
DAMN: A Distributed Architecture for Mobile Navigation

Julio K. Rosenblatt

Robotics Institute

Carnegie Mellon University

Pittsburgh, PA 15213

jkr@cmu.edu

Abstract

An architecture is presented where a collection of distributed
task-achieving modules, or behaviors, cooperatively deter-
mine a mobile robot’s path by expressing their preferences for
each of various possible actions. An arbiter then performs
command fusion and selects that action which best satisfies the
prioritized goals of the system, as expressed by the behaviors
and their associated weights. Examples of implemented sys-
tems are given, and future research directions in command
fusion are discussed.

Introduction

In order to function in unstructured, unknown, or dynamic

environments, a mobile robot must be able to perceive its

surroundings and generate actions that are appropriate for

that environment and for the goals of the robotic system. To

function effectively, an architectural framework for these

sensing and reasoning processes must be imposed to provide

a structure with which the system may be developed, tested,

debugged, and understood. The system must also deal with

uncertainty and incomplete knowledge of its environment

and of the effects of its own actions. Another crucial consid-
eration is the ability to respond to potentially dangerous situ-

ations in real-time while maintaining enough speed to be

useful.

In addition, mobile robots need to combine information
from several different sources. For example, the CMU Nav-

lab vehicles are equipped with sensors such as video cam-

eras, laser range finders, sonars, and inertial navigation

systems, which are variously used by subsystems that follow

roads, track paths, avoid obstacles and rough terrain, seek

goals, and perform teleoperation. Because of the disparate

nature of the raw sensor data and internal representations

used by these subsystems, combining them into one coherent

system which combines all their capabilities has proven to be

very difficult. Many architectures espousing diverse princi-

ples of design methodology have been proposed over the

years, but few have proved capable of integrating sub-

systems that have each been developed independently using

whichever paradigm best achieves the task for which it is

intended.

The earliest work in robot control architectures attempted

to reason by manipulating abstract symbols using only pure

logic (Nilsson, 1984). The limitations of this top-down
approach led to a new generation of architectures designed in

a bottom-up fashion to provide greater reactivity to the

robot’s surroundings, but sacrificed generality and the ability

to reason about the system’s own intentions and goals

(Brooks, 1986; Agre & Chapman, 1987; Arkin, 1987).

It has been argued that a hierarchical approach is needed

which allows slower abstract reasoning at the higher levels

and faster numerical computations at the lower levels, thus

allowing varying trade-offs between responsiveness and

optimality as appropriate at each level (Payton, 1986;

Albus, McCain & Lumia, 1987). While such an approach

provides aspects of both deliberative planning and reactive

control, the top-down nature of hierarchical structures

tends to overly restrict the lower levels so that newly

received information cannot be fully taken advantage of

(Payton, Rosenblatt & Keirsey, 1990). In hierarchical

architectures, each layer controls the layer beneath it and

assumes that its commands will be executed as expected.

Since expectations are not always met, there is a need to

monitor the progress of desired actions and to report fail-

ures as they occur (Simmons, Lin & Fedor, 1990). In

unstructured, unknown, or dynamic environment, this

approach introduces complexities and inefficiencies which

could be avoided if higher level modules participated in

the decision-making process without assuming that their

commands will be strictly followed.
Experience over the years with different architectures

and planning systems for mobile robots has led me to a

distributed approach where an arbiter receives votes for

and against commands from each subsystem and decides

upon the course of action which best satisfies the current

goals and constraints of the system. The architecture is

designed with the underlying belief that centralized arbi-

tration of votes from distributed, independent decision-

making processes provides coherent, rational, goal-

directed behavior while preserving real-time responsive-

ness to its immediate physical environment. Furthermore,

a framework for developing and integrating independent

decision-making modules communicating with such arbi-

ters facilitates their development and leads to evolutionary

creation of robust systems of incrementally greater capa-

bilities.

The Distributed Architecture for Mobile Navigation has

been successfully used to integrate the various subsystems

mentioned above, thus providing systems that perform
road following, cross-country navigation, or teleoperation

while avoiding obstacles and meeting mission objectives.

In addition to its use on the CMU Navlab vehicles, DAMN

has also been used on outdoor test vehicles at Martin

Marietta and on indoor robots and simulated environments

at the Hughes Research Labs..

167

From: AAAI Technical Report SS-95-02. Compilation copyright © 1995, AAAI (www.aaai.org). All rights reserved.

