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S U M M A R Y  
A modified Griffith criterion for a two-dimensional array of aligned elliptical cracks 
with a long-range interaction potential is presented. In accordance with observation, 
the pattern of cracks is assumed to be fractal, with a two-point correlation 
dimension Dc indicating a power-law distribution of crack spacings r,  and a 
power-law exponent D of the crack length distribution. From a simple dislocation 
theory of the seismic source D is proportional to the seismic 6-value if an 
individual earthquake or acoustic emission is produced by displacement on a specific 
fault or crack in the population. As a result, the theory is applicable to incremental 
damage rather than the long-term evolution of crack systems with large displace- 
ments. The long-range interaction between cracks is taken to be elastic, implying a 
positive interaction potential proportional to r-'. Two models are presented for the 
spatio-temporal evolution of the resulting seismicity due to: (A) progressive 
alignment of epicentres along an incipient fault plane; and (B) clustering of 
epicentres around potential nucleation points on an existing fault trace. 

The modified Griffith criterion predicts either an increase or a decrease in the 
potential energy release rate G', depending on the sign of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaDc/aD and the nature 
of the concentration of deformation. For model (A), if aDc/aD > 0 (corresponding 
to an implied positive correlation between the b-value and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADc), then G' increases in 
the presence of an interaction potential. In contrast G' increases if aD,/aD < 0 for 
model (B). Both results lead to a mechanical weakening effect associated with more 
concentrated deformation. Such an association of mechanical weakening with 
concentration of deformation is fundamental to the development of fault systems. 

On the other hand if aDc/aD < O  (corresponding to an implied negative 
correlation between the b-value and Dc), G' decreases for model (A) in the 
presence of an interaction potential, implying a hardening of the material due to the 
interaction. For model (B) G' decreases when aD,/aD>O. The mechanical 
hardening (lowering G ') is associated with geometrically distributed damage in 
either case. Equivalently this can be seen as a shielding effect, with the zone of 
damage reducing the local stresses on a particular crack. If there is no correlation 
the interaction potential has a slight mechanical hardening effect with no strong 
geometric effect. 

These predictions are also consistent with the usual tenets of damage mechanics, 
in which early crack growth is stable, distributed and is associated with mechanical 
hardening, and material failure occurs later in the cycle due to localized, unstable 
crack coalescence, associated with mechanical weakening. The main difference 
between the theory presented here and standard damage mechanics is that crack 
coalescence is organized, and hence instability can develop at lower crack densities. 

Key words: b-values, correlation dimension, damage mechanics, fractals, GrifFith 
crack theory. 
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INTRODUCTION 

Natural fracture systems and earthquake populations are 
both consistent with the idea of a scale-invariant geometry 
(e.g. Aki 1981; King 1983; Hirata 1989a; Turcotte 1989). 
Scale invariance in geological systems is an old idea recently 
given new prominence mainly because of the introduction 
of a quantitative theory of the geometry of natural systems 
(Mandelbrot 1982). This fractal geometry of fracture 
systems implies that, although stress is relieved pre- 
dominantly on the major faults, materials like rocks and the 
Earth’s crust are in fact heterogeneous on all scales. As a 
consequence, simple fracture theories based on a single 
expanding crack in an otherwise homogeneous elastic 
medium are at best only an approximation to the most 
simple dynamic ruptures, and cannot explain the evolution 
of damage of a fault or fracture system during one or more 
earthquake cycles. 

Fractal geometry of faults and fractures 

It is an observational fact that seismogenic fault populations 
(e.g. Hirata 1989b) and crack populations producing 
Acoustic Emissions (AE)--e.g. Main et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. (1990aFare 
fractal on a wide variety of scales. However, fractal 
dimensions obtained by different methods should not be 
compared too literally with each other because they reflect 
different aspects of the scale invariance. For example, the 
‘capacity’ dimension zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD,,, estimated by box-counting methods 
(Feder 1987), measures the space-filling properties of a 
fracture set with respect to changes in grid-scale (e.g. Hirata 
1989a), and the power-law exponent D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the fault length 
distribution, inferred from the seismic b-value, measures 
the relative proportion of large and small seismogenic faults 
(Main & Burton 1984; Turcotte 1989) or cracks producing 
AE (Main et al. 1990a). The correlation dimension D, is 
another type of fractal dimension (Grassberger 1983), which 
measures the spacing or clustering properties of a set of 
points, and has been applied both to earthquake epicentres 
(Kagan & Knopoff 1980; Hirata 1989b) and AE hypocentre 
distributions (Hirata, Satoh & Ito 1987). The seismic 
b-value and correlation dimension quantify aspects of fractal 
scaling in an increment of seismic damage on a time-scale 
much smaller than that of the evolution of crustal-scale 
faulting. In contrast Davy, Sornette & Sornette (1992) used 
a multifractal approach to predict scaling relationships 
between D and different fractal dimensions, and applied this 
to the fractal properties of laboratory analogue materials 
representing distributed continental deformation over 
longer time-scales due to an indenter. The model presented 
in this paper applies strictly to the case of incremental 
seismic damage due to the evolution of a set of Griffith 
cracks, though it’s long-term evolution might in principle be 
determined by integration of the short-term distributions. 

