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Abstract. We show relations between new notions on cellular automata
based on topological and measure-theoretical concepts: almost every-
where sensitivity to initial conditions for Besicovitch pseudo-distance,
damage spreading (which measures the information (or damage) pro-
pagation) and the destruction of the initial configuration information.
Through natural examples, we illustrate the links between these formal
definitions and Wolfram’s empirical classification.

Introduction

A radius-r unidimensional cellular automaton (CA) is an infinite succession of
identical finite-state machines (indexed by Z) called cells. Each finite-state ma-
chine is in a state and these states change simultaneously according to a local
transition function: the following state of the machine is related to its own state
as well as the states of its 2r neighbors. A configuration of an automaton is the
function which associates to each cell a state. We can thus define a global tran-
sition function from the set of all the configurations into itself which associates
the following configuration after one step of computation.

An evolution of a unidimensional cellular automaton is usually represented
by a space-time diagram. Being given an initial configuration, we represent in
Z × N the cellular automaton successive configurations.

Recently, a lot of articles proposed classifications of cellular automata [13,
6] but the reference is still Wolfram’s empirical classification [15] which has
resisted numerous attempts of formalization [14]. The classification of Gilman [7]
is interesting because it is not a classification of CAs, but a classification of
couples (CA, measure on its configuration set). This choice, not motivated in
the paper, seems interesting because we will illustrate on an example that the
intuitive Wolfram’s classification depends on a measure, that is a way to choose
a random configuration. Actually, due to their local interactions, CAs are often
used to simulate physics phenomena and many of them, for instance fluid flow,
present a non chaotic or chaotic behavior depending on some parameters (here
the fluid speed).

Recently, two very different ways have been investigated to find a definition
of chaos for cellular automata that fits with our intuition. On the one hand,
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many people started from the mathematical definitions of chaos for dynamical
systems and adapted them to cellular automata. By using the usual product
topology on {0, 1}Z, the shift is necessarily chaotic, and for many possible appli-
cations of CAs, like roadways traffic for example, we see that these definitions are
maladjusted. That is why Formenti introduced Besicovitch topology [4,2]. For
this topology, the phase space is not locally compact, thus all the mathematical
results become wrong or at least have to be proved again. On the other hand,
starting from the physicist approach of chaos, that is high sensitivity to initial
conditions, Bagnoli et al. [1] propose to measure chaos experimentally through
Lyapunov exponents, that is, roughly, to evaluate the damage spreading speed
when a single cell is modified.

In this article, we will formalize both approaches to study their relationships.
First, we will define the almost everywhere sensitivity to initial conditions for
Besicovitch topology and then we will partition the CAs whether the default
number in average tends to zero, is bounded or not. We will also be interested
in the definitions of Bµ-attracting sets and Dµ-attracting sets [10]. Let us notice
that all the definitions depend on a measure.

We will begin by the definitions of cellular automata, Besicovitch topology
and Bernoulli measure. In a second section, we will formalize damage spreading,
almost everywhere sensitivity and µ-attracting sets. We will then study the re-
lations that exist between the classes we defined. The last section speaks about
the links with Wolfram’s classification.

The extended version with the proofs is to be found as research report avai-
lable by FTP [11].

1 Definitions

1.1 Cellular Automata

For simplicity, we will only consider unidimensional CAs in this paper. Howe-
ver, all the concepts we introduce are topological and it seems that there is no
problem to extend them to higher dimensional CAs.

Definition 1. A radius-r unidimensional cellular automaton is a couple
(Q, δ) where Q is a finite set of states and δ : Q2r+1 −→ Q is a transition
function. A configuration c ∈ QZ of (Q, δ) is a function from Z into Q and its
global transition function Gδ : QZ −→ QZ is such that (Gδ(c))(i) = δ(c(i −
r), ..., c(i), ..., c(i+ r)).

Notation 1 Let us define

δm+2r→m

∣∣∣∣Q
m+2r −→ Qm

x �−→ y

such that for all i ∈ {1, ...,m}, yi = δ(xi−r, ..., xi, ..., xi+r).
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Definition 2. An Elementary Cellular Automaton (ECA) is a radius-1
two states (usually 0 and 1) unidimensional cellular automaton.