The Distributed Architecture

for Mobile Navigation

Deliberative planning and reactive control are equally

important for mobile robot navigation; when used appropri-

ately, each complements the other and compensates for the

other’s deficiencies. Reactive components provide the basic

capabilities which enable the robot to achieve low-level
tasks without injury to itself or its environment, while delib-

erative components provide the ability to achieve higher-

level goals and to avoid mistakes which could lead to ineffi-

ciencies or even mission failure. But rather than imposing an
hierarchical structure to achieve this symbiosis, the Distrib-

uted Architecture for Mobile Navigation (DAMN) takes

approach where multiple modules concurrently share control

of the robot. In order to achieve this, a common interface is

established so that modules can communicate their inten-
tions without regard for the level of planning involved

(Langer, Rosenblatt & Hebert, 1994).

A scheme is used where each module votes for or against

various alternatives in the command space based on geomet-

ric reasoning; this is at a higher level than direct actuator

control, but lower than symbolic reasoning. This reasoning

at the geometric level creates a bridge between the high-level
goals of an AI planner and the low-level motor skills of a

controller and is crucial to the successful operation of a

robotic system in the real world, and yet it is the least under-

stood.

Figure 1 shows the organization of the DAMN architec-

ture, in which individual behaviors such as road following or

obstacle avoidance send votes to the command arbitration

module; these inputs are combined and the resulting com-

mand is sent to the vehicle controller. Each action-producing

module, or behavior, is responsible for a particular aspect of

vehicle control or for achieving some particular task; it oper-

ates asynchronously and in parallel with other behaviors,

sending its outputs to the arbiter at whatever rate is appropri-

ate for that particular function. Each behavior is assigned a

weight reflecting its relative priority in controlling the vehi-

cle. A mode manager may also be used to vary these weights

during the course of a mission based on knowledge of

which behaviors would be most relevant and reliable in a

given situation.

DAMN is a behavior-based architecture similar in some

regards to reactive systems such as the Subsumption

Architecture (Brooks, 1986). In contrast to more tradi-

tional centralized AI planners that build a centralized

world model and plan an optimal path through it, a behav-

ior-based architecture consists of specialized task-achiev-

ing modules that operate independently and are

responsible for only a very narrow portion of vehicle con-

trol, thus avoiding the need for sensor fusion. A distributed

architecture has several advantages over a centralized one,

including greater reactivity, flexibility, and robustness

(Payton, Rosenblatt & Keirsey, 1990). However, one

important distinction between this system and purely reac-

tive systems is that, while an attempt is made to keep the

perception and planning components of a behavior as sim-

ple as possible without sacrificing dependability, they can

and often do maintain internal representations of the

world. Brooks (1993) has argued that "the world is its own

best model", but this assumes that the vehicle’s sensors

and the algorithms which process them are essentially free

of harmful noise and that they can not benefit from evi-

dence combination between consecutive scenes. In addi-

tion, disallowing the use of internal representations

requires that all environmental features of immediate

interest be visible to the vehicle sensors at all times. This
adds unnecessary constraints and reduces the flexibility of

the overall vehicle system

The DAMN architecture is designed to provide the basic

capabilities essential to any mobile robot system, or first

level of competence in the parlance of the Subsumption
Architecture. In DAMN, this consists of safety behaviors

which limit turn and speed to avoid vehicle tip-over or

wheel slippage, obstacle avoidance behaviors to prevent

collisions, as well as various auxiliary behaviors (see

DAMN Behaviors section). As new functions are needed,
additional behaviors can be added to the system without

any need for modification to the previously included

168

behaviors, thus preserving their established functionality.

Since both deliberative and reflexive modules are needed,
DAMN is designed so that behaviors can issue votes at any

rate; for example, one behavior may operate reflexively at 10

Hz, another may maintain some local information and oper-

ate at 1 Hz, while yet another module may plan optimal

paths in a global map and issue votes at a rate of 0.1 Hz. The

use of distributed shared control allows multiple levels of

planning to be used in decision-making without the need for

an hierarchical structure. However, higher-level reasoning

modules may still exert meta-level control within DAMN by

modifying the voting weights assigned to behaviors and thus

controlling the degree to which each behavior may influence

the system’s decision-making process and thus the robot’s

actions.

DAMN Arbiters

In a distributed architecture, it is necessary to decide which

behaviors should be controlling the vehicle at any given

time. In some architectures, this is achieved by having prior-

ities assigned to each behavior; of all the behaviors issuing

commands, the one with the highest priority is in control and

the rest are ignored (Brooks, 1986; Rosenschein & Kael-
bling, 1986). In order to allow multiple considerations to

affect vehicle actions concurrently, DAMN instead uses a

scheme where each behavior votes for or against each of a

set of possible vehicle actions (Rosenblatt & Payton, 1989).

