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Damage occurrence under dynamic loading
for anisotropic strain rate sensitive materials
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A damage model is integrated into the explicit finite ele-
ment framework to predict the damage evolution which oc-
currs under dynamic loading in the crash or stamping pro-
cess. This damage model is based on the description of the
growth, nucleation and coalescence of the microvoids. The
microvoid growth is related to the plastic incompressibility
equation. The microvoid nucleation is controlled by either
the plastic strain or stress. The microvoid coalescence is
described by a specific function. This damage process leads
to the progressive loss of the structure stress carrying capac-
ity. The ductile fracture occurs once it has vanished. The
model is adapted to take the material behaviour anisotropy
and damage anisotropy into account. The sensitivity of the
damage evolution under dynamic loadings in the case of
porous strain rate sensitive material is analysed using single
tensile tests. Static and dynamic tensile tests of a notched
specimen are performed. Influences of the strain rate and
the shape of specimen on the failure mode and loss of the
structure’s stress carrying capacity are shown.

1. Introduction

The finite element simulation of the sheet metal
forming process is a good way to predict possible
material defects inside the final design.

Empirical criteria, such as thickness or plastic strain
limits, are usually used as forming limits (Arrieux [2];
Ronde-Ousteau and Moussy [16]).

However, strain rate sensitive materials show an
increase in their stress hardening and a decrease in
their plastic strain limit when the plastic strain rate

increases under dynamic loading (Albertini et al. [1];
Moshksar [12]). These material effects cannot be
modelled using the previous empirical criteria.

To model both damage evolution and material dy-
namic effect, a fully coupled elasto-viscoplastic dam-
age constitutive model has to be used.

The Gurson damage model, modified by Tvergaard,
has been used with success to perform metal forming
process and crash simulation for isotropic materials
(Gurson [7,8]; Lauro et al. [10]; Bennani et al. [5]).

The damage process of porous material is described
in terms of the growth, nucleation and coalescence of
microvoids. The growth of the existing microvoids
is determined from the plastic incompressibility equa-
tion. The nucleation of new microvoids by decohesion
at the inclusion-matrix interface depends on the inclu-
sion distribution (Needleman [14]; Chu and Needle-
man [6]; Tvergaard and Needleman [17]). A Gaussian
normal distribution is used. The nucleation can be
either controlled by the plastic strain or by the stress
(Tvergaard and Needleman [18]; Mathur et al. [11];
Needleman and Tveergard [15]). The coalescence of
neighbouring microvoids is modelled by the Tver-
gaard and Needleman’s function which describes the
rapid loss of the material’s stress carrying capacity.
The ductile rupture occurs at the end of the damage
process once the structure has lost its stress carrying
capacity (Hill [9]; Nagaki et al. [13]).

To perform the sheet metal forming process with
an anisotropic material, the previous damage model
has been modified by introducing Hill’s yield stress
instead of von Mises’ into the Gurson–Tvergaard po-
tential (Beckeret al. [3]). The dynamic effect on
the porosity’s evolution has been introduced by con-
trolling the microvoid nucleation by stress. The
anisotropic damage has been taken into account by
modifying the microvoid shape parameters introduced
by Tvergaard in the microvoided potential.

The new damage model for anisotropic microvoided
material has been integrated into the three-dimensional,
Lagrangian, finite element, explicit, vectorized/multi-
tasked code for non linear dynamic analysis of struc-
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tures, PAM-SOLIDTM in the case of convected coor-
dinate shell elements (Belytschko and Tsay [4]).

The present paper initially describes the constitu-
tive damage model and its numerical integration into
the finite element code. The damage prediction under
dynamic loading is then analysed using single tensile
tests on classical and notched specimens. Finally, the
influence of the plastic strain rate on the deformed
shape and the loss of the material’s stress carrying ca-
pacity is illustrated by computing static and dynamic
tensile tests.

2. Constitutive damage model

The evolution of the micro-structural damage is re-
presented by the current void volume fraction f de-
fined by

f =
Va − Vm

Va
, (1)

where Va, Vm are, respectively, the elementary appar-
ent volume of the material and the corresponding el-
ementary volume of the matrix. At time t =0, f is
the initial microvoid volume fraction.

