
vibration properties of a structure are indicative of damage
as opposed to test-to-test variability.

This paper will first pose the general problem of the
vibration-based damage detection process in the context
of a problem in statistical pattern recognition. Next, a tool
that has been developed for statistical pattern recognition,
specifically a linear discriminant operator referred to as
“Fisher’s Discriminant,” will then be applied to vibration
data from undamaged and damaged structures to
demonstrate this process.

The University of California, Irvine (UCI) has a contract
with CALTRANS to perform static, cyclic tests to failure on
seismically retrofitted, reinforced-concrete bridge columns.
This project is under the direction of Prof. Gerry Pardoen
at UCI. With funds obtained through Los Alamos National
Laboratory’s (LANL) University of California interaction
office, staff from the LANL’s Engineering Analysis Group
and a faculty member from the Mechanical Eng. Dept. at
f?ose-Hulman Institute of Technology were able to perform
numerous experimental modal analyses on the columns.
These modal tests were performed at stages during the
static load cycle testing when various amounts of damage
had been accumulated in the columns. These tests and
the associated data obtained will be used to demonstrate
a statistical pattern recognition process of vibration-based
damage detection.
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Fig. 1 Flow chart for implementing a structural damage detection program.

.2. THE DAMAGE DETECTION PROCESS

In the context of statistical pattern recognition the process of
vibration-based damage detection can be broken down into
four parts as summarized in Fig. 1. The topics summarized
in this flow chart are briefly discussed below.

2.1. Operational Evaluation

An operational structure is defined to be one that can
perform or is performing its intended function. Operational
structures are often geometrically complex and may be too
large to test in a laboratory. Also, the boundary conditions
associated with such in situ structures are often not well
known. Finally, the environment and the test conditions
associated with an operational structure are often changing
and can have a significant impact on the measured
structural response.

Operational evaluation answers two questions in the
implementation of a structural health monitoring system:

1. What are the conditions. both operational and
environmental, under which the system ~o be monitored
functions; and

2. What are the limitations on acquiring data in the
operational environment.

Operation/ evah..ration begins to set the limitations on what
will be monitored and how the monitoring will be
accomplished. This evaluation starts to tailor the damage
detection process to features that are unique to the system
being monitored and tries to take advantage of unique
features of the damage that is to be detected.

2.2. Data Acquisition and Cleansing

The data acquisition portion of the structural health
monitoring process involves selecting the types of sensors
to be used, the location where the sensors should be
placed, the number of sensors to be used, and the data



7. .
. .

acquisition/storage/transmittal hardware. Again, this
process will be application specific. Economic
considerations will play a major role in making these
decisions.

Another consideration is how often the data should be
collected. For earthquake applications it may be prudent to
collect data immediately before and at periodic intervals
after a large event. If fatigue crack growth is the failure
mode of concern, it may be necessary to collect data almost
continuously at relatively short time intervals.

Because the data can be measured under different
conditions, the ability to normalize the data becomes very
important to the damage detection process. One of the
most common normalizing procedures is to normalize the
measured responses by the measured inputs. When
environmental variability is an issue, the need can arise to
normalize the data in some temporal fashion to facilitate the
comparison of data measured at similar times of an
environmental cycle.

Sources of variability in the data acquisition process should
be identified and minimized to the extent possible. In
general, all sources of variability can not be eliminated.
Therefore, it will be necessary to make the appropriate
measurements such that these sources can be statistically
quantified.

Data cleansing is the process of selectively choosing data
to accept for, or reject from, the feature selection process.
The data cleansing process is usually based on knowledge
gained by individuals directly involved with the data
acquisition.

Finally, is should be noted that the data acquisition and
cleansing portion of a structural health-monitoring process
should not be static. Insight gained from the feature
selection process and the statistical model development
process will provide information regarding changes that can
improve the data acquisition process.

2.3. Feature Selection

The area of the structural damage detection process that
receives the most attention in the technical literature is the
“identification of data features that allows one to distinguish
between the undamaged and damaged structure. Inherent
in this feature selection process is the condensation of the
data. Probably the most common features that are used in
vibration-based damage detection, and that represent a
significant amount of data condensation from the actual
measured quantities, are modal properties and subsequent
properties derived from them such as mode shape
curvature. However, the best features for damage detection
are typically application specific.