If earthquake sources can be regarded as simple 
scale-invariant dislocations of finite extent (e.g. Kanamori & 
Anderson 1975), the power-law exponent D is proportional 
to the seismic b-value (Aki 1981), and can hence be 
inferred either from earthquake or acoustic emission data 
(e.g. Meredith, Main & Jones 1990). This depends on 
independent knowledge of the moment-magnitude relation- 
ship for the particular instrument time constant and the 

typical duration of the seismic rupture (Kanomori & 
Anderson 1975). The successful prediction of variations in 
seismic moment-magnitude scaling with source size, notably 
the saturation of the Ms scale at magnitude 8 or so (e.g. 
Kanomori 1978), is strong evidence for the applicability of 
dislocation theory to the scaling between D and the seismic 
b-value. 

Earlier suggestions that the length distribution itself could 
in general be equated with a capacity dimension, e.g. Aki 
(1981) are not supported by empirical data (Hirata 1989a,b; 
Henderson et al. 1992). However the specific prediction 
from this hypothesis that 1 < D < 3 does appear to be borne 
out empirically, both for incremental damage during 
earthquakes and AE during subcritical crack growth (Main 
et al. 1990b). and for the longer term analogue experiments 
of Davy ef al. (1992). In the latter model D = D, only for 
the specific cases of D, = 0 (no spatial distribution of fault 
barycentres) or D, = D. There is also some evidence that D 
is positively correlated to the fractal dimension determined 
by spectral analysis of scattered seismic waves in different 
parts of the Earth’s lithosphere (Main, Peacock & Meredith 
1990b). 

Hirata (1989b) showed that there was a weak negative 
correlation between the two-point correlation dimension D, 
of earthquake epicentre spacings and the seismic b-value, 
for earthquakes with magnitude M 2 5 in the Tohoku region 
of Japan, over a period of 55 yr (1926-86). A similar result 
was obtained by Henderson et al. (1992) for the Riverside 
catalogue in southern California, for earthquakes greater 
than local magnitude 1.3 during the time period 1970-90. In 
this case the negative correlation was most strongly 
associated with individual foreshock-mainshock-aftershock 
sequences on a scale of a few years or so. In contrast b and 
D, may be weakly positively correlated, as in the final 
stages of dynamic failure due to crack coalescence in 
laboratory creep experiments (Hirata, Satoh & Ito 1987) 
where acoustic emissions have been located. In either case, 
the correlation implies a weak ordering of fracture size and 
position. However the ordering has a different signature in 
laboratory fracture of intact rock when compared to 
earthquake data on a crustal scale. The cause of this 
apparent discrepancy must be fully understood before 
reliable extrapolation of laboratory results to field cases can 
be carried out with confidence, and is the prime motivation 
for the present study. 

Physical models 

An ordering of fracture size and position may be due either 
to: (1) long-range interactions caused by the elastic stress 
field; or (2) long-range order produced by short-range 
interactions combined with the configurational entropy of a 
self-organized critical process. Rundle & Klein (1989) 
applied the first hypothesis to the ‘non-classical’ nucleation 
and growth of cohesive tensile cracks, and showed that a 
‘classical’ elliptical Griffith crack evolved by coalescence of 
smaller ‘non-classical’ cracks which formed ahead of the 
macrocrack tip analogous to the ‘process zone’ often 
postulated for subcritical crack growth. Several workers 
(Bak & Tang 1989; Sornette & Sornette 1989; Ito & 
Matsuzaki 1990) have shown, using different approaches, 
that the earthquake frequency-magnitude distribution, 
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where local stress concentrations lead to strong crack-crack 
interactions and a much more heterogeneous stress field. 

Specifically, the modified Griffith theory of Main (1991) is 
extended to consider the effect of long-range elastic 
interactions on a potential energy release rate G’ (modified 
for the case of an ensemble of isolated cracks), and hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
physical connection is determined between material 
weakening and the concentration of deformation on 
dominant fault zones. Although primarily aimed at 
explaining observations of stress corrosion cracking, the 
theory is completely general, and applies to any mechanism 
of quasi-static subcritical crack growth which produces a 
power-law distribution of fracture size and spacing. Two 
processes are described: (A) localization of two-dimensional 
damage onto an eventual one-dimensional rupture plane; 
and (B) fracture clustering in two dimensions around 
potential rupture nucleation points on a pre-existing fault. 
These two end-member models are schematically illustrated 
in Fig. 1. 

For case A a weak negative correlation between b and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADc 
is shown to be consistent with distributed deformation and 
the idea that crack growth and associated acoustic emission 
in intact specimens in the early stages of damage is 
associated with a stabilization of the material against 
macroscopic, dynamic failure. This establishes a direct 
connection (in an analytic form) between the distributions 
of crack size and spacing. The mechanical hardening effect is 
consistent with the usual tenets of damage mechanics, in 
which sample failure does not occur immediately on 
formation of the first crack, for example due to the stability 
of tensile crack growth in a compressive stress field (Ashby 

when taken over several cycles, could be explained by 
self-organized criticality, where fractally distributed ‘aval- 
anches’ of large events result from the local interaction of 
smaller elements. Usually this has been illustrated by 
spring-block-slider models for earthquakes on a fault of the 
type first proposed by Burridge zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Knopoff (1967). The most 
important property of self-organized criticality in terms of 
the present work is that it represents a stationary or average 
state, far from thermodynamic equilibrium, to which the 
complex dynamical system has already evolved, perhaps 
over millenia (P. Bak, personal communication). Therefore 
it cannot by definition be applied to the evolution of damage 
within a single earthquake cycle or even a few cycles. If we 
are interested in determining this evolution, say for 
predictive purposes, i t  may be more fruitful to consider a 
mainshock as a kind of critical phase transition which the 
system is driven through (e.g. Bruce & Wallace 1989). This 
approach was applied by Henderson & Main (1992) to a 
one-dimensional fault model, based on fracture mechanics, 
which showed systematic variations in the capacity 
dimension and b-value, depending on the applied stress and 
the type of local interaction in the model. 