The rate of increase of the microvoid volume frac-
tion is given by

ḟ = ḟn + ḟg, (2)

in which ḟg and ḟn are, respectively, the nucleation
and growth rate of microvoids.

The rate of increase of the microvoid volume frac-
tion, due to the growth of existing microvoids, is de-
termined on the condition that the matrix material is
plastically incompressible. The plastic incompress-
ibility condition leads to the following equation

ḟg =
VM − V̇A

VA
= (1 − f) trDp, (3)

in which Dp is the macroscopic plastic strain rate
tensor defined in the case of the associated plasticity
by

D
p = λ̇

∂Ωevp

∂σ
(4)

with σ the Cauchy stress tensor, Ωevp the microvoided
material potential and λ̇ the viscoplastic multiplier.

The rate of increase of the void volume fraction is
related to the effective plastic strain rate in the case
of a Gaussian distribution of the inclusions or second
phase inclusions by

ḟn =
fN

SN

√
2π

e
−

1
2

(

εM−εN
SN

)2

ε̇M = A1ε̇M, (5a)

where fN is the nucleated microvoid volume frac-
tion consistant with the inclusion volume fraction, SN

is the Gaussian standard deviation, εN is the nucle-
ated effective plastic strain, εM is the effective plastic
strain, and A1 is interpreted as the volume fraction of
inclusions converted per unit plastic strain.

Assuming that the nucleation depends only on
the maximum stress transmitted across the inclusion-
matrix interface, the nucleation microvoid volume
fraction rate is expressed by

ḟn =
fN

SNσy

√
2π

e
−

1
2

(σM+σm)−σN

SNσy

× (σ̇M + σ̇m) = A2(σ̇M + σ̇m), (5b)

where fN is the nucleated microvoid volume fraction
consistant with the inclusion volume fraction, SN is
the Gaussian standard deviation, σy initial yield stress,
σN is the mean stress for nucleation, (σM + σm) is
the approximation of the maximum stress transmitted
across the inclusion-matrix interface and A2 is inter-
preted as the volume fraction of inclusions converted
per unit stress.

The yield surface of the porous elasto-viscoplastic
material is described by the Gurson’s potential modi-
fied by Tvergaard defined by

Ωevp =
σ2

ef

σ2
M

+ 2q1f
∗ cosh

(

3
2
q2
σm

σM

)

−
(

1 + q3f
∗ 2
)

with σm > 0, (6a)

or

Ωevp =
σ2

ef

σ2
M

+ 2q1f
∗ −

(

1 + q3f
∗ 2
)

with σm 6 0, (6b)

in which q1, q2, q3 are the material parameters of the
Gurson potential, σM is the elasto-viscoplastic flow
stress, σm is the mean stress, f∗ is Tvergaard and
Needleman’s coalescence function and σef is Hill’s
effective stress described by

(H + G)2σXX + (H + F )2σY Y

−2HσXXσY Y + 2Nσ2
XY = 1, (7)

where H, G, F and N are the material parameters
of the anisotropic behaviour law and σij are the com-
ponents of the Cauchy stress tensor.

The anisotropic shape of the initial microvoids is
described by modification of the original material pa-
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rameters q1, q2 and q3. The lamination of the metal
sheet leads to elliptic microvoids. The parameter q1

is also defined by the following equation

q1 = q1 ∗ +m0, (8)

where q∗1 corresponds to the value of q1 for a mi-
crovoid with a spherical shape and m0 is the initial
ellipse excentricity defined by

m0 =
a0 − b0

a0 + b0
, (9)

where a0 is the orthogonal halfaxis at main strain di-
rection and b0 is the parallel halfaxis one.

The coalescence of neighbouring microvoids which
leads to the rapid loss of the stress carrying capacity is
described using the specific function f∗ in the Gurson
microvoided material potential as shown previously.
The coalescence phenomena occurs for a determined
level of microvoid volume fraction as described

f∗ = fc +
fu − fc

fF − fc
(f − fc)

when f > fc, (10a)

or

f∗ = f when f 6 fc, (10b)

where fc is the critical microvoid volume fraction
at coalescence onset, fF is the microvoid volume
fraction at ductile fracture occurrence which corre-
sponds to the complete loss of stress carrying capac-
ity when the effective stress is equal to zero and fu is
the corresponding value of the coalescence function
fu = f∗(fF).