An arbiter then performs command fusion to select the most

appropriate action. While all votes must pass through the

command arbiter before an action is taken, the function pro-
vided by the arbiter is fairly simple and does not represent

the centralized bottleneck of more traditional systems.

Turn Arbiter

In the case of the turn arbiter, each behavior generates a vote

between -1 and +1 for every possible steering command,

with negative votes being against and positive votes for a

particular command option. The votes generated by each

behavior are only recommendations to the arbiter. The arbi-

ter computes a weighted sum of the votes for each steering

command, with the weights reflecting the relative priorities

of the behaviors. The steering command with the highest

vote is sent to the vehicle controller.

The arbiter collects the new votes from each behavior that

has sent them, and performs a normalized weighted sum to

find the turn command with the maximum vote value. In

order to avoid problems with discretization such as biasing

and "bang-bang" control, the arbiter performs sub-pixel

interpolation. This is done by first convolving the votes with

a Gaussian mask to smooth the values and then selecting the

command option with the highest resulting value. A parabola

is then fit to that value and the ones on either side, and the
peak of the parabola is used as the command to be issued to

the controller. This process is illustrated in Figure 2, where

,,lllllmlllll,,,
-0.125 0 +0.125

a) Behavior 1, desired curvature = 0.040

-0.125 0 +0.125

b) Behavior 2, desired curvature = 0.000

.... ,,,,llllllilllll,,,,
-0.125 0 +0.125

c) Weighted Sum, max vote curvature = 0.035

.... ,,,,,,llllll llllll ,,
-0.125 0 +0.125

d) Smoothed & Interpolated,
commanded curvature=O.033

Figure 2: Command fusion process

the votes from two behaviors (a & b) are linearly com-
bined (c), and then smoothed and interpolated to produce
the resulting command (d).

Speed Arbiter

The emphasis in the research thus far has been in com-

mand fusion for the control of vehicle steering; until

recently the commanded speed was decided in a very sim-

plistic fashion based upon the commanded turn radius.

The user-specified maximum vehicle speed was multiplied

by the normalized weighted sum for the chosen turn

radius; the result was the speed command issued.

An entirely separate speed arbiter with its own set of

associated behaviors has now been developed. Thus, the

turn behaviors can vote for turn commands without con-

cern that the absolute magnitude of their votes will affect

vehicle speed. At present each speed behavior votes for

the largest speed possible which meets that behavior’s
constraints, and the arbiter simply chooses the minimum

of those maxima, so that all speed constraints are satisfied.

Coordination of Arbiters

Because the choices of turn and speed commands are not

completely independent and therefore must be coordi-

169

nated, many of the speed behaviors have as one of their
inputs the output of the turn arbiter, so that the choice of an

appropriate speed is influenced by the currently commanded

turn radius. Other speed behaviors instead use the estimated

actual turn radius of the vehicle so that they operate in a

closed-loop fashion, albeit with greater delays. Likewise,

some turn behaviors use the current vehicle speed in decid-

ing upon allowable turn options.

DAMN Behaviors

Within the framework of DAMN, behaviors must be defined

to provide the task-specific knowledge for controlling the
vehicle. Each behavior runs completely independently and

asynchronously, providing votes to the arbiter each at its

own rate and according to its own time constraints. The arbi-

ter periodically sums all the latest votes from each behavior

and issues commands to the vehicle controller.

Safety Behaviors

A basic need for any mobile robot system is the ability to

avoid situations hazardous to itself or to other objects in its

environment. Therefore, an important part of DAMN is its

"first level of competence" (Brooks, 1986), which consists

behaviors designed to provide vehicle safety. In contrast to

priority-based architectures which only allow one behavior

to be effective at any given moment, the structure of DAMN

and its arbitration scheme allow the function of these safety

behaviors to be preserved as additional levels of competence

are added.

Obstacle Avoidance The most important behavior in the

context of vehicle safety is the Obstacle Avoidance behavior.

In order to decide in which directions the vehicle may safely

travel, this behavior receives a list of current obstacles in

vehicle-centered coordinates and evaluates each of the possi-

ble command options, as illustrated in Figure 3. The source

of these obstacles may be intraversable regions of terrain

determined by range image processing or stereo vision, by

sonar detection of objects above the ground plane, or any
other means of obstacle detection as appropriate to the cur-

rent task and environment (Daily et al, 1986; Langer, Rosen-

blatt & Hebert, 1994).