In the present paper the problem of how damage evolves 
in terms of the ordering of crack size and position is 
addressed using a mean field theory based on weakly 
interacting Griffith cracks. The main advantage of a mean 
field theory is the degree of analytic tractability, thereby 
allowing the correlations between the spacing and length 
distributions to be explicitly included. The main disadvan- 
tage is the lack of applicability near the point of critical, 
dynamic rupture on the scale of the sample in question, 

(a) 

(b) 

r - - - - - - i  
I \* I \d . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr - - - - - - - I  

I 

I I 

p7 I I I I I 

I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

Figure 1. Schematic diagram showing two different types of damage localization: (a) alignment of epicentres on an incipient fault plane (model 
A); (b) concentration of epicentres on jogs and asperities on a pre-existing fault plane (Model B). The left-hand diagrams show the initial 
background seismicity, the central diagrams the evolution towards more concentrated activity, and the right-hand diagrams the correlation plot 
P(r)  associated with this change. P ( r )  is defined in equation (6)  of the main text, and the correlation plot is shown with log-log axes. The 
fractal ranges (ro, r , )  and ( r i ,  r ; )  are confined to the linear part of the correlation plot P ( r ) .  Model (A) has fixed boundary conditions 
determined by the size of the laboratory sample. Model (B) has more arbitrary boundaries for the epicentre distribution which are chosen by 
the investigator, and are hence shown as dashed lines. 
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& Hallam 1986). In contrast the final stages of quasi-static 
failure is associated with localized, large-scale cracking with 
a positive correlation between D (and by inference b) and 
D,, consistent with crack coalescence as a mechanism for 
instability. The main difference between the approach 
described here and standard damage mechanics is that this 
coalescence is organized, and can hence occur at lower 
crack densities than those modelled by Ashby & Hallam 
(1986). 

On a developed fault (case B) the seismic activity 
concentrated around jogs and bends on a segmented fault 
trace shows the opposite correlation. In this case a negative 
correlation between D (and by implication 6) and D, 
implies a mechanical weakening effect. Since this correlation 
also implies increased clustering of activity at potential 
nucleation points for large-scale rupture, this might form a 
useful model for earthquake foreshocks. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
THEORY 

Background 

The first attempt to quantify the fracture properties of 
natural materials was Griffith (1920, 1924), who considered 
a single two-dimensional elliptical crack of semi-length c and 
width w embedded in an effectively infinite medium with a 
tensile stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu applied at the remote boundary. By analogy 
with Gibbs’ theory for the nucleation of liquid droplets, he 
considered the effect of a change in the free energy AF 

caused by the introduction of such a crack in an otherwise 
elastic medium. By minimizing the free energy change, 
a(AF)/ac = 0, Griffith showed that the minimum condition 
for dynamic rupture could be stated in the form G = G,, 
where G is the potential strain energy release rate (per unit 
crack surface area) stored in the body. A general expression 
for the free energy is AF = -B2u2cZw + 4ycw, where 2y is 
the energy needed to separate a unit area of material at the 
crack tip and B depends on the elastic constants and the 
geometry of the solid body (Irwin 1948). Explicitly 
G = -aU/aA,, where U = -B2dc2w is the elastic 
potential strain energy stored in the body, and A,=4cw is 
the crack surface area, so that G = BZa2c. The critical 
condition for dynamic failure for a thermodynamically 
recoverable, elastic process is G, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2y. 

Rundle & Klein (1989) extended the nucleation approach 
by introducing an elastic interaction potential into a 
free-energy functional, and identified a fracture process 
zone introduced by cohesion in the solid. The idea behind a 
fracture process zone is that it develops in advance of the 
crack tip during subcritical crack growth, and consists of 
several smaller microcracks. The macrocrack then grows by 
cutting a swathe through this weakened material. Although 
often postulated, such a localized process zone is not always 
observed at crack tips in actual laboratory experiments on 
rocks. In fact rocks generally produce a much wider aureole 
of damage in the early stages of deformation, e.g. Lockner 
et al. (1991). Based on these observations the longer range 
interaction potential for rocks in the early stages of damage 
is apparently more important than the more localized 
cohesion associated with a process zone concentrated ahead 
of the crack tip. 

In an attempt to explain the physical correlation observed 

by Meredith & Atkinson (1983) between observed seismic 
b-values and the stress intensity during subcritical crack 
growth, Main (1991) extended the Griffith theory to a fractal 
ensemble of isolated elliptical tensile cracks which could all 
grow because of a chemical contribution to the free energy 
at the crack tip due to stress corrosion. The theory correctly 
predicted the observed negative correlation between stress 
intensity and seismic b-values, as well as the positive 
correlation between seismic event rates and stress intensity 
(Main & Meredith 1991). Although primarily aimed at 
explaining observations of stress corrosion cracking, the 
theory is completely general, and applies to any mechanism 
of quasi-static subcritical crack growth which produces a 
power-law distribution of fracture sizes. In this sense 
subcritical refers to displacement on fractures smaller than 
the size of the sample of interest, so that the deformation is 
quasi-static, and critical implies dynamic rupture leading to 
fracture or faulting of the whole sample. A characteristic 
‘sample size’ effect is a necessary consequence both of the 
finite rock samples used in labratory test and also of the 
finite seismogenic width of the Earth’s schizosphere (Scholz 
1990). 