For ECAs, we will use Wolfram’s notation: they are represented by an integer
between 0 and 255 such that the transition function of the CA number i whose
writing in base 2 is i = a7a6a5a4a3a2a1a02 satisfies:

δi(0, 0, 0) = a0 δi(1, 0, 0) = a4
δi(0, 0, 1) = a1 δi(1, 0, 1) = a5
δi(0, 1, 0) = a2 δi(1, 1, 0) = a6
δi(0, 1, 1) = a3 δi(1, 1, 1) = a7

Let us remark that CAs with different numbers may have the same behavior by
switching the states 0 and 1, for instance 184 = 101110002 and 226 = 111000102.
If r is a rule number, we will denote r the rule after exchanging the states and
←→
r the rule which has a symmetric behavior (see [5] for more details).

We will speak about the cellular automaton 120 = ({0, 1}, δ120) or equiva-
lently of the rule 120.

In the general definition of additive CAs due to Wolfram, an additive CA
is a CA that satisfies the superposition principle (δ(x + x′, y + y′, z + z′) =
δ(x, y, z) + δ(x′, y′, z′)). These CAs are very interesting to provide examples
because their behavior obey algebraic rules adapted to a formal study while
their space-time diagrams appear complicated. We will use here, like in [13,10],
a more restrictive definition:

Definition 3. We will call additive CA a unidimensional CA whose state set is
Z/nZ and whose transition function is of the form:

δ(x−1, x0, x1) = x0 + x1(mod n)

1.2 Besicovitch Topology

The most natural topology on CA configuration sets is the product topology. The
problem is that this topology emphasizes what is happening closed to the origin
while in many applications of CAs all the cells have the same importance. Thus,
the adaptation of the mathematical notions of chaos to CAs for the product
topology are not adapted: the shift is necessarily chaotic, that is not adapted to
car traffic simulation for example. To propose more satisfying definitions of chaos,
Formenti introduced Besicovitch pseudo-distance, that induce a shift invariant
topology on the quotiented space:

Definition 4. The Besicovitch pseudo-metric on QZ is given by

d(c, c′) = lim sup
l−→+∞

#{i ∈ [−l, l]|xi 	= yi}
2l + 1

where #denotes the cardinality.
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Property 1. QZ quotiented by the relation x ∼ y ⇐⇒ d(x, y) = 0 with Besi-
covitch topology is metric, path-wise connected, infinite dimensional, complete,
neither separable nor locally compact [2]. Furthermore, x ∼ y =⇒ Gδ(x) ∼
Gδ(y) and the transition function of a CA is a continuous map from QZ/ ∼ into
itself.

Remark 1. Actually, the results of this paper are not specific to Besicovitch to-
pology, but are true for a wide class of topologies including Weil one. A general
study of Besicovitch like topologies has been done in [9] and an interesting que-
stion would be to determine those that behave like Besicovitch one and what
happens for the other ones. The only reason we point this out here is that there
are many ways to extend Besicovitch in higher dimensional grids: the extention
of Besicovitch pseudo-metric on QZ

n

is

d(c, c′) = lim sup
l−→+∞

#{i ∈ B(0, l) ⊂ Z
n|xi 	= yi}

#B(0, l)

where B(0, l) is a ball centered at the origin and of radius l in Z
n for an ar-

bitrary chosen distance on Z
n, for instance d1(a1, ..., an) = |a1| + ... + |an| or

d2(a1, ..., an) = (a21 + ...+ a
2
n)

1/2. Of course different distances give different to-
pologies but all of them are equivalent for our purpose because they differ on a
null measure set. This is the only difficulty to extend the unidimensional concept
to higher dimensional CAs because the definitions of measures and ergodicity
given in the following section exist for any dimensional space.