A variety of methods are employed to identify features for
damage detection. Past experience with measured data
from a system, particularly if damaging events have been
previously observed for that system, is often the basis for

feature selection. Numerical simulation of the damaged
system’s response to simulated inputs is another means of
identifying features for damage detection. The application
of engineered flaws, similar to ones expected in actual
operating conditions, to specimens can identify parameters
that are sensitive to the expected damage. Damage
accumulation testing, during which significant structural
components of the system under study are subjected to a
realistic accumulation of damage, can also be used to
identify appropriate features. Fitting linear or nonlinear,
physical-based or non-physical-based models of the
structural response to measured data can also help identify
damage-sensitive features.

The operational implementation and diagnostic
measurement technologies needed to perform structural
health monitoring typically produce a large amount of data.
A condensation of the data is advantageous and ‘necessary
particularly if comparisons of many data sets over the
lifetime of the structure are envisioned. Also, because data
may be acquired from a structure over an extended period
of time and in an operational environment, robust data
reduction techniques must be developed to retain sensitivity
of the chosen features to the structural changes of interest
in the presence of environmental noise. To further aid in the
recording of quality data and feature extraction needed to
perform structural damage detection process, the statistical
significance of the data changes should be characterized
and used in the condensation process.

2.4. Statistical Model Development

The portion of the structural health monitoring process that
has received the least attention in the technicai literature is
the development of statistical models to enhance the
damage detection process. Statistical model development
is concerned with the implementation of the algorithms to
operate on the extracted features and unambiguously
determine the damage state of the structure. The algorithms
used in statistical model development usually fall into three
categories and will depend on the availability of data from
both an undamaged and damaged structure. The first
category is group classification, that is, placement of the
data into respective “undamaged” or “damaged categories.
Ana/ysis of oudiers is the second type of algorithm. When
data from a damaged structure are not available for
comparison, do the observed features indicate a significant
change from the previously observed features that ‘can not
be explained by extrapolation of the feature distribution.
The third category is regression analysis. This analysis
refers to the process of correlating data features with
particular types, locations or extents of damage. All three
algoriihm categories analyze statistical distributions of the
measured or derived features to enhance the damage
detection process.

The damage state of the structure is usually described as a
four-step process that answers the following questions at
each step, Ryfter (1993) [2]: 1. Is there damage in the
structure (existence)?; 2. Where is the damage in the
structure (location)?; 3. How severe is the damage
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(extent)?; and 4. How much useful life remains in the
structure (prediction)? The steps in the . process also
represent increasing knowledge of the damage state.
Structural dynamics techniques are most useful for the first
two steps. Analytical dynamics techniques are usually
needed to answer the question associated with step three.
The answer to the step four question is the most elusive
and requires material constitutive information.

A fifth category for statistical model development is to
determine the type of damage present. This process
usually requires that data from the specific types of damage
are available to be correlated with the observed features.

Finally, an important part of the statistical model
development process is the testing of these models on
actual data to establish the sensitivity of the damage
detection and to study the possibility of false indications of
damage. False indications of damage fall into two
categories: 1.) false-positive damage indication (indication
of damage when none is present), and 2). False-negative
damage indications (no indication of damage when damage
is present). Although the second category is usually very
detrimental to the damage detection, false-positive readings
can also erode confidence in the damage detection process.

This paper will now summarize the application of methods
from statistical pattern recognition and machine learning to
the vibration-based damage detection problem. A damage
detection experiment performed on concrete bridge columns
will be described in terms of the statistical-pattern-
recognition damage-detection paradigm that has just been
summarized.

3. TEST STRUCTURE GEOMETRY

The test structures consisted of two 24-in-dia (61 -cm-dia)
concrete bridge columns that were subsequently retrofitted
to 36-in-dia (91-cm-dia) columns. Figure 2 shows the test

. structure geometry.The first column tested, labeled Column
“ 3, was retrofitted by placing forms around the existing
column and placing additional concrete within the form. The
second column, labeled Column 2, was extended to the 36-
in-diameter by spraying concrete in a process referred to as
shotcreting. The shotcreted column was then finished with a

_ trowel to obtain the circular cross-section.