As in Main (1991) we will simply assume the fracture 
damage takes the form of a power-law distribution of crack 
semi-lengths c and constant width w, and apply the 
modified Griffith criterion for an ensemble of N, aligned, 
elliptical cracks. Neglecting crack-crack interactions, the 
free-energy change associated with this two-dimensional 
ensemble is 

AF = NTw[ -BZd(~* )  + ~ Y ( c ) ] ,  

where B2 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn / E ,  and E is the Young’s modulus, for the 
case of aligned, elliptical tensile cracks (Main 1991). B2 is 
taken to be a constant at this stage of the modelling. The 
total volume of damage is defined for this two-dimensional 
problem as V, =nNTw(c2), and the total crack surface 
area due to the damage is AD = 4NTw(c). Angular brackets 
denote expectation values which depend on the range of 
crack semi-lengths (co, cl) and the probability distribution 
of semi-lengths in this range. 

Inclusion of an interaction potential 

We now add the effect of an interaction potential between 
two cracks of semi-length c, and c,, separated by a distance 
ril >> c, or c,, so that the cracks can be treated as effective 
point sources of stress. The elastic interaction between two 
cracks has been considered by Rundle & Klein (1989) and 
Rundle (1989), who showed by differentiating the strain 
energy potential that the stress on a crack at point x due to a 
displacement 5 on a crack at x‘  is proportional to l/lx - x‘12 
under plane strain conditions. We shall therefore assume 
the interaction potential between two cracks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi and j takes 
the form -Cy’f(O, @)B2a2wciclr,;l, where O <  a’<< 1 repre- 
sents the strength of the interaction, and r - ’  decay reflects 
the interaction potential rather than the interaction stress or 
force. f(0, @) represents the directional effect of the solid 
angles describing the interaction, and reduces to f(0) for a 
two-dimensional array of aligned cracks. This form of 
interaction is similar to that adopted by Rundle (1989), 
except that the deformation at the ith crack is represented 
solely by the displacement at the centre of the crack, rather 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
1
1
/3

/5
3
1
/7

7
2
0
6
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2
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than the integrated effect over the crack surface area. This is 
a reasonable assumption for a scale-invariant crack or fault 
system with small crack length compared to crack spacing. 
Including this interaction and taking rij zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAci or cj gives, 
/\I?= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y. 

NTw{ -B2$[ (c') - u(?)(c)'(r-')] +4y(c)} .  

a here also includes the integrated effect of the relative 
orientation of the crack set c and the crack interaction lines 
r .  The total crack surface area zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, can grow with no change 
in the free energy when a ( A F ) / d A , = O ,  with the critical 
failure criterion 

G' = G;, = 2 y ,  (3) 

where the potential strain energy release rate G' = 
-dL l /dA,  for the ensemble is given by 

w,u,Nr.cn 

Here G' is defined in terms of the total surface area of 
damage A, for a system of NT isolated elliptical cracks. If 
stress corrosion is active then G' = y' < y is the quasi-static 
condition for subcritical crack growth (Main 1991). Chelidze 
& Guegen (1990) recently derived an analogous modified 
Griffith model for a fractal crack distribution where A, is 
characterized in terms of a fractal distribution of connected 
cracks using a box-counting algorithm. For a fractal system 
of isolated cracks the power-law exponent is the relevant 
parameter (Main 1991). 

Clearly the effect of the interaction potential on G' 
depends on the partial derivative a(r-')/a(c), which in 
turn depends on the distributions of crack spacing and crack 
length. Here we will assume a fractal crack population, and 
hence that the cumulative probability distributions can be 
expressed in power-law forms, i.e. 

P,(C 2 c )  = (c/c,)-Dc 

P,(R 5 r )  = ( r / r1)& 

c,  I c 5 C' , ( 5 )  

(6) r, 5 r 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr l .  

We explicitly restrict our attention to the fractal range 
specified by the lower (c,, ro) and upper (c I ,  rl) fractal limits 
shown on Fig. 1. With this form of the distribution the 
normalizing conditions are PJC 2 c,) = 1; P,(R I r l)  = 1. 
Cumulative frequency statistics are then related to these 
probabilities by N,(C 2 c) = N,Pc; N,(R 5 r )  = [NT(NT - 
1)/2]Pr.  D is the power-law exponent of the length 
distribution of cracks. P, is known as the 'correlation 
integral' (Grassberger 1983) and the fractal dimension Dc is 
the correlation dimension. 

Expressions for the energy release rate without an 
interaction potential are given in Main (1991) and are not 
repeated here. Instead we concentrate on the second-order 
term including the derivative a(r-')/a(c) in (4). Again we 
assume that there is only one largest crack of size c1 and 
that c,  is constant as a result of a minimum energy release 
rate for subcritical crack growth. However, we now add two 
criteria which depend on the type of damage being 
sustained: (A) damage localization along an incipient fault 

plane due to concentration of deformation which is initially 
distributed and macroscopically plastic (Fig. la); and (B) 
clustering of activity around nucleation points on a 
pre-existing fault plane (Fig. lb). 