---_ STRAIGHT _r
SOFT "- AHEAD ,--’~ SOFT
LEFT "-. | -- RIGHT

Figure 3: Arc evaluation in the Obstacle Avoidance behavior

If a trajectory is completely free of any neighboring

obstacles (such as the Straight Ahead or Hard Right turns

shown in Figure 3), then the obstacle avoidance behavior

votes for travelling along that arc. If an obstacle lies in the

path of a trajectory, the behavior votes against that arc,

with the magnitude of the penalty proportional to the dis-

tance from the obstacle. Thus, the Obstacle Avoidance

behavior votes more strongly against those turns that
would result in an immediate impact (Hard Left in the fig-

ure) and votes less strongly against those turns which

would only result in a collision after travelling several
meters (Soft Right). In order to avoid bringing the vehicle

unnecessarily close to an obstacle, the behavior also votes

against those arcs that result in a near miss (Soft Left),

although the evaluation is not as unfavorable as for those
trajectories leading to a direct collision.

Vehicle Dynamics Another vital aspect of vehicle safety

is insuring that the commanded speed and turn stay within

the dynamic constraints of the vehicle as it travels over

varying terrain conditions. The most important of these

constraints is the one that insures that the vehicle will not

tip over. Given a velocity of magnitude V, the maximum
positive and negative curvatures K to avoid tip-over would

be:

+ (rl’g" cosp) +g. sinp
_K =

max V2

where 1"1 is the ratio of the distance between the vehicle’s
center of gravity (c.g.) and the wheels to the c.g. height,

is the acceleration due to gravity, and I9 is the vehicle roll
with respect to the gravity vector, as illustrated in Figure 4.

Likewise, for a given vehicle turn curvature, the maximum

velocity is:

= Mini+ (r I .g. cosp) +g. sinp 1/2Vmax
I K

Figure 4: Vehicle dynamics

Similar constraints can be imposed on vehicle turn

radius and speed in order to avoid tire slippage. The limit

on curvature for slippage is:
(lx.g. cos9) + (g. sinp)

+l,;: =max V2

170

where ~ is the dynamie coefficient of friction between the

tire and the terrain, and for speed:

I ([t " g " cosp) + (g " sinp) ll/2+Vmax =
W,

Two behaviors, Limit Turn and Limit Speed send votes to

the arbiter that implement these constraints, voting against

commands that violate them.

Road Following

Once vehicle safety has been assured by the obstacle avoid-

ance and dynamic constraint behaviors, it is desirable to add

additional behaviors that provide the system with the ability

to achieve the tasks for which it is intended., such as road
following; one of the behaviors that have been implemented

within DAMN to provide this function is ALVINN.

The ALVINN road following system is an artificial neural

network that is trained, using backpropagation, to associate
preprocessed low resolution input images with the appropri-

ate output steering commands (Pomerleau, 1992). In the case

of ALVINN, creating a behavior that independently evalu-
ated each arc was relatively straightforward. The units of the

neural network’s output layer each represent an evaluation of

a particular turn command, with the layer trained to produce

Gaussian curves centered about those turns that would fol-
low the road ahead. These units are simply resampled to the

DAMN voting command space, using a Gaussian of the

appropriate width. This process is illustrated in Figure 5.

I DAMN TURN COMMANDS
OOOOOOOOOOOOOOOOOOOOOOOOO I

A

D~N ~JN’~

~ 0 ~y~E~O 0

ALVINN
Figure 5: Resampling of ALVINN output layer

Goal-Directed Behaviors

Another important level of functionality that should be

present in any general purpose robotic system is the ability to
reach certain destinations using whatever global information

is available. While the low-level behaviors operate at a high

rate to ensure safety and to provide functions such as road

following and cross-country navigation, high-level behav-

iors are free to process map-based or symbolic information

at a slower rate, and periodically issue votes to the arbiter
that guide the robot towards the current goal.

Subgoals The Goal Seeking behavior is one way to provide

this capability. This simple behavior directs the vehicle

toward a series of goal points specified in global coordi-

nates either by the user (Langer, Rosenblatt & Hebert,

1994) or by a map-based planner (Keirsey, Payton

Rosenblatt, 1988). The desired turn radius is transformed
into a series of votes by applying a Gaussian whose peak

is at the desired turn radius and which tapers off as the dif-

ference between this turn radius and a prospective turn

command increases. A goal is considered satisfied once

the vehicle enters a circle centered at the goal location;

then the next goal is pursued. Because of errors in goal

placement and accumulated errors in vehicle positioning, a

goal point may not be reachable. For this reason, an ellipse

is defined with the current goal and the subsequent goal as

foci; if the vehicle enters this ellipse, the current goal is

abandoned and the next one becomes the current goal

instead, thus allowing progress to continue.