The 36-in-dia. portions of both columns were 136 in. (345
cm) in length. The columns were cast on top of a 56-in-sq.
(142-cm-sq.) concrete foundation that was 25-in-high (63.5-
cm-high). A 24-in-sq. concrete block that had been cast
integrally with the column extends 18-in. (46-cm) above the
top of the 36-in-dia. portion of the column. This block was
used to attach the hydraulic actuator to the columns for
quasi-static cyclic testing and to attach the electro-magnetic
shaker used for the experimental modal analyses. As is
typical of actual retrofits in the field, a 1.5-in-gap (3.8-cm-
gap) was left between the top of the foundation and the
bottom of retrofit jacket. Therefore, the longitudinal
reinforcement in the retrofitted portion of the column did not
extend into the foundation. The concrete foundation was

24” (61 an) sq.

Cylcic Static

<
Load

9“ (22.9 cm) ‘m

b
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—

L--=-l

$
1S”(45.7 cm)

136” (34S cm)

— .
1.5” (3.8 cm)

7

25.0’ (63.5 cm)
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Fig. 2 Column Dimensions

bolted to the 2-ft-thick (0.61-m-thick) testing floor in the UCI
laboratory during both the static cyclic tests and the
experimental modal analyses. The structures were not
moved once testing was initiated.

The columns were constructed by first placing the
foundations on July 18*’, 1997. Then the 24-in-diameter
columns were placed on August 19’h and the retrofits were
added on September 19“. Corresponding portions of both
test structures were constructed from the same batch of
concrete. The only measured material property for these
columns was the 28-day ultimate strength of the concrete
and the test day ultimate strength. The 28-day ultimate
strength of foundations was 4600 psi (32 MPa). Test day
ultimate strength was not measured for the foundations.
The 24-in-dia. Columns’ 28-day ultimate strength was 4300
psi (30 MPa) and the test day ultimate strength was 4800 psi
(33 MPa). The 28-day-ultimate strength of the retrofit portion
of the structures was 5200 psi (36 MPa). On test day the
strength of the retrofit concrete was found to be 4900 psi (34
MPa).
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Within the 24-in-dia initial column reinforcement consisted of

an inner circle of 10 #6 (3/4-in-dia, 19-mm-dia) Iongitudihal

rebars with a yield strength of 74.9 ksi (516 MPa). These
bars were enclosed by a spiral cage of #2 (1/4-in-dia, 13.5-
mm-dia) rebar having a yield strength of 30 ksi (207 MPa)
and spaced at a 7-in pitch (18 cm). Two-inch-cover (5- cm-
cover) was provided for the spiral reinforcement. The retrofit
jacket had 16 #8 (1-in-dia, 25-mm-dia) longitudinal rebars
with a yield strength of 60 ksi (414 MPa). These bars were
enclosed by a spiral cage of #6 rebar spaced at a 6-in pitch
(15 cm). The spiral steel also had a yield strength of 60 ksi.
Again, 2-in. -cover was provided for this reinforcement. Lap-

splices 17-in (43-cm) in length were used to connect the
longitudinal reinforcement of the existing 24-in column to the
foundation.

4. QUASI - STATIC LOADING

Prior to applying lateral loads, an axial load of 90 kips (400
kN) was applied to simulate dead loads that an actual
column would experience. A steel beam was placed on top
of the column. Vertical steel rods, fastened to the laboratory
floor, were tensioned by jacking against the steel beam that,
in turn, applied a compressive load to the column.

An hydraulic actuator was used to apply lateral load to the
top of the column in a cyclic manner. The loads were first
applied in a force-controlled manner to produce lateral
deformations at the top of the column corresponding to
0.25AyT, 0.5AYT, 0.75AYT and Ayr Here AY7 is the lateral
deformation at the top of the column corresponding to the
theoretical first yield of the longitudinal reinforcement. The
structure was cycled three times at each of these load
levels.

Based on the observed response, a lateral deformation
corresponding the actual first yield, Ay, was calculated and
the structure’ was cycled three times in a displacement-

. controlled manner to that deformation level. Next, the
“ loading was applied in a displacement-controlled manner,

again in sets of three cycles, at displacements
corresponding to 1.5Ay, 2.OAy, 2.5Ay, etc. until the ultimate
capacity of the column was reached. Load deformation
curves for Column 3 are shown in Fig 3. This manner of
loading put incremental and quantifiable damage into the
structures. The axial load was applied during all static tests.