Case (A) corresponds to localization of damage in the 
creep experiment described by Hirata et al. (1987; Figs 1 
and 3), with rl =constant. The physical reason for this 
boundary condition is that the largest crack separation is 
typically limited by the finite sample size. This may either be 
experimentally controlled in the laboratory, or a conse- 
quence of the finite seismogenic width of the Earth's crust. 
Case (B) is the spatial analogue to the temporal clustering 
model of earthquakes discussed by Smalley et al. (1987; figs 
3 and 4). In this case the upper fractal limit rl varies because 
the fractal range is restricted to a range smaller than the 
sample size in general, and r, = constant representing the 
finite lower limit of epicentral resolution (Fig. lb). These 
two end-member models are now considered in turn. 

Case (A): concentration of damage on an incipient fault 
plane; r, = constant 

Here we consider the effect of concentration of deforma- 
tion, beginning with a rock sample which is originally intact. 
Initially damage is distributed and plastic, and latterly 
concentrates on an incipient fault plane (Fig. la). As 
deformation progresses D will decrease as c ,  increases, as 
larger cracks are produced at higher energy release rates G' 
(Main 1991). D, can either increase or decrease respectively 
as r, increases or decreases, depending on the tendency of 
damage to become more concentrated (lower (r )  and ro; 

model AI) or more distributed (higher ( r )  and r,; model 
AH). These trends are illustrated qualitatively in Fig. 2 ,  

where N ,  is held constant as a result of the definition of G'  
above. D, will tend to decrease if epicentres are initially 
spaced randomly in two dimensions, and subsequently line 
up in plane along a one-dimensional fault break. Fig. 3 
shows an example of this type of behaviour during a creep 
experiment, after Hirata et al. (1987). 

From equation (4), we can now solve explicitly for G' for 
the fractal distribution of crack lengths and spacings given in 
equations (5) and (6). From the chain rule, holding all other 
variables constant, 

(7) 

Thus the effect of the interaction potential depends on the 
sign of the correlation between D and D, via the term 
aD,/aD. From (5) and (6) 

(9) 

except when D or Dc = 1, when logarithmic forms result 
from integrating the density distributions (Main 1991). Note 
the symmetry of these two equations due to the power-law 
probability distributions used to define the expectation 
values. In order to solve them uniquely an extra constraint 
needs to be applied to determine cI  as a function of D and 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
CO c, c,l c 

(a) 

r; ro r; r 

Figure 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAModel (A). Schematic diagram of the effect of (a) changing length distribution exponent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD and (b) correlation dimension D, on 
changing frequency-length and frequency-spacing statistics for constant co and r l .  Plot (a) shows the cumulative frequency-length distribution 
N, and (b) shows the frequency-spacing distribution N, defined in the main text. Both diagrams are drawn as log-log plots, so the slopes of the 
straight lines correspond to D and D,. AS time goes on D decreases as more large fractures are formed. D, may either decrease (Model AI), 
or increase (Model AH) as the minimum crack spacing ro decreases or increases respectively. 

rO as a function of D,. Here we assume there is only one 
largest crack of size cI  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf Sc/2  and one largest crack 
separation rl f 6 r / 2 .  For example if the size of the discrete 
bin in the frequency-length distribution 6c = c0. and 
c, /c , ,  > 10' then 

cl/cl, = ( D N T ) ' " ( D + l ) l ,  (10) 

holds to an error of less than 1 per cent for D 2 1 (see 
Appendix). Similarly if there is one largest crack separation 
rl f 6r, and r l / r l ,>  lo2, then to the same accuracy for 

n 

VI 
L 

[I 
W 

fL 

1 oc 

A Secondary 

w Tertiary 

I 

16 32 
r, mm 

Figure 3. An example of the behaviour shown in Fig. 2, Model 
(AI), after Hirata er al. (1987). D, decreases here as an incipient 
fault plane develops via stages of primary, secondary and tertiary 
creep. During the tertiary creep stage the b-value also dropped as 
deformation localized. The correlation integral P, is shown, where 
N, on Fig. 2(b) corresponds to [Nr (NT - 1) /2]P, .  

D,? 1, 

rl/ro = [D,(6r/r1)N,(N, - 1)/2](1'(Dc* I ) ' .  (11) 

Again since 6r is arbitrary we may choose 6r = 2r, / (NT - 
l ) ,  whence 

rl/r,, = (DcNT)(l ' (nc+l) l ,  (12) 
again preserving symmetry for simplicity. 

NT is a constant of the order of 100 or so for a reasonable 
estimate of the seismic 6-value for most earthquake 
catalogues (e.g. Hirata 1989b), and we would normally 
expect the fractal range to be at least two orders of 
magnitude, so these approximations are not unreasonable. 
For a two-point correlation function based on an epicentral 
plot 1 5  D c 5 2 ,  and G' is stable with respect to increasing 
N ,  for D 2 1 (Main 1991). The predicted range for D is 
1 < D < 3  (Main et al. 1990b). In practice the observed 
ranges inferred from the seismic 6-value are usually tighter 
than this (e.g. Hirata 1989b). The terms d ( r - ' ) / d D c  and 
a ( c ) / d D  in (7) for these ranges can then be calculated for 
different values of N ,  from equations (8)-(10)  and (12). 
Note that as N , - f m ,  cI/cn+m and r l l r l l - - tm,  and so 
( c ) - c , , [ D / ( D  - 11 for D >  1, and ( r F t ) - f r ; ' [ D c / ( D C -  

11 for D, > 1. Thus the mean crack length is finite as long 
as D > 1, but becomes infinite for D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 1 as N, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00. 

