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Abstract 

 
To reduce the costs related to maintenance of aircraft structures, there is the need to 

develop new robust, accurate and reliable damage detection methods. A possible answer to 
this problem is offered by newly developed nonlinear acoustic/ultrasonic techniques, which 
monitors the nonlinear elastic wave propagation behaviour introduced by damage, to detect its 
presence and location.  

In this paper, a new Transient Nonlinear Elastic Wave Spectroscopy (TNEWS) is 
presented for the detection and localization of a scattered zone (damage) in a composite plate.  
The TNEWS analyse the uncorrelations between two structural dynamic responses generated 
by two different pulse excitation amplitudes by using a time-frequency coherence function. A 
numerical validation of the proposed method is presented. Damage was introduced and 
modelled using a multi-scale material constitutive model (Preisach-Mayergoyz space).   

The developed technique identified in a clear manner the faulted zone, showing its 
robustness to locate and characterize nonlinear sources in composite materials. 

 
1. Introduction 
 
Composite materials are well renowned for their high strength weight ratio that makes 

them the ideal solution for aircraft structures, where weight is a primary issue. However, 
composite material fragility to foreign object impacts, often leads to barely visible damages 
which may reduce the structure strength of a staggering 50% [1], is becoming a crucial factor 
for the aeronautic industries. The impact damage causes a structural strength reduction which 
can drive the structure to collapse if the damage presence and location are not promptly 
identified.  

In the last few decades, a number of acoustic/ultrasonic damage detection techniques were 
developed to analyse the changes of linear properties due to the presence of damage. In 
particular, linear acoustic/ultrasonic methods study the changes of wave speed, waves 
reflection and refraction, and/or signal amplitude changes to assess the presence and location 
of structural anomalies.  

Currently, a new class of promising NDE techniques, called non-linear elastic wave 
spectroscopy (NEWS) is being developed and it monitors the integrity of structures by 
analysing the material nonlinear elastic behaviour [2-10] caused by the presence of damage. 
These methods [2-10] appear to be more effective than linear acoustic methods since they are 
able to detect microcracks long before changes of linear acoustic properties.  

So far, the exploitation of material nonlinear elastic properties has involved only the 
detection of damage presence (without any attempt to locate the damage) using either a mono 
or a bi harmonic stationary excitation. Numerical and experimental examples of such 
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approach are given by the SINMORAS (low frequency mono-harmonic excitation [11]), and 
the Nonlinear Wave Modulation Spectroscopy (NWMS, bi-harmonic excitation used to study 
sand stones [2], stress corrosion cracking in welded plates [12] and sandwich plates [10]). A 
first numerical attempt aimed at the analysis of material nonlinear elastic properties using 
transient structure excitations was carried out by the authors [13], who investigated the effects 
of four different damage shapes on a Gaussian shaped pulse propagating on an aluminium 
plate.  This work made clear that waves propagating through the structure retain non-classical 
nonlinear elastic behaviour if reflected or refracted by damage. This result was exploited by 
the authors in the development of the nonlinear elastic wave self focusing approach 
employing time reversal mirrors [14]. However, issues related to shadowing effects of the 
most severe damages leading to misdetection of smaller damages have brought the research to 
focus on tomographic like approaches which are capable of  generating an image of the 
structure under investigation and potentially able to detect without any limit, multi-site 
damages. 

A new Transient Nonlinear Elastic Wave Spectroscopy (TNEWS) is being presented in 
this paper. The methodology analyse the changes in transient structural dynamic responses 
[13] due to the nonlinear material behaviour due to the damage presence. In particular, the 
method analyse the discrepancies in the times signal between two structural dynamic 
responses generated by two different pulse excitation amplitudes by using a time-frequency 
coherence function [22].  

The proposed method was evaluated numerically on a composite panel. The paper 
presents firstly an overview of the material nonlinear elastic behaviour and, then, the 
proposed damage detection methodology. 

 
2. Material nonlinear elastic wave behaviour  

 
Experimental evidences [2-10] showed that classical nonlinear models [15] cannot explain 

the nonlinear behaviour generated by local nonlinear forces due to damage presence (such as 
cracks, voids, and contacts). A theoretical description of this behaviour can be given by the 
nonlinear mesoscopic elastic material model, which contains terms that describe classical 
nonlinearity, as well as hysteresis, and discrete memory [2-4]. This is possible by adding to 
the nonlinear classical stress strain relationship, a stress dependence on strain time derivative 
[2-10]: 

 
( )σ E ε,ε dε= ∫ &                                                        (1) 

 
where E is the nonlinear and hysteretic modulus given by: 
 

( ) ( ) ( ){ }2
0E ε,ε =E 1-βε-δε -α ∆ε+ε t sign ε +…⎡ ⎤⎣ ⎦& &                          (2) 

 
where E0 is the linear modulus, ∆ε is the strain amplitude change over the last period, β 

and δ classical nonlinear coefficients, and α a material hysteresis measure. The full spectrum 
of options given by the equation (2) is summarized in [2]. Experimental and numerical 
evidences [2-10] showed that the 3rd harmonic has quadratic behaviour with the fundamental 
amplitude for a purely hysteretic material and cubic according to classical nonlinear theory.  
Moreover, a second-order sideband f2 ± 2 f1, generated by a bi-tone excitation (f1 and f2) has 
amplitude proportional to αA1A2 for a purely hysteretic material, in contrast with an 
amplitude dependence proportional to C(β, δ)A1

2A2 for a classical nonlinear material. For a 



Acc
ep

te
d m

an
usc

rip
t 

classical nonlinear material, the first order sideband (f2 ±  f1) amplitude is linear with the 
excitation amplitudes βA1 A2., and it is absent for purely hysteretical material [12]. 