5. DYNAMIC EXCITATION

For the experimental modal analyses the excitation was
provided by an APS electro-magnetic shaker mounted off-
axis at the top of the structure. The shaker rested on a steel
plate attached to the concrete column. Horizontal load was
transferred from the shaker to the structure through a friction
connection between the supports of the shaker and the steel
plate. This force was measured with an accelerometer
mounted to the sliding mass (O.18 lb-s2/in (31 Kg)) of the
shaker. A O -400 Hz uniform random signal was sent from
a source module in the data acquisition system to the shaker

Flexure Test Column 3-Column with ‘Cast-in-Place’ Jacket
Lateral Load vs. Top Ekplacerwml

DisplacementDuctilityFaciofs
.,0444a .,4s, ,0

r 1 1

I I J
444.2 n*48 8

TOP~bp[aceme”l (inches)

Fig. 3 Load –displacement curves for the cast-in-place

column.

but feedback from the column and the dynamics of the
mounting plate produced an input signal that was not
uniform over the specified frequency range. Fig. 4 shows a
typical input power spectrum. The same level of excitation
was used in all tests except for one at twice this nominal
level that was performed as a linearity check.

6. OPERATIONAL EVALUATION

Because the structure being tested was a laboratory
specimen, operational evaluation was not conducted in a
manner that would typically be applied to an in situ structure.
However, the vibration tests were not the primary purpose of
this investigation. Therefore, compromises had to be made
regarding the manner in which the vibration tests were
conducted. The primary compromise was associated with
the mounting of the shaker. These compromises are
analogous to operational constraints that may occur with irJ

situ structures. Environmental variability was not considered
an issue because these tests were conducted in a laboratory
setting. The available measurement hardware and software
placed the only constraints on the data acquisition process.

7. DATA ACQUISITION AND CLEANSING

Forty accelerometers were mounted on the structure as
shown in Fig. 5. These locations were selected based on
the initial desire to measure the global bending, axial and
torsional modes of the column. Note that locations 2, 39
and 40 had a nominal sensitivity of 10mV/g and were not
sensitive enough for the measurements being made. As
part of the data cleansing process, data from these channels
were not used in subsequent portions of the damage
detection process. Locations 33, 34, 35, 36, and 37 were
accelerometers with a nominal sensitivity of 100mV/g. All
other channels had accelerometers with a nominal
sensitivity of 1V/g. During the test on the shotcrete column
(column 2) the accelerometer at location 23 had to be
replaced. All calibration factors were entered into the data
acquisition system prior to the measurements. A calibration
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Fig. 4 Input Power Spectra. The solid line corresponds to a
test on an undamaged column without preload and the
dashed line corresponds to a subsequent test when preload
was applied.

factor of 1.0 was entered for the accelerometer that
monitored the sliding mass on the shaker.

Data were sampled and processed with a Hewlett-Packard
(HP) 3566A dynamic data acquisition system. This system
includes a model 35650 mainframe, 35653A source module
used to drive the shaker, five 35653A 8-channel input
modules which provided power for accelerometers and
performed the analog to digital conversion of accelerometer
signals, and a 35651 C signal processing module that
performed the needed Fast Fourier Transform calculations.
A Toshiba Tecra 700CT Laptop was used for data storage
and as a platform for the HP software that controls the data
acquisition system.

Data acquisition parameters were specified such that
frequency response functions (FRFs), input and response
power spectra, cross-power spectra and coherence
functions in the range of 0-400 Hz could be measured. Each
spectrum was calculated from 30 averages of 2-s-duration
time-histories discretized with 2048 points. These sampling
parameters produced a frequency resolution of 0.5 Hz.
Harming windows were applied to all measured time-
histories prior to the calculation of spectral quantities.

A second set of measurements was acquired from 8-s-
duration time-histories discretized with 8192 points. Only
one average was measured. A uniform window was

specified for these data, as the intent was to measure a time
history only.

8. FEATURE SELECTION

The vibration response of the concrete columns was
measured as previously described. Typically, systematic
differences between time series from the undamaged and
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Fig. 5 Accelerometer locations and coordinate system for
modal testing. Accelerometers 3, 6, 9, 12, 15, 18, 21, 22,
24, 26, 28, 30, 32, and 34 are mounted in the –y direction.

damaged structures are nearly impossible to detect by” eye.
Therefore, other features of the measured data must be
examined for damage detection. Originally, damage
detection features were to be based on common modal
properties as have been done in many previous studies.
However, the feedback from the structure and mounting
system to the shaker produced an input that did not have a
uniform power spectrum over the frequency range of interest
as previously discussed. This input form coupled with the
nonlinear response observed at higher levels of damage
made it extremely difficult to track changing modal properties
through the various levels of damage. Therefore, other
features were sought for the damage detection process.
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The alternate features were selected based on previous
experience from speech pattern recognition where auto-
regressive models have been used to estimate the transfer
function of the human vocal track [3]. The time series were
modeled using a common method of auto-regressive
estimation also referred to as Linear Predictive Coding
(LPC) [4]. The LPC algorithm is an Nth-order model that
attempts to model the current point in a time series, s’(n) , as
a linear combination of the previous N points. That is