1.3 Measure on the Configuration Set

Notation 2 Let Q be a finite alphabet with at least two letters. Q+ = ∪n≥1Qn

is the set of finite words on Q. The ith coordinate x(i) of a point x ∈ QZ will
also be denoted xi and x[j,k] = xj ...xk ∈ Qk+1−j is the segment of x between
indices j and k. The cylinder of u ∈ Qp at position k ∈ Z is the set

[u]k = {x ∈ QZ|x[k,k+p−1] = u}.
Let σ be the shift toward the left: σ(c)i = ci+1 (i.e. the rule number 85).

A Borel probability measure is a nonnegative function µ defined on Borel
sets. It is given by its values on cylinders, satisfies µ(QZ) = 1, and for every
u ∈ Q+, k ∈ Z,

∑
q∈Q

µ[uq]k = µ[u]k and
∑
q∈Q

µ[qu]k = µ[u]k+1

Definition 5. A measure µ is σ-invariant if µ[u]k does not depend on k (and
will thus be denoted µ[u]).
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Definition 6. A σ-invariant measure is σ-ergodic if for every invariant measu-
rable set Y (σ(Y ) = Y ), either µ(Y ) = 0 or µ(Y ) = 1.

Bernoulli measures are the most simple, this is the reason why we will use
them in all our examples while the definitions and probably most of the theorems
remain true for other σ-ergodic measures, for instance Markov measures (with
correlations over a finite number of cells) or measures such that the correlation
between two states decreases exponentially with their distance. Obviously, to
study specific rules, like number preserving rules, Bernoulli measures are less
interesting and we may want to consider other σ-ergodic measures. But, prac-
tically, these other measures will often be Bernoulli measures after a grouping
operation.

Definition 7. A Bernoulli measure is defined by a strictly positive probability
vector (pq)q∈Q with

∑
q∈Q pq = 1 and if u = u0...un−1 ∈ Qn, µ[u0...un−1] =

pu0 ...pun−1 .

We will use the following classical result: the Bernoulli measures are σ-
ergodic.

For 2-states CAs, the Bernoulli measures will be denoted µρ where ρ = p1 =
1 − p0 is the probability for a state to be 1.

ρ = 0.2 ρ = 0.4 ρ = 0.5 ρ = 0.7

Fig. 1. The CA T is a very simple traffic model based on the rule 184 but with two
different models of cars. The system seems “chaotic” when the density ρ of cars is
greater than or equal to 0.5 because of the traffic jams, but not “chaotic” else. Below
the space-time diagrams (time goes toward the top), we see with a grey level the space-
time repartition of the average number of alterations induced by the modification of
the middle cell.

On the figure 1, we see a very simple example of CA that changes of behavior
depending on the density of cars on the railway. Saying that this CA is chaotic
or not does not make sense since it will depend on its utilization: whether it is
used for traffic jam or for fluid traffic simulation. Its average behavior makes
no sense since we do not explain what is a random configuration, that is which
measure we take on its configuration set. If we assume that the cars repartition is
initially uniform and that we have the same number of red and blue cars, we will
consider the Bernoulli measures µ∗ρ such that the probability to find a blue car in
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a cell is ρ/2 and equal to the probability to find a red car while the probability
that there is no car is 1 − ρ. Now, it is possible to say (see below) that this CA
is µ∗ρ-almost everywhere sensitive to initial conditions when ρ ≥ 1/2 while it is
µ∗ρ-almost never sensitive to initial conditions else. If it is important to take into
account the fact that a lot of people take their cars at the same time to go to
work, other measures allow to modelize a non uniform repartition.

2 Some Classification Tools on CAs

2.1 Damage Spreading

Inspired by Lyapunov exponents [1], we will define the damage spreading of a
CA via a measure. The main difference is that we count the “effective” damages
induced by a single cell modification, for instance, if the cell modification leads
to two alterations after t− 1 steps, that each of these alterations would change
one state at time t but the action of both leads this state to remain the same,
then rather than counting 2 modifications like in the Lyapunov exponents, we
count 0 modification because the state did not change. It appears that the rule
210 (see figure 3) has a Lyapunov exponent higher than 1 (thus the number of
modifications is exponential if we may count a cell many times) while its damage
spreading (the average number of different cells) is bounded. Let us now define
this formally:

Definition 8. Let µ be a σ-ergodic measure on the set of configurations, let A
be a CA and CA its configuration set. If c ∈ CA, we will define

cp←s

∣∣∣∣∣∣
Z −→ QA

x �−→
{
c(x) if x 	= p
s else

that is the configuration whose state of the cell p is changed to s. Let us now define
the dependence coefficients αµ,A,t,p which indicate the probability (according to
µ) that the state of the cell 0 after t computation steps changes when we change
the state at position p to q with probability πq. Formally:

αµ,A,t,p =
∑

q∈QA

πqµ({c ∈ CA | (Gt
δA(c))0 	= (Gt

δA(cp←q))0)

Remark 2. – When no confusion about the measure and the cellular automa-
ton is possible, we will simply denote the dependence coefficients αt,p.

– If r is the radius of the CA, p > r × t =⇒ αt,p = 0 because the cell 0
state after t computation steps is independent of the cell p of the initial
configuration.
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Definition 9. The damage spreading of a cellular automaton A according to a
measure µ is the infinite sequence of positive real number


∑

p∈Z

αµ,A,t,p




t∈N

This sequence is well defined for all t thanks to the previous remark: the αµ,A,t,p

are almost all equal to zero.

128 109 30

Fig. 2. The rule 128 belongs to [D µ→+
0], 109 to [D µ→+

a] and 30 to [D µ→+
+∞]. The

bottom diagrams represent with grey level the probability of each cell to be affected
by the modification of the middle cell.

This notion allows to define the class [D µ→+
0] of CAs whose damage sprea-

ding tends to zero, the class [D µ→+
+∞] of CAs whose damage spreading is not

bounded (its limit sup tends to +∞) and the class [D µ→+
a] when the damage

spreading limit sup tends to a finite non zero value. The figure 2 shows an ex-
ample in each class. Obviously, these 3 classes define a partition of the set of
CAs.

Theorem 1. The additive CAs have non bounded damage spreading, they are
in [D µ→+

+∞] (see [11] for the proof).

2.2 µ-Almost Everywhere Sensitivity to Initial Conditions

Let us recall the classical definition of sensitivity to initial conditions:

Definition 10. A CA is sensitive to initial conditions for a pseudo-distance d
if there exists a constant M > 0 such that for all ε > 0 and for all configurations
c, there exists a configuration c′ with d(c, c′) < ε and an integer n such that
d(Gn

δA(c), G
n
δA(c

′)) ≥M .
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The main reason of the introduction of µ-almost everywhere sensitivity is the
study of some particular cases. On the one hand, the rule 120 appears sensitive
to initial conditions but it seems that there exist some very artificial configu-
rations that stop all the information transfer so that actually the rule 120 is
not sensitive. On the other hand, the rule 210 does not appear to be sensitive,
but is not equicontinuous (i.e. is sensitive to initial conditions on a subset of
its configuration set) because of the configurations 0∗ (see figure 3). Thus, in
the same class, the elements of which are neither sensitive nor equicontinuous,
we have two rules with very different behaviors. The idea is to say that 120 is
almost everywhere sensitive, while 210 is almost never sensitive.

To define the almost everywhere sensitivity to initial conditions, we could just
replace “for all configurations c” by “for µ-almost all configurations c” in the
sensitivity definition. We will give a more restrictive (because of the first point
of the next remark) definition so that a CA that is not µ-almost everywhere
sensitive, is “µ-almost never” sensitive to initial conditions (see the third point
of the next remark). Furthermore, because of the kind of proof we want to do,
it is not more difficult to prove the µ-almost everywhere sensitivity for this
definition.

µ-random configuration

c′′b c b a b c a a c c ba

µ-random configuration

ca b c c a b b bc acb

a c c a c c b a c a bc

µε-random configuration

0 1 0 0 0 1 1 0 0 00 0 e

c′ = ce + c′′e

210

120

Fig. 3. The configuration c′ = ce + c′′e is the configuration whose state at a given
position is equal to the corresponding state of c when the corresponding state of e is
equal to 0 and to the corresponding state of c′′ else. Let us remark that, due to the
great number law, with probability 1, d(c, c′) = εd(c, c′′) ≤ ε.