Due to the inadequacy of classical non linear material model to reproduce the behaviour 
of microcracked damaged materials, a new material constitutive model, based on Presaich and 
Mayergoyz (PM) space, capable of accurately describing the nonlinear, discrete memory and 
hysteretic behavior of such materials, was implemented in a Fortran FE code written by the 
authors. 

 
3. Presaich and Mayergoyz space 

 
Non classical nonlinear elastic material behavior (hysteresis and material memory) can be 

described by a nonlinear mesoscopic elastic material model such as the Preisach-Mayergoyz 
(P-M) [16-17]. According to this approach, the macroscopic behavior (Figure 1) of damaged 
materials is described by the contribution of a number of mesoscopic material cells (1-10 
mm), which are composed by a statistical collection of microscopic units (1-100 µm) with 
varying properties defining their stress-strain relation. The strain of these microscopic units is 
a combination of a classical non-linear state relation (elastic component contribution), and a 
non-classical addition due to hysteretic effects (interface binding contribution). In particular, 
the strain component of Hysteretic Mesoscopic Elastic Unity (HMEU) can be thought as the 
strain of a micro-crack when subject to an external pressure that produces its closing and 
opening (Figure 2). This two stage behavior is highlighted in Figure 3-a, in case of non 
classical nonlinear elastic behavior contribution. The pressure-displacement of microcracks is 
characterised by a rectangular loop defined by two couples of parameters: the two equilibrium 
lengths (lo, lc) and a pair of pressure (Pc, Po) with Pc≥Po. 

 

 
Figure 1 - Mesoscopic model (Microstructure of the single-phase LCB titanium alloy [18]) 

 
Figure 2 – Hysteretic Mesoscopic Elastic Unity. 

According to the rectangular loop (Figure 3-a), the equilibrium length of the interface 
binding remains constant (ℓo) until the pressure load equals the closing pressure Pc (ℓc), 
therefore, the only length changes of the HMEU are those of its elastic component. For 
pressure loads above the closing pressure Pc, once again, the only length changes are those of 
the HMEU elastic component. Then, decreasing the pressure load P, the HMEU length 
changes are only due to the HMEU elastic component until the pressure P reaches the opening 
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pressure Po, where the HMEU interface binding elongates to ℓo, and remains constant until the 
pressure is reversed and increases to Pc.  

The HMEU distribution of a material is represented in a stress–stress space (Pc, Po), 
commonly termed “PM-space”. This representation is defined mathematically by specifying 
its density distribution µ(Pc, Po) (see Figure 3-b for a Gaussian distribution). The PM space 
representation of real materials can be derived using quasistatic measurements of the material 
strain according to specifically designed protocol loads [16-17]. 

 

 
Figure 3: a) Behaviour of HMEU; b) Example of PM-space. 

From the HMEU properties above described and their PM space distribution, it is clear 
that the actual number of HMEUs closing or opening, at every instant, depends on the 
previous load history of the material and on the sign of the applied pressure ∆P.  

 

 
Figure 4 – Load Protocol. 

For example, if the load history represented in Figure 4 is applied to the material 
described in Figure 3-b, the resulting stress-strain curve (Figure 5) is evaluated as described 
below. 

The HMEU closed for Po=0 (point O, Figure 4) is zero. Therefore, the associated strain is 
zero. Increasing the pressure load to point A’ (Figure 4) all the HMEUs contained in the black 
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triangle (Figure 6-a) close. Therefore, the strain due to the pressure load PA’ can be evaluated 
as the difference between the averaged length of all HMEUs at PA’ (ℓ(PA’)) and the HMEU 
length ℓo, divided ℓo. 

( ) ( )'

'

oA
A

o

l P -l
ε P =

l
                                                 (3) 

with 

( ) ( ) ( ) ( )'
o c c c o c

o cA

l 1-N +l N l 1-κN
l P = = =l 1-κF

N N
                    (4) 

 
where: 
• Nc is the number of HMEUs closed. 
• N is the total number of HMEUs. 
• Fc is the fraction of closed HMEUs 
• κ is the maximum strain obtainable if all HMEUs close. 
 
Therefore, by substituting the last member of eq. (4) into eq. (3), the strain can be 

evaluated as: 
( )' cA
ε P =-κF                                                  (5) 
Bringing the pressure load to PA all the HME units enclosed in the orange trapezium 

(Figure 6-a) close as well, so an increase of strain is obtained (Point A in Figure 5). 
Reducing the pressure load to PB, all the HME units having an opening pressure Po higher 

than PB open (see dashed triangle in Figure 6-b). Therefore, the number of HME units closed 
reduce and, so, the strain (Point B in Figure 5). A subsequent increase of pressure load to PC 
determines the closing of the HME units enclosed in the yellow triangle of Figure 6-c and, 
therefore, an increase of strain to point C, in Figure 5. The following decrease of pressure 
load to PD=PB determines the opening of HME units closed at the previous stage (see dashed 
triangle in Figure 6-d), so as, the strain level recorded at PB is reinstated and the material 
memory property reproduced (Point D in Figure 5). 

The increasing of pressure load to PE brings to the closure of all HME units having Pc 
smaller than PE (yellow triangle in Figure 6-e) and, consequently, an increase of strain is 
obtained (Point E in Figure 5). The following pressure load reduction to PF, then, its increase 
to PG and, finally, its decrease to PH (Figure 6-f – Figure 6-h) cause a strain change that 
describes an inner hysteretic loop (F-G loop in Figure 5) of the hysteretic loops B-C and B-E. 

 
 

 
Figure 5 – Stress-strain curve. 
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The further reduction of the pressure load to PI first and, then, to PO determine, 
respectively, the closure of the hysteretic loop B-E and O-A (Figure 6-h). From the example 
above illustrated, it is clear that according to the PM space model, the material memory is 
limited to those pressure loads identified by the MATHystory line (blue step line in Figure 6-g). 
Therefore, in the material FE model implemented in the house FE code, only those pressure 
loads, defined by the MATHystory line, were stored in memory. 