Dynamic Programming Some more sophisticated map-

based planning techniques have also been integrated and

used within the DAMN framework. These planners use

dynamic programming techniques based on the A* search

algorithm (Nilsson, 1980) to determine an optimal global

path. However, an important point is that they do not hand

a plan down to a lower level planner for execution, but

rather maintain an internal representation that allows them

to participate directly in the control of the vehicle based on

its current state. A* yields a set of pointers within the map

grid that point toward the goal, as depicted by the small
arrows in Figure 6. During execution, this grid may be

indexed by the current vehicle position to yield a path

towards the goal which is optimal based on the informa-

tion available in the map at that time.

The Internalized Plans (Payton, 1990) approach uses
detailed map to perform an A* search from the goal(s)

back toward the start point to create a "Gradient Field"

towards the goal. The type and slope of the terrain, among

other factors, is used to estimate the cost of traversal

between grid cells. During run-time, the grid cell contain-

ing the current vehicle location is identified, and the Gra-
dient Field pointers are followed forward to the point G’
in Figure 6; the desired heading to reach the goal is that

from the current location S to G’, and a series of votes
with its peak at that value is sent to the turn arbiter.

Figure 6: Following Gradient Field to determine
intermediate goal heading

The D* planner (Stentz, 1993) also creates a grid with

"backpointers" that represent information on how best to

171

reach the goal from any location in the map. The map may

initially contain no information, but is created incrementally
as new information becomes available during the execution

of a mission, and the arc traversal costs and backpointers are

updated to reflect this new knowledge. The resulting global

plan is integrated into DAMN as a behavior by determining,

for each possible turn command, the weight w of reaching

the goal from a point along that arc a fixed distance ahead
(the squares designated collectively as S’ in Figure 7).

Wmax and Wmin are the maximum and minimum values of w,

then the vote for each turn command is determined as:

(Wmax - w) / (Wmax - Wmin) . In the case that a point
S’ is not represented on the grid, or if the goal cannot be

reached from it, then the vote for that arc is set to - 1.

©

®
Figure 7: Using D* to evaluate distance to goal for each arc

Teleoperation

Teleoperation is another possible mode in which a robotic

system may need to operate. The STRIPE teleoperation sys-

tem (Kay & Thorpe, 1993) provides a graphical user inter-

face allowing a human operator to designate waypoints for
the vehicle by selecting points on a video image and project-

ing them on to the surface on which the vehicle is travelling.

STRIPE then fits a spline to these points and uses pure pur-

suit to track the path. When used in isolation, it simply sends

a steering command to the controller; when used as a DAMN
behavior, it sends a series of votes representing a Gaussian

centered on the desired command. This allows the dynamic

constraints and obstacle avoidance behaviors to be used in

conjunction with STRIPE so that the safety of the vehicle is

still assured.

Auxiliary Behaviors

Various other auxiliary behaviors that do not achieve a par-

ticular task but issue votes for secondary considerations may

also be run. These include the Drive Straight behavior,

which simply favors going in whatever direction the vehicle

is already heading at any given instant, in order to avoid sud-

den and unnecessary turns; and the Maintain Turn behavior,

which votes against turning in directions opposite to the cur-

rently commanded turn, and which helps to avoid unneces-

sary oscillations in steering, the Follow Heading behavior

which tries to keep the vehicle pointed in a constant direc-

tion, as well as various behaviors which allow user input to

affect the choice of vehicle turn and speed commands.

Combining Behavior Votes

The voting strengths, or weights, of each behavior are

specified by the user, and are then normalized by the arbi-

ter so that their sum equals 1. Because only the relative

values are important, and because the magnitude of each

behavior’s votes vary according to their importance,

DAMN is fairly insensitive to the values of these weights

and the system performs well without a need to tweak

these parameters. For example, the Obstacle Avoidance

behavior has been run in conjunction with the Seek Goal

behaviors with relative weights of 0.75 and 0.25, respec-

tively, and with weights of 0.9 and 0.1, and in both cases

has successfully reached goals while avoiding obstacles.

The vote weights of each behavior can also be modified by

messages sent to the arbiter from a mode manager module.

It can reconfigure the weights according to whatever top-

down planning considerations it may have, and potentially

could use bottom-up information about the effectiveness

and relevance of a behavior (Payton et al, 1993). Different

modes of operation that exclude some behaviors can be

constructed by setting the weights those behaviors to 0. A

Mode Manager was developed at the Hughes Research

Labs to be used with DAMN for this purpose, and at CMU

Annotated Maps were integrated with DAMN to provide

this capability (Thorpe et al, 1991).

As a simple example to illustrate the manner in which

votes are issued and arbitrated within DAMN, consider the

case in Figure 8 where two behaviors are active, one
responsible for obstacle avoidance and the other for goal

seeking (only five turn options are shown for simplicity).