The ductile fracture is predicted when the complete
loss of the stress carrying capacity is reached and f

exceeds the critical value fF.
The effective plastic strain rate ε̇M is computed

from the egality between the plastic power dissipated
into the material and the corresponding matrix,

ε̇M =
σ :Dp

(1 − f)σM
, (11)

in which σ is the Cauchy stress tensor, σM is the
elasto-viscoplastic flow stress, and Dp is the macro-
scopic plastic strain rate tensor.

The viscoplastic multiplier λ̇ is deduced from the
consistency condition Ωevp = 0 and Ω̇evp = 0 leading
to solve

Ωevp = Ω̇evp =
∂Ωevp

∂σ
: σ̇ +

∂Ωevp

∂σM
: σ̇M

+
∂Ωevp

∂f
: ḟ = 0. (12)

The expression of the viscoplastic multiplier is fi-
nally determined by

λ̇ = Ωevp

{

∂Ωevp

∂σ
:Ce :

∂Ωevp

∂σ
−
∂Ωevp

∂σM

∂σM

∂εM
A3

−
∂Ωevp

∂f

[

(1 − f)
∂Ωevp

∂σ
:I + A4

]}

−1

(13a)

with

A3 =
σ :
∂Ωevp

∂σ
(1 − f)σM

(13b)

and

A4 = A1A3 (13c)

with the nucleation controlled by plastic strain, or

A4 = A2

[

∂σM

∂εM
A3 +

(

C
e :
∂Ωevp

∂σ

)

:I

]

(13d)

with the nucleation controlled by stress in which Ce

is the isotropic material tensor and I is the second
order identity tensor.

3. Numerical implementation

The previous constitutive damage model is inte-
grated into the three-dimensional, Lagrangian, finite
element, explicit, vectorized/multi-tasked code PAM-
CRASHTM as a new constitutive material law.

The new development is a modification of the stress
calculation as described below.

In the previous and following equations, the super-
script ‘n’ denotes a time increment n (Fig. 1).

4. Numerical examples

4.1. Uniaxial tensile test

Uniaxial tensile tests of a thin square unit specimen
are performed with porous material under dynamic
loading to validate the previous numerical integration
and to analyse the damage evolution (Fig. 2).

The porous elasto-viscoplastic material is described
by Young’s modulus E = 210 000 MPa and Poisson’s
ratio ν = 0.3 for the elastic part; by the material
viscoplastic flow stress

σM =
(

σy + ETεM
)

(

1 +
( ε̇M

D

)1/p
)

,
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Fig. 1. The modified flowchart of elastic stress prediction and plastic correction algorithm.
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in which the initial yield stress σy =200 MPa, the
tangent modulus ET = 650 MPa and the dynamic co-
efficient of the Cowper Symond’s law D = 802 s−1

and p = 3.585 for the viscoplastic part; by the ini-
tial microvoided volume fraction f = 0.01, the mate-
rial parameters of the microvoided material potential,
q1 = 1.5, q2 = 1 and q3 = 2.25 for the microvoided
growth part; by the microvoid volume fraction at co-
alescence onset fc = 0.15 and the microvoid vol-
ume fraction at ductile fracture fF = 0.25 for the mi-
crovoided coalescence part. Both nucleation models
in which the nucleation is either controlled by plas-
tic strain or by stress are used to compare their evo-
lutions under dynamic loading. In comparison, the
value of the nucleation mean plastic strain εN and
the nucleation mean stress σN are defined to give the

Fig. 2. Uniaxial tensile test, finite element model.

same nucleation which increases under static loading.
Thus, the nucleation mean plastic strain is 0.2 and
the nucleation mean stress is 2.2 σy. In both nucle-
ation models, the nucleated microvoid volume frac-
tion consistant with the inclusions volume fraction
fN is equal to 0.04 and the standard deviation SN is
equal to 0.1. The Hill parameter values H, F, G

and N are assumed to have an isotropic behaviour
law.