At the aim to save computational time, the PM space based material model was designed 
to evaluate directly the hysteretic contribution to the material elastic modulus. 

This task was accomplished by evaluating at each time step, the increase of pressure load 
∆P and, then, knowing the MATHystory line, the number of HME units that open (∆P<0) or 
close (∆P>0) is evaluated and, so, the strain change ∆ε (eq. 5). Hence, the hysteretic 
contribution to the material elastic modulus is evaluated as follows: 

H
∆PE =
∆ε

                                                           (6) 

The material nonlinear macroscopic behaviour can be imagined to be made by a large  
number of units characterised by different couples of (Pc, Po). The distribution of HMEU 

in the plane (Pc, Po) of the macroscopic entity is localised below a 45 degree line, since Pc 
must be larger than Po as displayed in Figure 3-b. The HMEU are usually represented in a 
stress–stress space, commonly termed ‘‘PM-space’’, according to their values Pc and Po. This 
representation is defined mathematically by specifying its density distribution µ(Pc, Po)  . 

 
Figure 6 – Close HMEU history log. 

 
The distribution of the HMEU on the (Pc,Po) plane can be derived using quasistatic 

measurements of the material strain according to specifically designed protocol loads [8-9]. 
Applying a certain load protocol, a change of the applied pressure ∆P occurs and, therefore, a 
certain number of HMEU closes or opens consistently with their characteristic pressures (Pc, 
Po). Once the number of the HMEU units closed is known, the non-classical correction K1 of 
the classical nonlinear elastic modulus E can be evaluated as follows: 

 
( ) ( )

( ) ( )
1

1

L P+∆P -L P1 1=- ; P®P+∆P
K L(P) ∆P

L P -L P-∆P1 1=- ; P®P-∆P
K L(P) -∆P

                          (7)                        
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where the term L(P) (eq. 1) is the length of the specimen, and P is the applied pressure. 
 

              

( ) ( )( )
( ) ( )( )

( ) ( )( )

c c c o

c c c o

c c c o

L(P)=N P ×l + N-N P ×l

L(P+∆P)=N P+∆P ×l + N-N P+∆P ×l

L(P-∆P)=N P-∆P ×l + N-N P-∆P ×l

                          (8) 

 
where N is the total number of HMEU,  Nc(P) is the number of HMEU closed when the 
pressure is P, and ℓc and ℓo are the equilibrium lengths of HMEU. Therefore, considering only 
the contribution of the HMEU to the material deformation, the strain generated by a stress P is 
given by the following expression: 
 

0

0

L(P)-Lε=
L

                                                             (9) 

 
where L0 is the initial length of specimen. 
 
4. Nonlinear FE code 

 
The above described nonlinear elastic material constitutive law was implemented in our 

in-house FE code to simulate the presence of damage in structures. The equation of motion 
for a FE discretised structure are: 

 
[ ]{ } [ ]{ } [ ] { } { }
[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]
e e

e

ext
n n nn n

T T
d

e eV V

T

n n
e V

M d + D d + K d = R

M = ρ N N dV    D = κ N N dV 

K = ρ B E B dV 

∑ ∑∫ ∫

∑ ∫

&& &

                             (10) 

where: 
• [M] and [D] are, respectively, the mass and damping matrix of the structure. 
• [K]n is the stiffness matrix at the nth time step. 
• [E]n is the stress strain matrix for the finite element e at the nth time step. 
• {d}n is the displacement vector at the nth time step. 
• {Rext}n is the external force vector at the nth time step. 
• [N] is the matrix of shape functions. 
• [B] is the strain displacement matrix. 
• κd is the material damping parameter for the finite element e. 
• ρ is material density 
• Ve is the element volume. 
• 

e
∑ stands for the assembling of all elements in which the structure was discretised. 

 
The stiffness matrix was calculated as the sum of a linear elastic term [K lin] and a 

nonlinear perturbation force {Rint}n: 
 
[ ] { } [ ]{ } { }int

linn n n
K d = K d + R                                             (11) 



Acc
ep

te
d m

an
usc

rip
t 

 
where the nonlinear perturbation force was evaluated as: 
 
{ } [ ] { }

{ } [ ] [ ]( ){ }

Tint
e nVe

en n lin n

R = B ∆σ dV

∆σ = E - E ε

∫                                              (12) 

 
where  [E]lin is the material linear elastic stress-strain matrix and {εe}n element strain 

vector evaluated at the time step n. The evaluation of the stress strain matrix at the nth time 
step ([E]n) is illustrated below for a 2D plane strain case in the case of anisotropic material. 
The first step consists in the evaluation of the strain vector: 

{ } [ ]{ } { }in
n n

ε = B d - ε                                                  (13) 
with {εin}n pre-strain and or thermal strain contribution. In the second step, the stress 

contribution for each coefficient of the stress strain matrix is evaluated: 

[ ] { }

1 1

1 2

2 2

6 6

1 1 1 1

1 2 2 2

2 2 2 2

6 6 1 2

1 1 1 2 1 1

1 2 2 2 e 2 2n -1 n

6 6 1 2

σ = Q ε

σ = Q ε

σ = Q ε

σ = Q ε

Q Q 0 ε
E = Q Q 0   ;  ε = ε

0 0 Q ε

⎡ ⎤ ⎧ ⎫
⎪ ⎪⎢ ⎥
⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭

                     (14) 

 
where [E]n-1 is the stress strain matrix for the finite element e at the (n-1)th time step. 