Definition 11. A CA is µ-almost everywhere sensitive to initial conditions (for
Besicovitch pseudo-distance) if there exists M > 0 such that for all ε0 > 0, there
exists ε < ε0 such that if c and c′′ are two µ-random configurations, if e is a
µε random configuration and if c′ = ce+ c′′e is the configuration whose state at
a given position is equal to the corresponding state of c when the corresponding
state of e is equal to 1 and to the corresponding state of c′′ else (see figure 3), then
with probability 1 (for µ×µ×µε) there exists n such that d(Gn

δA(c), G
n
δA(c

′)) ≥M .
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Remark 3. – This definition implies that there existsM such that for µ-almost
all configurations c and for all ε > 0, there exist c′ and n with d(c, c′) < ε
and d(Gn

δA(c), G
n
δA(c

′)) ≥M ;
– With the product topology, the previous result would imply the sensitivity

to initial conditions, the point is that Bernoulli measures are of full support
(i.e. the open sets have a non null measure), but it is not the case on QZ/ ∼
with Besicovitch topology;

– The set of configurations 3-uplets (c, c′′, e) such that if c′ = ce + c′′e there
exists n so that d(Gn

δA(c), G
n
δA(c

′)) ≥M is obviously shift invariant on (Q×
Q×{0, 1})Z. As µ×µ×µε is σ-ergodic, thus the set measure is either 1 or 0.
So a CA is either µ-almost everywhere sensitive to initial conditions or “µ-
almost never sensitive to initial conditions”: for any η there exists ε such that
if we build c, c′ as usual, for any n, d(Gn

δA(c), G
n
δA(c

′)) ≤ η µ×µ×µε-almost
everywhere.

The µ-almost everywhere sensitivity to initial conditions makes sense because
we saw that some CAs are not (obviously the rule 0 is not) and we will prove
that the additive CAs are:

Theorem 2. The additive CAs are µ-almost everywhere sensitive to initial con-
ditions for any non trivial Bernoulli measure µ (see [11] for the proof).

µ-attracting sets µ-attracting sets have been defined in [10]. In this article,
P. Kůrka and A. Maass study the links between attracting and µ-attracting sets
for different topologies.

Definition 12. A sub-shift is any subset Σ ⊆ QZ, which is σ-invariant and
closed in the product topology. The language L(Σ) of a sub-shift Σ ⊆ QZ, is the
set of factors of Σ. A sub-shift is of finite type (SFT), if there exists a positive
integer p called order, such that for all c ∈ QZ,

c ∈ Σ ⇐⇒ ∀i ∈ Z, c[i,i+p−1] ∈ L(Σ).

Definition 13. For a SFT Σ ⊆ QZ of order p and x ∈ QZ, define the density
of Σ-defects in x by

dD(x,Σ) = lim sup
l−→+∞

#{i ∈ [−l, l] | x[i,i+k−1] 	∈ L(Σ)}
2l + 1

.

Notation 3 When d is a pseudo-distance, we can naturally define the pseudo-
distance from an element x to a set as the inf of the pseudo-distance between x
and the elements of the set:

d(x,Σ) = inf
y∈Σ

d(x, y).

Let us notice that dD(x,Σ) is not associated to any pseudo-distance because
generally dD(x, {y}) 	= dD(y, {x}).
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Definition 14. Let µ be σ-ergodic measure, a sub-shift Σ is Bµ-attracting (resp.
Dµ-attracting) if

µ({c ∈ QZ | lim
n→+∞d(G

n
δ (c), Σ) = 0}) = 1

when d = d(= dB), dD respectively.

Remark 4. – As the set {c ∈ QZ | limn→+∞d(fn(c), Σ) = 0} is shift invariant,
its measure is either 0 or 1.

– From a Bµ-attracting sub-shift, we can easily extract a minimal Bµ-attracting
sub-shift by considering the configurations c′ of Σ such that
µ({c ∈ QZ | lim inf dB(fn(c), c′) = 0}) = 1. And when µ is a Bernoulli
measure, this implies that c′ is uniform (i.e. of the form q∗ for q ∈ Q).