The magnitude of a vote is indicated by the size of a circle,

with a large unfilled circle representing a vote of +1, a

large striped circle a value of- 1, and a small circle a value

near 0. Thus, the goal-seeking behavior is voting most

strongly in favor proceeding straight and less favorably for

a soft left turn, and voting against hard left or any right

turns; the obstacle avoidance behavior is voting against a
hard left or soft right, and allowing the other turns as

acceptable, with soft left being the most favorable.

HARD SOFT STRAIGHT SOFT HARD
LEFT AHEAD RIGHT

AVOIDANCE
BEHAVIOR BEHAVIOR

Figure 8: Command fusion in DAMN

Because avoiding obstacles is more important than taking
the shortest path to the goal, the obstacle avoidance behav-

ior is assigned a higher weight than the goal seeking behav-

ior, as indicated by the thicker arrows in the diagram. The
arbiter then computes a weighted sum of the votes it has

received from each behavior, and the command choice with

the highest value is selected and issued to the vehicle con-

troller. In this case a soft left turn would be executed, since

its weighted sum is the greatest, thus avoiding any obstacles
while still more or less moving toward the goal. The favor-

ableness of the selected turn command may also used to

determine vehicle speed, so that, for example, the vehicle

would slow down if a command is issued which will take the

vehicle too far from the path to the goal point. Another pos-

sibility is to have a separate speed arbiter that would receive

commands from behaviors that, given the current vehicle

radius, determine the maximum speed that would satisfy

their objectives.

User Interface

A simple text interface which optionally outputs informa-

tional messages from each running module is provided for

debugging and logging purposes. The user may also interac-

tively start and halt the arbiters and the vehicle, vary parame-

ters such as maximum speed, and toggle debugging output

and data recording.

A Graphical User Interface has also been integrated into

the DAMN arbiters. It outputs the votes issued by each

active behavior, as well as their current weights, and allows

the user to modify those weights. The summed weighted

votes and commands chosen by the arbiters are also dis-

played. A screen dump of this display is shown in Figure 9.

Beh4vler ~ Turn ~wlor

Set; Art
St.earin9 ~t,~" Dl~tpl~ Melght Idel

mm out~,t IN 62.03

llu~r 1.00

¯ fol Iov htadirQ 0.2S

M

Figure 9: DAMN Graphical User Interface

Results

DAMN is designed so that various behaviors can be easily

added or removed from the system, depending on the cur-

rent task at hand. Although the modules described above

all use very different paradigms and representations, it has

been relatively straightforward to integrate each and every

one of them into the framework of DAMN. Sensor fusion

is not necessary since the command fusion process in

DAMN preserves the information that is critical to deci-

sion-making, yielding the capability to concurrently sat-

isfy multiple objectives without the need for centralized

bottlenecks. A detailed description of an implemented sys-

tem and the experimental results achieved can be found in

(Langer, Rosenblatt & Hebert, 1994).

All of the behaviors described in the DAMN Behaviors

section have been used in conjunction with each other in

various configurations, yielding systems that were more

capable than they would have been otherwise. Conceptu-

ally, three levels of competence have been implemented in
DAMN thus far, as shown in Figure 10. These levels of

competence are convenient for describing the incremental

manner in which the system’s capabilities evolve; how-
ever, it is important to note that all behaviors co-exist at

the same level of planning. The importance of a behavior’s

decisions is reflected by the weighting factor for its votes,

and is in no way affected by the level of competence in

which it is described.

The safety behaviors are used as a first level of compe-

tence upon which other levels can be added. Movement is

the second level of competence that has been imple-

mented; road following, cross-country navigation, and

teleoperation behaviors have all been run together with the
obstacle avoidance behavior to provide various forms of

generating purposeful movement while maintaining safety
(Thorpe et al, 1991). The third level of competence

comprised of the various map-based goal-seeking behav-

iors. Cross-country behaviors have been combined with

goal-oriented behaviors to produce directed off-road navi-

gation (Keirsey, Payton & Rosenblatt, 1988; Stentz, 1993).

GOALS

Subgoals

Gradient Fields

MOVEMENT D*
...................B...O...BB....

Road Following

Cross-Country

SAFETY Teleoperation

Vehicle Dynamics

Obstacle Avoidance

Auxiliary

Figure 10: Evolutionary system development in DAMN

173

Future Work

DAMN has proven to be very effective as an architecture

which greatly facilitates the integration of a wide variety of

different vehicle navigation subsystems; however, the meth-

ods used to date have largely been of an ad hoc nature. As

DAMN is used for increasingly complex tasks where many

behaviors may be issuing votes concurrently, there will be a

greater need to have the semantics of the voting process

carefully defined. By explicitly representing and reasoning

about uncertainty within the decision-making processes, a

system can be created whose effects are well-defined and

well-behaved.