Then, the four independent material coefficients of [E]n are evaluated by inputting element 
stress contributions σij in their respective PM spaces together with their previous load 
histories. As results of such procedure, the FE equation of motion assumes the following 
shape: 

 
[ ]{ } [ ]{ } [ ]{ } { } { }ext int

n n nn n
M d + D d + K d = R - R&& &                                      (15) 

 
The time integration of eq. (15) was provided by the Newmark method using a conjugate 

gradient solver [19-21]. 
 
 

5. Continuous wavelet transform  
 
One of main drawbacks of the standard ultrasonic techniques, developed in either the time 

or the frequency domain [22-23], is that their performances decrease consistently in presence 
of echo overlaps, attenuation phenomena at high frequencies and critical sampling. These 
limitations can be overcome using Time Frequency Representations (TFRs) [23], which 
decrease the attenuation phenomena, and allows a careful control between overlapped echoes 
resulting in an increased accuracy of the measures. 

The two most common TFRs, the Short Time Fourier Transformation (STFT) and the 
Continuous Wavelet Transformation (CWT) were investigated. Between those two, the CWT 
was chosen because of its better time resolution at high frequency and noise withstanding. 
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Wavelets are the natural evolution of STFTs [24-25]. They linearly decompose an 
arbitrary signal s(t) by projecting it on functions that are simply dilations and translations of a 
parent (or mother) wavelet g(t) via the convolution of the signal and the scaled/shifted parent 
wavelet [25-26]: 

 

( ) ( )∫
∞

∞−

∗ ⎟
⎠
⎞

⎜
⎝
⎛ −

= τττ d
a

tgs
a

taCWT 1,                                        (16) 

 
where a is the dilation parameter and τ is the translation parameter. Selecting a mother 

wavelet for a particular task is not easy, because of the countless parent wavelets (or mother 
wavelet) present in literature, applied to the most various problems. However, complex 
Morlet wavelets [26-30] are the most used, because they are capable of providing very useful 
information to visualize possible discontinuities such as magnitude and phase components of 
the signal time-frequency discretization. Moreover, this wavelet family becomes very 
attractive for harmonic analysis due to its analogy with the Fourier transforms expressed by 
this equation [26]: 

( ) ( ) ( )( )titetg
t

00 sincos1
2

ωω
πγ

γ +=
−

                                       (17) 

Basically, Morlet wavelets are Gaussian-windowed Fourier transforms, with a central 
frequency f0=ω0/2π and a width of the Gauss curve (wavelet frequency band) γ. By 
maximising eq. (14) in the frequency domain (eq. (16) [26] a unique relation between the 
dilation parameter a and frequency f is obtained: 

0f
af =                                                         (18) 

( ) ( )0
2 fafeafG −−= γπ

                                           (19) 
Hence, because of this unique relation the Morlet wavelet was chosen as parent wavelet. 
 

6. Damage detection methodology 
 
A Transient Nonlinear Elastic Wave Spectroscopy (TNEWS) was designed, which should 

become in a near future the core of Nonlinear Elastic Wave Tomography. The TNEWS 
exploits changes in transient structural dynamic responses [13] due to the nonlinear behaviour 
introduced into the structure by the damage presence. The uncorrelations (discrepancies) 
between two structural dynamic responses generated by two different pulse excitation 
amplitudes are highlighted by a time-frequency coherence function [22]. As result, the arrival 
(at the sensor locations) of nonlinear elastic waves (generated by the Gaussian pulse wave 
impinging in the damage) will be observed in the time-frequency space with behaviours 
resembling those typical of structural change scattering mechanisms (Figure 7), though, the 
largest uncorrelations will be found around the harmonics of the excitation Gaussian pulse 
central frequency.  
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(a)                                      (b)                                                 (c) 

Figure 7 – Structural change scattering mechanisms: (a) surface discontinuity; (b) Material 
dispersion; (c) Waveguide structures. 

 
Therefore, the damage presence can be detected by the uncorrelation formations in the 

time-frequency space, while the damage location is predicted by the use of a ray-tracing 
algorithm [22]. 

 
7. Transient Nonlinear Elastic Wave Spectroscopy 

 
Transient Nonlinear Elastic Wave Spectroscopy (TNEWS) was developed out of the 

Wave Propagation Based Damage Detection (WPBDD) algorithm devised by the authors 
[22]. The WPBDD methodology is articulated in three steps. In the first step, the presence of 
the damage on the structure is assessed. In the second step, the arrival time of the reflected 
wave (or echo) can be estimated, and in the third step the damage location through a 
simplified Ray-Tracing algorithm is detected. The TNEWS was structured in a similar way 
and exploited similar algorithms. The fundamental difference lies in the selection of the two 
signals used for the damage detection process. In the WPBDD approach, a time signal 
acquired on the undamaged structure was used as reference signal for second time signal 
acquired by the structure monitoring system.  With the TNEWS, there is no need to scan the 
undamaged structure, since the time signal generated by a low amplitude Gaussian pulse 
excitation (A1 ) is used as the reference signal for a second time signal generated by a larger 
pulse amplitude (A2). 
 
7.1. The TNEWS process 

The damage detection procedure consists in three steps: the acquisition, the damage 
presence detection and the damage localisation step. As an example, consider a section of a 
plate clamped along its short edges (Figure 8). 

 

 
Figure 8 – Plate section.  

 
In the acquisition step, two sensors (s1 and s2) are employed. The first sensors is used also 

to generate a perturbation wave (Gaussian pulse), which propagates through the plate to the 
damage location. A portion of the perturbation wave energy is reflected back towards the 
sensor locations, where is acquired by both sensors. 