– Furthermore, if a sub-shift is Bµ-attracting, then it is Dµ-attracting.

≤

18

S

(rule 184)

Fig. 4. {B∗} is a Bµ-attracting (thus Dµ-attracting) set of the CA S which has 3 states,
one is going to the right, one is going to the left (the third one is B, the blank one, into
which the other state may move) and when they meet, both are annihilated. When µ
is a measure such that the number of states going to the left and to the right have the
same probability of presence on the initial configuration, then the uniform configuration
composed by the blank state is a Bµ-attracting set. As S is a sub-automaton of 1842

where 1842 is the CA 184 whose states are grouped two by two (see [12]), we have the
same result on 1842 for the measure so that (1, 0) has probability 0 and the probability
of (1, 1) and (0, 0) are equal. This measure on ({0, 1} × {0, 1})Z corresponds to a non
shift invariant measure on {0, 1}Z, and actually, 184 has no Bµ-attracting set when µ is
a non trivial shift-invariant measure. The point is that for µ1/2 (so that particles going
to the left and to the right have the same probability), the sub-shift {(01)∗, (10)∗} is
Dµ-attracting, but asymptotically, the configurations tend to be at pseudo-distance
1/2 of both configurations. The rule 18 seems to be another example of CA with Dµ-
attracting sets, but no Bµ-attracting set.

The definition of Bµ-attracting sets is very natural: a set is Bµ-attracting
if from almost all configurations (w.r.t. µ), the (Besicovitch) pseudo-distance
between the successive configurations and the sub-shift tends to 0. We saw in
the remark that in this case, almost all evolutions tend to uniform configura-
tions when µ is a Bernoulli measure. The rule 128 (see figure 2) or the CA S
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and 1842 for some measure µ (see figure 4) have a Bµ-attracting set. The de-
finition of Dµ-attracting sets is more topological because it only depends on
the language L(Σ) and does not take care of how many times a pattern (a
word of L(Σ)) appears. Thus, Dµ-attracting sets are more powerful and al-
low to point out homogenization process to periodical configurations and not
only to uniform configurations. For instance, as proved in [10], the sub-shift
{(01)∗, (10)∗} is Bµ1/2-attracting for the rule 184. As noticed in [10], 18 seems
to be an example of CA with a Dµ-attracting set which is not of finite type:
{c ∈ {0, 1}Z|∀i, c(2i) = 0} ∪ {c ∈ {0, 1}Z|∀i, c(2i+ 1) = 0}.

In the following, we will only use Dµ-attracting sets to point out homogeniza-
tion to periodical configurations. In this case, we see that the whole information
of the initial configuration is erased, formally, the metric entropy of the successive
configurations tends to zero.

Definition 15. Let (A, δ) be a CA and µ a σ-ergodic measure, the metric en-
tropy of its configuration after t computation steps is defined as follow:

S(t)µ (A) = lim
n→+∞

−∑
u∈Qn p

(t)
u ln(p

(t)
u )

n

with the usual convention 0 × log(0) = 0 and where pu is the probability of
apparition of the pattern u in the configuration c:

p(t)u = Gt
δ(µ)([u]0)

where the notation f(µ) represents, as usual, the measure defined by f(µ)(X) =
µ(f−1(X)). In mathematical terminology, S(t)µ (A) is the metric entropy of σ for
the measure Gt

δ(µ).

Definition 16. The class of CAs that erase all their initial configuration in-
formation will be denoted [Sµ → 0] and formally defined as follows: a CA is in
[Sµ → 0] if and only if

S(t)µ (A) −→t→+∞ 0.

Theorem 3. If a CA has a Dµ-attracting set of null topological entropy, then
it is in [Sµ → 0] (see [11] for the proof).

Definition 17. The topological entropy of a sub-shift Σ is

SΣ(σ) = lim
n−→+∞

ln(#{u ∈ Qn | ∃c ∈ Σ, c[0,|u|] = u})
n

.