Case (B): clustering of epicentres around nucleation points 
on a pre-existing fault; r, = constant 

A similar exercise to the above can be carried out allowing 
r, to vary and keeping r ,  constant, with one minimum crack 
spacing of size r, f 6r. This is the spatial analogue of the 
temporal fractal clustering model of Smalley ei al. (1987). 
An explicit solution for this case is given in the Appendix, of 
the form 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/1
1
1
/3

/5
3
1
/7

7
2
0
6
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Damage mechanics with long-range interactions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA537 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
lT(NT-l 

2 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
VI 
K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z 

L 

U 

L 

I 
\ 

I 
I 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

CO c, c; c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-7-7 

Figure 4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAModel (B). Schematic diagram of the effect of (a) changing length distribution exponent D and (b) correlation dimension D, on 
changing frequency-length and frequency-spacing statistics for constant r,. Plot (a) shows the cumulative frequency-length distribution N, and 
(b) shows the frequency-spacing distribution N, defined in the main text. Both diagrams are drawn as log-log plots, so the slopes of the 
straight lines correspond to D and D,. As time goes on D decreases as more large fractures are formed. D, may either increase (Model BI), or 
decrease (model BII) as the maximum crack spacing r, decreases or increases respectively. 

This results in the model shown in Fig. 4. Note that at high 
crack separations the distribution is not strictly fractal when 
the epicentres begin to cluster around the eventual 
nucleation point. Thus the spatial order during concentra- 
tion of deformation is on a smaller scale relative to the 
'sample size' than for model (A). As a result greater 
clustering is associated with decreasing (1) and rl and 
increasing D, as deformation progresses. This is exactly the 
opposite behaviour to case (AI). The common indication of 
localization of damage in models (AI) and (BI) is this 
reduction in mean crack spacing ( r ) ,  consistent with crack 
coalescence as a mechanism for failure. 

PREDICTIONS OF THE THEORY A N D  
COMPARISON WITH OBSERVATION 

Model (A): concentration of deformation and material 
weakening 

Fig. 5 shows ( r - ' )  as a function of Dc and (c)  as a 
function of D for the ranges predicted above, and for 
different values of N,. Note that for D > 2 the curve for (c) 
reaches the asymptotic limit N T - + m  very quickly with 
increasing N,. Thus damage with D > 2 tends to be more 
stable with respect to increasing numbers of cracks. This is 
consistent with experimental observations of D > 2 inferred 
from seismic b-values for acoustic emissions in the early 
strain hardening phase of cataclastic damage (Main et al. 

1990a). In this phase the number of cracks producing acoustic 
emission is increasing exponentially, but the damage 
remains stable due to mechanical hardening. 

Fig. 5 shows that both a(r-')/i3DC and a ( c ) / a D  are 
negative, so that from (7) the sign of a(r-')/3Dc is the 
same as the sign of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaD,-/aD. Thus if the seismic b-value is 
negatively correlated to the correlation dimension then 
aDC/aD < O ,  and the potential energy release rate G' is 
decreased by the presence of an elastic interaction potential 
(from equations 4 and 7). If the correlation is positive, then 

aD,/aD > 0 and G' is increased by the presence of the 
elastic interaction potential. If there is no correlation 
aD,/aD = 0 then there is a small increase in G' due to the 
term ( r - ' ) ( c )  in (4). In the above we have assumed that 
the early phase of damage is associated with large 
separations r and small crack lengths c ,  so that in general 
this term will be small. 

Thus aD,-/aD > 0 corresponds to the material being 
brought nearer the critical failure criterion G' = Gi. Since D 
is negatively correlated to G' (Main 1991) this weakening is 
also associated with a reduction in D, or a concentration of 
deformation on the larger fractures. This prediction is 
consistent with the positive correlation between 6 and D, 
observed in the tertiary creep stage reported by Hirata et al. 
(1987). It is also consistent with empirical observation that 
D is negatively correlated to the stress intensity K for a 
system dominated by a single macrocrack (Main et al. 
1990a), since G is proportional to K2. Thus the geometric 
effect of the mechanical weakening is a progressive 
concentration of deformation. For example geologists often 
infer that material weakening in the form of strain softening 
has occurred when deformation becomes concentrated into 
narrow bands (e.g. Ramsay & Huber 1987), though Hobbs, 
Muhlhaus & Ord (1990) have cautioned against a general 
association of the two. Wesnousky (1988) describes 
geological evidence for the evolution of concentrated 
deformation on long, linear features with weak mechanical 
properties, such as the San Andreas fault. 

In contrast aD,/aD < 0 corresponds to a hardening effect 
as the material is moved further away from the critical 
failure criterion. In this case D increases as G' decreases, 
leading to deformation being distributed in large numbes of 
smaller fractures. This is consistent with the observation of a 
wide aureole of damage observed during subcritical crack 
growth in the laboratory at low stress intensities (e.g. Main 
et al. 1990a; Lockner et al. 1991). Thus the mechanical 
hardening effect of decreased G' is associated with a 
geometry corresponding to more distributed deformation. 
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Figure 5. Functional form of (a) ( c ) / c O = f ( D )  and (b) ( r - ' ) /  
r ; ' = f ( D c )  predicted from equations (5 ) .  (6) and (8)-(12) for 
different values of NT for the case of constant r1 (model A). The 
slope of both distributions is negative, so that (a) a ( c ) / a D  < 0, and 
(b) a(r-')/aDc < 0 for this case. 