To increase the Signal Noise Ratio (SNR), the structure responses acquired by the two 
sensors were averaged over several measurements for both the reference and the large 
amplitude excitation Gaussian pulses, respectively, A1 and A2, with A2>A1. 

y 

x 
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In the second step (damage presence detection step), the Coherence Function Based 
Algorithm (CFBA, see §7.2) analyses both Gaussian pulse acquired signals to seek for 
particular time-frequencies features revealing the arrivals of the damage reflected waves and, 
therefore, the damage presence. This operation is performed for acquired time signals of each 
sensor for the two different amplitudes of the Gaussian pulse used. Then, the arrival times of 
the first reflected wave by the structure defects is extracted for both the sensors (ts1(f) and 
ts2(f)). Considering the sensor relative distance d12 and the perturbation wave travelling path 
parallel to x direction (Figure 8), the damage location (with respect to sensor 1) is estimated 
by the following expression: 

( ) ( ) ( ) ( )( )12
s1

s1 s2

dd f = t f -T
t f -t f

                                 (20) 

where f is the frequency, T is half time length of the excitation pulse. The half time length of 
the Gaussian pulse was subtracted to the arrival time of the damage reflected wave in sensor 
1, because the acquisition time is set to start when the excitation begins, while the arrival 
times are estimated along the maxima lines corresponding to the maximum of the Gaussian 
pulse.   

 
7.2. Coherence Function Based Algorithm 

 
Structural damage (e.g. cracks, plasticization and corrosion) introduces nonlinear 

discrepancies in the dynamic response of structures perturbed by excitation pulses, which 
appear in the TFR as either vertical lines or slanted lines [24] ( Figure 7). However, 
perturbation waves reflected back by the structure boundaries are expected to show a similar 
behaviour. This makes the work of conventional UT inspectors very complicated, requiring a 
great deal of experience for the discrimination of structural change features from those due to 
boundaries. Therefore, at the aim to simplify the interpretation of the ultrasonic signals a 
function (the coherence function) capable of highlighting the time discrepancy between the 
damaged and undamaged signal was employed [22]. Both linear and nonlinear changes 
associated to the damage presence can be picked up by the coherence function. However, 
nonlinear component due to defect presence can be highlighted by increasing the excitation 
amplitude [2-10, 11-14]. This peculiarity makes possible the use of two time signals 
generated by the same Gaussian pulse but with two different amplitudes (A1, A2) with A2>A1. 
The Coherence Function Based Algorithm (CFBA), previously developed by the authors [22], 
was used.  

This is articulated in two steps. The first step involves the evaluation of a time-frequency 
coherence function, while the second phase identifies the presence of damages by 
discriminating between the time-frequency coherence changes due to noise and damage 
reflected wave arrivals. 

In the first phase of the CFBA, the time frequency coherence function, between the 
structure dynamic responses s1(t) and s2(t) generated by excitation pulses of magnitudes A1 
and A2, is evaluated as the ratio of the wavelet cross-spectrum S12 and the product of the 
wavelet auto-spectra of the two time signals (S11, S22) [26]: 

( ) ( )
( ) ( )

2
12 2

'
11 22

S f,t
CoH f,t = b -4ac

S f,t S f,t
                                      (21) 

where the power spectra S11, S22 and S12 are given by: 

( ) ( ) ( )
t+T *

ij i jt-T
S f,t = w f,τ w f,τ dτ∫                                           (22) 
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where i, j ={1, 2} and T is half time length of the Gaussian excitation pulse. Analysing the 
coherence in the time-frequency space, the discrepancies caused by noise appear as peaks 
randomly distributed while the defect reflected wave arrivals are characterised by sudden 
changes of the coherence along a wide frequency range (Figure 9). 

 
Damage Reflected waves 

 
Figure 9 - Time-frequency coherence changes due to damage reflected waves. 

 
Once the presence of damage is identified, then, the arrival times of the nonlinear damage 

reflected waves are evaluated. Usually, data are filtered using a pass-band filter, because of 
the concentration of the noise into high frequencies due to the CWT, and the poor SNR at low 
frequencies caused by the high frequency content of the signal discrepancy generated by the 
damage occurrence. Then, the arrival time of the reflected nonlinear waves [22] can be 
estimated by extracting the maxima lines (ridges of the arrivals of nonlinear waves reflected 
by damages) in the frequency time space. As result of this procedure, maxima lines may have 
a winding behaviour with the frequency that might affect the accuracy of the damage 
localisation. In this case, a least square polynomial interpolation algorithm can be used to  
reduce the effect of noise impact in the localisation process. 
 

 
Damage Reflected wave

Ridges 

Noise Effects

 
Figure 10 – Nonlinear wave arrival times. 

 
8. Test case 

 
The methodology above illustrated was investigated on numerically simulated data of an 8 

layer composite sheet (see Table 1 and Figure 11), 400mm long and 12mm thick (1.5mm each 
layer), with a damage 5mm long and 4.5mm thick. Three different PM space were considered 
for each material variable (E11, E22,G12). 

 
Figure 11 – Test case configuration. 
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 Layers 
(1, 3, 5, 7) 

Layers 
(2, 4, 6, 8) 

E11 144.8 GPa 9.7 GPa 

E22 9.7 GPa 9.7 GPa 
G12 6 GPa 3.6 GPa 
ν12 0.3 0.34 
ρ 1600kg/m3 1600kg/m3 

Table 1 – Material characteristics. 
 
The damage was simulated by using a uniform PM density distribution µ(Pc, Po) (eq. 7, 

[31]). 

( )
( ) ( )

2 2
c o c o

c o c o
P +P -a P +P +a- -c P -P - -c P -P

b b
c oµ P ,P =N e +e

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

                 (23) 

with Pc and Po∈[Pmin, Pmax] and Pc ≥ Po. Since, experimental data on hysteretic behaviour 
of the test case could not be found, parameterised PM space variables (Table 2, Figure 12) 
were estimated by experimental data available in literature for a different composite [31]. 