Damage Spreading and µ-Sensitivity on Cellular Automata 237

3 Relations between Damage Spreading, µ-Ae
Sensitiveness and the Existence of a Bµ-Attracting Set

In this section, we always assume that µ is a Bernoulli measure.

Theorem 4. If A µ-damage spreading tends to 0 then there exists a set of
uniform configurations which is Bµ-attracting (see [11] for the proof).

Reciprocally, there are CAs with Bµ-attracting sets that are not in [D µ→+
0]:

the rule S (see figure 4) with 3 states (a blank one B into which one state l goes
to the left and a state r goes to the right, the collision of two particles leads to
their annihilation) is in [D µ→+

a]. In addition, we will describe later a CA that

experimentally seems to be in [D µ→+
+∞] but tends to a uniform configuration.

Fig. 5. Relations between damage spreading, µ-ae sensitiveness and the existence of
Bµ-attracting sets when µ is a Bernoulli measure

Let us now investigate the relations between damage spreading and µ-almost
everywhere sensitiveness. The idea is to take a µ-random configuration c. We
then build c′ from c: for all the cells, the state of c′ is equal to the state of c
with probability 1 − η, is equal to q with probability ηpq. With probability 1,
the Besicovitch pseudo-distance d(c, c′) between c and c′ is ηd(c, c′′) ≤ η. So we
can prove the following theorem.

Theorem 5. Being µ-almost everywhere sensitive to initial conditions implies
to have non bounded damage spreading (i.e. [µ− aes] ⊆ [D µ→+

+∞]) (see [11]
for the proof).

It is experimentally easy to observe but it seems difficult to prove that 184
is µ1/2-almost everywhere sensitive to initial conditions. To understand what
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54 184 (ρ = 1/2) 110

Fig. 6. 54 and 184 for µ1/2 are in [D µ→+
+∞] ∩ [Sµ → 0], we do not know where is

110

happens, let us consider a random walker on Z starting at 0 and reading the
initial configuration from the cell 0 toward the right (resp. left). When he reads
1 he goes toward the right and when he reads 0, toward the left. If we change
the cell 0 to 1 (resp. to 0), it generates at least one modification on all the
configurations. This modification moves to the right when the random walker is
on Z

∗
+, to the left when it is in Z

∗
− and do not move if the random walker is on

0. Sometimes, because of this modification, a whole region of background shifts
and all the cells of this region are changed. Actually, the overall evolution of 184
leads to bigger and bigger homogeneous regions of 01∗ and 10∗, but when we take
two generic initial configurations, there is no reason that these regions match,
thus, asymptotically, the pseudo-distance between the configurations after many
computation steps is 1/2.

It seems that the rule 54 also belongs to [µ− aes] ∩ [Sµ → 0]. Actually, ge
particles disappearance is an irreversible phenomenon as proved in [12] that will
occur more and more rarely when the particles ge become fewer and fewer but
the number of ge particles tends to 0 as confirmed by [3,8] experiments. Then if
any interaction between w and g0 particles occurs, one particle disappears, we
can think that the sub-shift {0001∗, 1110∗} is Dµρ-attracting for 0 < ρ < 1.

The previous theorem raises a natural question: are the CAs with unbounded
damage spreading µ-almost everywhere sensitive to initial conditions?

It seems that no. Let us consider a CA 54∗ that simulates the rule 54 but in a
uniform background. Such a CA can be formally defined thanks to Hanson and
Crutchfield’s filter [8] which is a CA but only on “valid” configurations. Here, we
consider any extension of this CA for a measure such that a generic configuration
is correct with probability 1. Experimentally, the particle number decreases like
t−1/2 and thus tends to 0 so that this CA for well chosen measures tends to
a uniform configuration. Due to the slow particle number decreasing, this CA
seems to have non bounded damage growth: with a non null probability, a single
perturbation creates or suppresses one or more particles. At each interaction of
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a defect particle with a particle, the defect is duplicated, the probability of such
collisions is linked to the density of particles, thus the average number of defects
should look like

∫
x−1/2 = 2

√
x which tends to +∞ when x −→ +∞, this CA

seems to have non bounded damage growth (that is experimentally observed).
Furthermore this CA does not seem to be almost everywhere sensitive to initial
conditions because of the following theorem:

Theorem 6. Let A be a CA that almost everywhere tends to a uniform confi-
guration, A is not almost everywhere sensitive to initial conditions (see [11] for
the proof).