The various approaches to reasoning with uncertainty can

be classified as either extensional or intensional (Pearl,

1988). One extensional approach currently in vogue is Fuzzy

Logic systems (Zadeh, 1973; Lee, 1990), and indeed the vot-

ing and arbitration scheme described in the DAMN Arbiters

section bears some obvious similarities to such systems.

Fuzzy Logic is typically used within the framework of rule-

based systems, as in (Kamada, Naoi & Goto, 1990), but

behavior-based systems are generally procedural in nature

and reason at the geometric level, and therefore do not

readily lend themselves to the use of if-then rules which

operate at the symbolic level of reasoning. Yen and Pfluger

(1992) propose an architecture based on DAMN that uses

Fuzzy Logic, but it restricts each behavior to determining a

unique desired steering direction which is then voted for

using fuzzy membership sets. The scheme described here is

more general in that it allows for an arbitrary distribution of

votes.

Intensional approaches, also referred to as declarative or

model-based, attach uncertainties not to individual assertions

but rather to possible states of the world. The classical inten-

sional system is Bayesian probability (Bayes, 1763), which
is founded on Bayes’ Theorem for inversion of conditional

probabilities:
P(el H) . P(H)

P(I-1] e)
P(e)

which states that the posterior probability of hypothesis H

being true given supporting evidence e is equal to the prior

probability of H multiplied by the probability of e occurring

given H, normalized by the prior probability of e. Practical

problems with the use of Bayesian probabilities arise

because all of the prior probabilities P(e) and conditional

probabilities P(elH) must be specified, and the truth value of

all relevant evidence e must be known before any conclu-

sions can be drawn. The Dempster-Shafer Theory is a non-

Bayesian method which allows the use of incompletely spec-

ified probabilistic models (Shafer, 1976). Rather than speci-

fying probabilities of assertions being true, it uses partially

specified models of possible worlds to reason qualitatively

about the probability that a given assertion is provable.
While this solves some of the problems of Bayesian reason-

ing, Dempster-Shafer theory only provides estimates of

the probability of various partially specified possible

worlds that may include contradictions, and therefore is

poorly suited for the purpose of action selection.

Because we have control over some of the variables

involved (actuator values) and are attempting to decide

which among a set of possible actions to take, it is more

natural to make judgments on the usefulness of actions

based on their consequences than it is to judge the likeli-
hoods of various statements being true. If we assign a util-

ity measure U(c) for each possible consequence of an
action, then the expected utility for an action a is:

U(a) = Z U(c) . P(cl
C

where P(cla, e) is the probability distribution of the conse-

quence configuration c, conditioned upon selecting action

a and observing evidence e (Pearl, 1988). Thus, if we can
define these utilities and probabilities, we can then apply

the Maximum Expected Utility (MEU) criterion to select

the optimal action based on our current information.

If utility theory is to be applied to the problem of evi-
dence combination and action selection for mobile naviga-

tion tasks, the first and foremost issue that must be
resolved is how to define the utility functions. Behaviors

are defined in order to achieve some task, so it is fair to
assume that there must be at least an implicit measure of

"goodness" or utility with respect to that task. For exam-

ple, an obstacle avoidance behavior’s task is to maximize

distance to obstacles, so that the distance from the vehicle
to the nearest obstacle could be used as a measure of good-

ness. Likewise, proximity to the current goal could be used

for the goal-based behaviors, as proximity to the center of

a road (or lane) could be used by road following modules.

Evaluation

Objective quantitative evaluation of mobile robot systems

has historically proven to be very difficult, and the task is

doubly difficult when attempting to compare entire archi-

tectures because there are so many degrees of freedom in

the design and implementation of a mobile robot system.
The most straightforward means of evaluation is to

attempt to define measures of the quality of the path which

a vehicle has traversed under autonomous control.

Utility Measures One means of evaluating architectures is

to use measures of "goodness" like those used to define

the utility of each action for the various behaviors.

Although evaluating the performance based on the utility

measures defined in the Future Work section would appear

to be circular, they are the best measures available. Fur-

thermore, their evaluation is not vacuous given that uncer-

tainty exists in all aspects of a system: in the declarative

knowledge, sensed information, procedural knowledge,

and in the effects of its actions and the actions of other

174

agents; thus the expected utility will in general not agree

with the actual utility that can be measured for those actions

that are taken.