The parameters a, b, c and N (Table 2) were evaluated by using a least square optimisation 
algorithm to reproduce the hysteretic behaviour of a [±45]2s laminate under tensile cyclic 
loading [31], κ was also considered as variable of the optimisation, since the composite failure 
strain is far larger than the maximum strain that was considered in the optimisation process. 
While Pmin was posed equal to – Pmax and Pmax was assumed to be the equal to the tensile 
failure strength of the laminate. The fitting processes resulted in a close agreement between 
the literature and the optimised PM space derived stress-strain curves, (Figure 13). 

 

 
Figure 12 – Test case PM space. 
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Figure 13 – Comparison between optimised PM space and literature data. 

 
Laminate Optimised Test Case 
E (Elasticity Modulus) 9.9GPa 144.8GPa 
Tensile failure strain (Sf) 0.050 0.016 
Tensile failure strength (Pmax) 0.115GPa 1.545GPa 
a 1.063Pmax 1.643GPa 
b 0.758 Pmax 1.172GPa 
c 2e-12 2e-12 
N 5.97e-17 3.323e-19 
κ 0.543Sf 0.00868 

Table 2 – PM space parameters. 
 
Two piezoelectric patches (s1 and s2, 7mm long – Pzl – and 0.2mm thick – Pzt) were 

placed as showed in Figure 11. Sensor s1 was simulated in the excitation mode by applying 
on the test case distributed forces (Fx, Fy) as follows: 

( ) ( ) [ ]

( ) ( )

x c c c

2
t

y c

l

1F = x-x f t x= x -r,r+x
r

Pz 1F = 1- x -x Γ t
2r r

Pzr=
2

⎡ ⎤
⎢ ⎥⎣ ⎦

                                     (24) 

where: 
• xc is the coordinate of the sensor s1 centre. 

• 
( ) ( )

( )2
0
2

t-t
2p

0

Γ t =-Asin 2πft e
0.25f=150kHz  ; p=   ; t =3p=T

f

 

• f  is the Gaussian pulse central frequency. 
• A [N] is the signal amplitude.  
Five different excitation amplitudes (5N, 20N, 40N, 80N and 160N) were investigated on 

the test case. These amplitudes are compatible with the strength developable by piezoelectric 
patches, since according to the Piezo-Kinetic Corporation database a squared piezoelectric 
patch (7x7mm, 0.2mm thick) made of  PKI-556 is capable of developing an in-plane force of 
8.81 N/V for a maximum allowable voltage of 40V.  In acquisition mode, the sensors s1 and 
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s2 time signals s(t) were evaluated as function (eq. 9) of the stresses (σx, σy) estimated by our 
in-house nonlinear FE code (§4).  

( )

( )

( ) ( ) ( )
c

c

x x y=y_piezo

y y y=y_piezo

r+x

x x y y
x -r

σ =σ x,t

σ =σ x,t

s t = σ F + σ F dx
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

∫

                                         (25) 

The element size eL (13) of the FE model used is given by the ratio between the pulse 
wavelength WL and the number of elements, NoEWL, used to describe it. 

( )L
L

WL

W f 0.0204me = = =0.00051m 0.5mm
NoE 40

≅                            (26) 

For wavelength WL (14) is meant the space traveled by a pressure wave P oscillating with 
a frequency f (pulse central frequency) with a wave speed cmin. Where cmin (15) is the 
minimum P wave speed, in the structure under investigation (even layers of the composite). 

( ) min
L

m3055c sW f = = =0.0204m
f 150kHz

                                       (27) 

min -3

E(1-ν) 9.7GPa(1-0.34) mc = = =3055
ρ(1+ν)(1-2ν) 1600kgm (1+0.34)(1-0.68) s

            (28) 

 
Finally, the time integration step dt, used was estimated as the time employed by the 

quickest P wave (cmax, odd layers of the composite, eq. 17) to cross a finite element (eL), times 
a safe factor SF: 

-8L
F

max

e 0.0005mdt=S =0.25 =1.2x10 smc 11038
s

                                (29) 

max -3

E(1-ν) 144.8GPa(1-0.3) mc = = =11038
ρ(1+ν)(1-2ν) 1600kgm (1+0.3)(1-0.6) s

        (30) 

 
 

9. Results 
 
In this section, the capability of the TNEWS to detect damage is shown. A detailed  

analysis of the effects of the change of excitation amplitude and sampling frequency on the 
TNEWS accuracy is also presented. 

 
9.1. TNEWS procedure results 

 
The CTW of the simulated time signals acquired at the two sensor locations (s1, s2) for 

two different excitation amplitudes (A1=5N and A2=40N) was estimated. A complex Morlet 
wavelet with a central frequency f0 = 7 and a wavelet frequency band γ = 0.25 was used. An 
example on the CWT performed on sensors s1 and s2 due to the excitation amplitude A1 is 
given in Figure 14.   
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                                          a)                                                       b) 
Figure 14 – CWT of time signal: a) sensor s1; b) sensor s2. 

 
By analysing the time-frequency coherence, the presence of damage was identified, since 

the time-frequency ridges due to the arrivals of the damage reflected perturbation waves can 
be clearly observed ((a)                                                                             (b) 

Figure 15). As expected the drop of coherence (ridges) are associated with a frequency 
content shaped around the third harmonic of the pulse central excitation frequency, in line 
with the non classical non linearity prediction described in paragraph 3. 

 
(a)                                                                             (b) 

Figure 15 – Time-Frequency Coherence: a) sensor s1; b) sensor s2. 
 
Once, the damage presence was detected, the arrival time curves were extracted by an 

automatic algorithm that selects the first reflected wave maxima lines for each sensor (Figure 
16). Finally, the damage localisation can be carried out using the maxima lines labelled with 1 
in Figure 16-a and b and eq. 17. As result of this process, the damage (see blue line in  

 
Figure 17) is plotted as a function of the frequency and it can be seen that it was localised 

with the change of the frequency within the tolerance of the methodology due to the 
piezoelectric patch finite dimension (±3.5mm, see the red line in  

 

a)
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Figure 17) and to the wavelength of the impinging/damage reflected perturbation (see the 
green line in  

 
Figure 17). 
              