The computations are carried out until 50% of ax-
ial displacement with 100 s−1 constant plastic strain
rate. The uniaxial tensile tests are also performed un-
der static loading with porous and pore free material
and under dynamic loading with porous and pore free
material for comparison. The evolutions of Hill’s ef-
fective stress in function of the effective plastic strain
are shown in Fig. 3 for static and dynamic loading
with porous and pore free material in the case of
microvoid nucleation controlled by plastic strain or
stress.

In both dynamic and static loading, porous material
softens. This material softening corresponds to the
loss of the stress carrying capacity due to the damage
evolution. Under static loading, porous materials with
nucleation controlled by plastic strain or stress show
the same Hill’s effective stress and microvoid volume
fraction evolution thereby confirming the previous as-
sumption about the mean nucleation plastic strain and
stress values.

However, under dynamic loading, the nucleation
prediction and obviously the damage evolution strong-
ly depend on the microvoid nucleation controlled type.

Fig. 3. Uniaxial tensile test, evolution of the effective Hill stress in function of the effective plastic strain.
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Fig. 4. Uniaxial tensile test, evolution of the microvoid volume fraction in function of the effective plastic strain.

In the case of microvoid nucleation controlled by
plastic strain, the damage evolution is independent of
the plastic strain rate. Indeed, the microvoid volume
fraction evolution in function of the effective plastic
strain is the same under static or dynamic loadings.
The straining level differs only due to the dynamic
correction (Fig. 4).

However, in the case of microvoid nucleation con-
trolled by stress, the microvoided material behaviour
is strongly dependent on the plastic strain rate. Due
to the dynamic correction, the material matrix quickly
reaches the nucleation mean stress value for low plas-
tic strain which leads to the important increase of the
microvoid volume fraction shown in Fig. 5. After the
nucleation phase, the microvoid volume fraction with
microvoid nucleation controlled by stress or plastic
strain are similar.

This important increase of the damage evolution
leads to the complete loss of the stress carrying capac-
ity and consequently the ductile fracture of the ma-
terial. This ductile fracture occurs at the 0.43 effec-
tive plastic strain. The dynamic loading of the uni-
axial tensile test gives rise to the ductile fracture of
the material whereas in the case of static loading the
microvoid volume fraction does not reach the coales-
cence onset value.

The uniaxial tensile tests with porous material un-
der dynamic loadings highlight three things: the good
numerical implementation of the damage model with
elasto-viscoplastic material, the loss of the material’s
stress carrying capacity with damage evolution and
the dependence on the damage evolution with varying
plastic strain rates in the case of microvoid nucleation
controlled by stress.

Fig. 5. Finite element mesh of one quarter of the notched specimen.

4.2. Tensile tests on anisotropic notched specimens

Uniaxial tensile tests of thin notched specimens are
performed with porous material under dynamic load-
ing to analyse the damage evolution. The finite el-
ement mesh of the notched specimen is reduced by
symetries to one quarter of the notched specimen and
is constituted of 400 shell elements (Fig. 5).
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Fig. 6. Uniaxial tensile test, evolution of the effective Hill stress in function of the effective plastic strain.

Fig. 7. Uniaxial tensile test, evolution of the microvoid volume fraction in function of the effective plastic strain.

Table 1
Behaviour law of the material

Et 192.5 5240 1374 1184 845.8 557 530
σM 225 235.5 248.9 269 292.1 319.9 4000

The material behaviour corresponds to that of a
laminated sheet.

The porous elasto-viscoplastic material is described
by Young’s modulus E = 210 000 MPa and Poisson’s
ratio ν = 0.3 for the elastic part; by the material vis-
coplastic flow stress described in Table 1, with the
initial yield stress σy = 216 MPa and the dynamic
coefficient of Cowper Symond’s law D = 802 s−1