N

s’(n) = ~LliS(12 –i)
id

(1)

Third-order LPC models were developed for each column
using 512-point windows with 97’% overlap. Over these
segments of the time series the ai’s that best model the time
series in a least squares sense are used as features that are
assumed to be representative of the system’s dynamic
response during those samples. Harming windows were
applied to these data prior to the estimate of the coefficients.
These models were developed with data from sensors 3 and
21 (Fig. 5). Sensor 3 was located close to the damage, but
because of the test configuration this sensor was not
expected to experience large amplitude response as it
primarily measures torsional motion of the structure near its
fixed end. Sensor 21 was located farther from the damage
and experienced some of the largest amplitude response as
it primarily measured the bending response at the free end
of this cantilever structure.

Over a time series, many overlapping “windows” give rise to
LPC coefficient vectors, which become the multi-dimensional
data samples to be analyzed in the statistical model
development portion of the damage detection process.
While the overlapping of windows provides a smoother
estimate of the features’ changes over time, samples that
result from overlapping windows will not be independent.

Normalization of the data was not attempted because these
tests were conducted in a laboratory environment where the
input could be applied in a very controlled manner. Other
considerations that led to the decision not to normalize the
data included the consideration that environmental and test-
to-test variability was negligible, damage was introduced in
discrete increments, and it was assumed that the vibration
levels were such that the physical condition of the test
structures did not change during the dynamic tests.

8. STATISTICAL MODEL DEVELOPMENT: FISHER’S
DISCRIMINANT

Consider two data generation processes A and B, with
independent multi-dimensional samples {x} being generated
by both processes. Assuming A and B have some
systematic difference in the samples that they generate,
Fisher’s discriminant [5,6] represents the optimal linear
projection of the multidimensional sample space that
maximally discriminates the {x*)’s from the {x~}’s. That is, it
defines a linear projection (w) such that

y= {W}T{X) (2)

produces a scalar projection, y, of the multidimensional
space onto which the distribution of {xA)’s is as distinct as
possible from the distribution of {xB )’s. Once this projection
is determined from previous samples of {XA}’S and (x~}’s it
can be used to provide the relative probability that a novel
sample {x] was generated by process A or B.

In determining {w}, it is not sufficient to simply consider the
single dimension in which the means of the NA samples of
{x*}’s and N~ SaMpleS of (x~)’s, {w.} and {Lb}, defined as

(3)

are farthest apart. For this case one would determine the
projection {w} that maximizes the scalar quantity L* – Y,

where this difference is defined as

(4)

Such a projection does not account for the within-class
scatter, that is, the width of each distribution in each
dimension is not taken into account. The within-class scatter
of the y data for class k can be described by the within-class
covariance, Skz,where

(5)

ne k

y. is obtained from Eq. 2,

lLk={W}T(k},and (6)

the total within-class scatter of the data from all samples of
{x} (those generated by process A and B) is the sum of all
Skz. Thus, the Fisher discriminant maximizes the function
F({w}), which is the distance between the means of the
transformed distributions, normalized by the total within-
class covariance:

(7)

Using Eqs. 2 and 5 and the definition of a multi-dimensional
sample mean given by Eq. 3, Equation 7 can be rewritten
explicitly in terms of {w} as

where

[s,]= (&B}- &A})T(kB}-@A})

is the between-class covariance matrix, and

(8)

(9)
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x[s~l= ({XA}-i.LA}X{XA}-kLA})T
+~({x,}-~.}x{x,}-k,})’

(lo)

is the total within-class covariance matrix and the
summations in Eq. 10 are over the available SampkS of {x*}
and {xB), respectively.

To maximize F((w)), the derivative of F with respect to {w} is
set equal to zero, yielding

kw~[’bxw}l’wxw}= ({wy[swxw}]sb~w} . (11)

The magnitude of {w} is not of concern, only its direction,
therefore the scalar quantities

({w~[%~w}] and ~w~[%XW})

are replaced with arbitrary a and ~, respectively. After
rearrangement and multiplication by [SW]-i (note that
because [SW] is a covariance matrix, [SW] is invertible), the
following relation is obtained

[Sw]’[sbxw}=f{w}. (12)

Thus, with standard numerical methods {w} is found as an
eigenvector of [SW]”L[S~].