Equivalently this can be seen as a shielding effect, with the 
presence of a zone of damage reducing the local stresses on 
a particular crack. 

Model (B): clustering of epicentres and incipient 
nucleation 

We now consider the case where a fault has already 
developed, with microseismic activity on and around jogs 
and asperities on the fault. Thus, although deformation is 

concentrated on a 1-D fault break on a large scale, the 
small-scale deformation is clustered in 2-D around jogs and 
asperities along the fault trace (Fig. lb). Fig. 6 shows the 
calculated dependence of (1-') on D, for constant r,, 

showing the opposite behaviour to Fig. 5. As a result the 
sign of 3( r - ' ) /aDc is the opposite to the sign of 6'DCl3D, 

and the results of the above section are reversed. In this 
case material weakening (increased G'/Gk) is associated 
with a negative correlation between b and D,, this time due 
to a concentration of deformation around the eventual 
nucleation point. This is consistent with the results from the 
southern California earthquake catalogue, where the 
seismicity preceding each large mainshock is associated with 
low seismic h-values and high correlation dimensions 
(Henderson et al. 1992). (The individual mainshocks show 
no clear relationship to each other, and form too sparse a 
data set to be analysed separately in terms of their spacing 
and size distribution.) Both the model and these 
observations are consistent with the idea that foreshocks 
consist of a progressively larger sequence of earthquakes 
concentrated around the nucleation point of a mainshock. 

The common theme in both models (A) and (B) is that 
material weakening (strengthening) is associated with more 
concentrated (distributed) deformation, the difference being 
the predicted sign of the correlation between b and D,. 

APPLICABILITY OF A MEAN FIELD 
THEORY 

As stated in the Introduction, the present paper is based on 
a mean field theory approach which ultimately breaks down 
when the mean crack length becomes comparable to the 
mean crack spacing (1) i= ( c ) .  The resulting localized stress 
concentrations limit the validity of the mean field theory 
approach to the early stages of damage, ( r )  >> ( c ) ,  or to 
time intervals where the effect of transient stress 
concentrations is smeared out. In a separate paper, 
Henderson & Main (1992) developed a crack damage model 

l , o i  1.0 1: 1.; 1.) 1.; ii 2.0 *m-' 
1 .o 

I 

0 0 I I I I 

1.0 1.2 1.4 1.6 1.8 2.0 

DC 

Figure 6. Functional form of ( r  ' ) / r ; '  =f (D, )  predicted from 
equations (13) and (14) for different values of NT for the case of 
constant r, (model B). The slope of the distribution is positive, so 
that a(r - ' ) /aD,>O for this case. 
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with an initially random strength distribution on a 
one-dimensional fault with local hardening (stopping crack 
growth) or  softening (promoting crack growth by stress 
concentration) effects specified a priori. The model also has 
the advantage of not requiring a fractal distribution of 
cracks to be specified in advance, as in the present work. 
Nevertheless a fractal distribution of cracks does evolve, 
thereby allowing a comparison of the length distribution 
exponent D and a fractal capacity dimension Do determined 
by a box-counting algorithm. D(, usually correlates well with 
the correlation dimension, and for a set of points, D,, 2 D, 
(Grassberger zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Procaccia 1983). 

If the local rule is material hardening (e.g. due to 
crack-opening dilatancy), then a positive correlation 
between D and D,, results: d D / a D ,  > 0 (Henderson & Main 
1992). Similarly when the local rule is a softening effect (e.g. 
due to cooperative stress concentration between neighbour- 
ing crack tips) the two are negatively correlated: 
dD/dD,,  < 0. This is consistent with the predictiosn of the 
mean field theory described above for the case of a 
pre-existing fault. Thus the mean field theory preserves the 
general trend of the more complete approach, but will 
probably underestimate the magnitude of any non-linear 
trends due to localized stress concentration. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
DISCUSSION 

We have seen that the inclusion of an elastic interaction 
potential in the free energy of an ensemble of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN,. isolated 
cracks can have the effect of increasing or decreasing the 
modified potential energy release rate G' = -dU/dA,,.  The 
sign of the change in G' brought about by such long-range 
crack interactions is shown to depend on the correlation 
between the seismic b-value and the two-point correlation 
dimension D,. Two cases have been described: (A) 
concentration of deformation on an incipient fault plane at 
large length-scales; and (B) the clustering properties of 
earthquake epicentres on a small scale around jogs and 
asperities. Case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(A) can be seen as a gradual loss of one of 
the degrees of freedom of the system on a large scale. G' is 
increased with d D / d D ,  is positive for case (A), and when 
d D / a D ,  is negative for case (B). Both correspond to more 
localized deformation, thereby associating material weaken- 
ing (increased G'  relative to Gk) with greater concentration 
of deformation (decreased ( r ) ) .  Great care must therefore 
be taken in associating any empirically observed correlation 
of D (or the seismic b-value) and D,. with increased or 
decreased G'. The type of concentration can be determined 
by comparison with Figs 1, 2 and 4, to establish whether the 
correlation d D / d D ,  is due to long-range localization effects 
(Figs l a  and 2) or short-range clustering properties (Figs l b  
and 4). Thus it is important for authors of empirical studies 
to publish the whole distribution for the correlation 
dimension, not just the linear portion, and to show 
epicentral plots of snapshots corresponding to high and low zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Dc. This will allow comparison with the end members of 
Figs 2 and 4 to see which process is dominant in any 
particular case. For example it is clear from Figs 1 and 2 of 
Hirata et af .  (1987) that long-range localization and a 
gradual loss of one of the degrees of freedom are the 
dominant processes in this laboratory creep experiment. In 
CO.?:T::.C: !.he TPCLII?E c3f Hew!ervT P? nl 11OQ3) for the San 

Andreas fault system are dominated by short-range 
clustering effects with behaviour more similar to Fig. 4. 
Hirata (1989b) shows no examples which would allow 
comparison of the temporal evolution of b and D, to be 
assessed. 