and p = 3.585 for the viscoplastic part; by the ini-
tial microvoided volume fraction f = 10−5, the ma-
terial parameters of the microvoided material poten-
tial, q1 = 1.295, q2 = 1.0 and q3 = 1.68 for the
microvoided growth part; by the microvoid volume
fraction at coalescence onset fc = 0.11 and the mi-
crovoid volume fraction at ductile fracture fF = 0.14
for the microvoided coalescence part. Both nucleation
models in which the nucleation is either controlled by
plastic strain or stress are used to compare their evo-
lutions under dynamic loading. In comparison, the
value of the nucleation mean plastic strain and the
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nucleation mean stress are defined to give the same
nucleation increase under static loading. Thus, the
nucleation mean plastic strain is equal to 0.335 and
the nucleation mean stress is equal to 2.6 σy. In both
nucleation models, the nucleated microvoid volume
fraction consistent with the inclusions volume frac-
tion fN is 0.0337 and the standard deviation SN is 0.1.
The anisotropy is taken into account by introducing
Hill’s parameter values H = 0.1, F = 1.42, G = 1.9
and N = 2.28 and the rolling direction is considered
as the loading direction.

The tensile tests of notched specimens are per-
formed with porous material for static and dynamic

(a)

(b)

Fig. 8. Failure mode: (a) in the perpendicular plane of the dynamic
loading axis for nucleation controlled by plastic strain, (b) in a
shear band mode for dynamic loading with nucleation controlled
by stress.

loadings in the case of nucleation controlled by plas-
tic strain or stress. Computations are also made with
undamaged materials for comparison.

As shown in the previous example, the damage
evolution is mainly due to the microvoid nucleation.
Consequently, the nucleation controlled type directly
influences the material’s response. In the case of
nucleation controlled by plastic strain, evolutions of
Hill’s effective stress in function of the effective plas-
tic strain are quite similar for static and dynamic load-
ings (Fig. 6).

Indeed, the microvoid nucleation, independent of
the stress distribution, is insensitive to the stress
dynamic correction introduced into the Cowper–
Symonds stress law and to the the high stress triaxi-
ality in the notch (Fig. 7).

However, in the case of nucleation controlled
by stress, the effects of stress dynamic correction
and high stress triaxiality in the notch lead to the
rapid loss of the material’s stress carrying capac-
ity (Fig. 6). The damage evolution due to microvoid
nucleation strongly increases for low effective plastic
strain (Fig. 7).

The ductile fracture is predicted for 0.4 and 0.15
effective plastic strain values with static and dynamic
loading respectively (Fig. 6).

The failure mode is obviously dependent on the
nucleation controlled type. The failure occurs in the
plane perpendicular to the loading axis and approx-
imatively in the 45◦ shear band with the nucleation
controlled by plastic strain and stress for dynamic
loading respectively (Fig. 8).

5. Conclusion

The Gurson damage model is used to predict the
damage evolution occurring under dynamic loading
for anisotropic metal sheet by introducing Hill’s effec-
tive stress in Gurson’s potential. This model is based
on the description of the material’s porosity by the
microvoid volume fraction and the prediction of the
porous material flow by the Gurson yield surface. The
evolution of the microvoid volume fraction, due to the
growth of existing microvoids, the nucleation of new
microvoids by inclusions fractures or decohesions and
the coalescence of neighbouring microvoids, is taken
into account. The final ductile rupture is predicted at
the complete loss of the stress carrying capacity.

The application of the damage model to simulate
uniaxial tensile tests shows that the damage evolution
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depends very much on the nucleation description type.
In the case of nucleation controlled by plastic strain
the damage evolution is independent on the plastic
strain rate. The microvoid volume fraction level is the
same under static or dynamic loadings. However, in
the case of nucleation controlled by stress, the dam-
age evolution is greatly modified with varying plastic
strain rates. The ductile fracture is predicted for low
plastic strains at high plastic strain rates.

The tensile tests with porous material illustrate the
modification of the microvoid volume fraction distri-
bution and the difference of the failure modes obtained
with both nucleation description types.

This paper highlights that

(i) Prediction of the damage evolution in a mi-
crostructural way is possible;

(ii) Evolution of the damage during deformation
leads to a loss of the resisting capacity of the
structure and the softening of the material;

(iii) Damage evolution modifies the local and
global responses of the structure under large
dynamic loadings;

(iv) Damage evolution and ductile fracture under
dynamic loading depend on the nucleation de-
scription type.
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