 
Figure 16 – Maxima lines extraction: a) sensor s1; b) sensor s2. 

 

 
 
 

Figure 17 – Damage predicted location from left edge of the composite plate section. 
 
 

9.2. Effects of excitation amplitude changes on the TNEWS accuracy 
 

)

)
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According to theory and experimental evidences ([2-10, 11-14], §2-3,7), the non-classical 
nonlinear elastic material behaviour increases with the excitation pulse amplitude and, 
consequently, the TNEWS detected uncorrelation amplitudes between the nonlinear 
components of damage reflected waves should increase with the difference of the excitation 
pulse amplitudes ∆A=A2-A1. In order to investigate this phenomenon, the excitation 
amplitude A1 was kept constant to 5N, while A2 was changed between {20N, 40N, 80N, 
160N}, as sampling time was used the time integration step dt evaluated by eq. 16 (sampling 
frequency 83.3MHz). Differently from the predictions made before, the results displayed in 
Figure 18 (the predicted localisation curves are named according to A1_A2N) showed that for 
A2 ranging between 20N and 80N, no significant change in terms of improved accuracy of the 
damage localisation. On the other hand, the frequency range in which is possible locating the 
damage seemed increasing with A2. Furthermore, for A2=160N, a large improvement of 
damage localisation accuracy was obtained (see curve 5_160N in Figure 18). These remarks 
highlighted that is not only ∆A but also the level of A2 plays a fundamental role on the 
accuracy of the TNEWS. 
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Figure 18 – Damage predicted locations (referred to s1): A1=5N and A2= {20N, 40N, 80N, 160N}. 
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Figure 19 – Damage predicted locations (referred to s1): A1= {5N, 20N, 40N, 80N} and A2=160N. 

 
In order to understand the effect of A2 on the TNEWS accuracy, the damage detection 

process was performed keeping constant A2 at 160N and changing A1= {5N, 20N, 40N, 
80N}. The outcomes of such investigation showed (Figure 19) that the increase of A1 had no 
apparent change on the detection frequency range. Moreover, as in the case of A2, changing 
A1 from 5 to 40 had small effects on the TNEWS accuracy, however, a consistent 
enhancement of the TNEWS accuracy was obtained with A1=80N. This last evidence casts 
shadows on the importance of ∆A and highlights the need of further insights on non-classical 
nonlinear elastic mechanisms, since the best accuracy is given by a set of excitation 
amplitudes (80_160N) having a ∆A of 80N against the 155N of the 5_160N curve, which also 
appeared to be the worst. Therefore, a key role in the TNEWS process is played not only by 
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A2 and in some extent by ∆A but also by A1.   Furthermore, using excitation amplitude A1 
larger than 80N seems to constitute a sort of threshold above which the damage localisation 
accuracy increases, these evidences are in the limit of the PM space model used and further 
attempt of analysing the results can be considered mere speculations, therefore, an extensive 
experimental campaign will be needed to validate these results. 

 
9.3. Effects the sampling frequency on the TNEWS accuracy 

 
The effect of sampling frequency on the accuracy and run-time of the developed damage 

detection process was investigated. In particular, the time signals with the following sampling 
frequency 41.7 MHz, 20.8 MHz, 10.4 MHz and 5.2 MHz were analysed. The time length of 
the detection process varies from 20min for 41.7 MHz to 1min 20 sec for 5.2MHz. However, 
the TNEWS accuracy (Figure 20) was affected just marginally as the error of the predicted 
damage location was comparable with that of the least accurate A1 and A2 combinations (see 
5_20N in Figure 18). Moreover, an increasing wobbling of the damage localisation lines can 
be observed with the sampling frequency reduction (Figure 20-Figure 21), though, the errors 
are well within into the tolerance limits showed in  

 
Figure 17, i.e. about ±10mm. 
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Figure 20 – Effect of the sampling frequency on damage predicted locations (referred to s1): A1=80N 

and A2=160N. 
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Figure 21 – Effect of the sampling frequency on damage predicted locations (referred to s1): A1=5N 

and A2=160N. 
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Conclusions  
 
In this paper, a new transient nonlinear elastic wave spectroscopy is presented for the 

detection and localization of damage in composite plate. The damaged area was modelled 
using a multi-scale material constitutive model (Preisach-Mayergoyz space). The damage 
detection methodology is articulated in three steps. In the first step, the presence of the 
damage on the structure is assessed. In the second step, the arrival time of the reflected wave 
(or echo) can be estimated, and in the third step the damage location through a simplified 
Ray-Tracing algorithm is detected.  

The developed technique identified in a clear manner the faulted zone showing its 
robustness to detect and locate nonlinear sources in presence of multilayer material. 

 



Acc
ep

te
d m

an
usc

rip
t 

References 
1. C. Santulli, “Impact damage Evaluation in woven composites using acoustic and thermoelastic techniques, 

Ph. D. Dissertation, Liverpool University, 2000 
2. K. Van Den Abeele, P. A. Johnston, A. Sutin, Nonlinear elastic wave spectroscopy (NEWS) techniques to 

discern material damage, part I: nonlinear wave modulation spectroscopy (NWMS), Res. Nondestr Eval, 
Vol. 12(1), pp. 17-30, 2000. 

3. R. A. Guyer, P. A. Johnson, Nonlinear mesoscopic elasticity: evidence for a new class of materials, Physics 
Today, pp 30-36, April 1999. 