The question to know whether there are almost everywhere sensitive CAs
with a Bµ-attracting set is open.

150 105 90 45 60 120

30 22 122 126 146 18

Fig. 7. All the chaotic behaviors among 2 states unidimensional CAs

4 Links with Wolfram’s Classification

The CAs in [µ− aes]\[Sµ → 0] practically match on ECAs with the CAs that
Wolfram put in his class 3, they are represented on the figure 7. It is not sure that
this remains true for more complicated (with more states, in higher dimension
or with a bigger neighborhood) CAs because they may present a lot of different
behaviors depending on the initial configuration. Anyway, if we assume that this
is a good formalization, Wolfram’s observation that “the value of a particular
site depends on an ever-increasing number of initial site values” is proved. Fur-
thermore, we know that this condition is not sufficient to imply chaoticity.
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Wolfram’s class 4 on ECAs seems to split into two parts, the class [µ− aes]∩
[Sµ → 0] and a part of the class [D µ→+

a]\[Sµ → 0]. But the definition of this
class (existence of particles) or the conjecture of the universality of its elements
let us think that this class is completely independent of our criteria. The main
point is that it is easy to build universal CAs in any non empty class since there
are some in the class [D µ→+

0] (a CA is usually universal on a null measure set).

The evolution of CAs that have Bµ-attracting sets tends µρ-almost ever-
ywhere to a set of uniform configurations. Their behaviors look like the beha-
viors of Wolfram’s class 1 CAs that “evolve after a finite number of time steps
from almost all initial states to a unique homogeneous state, in which all sites
have the same value”. Actually, it seems natural to think that the rule 128 (see
figure 2) which erases a succession of n states 1 in n/2 time steps is in the class 1
and this is confirmed by the examples of class 1 CAs given by Wolfram. But, if
0∗ is obviously a Bµ-attracting set, with probability 1, the evolution does not
converge to 0∗ after a finite number of time. The point is that the probability
to find a sequence of n successive 1 on the configuration is 1 whatever n. Next,
Wolfram writes that “their evolution completely destroys any information on
the initial state”. We proved this fact for CAs with Bµ-attracting sets, but we
also saw that complicated rules like 184 for ρ = 1/2 completely destroy any
information on the initial state.

The big problem would be to find a way to split the CAs whose damage
spreading is bounded but does not tend to 0 in such a way that rules like 118
or 109 are not together with the identity. If the behavior of the damage growth
of a CA is almost independent of the measure we take, we can separate the
CAs whose damage spreading is uniformly bounded from the others. This would
separate the identity from 118 and 109, but the rule 210 would be in the second
case, that was not really expected.

Conclusion and Open Questions

One of the main conclusion of this article is that our intuitive property of chaos
does not allow to split the set of CAs into two classes because some of them
may have a chaotic or non chaotic behavior depending on the way to choose
a random configuration. In addition, we see that Besicovitch topology that has
been specifically introduced in CAs to express an intuitive notion of chaos is
effectively a very interesting notion. Note that the introduction of a measure is
very helpful to deal with the too wide class of neither sensitive nor equicontinuous
CAs. In this article, we introduce a new Lyapunov like notion that allows to
measure information diffusion. This notion appears more precise than the other
ones but still not enough to ensure a chaotic behavior. Finally, the introduced
notions allow to formalize some of Wolfram’s observations and thus to prove how
relevant they are.
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A lot of open questions remains, among them

– to find examples in or to prove the emptiness of [µ− aes] with a Bµ-attracting
set and of CAs in [Sµ → 0] with no Bµ-attracting set and not in [µ− aes].

– the generalization for more general measures (with exponentially decreasing
correlations) of the theorems.

– to find a “good” definition that separates the identity from 118 in [D µ→+
a].
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