Once the data have been projected down onto the scalar y
dimension, the distribution of y~ and y~ points can be
described by an appropriate probability density function.
Since it was originally assumed that {x) was a multi-

dimensional random variable, then y = {W]T(X} is a sum of
random variables and the central limit theorem is invoked to
justify modeling y* and y~ with Gaussian density fUtICdOmS.

Novel data {Xnew)can be projected to get yneW= {W}’{Xnew}and
. the likelihood, p, of yn,wwith respect to the Gaussian for

class A and the Gaussian for class B can be determined.
The probability that ynawwas generated by class A can be
obtained by integrating over a small region of the likelihood
function:

(13)‘pbnewlA)= \PA6WW ~Y .

Ay

Because P(A I yw~) is of interest, and

)- )P(B]Ynew – 1–p(A]YneW , (14)

if A and B are mutually exclusive, Bayes’ rule can be used to
obtain

P(Alynew)= ‘bnew!Ak(A)

‘6’ new )“

(15)

where the denominator is typically ignored when P(yfl.W) is

uniform (or unknown) and P(A) is the prior probability (i.e.,
relative frequency) of Class A vs. Class B.

In the case where class A is “undamaged” and class B is
“damaged,” a probability of a damaged system having
produced a given observed sample {Xn,w} can now be
estimated.

9. APPLICATION OF FISHER’S DISCRIMINANT TO
CONCRETE COLUMN DATA

Fisher’s discriminant was defined using data from the
vibration tests conducted on the undamaged columns and
from the vibration tests conducted after the first level of
damage corresponding to initial yielding of the steel
reinforcement. Subsequent damage levels were then
identified based on this same Fisher projection. As
illustrated in Fig. 6, when Fisher’s discriminant is applied to
data from both sensors on either column, there is statistically
significant separation between the LPC coefficients for the
undamaged cases and damage level 1 cases (solid and
dashed Gaussian density functions). Also plotted are the
results of using the previously determined Fisher projection
to project many samples of data from increasingly greater
levels of damage into this space. While increasing damage
is not necessarily related to increasing Fisher coordinate, all
damaged cases have a profile significantly different from
that of the undamaged case. Higher-order LPC models and
different size data windows produced similar results,

10. CONCLUS1ONS

A statistical-pattern-recognition paradigm has been
proposed for the general problem of structural damage
detection. This paradigm breaks the process of damage
detection into the four tasks of operational evaluation, data
acquisition and cleansing, feature selection, and statistical
model development. A structural damage detection study of
concrete columns subjected to quasi-static cyclic loading to
failure is then posed in terms of this paradigm.

A well-developed procedure for group classification, the
linear discriminant operator referred to as “Fisher’s
Discrfminant”, was introduced for application to vibration-
based damage detection. This procedure requires data to
be available from both the undamaged and damaged
structures. Other statistical models that identify outliers can
be used when data are available only from the undamaged
structure. The results of this study indicate a strong
potential for using linear discriminant operators for level 1
damage identification (is it damaged?). These methods do
not simply classify incoming data as having been produced
by “undamaged” or “damaged” systems. They assign a
probability of damage that can be used to rank systems in
order of priority for inspection. An attractive feature of this
statistical model is that it was applied to response data only.
The results obtained suggest the extension of this model to
applications where structures are subjected to ambient
vibration from sources such as traffic or wind excitation.
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distributions for higher damage levels

The results of this study also suggest that if one or more
common forms of damage occur, it may be possible to not
only determine that a system is damaged but to determine
which form of damage has occurred. Additional data is
required to explore this possibility. Another attractive feature
of the linear discriminant operator that was not fully explored
during this investigation is its ability to combine data from
various types of sensors. This feature will become
particularly attractive when monitoring structures that
experience significant variations in their dynamic response
resulting from changing environmental conditions. Further
analyses are also required to demonstrate the ability of the
linear discriminant operator to avoid false-positive

‘indications of damage. However, multiple samples of data
from the undamaged columns were not measured. All data
used in this study and a report summarizing the vibration
testing are available at:

http:/lesaea-www. esa.lanLgovldamage_id
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