4. P. Johnston, The new wave in acoustic testing, Materials World, Vol. 7(9), pp. 544-46, 1999. 
5. K. Van Den Abeele, J. De Visscher, Damage assessment in reinforced concrete using spectral and temporal 

nonlinear vibration techniques, Cement and Concrete Research, Vol: 30(9), pp. 1453-1464, 2000. 
6. C. Campos-Pozuelo, J. A. Gallego-Juárez, Experimental Analysis Of The Nonlinear Behaviour Of Fatigued 

Metallic Samples, WCU 2003, Paris, September 7-10, 2003. 
7. K. Van Den Abeele, J. Carmeliet and M. Wevers, Quantification of microdamage in slate tiles: comparison 

of nonlinear acoustic resonance experiments with visual and X-ray diagnosis, ISNA, Gottingen, 1999. 
8. K. E-A. Van Den Abeele, A.Sutin, J.Carmeliet and P.A. Johnson, Micro-damage diagnostics using 

Nonlinear Elastic Wave Spectroscopy (NEWS), NDT&E International, Vol. 34, pp. 239-248, 2001. 
9. K. Van Den Abeele, K. Van de Velde, J. Carmeliet, Inferring the degradation of pultruded composites from 

dynamic nonlinear resonance measurements, Polymer Composites, Vol. 22(4), pp. 555-567, 2001. 
10. M. Meo, G. Zumpano, Impact Damage identification on sandwich plates through Nonlinear Elastic Wave 

Spectroscopy, ICCST/5 - 5th International conference on Composite Science and Technology, Sharjah – 
UAE, 1-3 2005. 

11. K. Van Den Abeele, P. A. Johnston, A. Sutin, Nonlinear elastic wave spectroscopy (NEWS) techniques to 
discern material damage, part II: Single Mode Nonlinear Resonance Acoustic Spectroscopy, Research on 
NonDestructive Evaluation 12, 31-43, 2000. 

12. M. Meo, G. Zumpano, U. Polimeno, Corrosion identification on an aluminium plate-like structure by 
monitoring wave propagation phenomena, First World Congress on Corrosion in the Military, Sorrento, 
Italy, 6-8 June 2005. 

13. G. Zumpano, M. Meo, Finite Element Simulation of Wave Propagation Phenomena in a Damaged Plate to 
Support Development of Nonlinear Elastic Wave Spectroscopy Techniques, NDT in Progress, Prague, 
October,10-12, 2005. 

14. M. Meo, G. Zumpano, Stress Corrosion Cracking Identification and Localisation through Nonlinear Elastic 
Wave Self Focusing using Time Reversal Mirrors in Welded Plate-Like Structures, submitted to 
International Journal of Solids and Structures, December 2005. 

15. L. D. Landau, E. M. Lifshitz, Theory of Elasticity, Pergamon, Tarrytown, NY 1959. 
16. K. R. McCall, R. A. Guyer, Equation of state and wave propagation in hysteretic nonlinear elastic materials, 

Journal of Geophysical Research, Vol. 99(B12), pp. 23887-23897, 1994.  
17. K. R. McCall, R. A. Guyer, A new theoretical paradigm to describe hysteresis, discrete memory and 

nonlinear elastic wave propagation in rock, Nonlinear Processes in Geophysics, Vol. 3, pp. 89-101, 1996. 
18. Y. M. Hu, W. Floer, U. Krupp and H. -J. Christ, Microstructurally short fatigue crack initiation and growth 

in Ti-6.8Mo-4.5Fe-1.5Al, Materials Science and Engineering A, Vol. 278(1-2), pp. 170-180, 1999. 
19. P. Konhke, ANSYS Inc. Theory manual – Twelfth Edition, SAS IP Inc., 2001. 
20. K.-J. Bathe, Finite element procedures in engineering analysis, Prentice-Hall Inc., 1982. 
21. R. D. Cook, D. S. Malkus, M. E. Plesha, Concepts and applications of finite element analysis – 3rd Edition, 

John Wiley & Sons, 1989. 
22. G. Zumpano, M. Meo, A new damage detection technique based on wave propagation for rails, International 

Journal of Solids and Structures, Vol. 43(5), pp. 1023-1046, 2006. 
23. L. Angrisani, P. Daponte, Thin thickness measurements by means of a wavelets transform-based method, 

Measurement, Vol. 20(4), pp. 227-242, 1997. 
24. V. C. Chen, H. Ling, Time-Frequency Transformation for Radar Imaging and Signal Analysis, Artech 

House, Boston, London, 2002. 
25. S. Mallat, A wavelet tour of signal processing, London: Academic Press, 1998. 
26. Teolis, Computational signal processing with wavelets, Birkhauser: Boston, 1998. 
27. Kareem, T. Kijewski, Time-frequency analysis of wind effects on structures, Journal of Wind Engineering 

and Industrial Aerodynamics, Vol. 90, pp. 1435-1452, 2002. 
28. S. Legendre, J. Goyette, D. Massicotte, Ultrasonic NDE of composite material structures using wavelets 

coefficients, NDT&E International, Vol. 34(1), pp. 31-37, 2001. 
29. X. Gilliam, J. Dunyak, A. Doggett, D. Smith, Coherent structure detection using wavelet analysis in long 

time-series, J. of Wind Engineering and Industrial Aerodynamics, Vol. 88, pp. 183-195, 2000. 



Acc
ep

te
d m

an
usc

rip
t 

30. W. J. Staszwski, Identification of damping in MDOF systems using time-scale decomposition, J. of Sound 
and Vibration, Vol. 203(2), pp. 283-305, 1997. 

31. K. Van Den Abeele, F. Schubert, V. Aleshin, F. Windels, J. Carmeliet, Resonant bar simulations in media 
with localised damage, Ultrasonics, Vol. 42, pp. 1017-1024, 2004. 

32. L. Greve, A. K. Pickett, Delamination testing and modelling for composite crash simulation, Composites 
Science and Technology (2006) Vol. 66 pp. 816 -826. 