In addition to these material weakening effects being 
associated with concentrated deformation, material stren- 
gthening effects (decreased G' relative to G&) are predicted 
with more distributed deformation (increased ( r ) ) .  In a 
single earthquake cycle we would expect to see both strain 
hardening and strain softening effects prior to the dynamic 
failure of the sample, corresponding to material strengthen- 
ing or weakening respectively. For example dilatant 
microcracking in relatively impermeable crystalline rock will 
tend to stabilize the system against failure, due to dilatant 
hardening (Scholz 1990). In contrast we might expect strain 
softening prior to dynamic failure because of quasi-static 
pre-seismic slip on a growing shear crack (Stuart 1979). 
Main & Meredith (1989) have suggested that the final 
nucleation phase of earthquakes is due to an increase in 
stress intensity (and hence G'/G&) during stress reduction, 
consistent with the slip-weakening model of Stuart (1979), 
and with the short-range clustering model described above. 
This final phase is associated with a short-term drop in 
b-value, in field examples (e.g. Smith 1981), during the 
compressional failure of intact laboratory samples in 
compression (Meredith et al. 1990; Lockner et al. 1991), and 
during the final stages of tertiary creep (Hirata et al. 1987). 

Because of the importance of the distinction between 
short-range and long-range concentration of deformation, 
further discussion should probably await a more systematic 
and complete study of global data sets, where edge effects 
such as the size of the sample area and the epicentral 
resolution (Knopoff & Kagan 1980) can be corrected for in 
an identical way before being compared and interpreted 
with respect to Figs 2 and 4. 

CONCLUSION 

The effective energy release rate G' is either increased or 
decreased relative to its critical value G& by the presence of 
an interaction potential, depending on the correlation 
between the seismic 6-value and the correlation dimension. 
Increased G'/G& corresponds to material weakening in the 
sense of the sample being brought nearer to the dynamic 
failure criterion. This is associated with greater concentra- 
tion of deformation in both models considered in the 
present paper. This in turn justifies the common assumption 
by geologists that strain softening is associated with more 
concentrated deformation. In model (A) increased G'/G& 
occurs due to concentration of deformation on an incipient 
fault plane, resulting in a gradual loss of one of the degrees 
of freedom of the crack system. This results in a positive 
correlation at  long distances between b and D,.. In case (B) 
a fault already exists and increased G'/G& occurs due to 
concentration of deformation on jogs and asperities which 
may nucleate larger shocks. This results in a negative 
correlation at short distance sbetween b and D,. 

Model (A) is a useful analogue for the evolution of 
localized damage on dominant fault planes, both in 
laboratory creep experiments and for the concentration of 
slo.h:il deforrnnt ion o n  narrow f:iiiJt zvstems Model (€3) 
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describes the clustering properties of earthquake epicentres 
on a fully developed fault system, and predicts the same 
correlations between b and D,. observed in numerical 
experiments which include the short-range stress concentra- 
tions not considered in the mean field theory presented 
here. Model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(B) is also a useful analogue for the process of 
mainshock nucleation by progressively larger foreshocks 
clustering at short range. 

For the case of material strengthening, both models are 
consistent with more distributed deformation, and the 
opposite correlations to those described above hold. 
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APPENDIX  

From equation (5) of the main text, the probability density 
function for a crack of semi-length c is 

-[>-I 
ape 

p,(c)  = -- = a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ac zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3 ’ 

where a is a constant determined by the normalizing 
condition 

[’ PAC) dc = 1, 

so that 

The number density distribution is then 

since N, = NTPc. The maximum crack size c, is then defined 
using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CI + 6c/2 

Fc(c l )  = 1 n,(c) dc = 1, 
CI-bcl2 

so that there is one crack in the largest bin of the discrete 

frequency-length distribution F,. After integration 

Using the binomial expansion 

(A7) 

Thus, for 6c < 10-zcl, the higher order terms can be 
neglected to an accuracy of order lop4, whence 

For c ~ ,  < 10-2c, the denominator inside the square brackets 
is unity within an error of order lo’”, or less than 1 per cent 
for D 2 1. If we let 6c = c,, then 

cI/cn = ( D N T ) l l ’ ( D + l ) l ,  (‘49) 

to an accuracy of less than 1 per cent. This is the same as 
equation (10) of the main text. 

An exactly similar exercise can be carried out for 
N, = NT(NT - 1)/2Pr to derive equation (11) of the main 
text from the correlation integral P,. 

For the case of constant r, with one crack of size r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 6r,  a 
similar exercise to the above can be carried out, producing 
the following equivalent to (A8): 

For large rl/rn it follows that 

rl/ru = [&(&/r,)NT(NT - 1)/2]11’(Dc- ’ )1.  ( A l l )  

Again choosing 6r = 2r , / (NT - 1) we obtain equation (14) 
of the main text. 
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