Let the goodness value for behavior b at a state s be com-

puted by the function gb(s). Then one possible measure for

the utility, with respect to behavior b, of consequence c is the

change in this measure of goodness with respect to the cur-

rent state So:

Ub(C) = Agb = gb(C)- gb(So)

However, the value of this measure can be arbitrarily

large, so it must be normalized and assigned a consistent

semantic meaning for all behaviors. One means of normal-

ization would be to divide by the larger of the two goodness

measures:

Ub(C) = Agb/Max(gb(c), gb(So))

This would bound the absolute value of Ub(C) to be no

greater than 1. It would also have the effect that, for the same

Agb, the utility of an action would be greater when the good-

ness measure is small than when it is large. This appears to

be desirable for behaviors such as obstacle avoidance whose

importance should grow as the situation worsens; however,
the suitability of this measure is less clear for other behaviors

such as goal-seeking.
Another possibility for a normalized utility measure is

analogous to the one used by the D* behavior described in

the Goal-Directed Behaviors section. After computing gb(c)

for each possible consequence c, we determine the maxi-
mum and minimum values gmax and groin, and use the fol-

lowing measure:

Ub(C) = (gb (c) - gmin) / (gmax- gmin)

While this measure has the desirable property of being

bounded by the interval [0,1], it has the potentially undesir-

able property that the range of utility values will always

completely span that interval. Thus, for example, if all

potential actions have exactly the same utility except for one

that has a slightly higher value, then the normalized utility

values will be 1 for that one action and 0 for all the rest.

Path Smoothness Another general measure of the quality of

the path is the smoothness with which it is controlled. Inte-

grating the squared derivative of curvature along the vehi-

cle’s actual path provides a measure of smoothness that can

be applied to the architecture (Kamada, Naoi & Goto, 1990),
and the derivative of acceleration, or jerk, provides a mea-

sure of smoothness in the vehicle’s speed as well as steering.

Integrating the squared vehicle curvature along the vehicle’s

path may also be useful as a measure of smoothness, which

reflects consistency in decision-making and the ability to

anticipate events.

Path Accuracy The accuracy of the path, i.e. the extent to

which the commanded path matches the actual path taken

by the vehicle, can also provide an important means of

evaluating an architecture and its planning subsystems.

Path accuracy can be measured by integrating the squared

error between estimated and actual vehicle poses. If the

system commands trajectories which are not physically

realizable, the actual path taken may deviate significantly.

Likewise, if large latencies exist in the system and are not

adequately compensated for, the commanded path will

only begin to be executed well after the system intended it.

Conclusion

The Distributed Architecture for Mobile Navigation has
been successfully used to create systems which safely fol-

low roads or traverse cross-country terrain while avoiding

obstacles and pursuing mission goals. Like other behavior-

based architectures, it avoids sensory and decision-making

bottlenecks and is therefore able to respond in real-time to

external events; however, it imposes no constraints on the

nature of the information or the processing within a behav-
ior, only on the interface between the behavior and the

command arbiter. Furthermore, the behaviors are not sub-

ject to any timing constraints; each behavior operates
asynchronously and in parallel.

Non-reactive behaviors may use plans to achieve goals

and coordinate with other agents; thus, like centralized or

hierarchical architectures, DAMN is able to assimilate and

use high-level information. Finally, unlike architectures
with prioritized modules, DAMN’s vote arbitration

scheme allows multiple goals and constraints to be ful-

filled simultaneously, thus providing goal-oriented satis-
ricing behavior without sacrificing real-time reactiveness.

Acknowledgments

This research was partly sponsored by ARPA, under con-

tracts "Perception for Outdoor Navigation" (contract num-

ber DACA76-89-C-0014, monitored by the US Army

Topographic Engineering Center) and "Unmanned Ground

Vehicle System" (contract number DAAE07-90-C-R059,

monitored by TACOM), and partly supported by a Hughes

Research Fellowship. The author would like to acknowl-

edge the support and guidance of Dave Payton at the

Hughes Research Labs and Chuck Thorpe at Carnegie
Mellon University, as well as the shared efforts and techni-

cal support of the Robotics Institute at Carnegie Mellon

University.

175

Appendix 1: Responses to workshop questions

1. Coordination-- How should the agent arbitrate/

coordinate~cooperate its behaviors and actions? Is there a

need for central behavior coordination ?

Centralized architectures provide the ability to coordinate, in

a coherent fashion, multiple goals and constraints within a

complex environment, while decentralized architectures

offer the advantages of reactivity, flexibility, and robustness.
The DAMN architecture takes the position that some central-

ization is needed, but the right level must be chosen so that it

does not create a bottleneck, and the interfaces must be

defined so as to avoid being overly restrictive.

Rather than imposing an hierarchical structure or using a

prioritized behavior-based systems to effect a traded control

system, the Distributed Architecture for Mobile Navigation

takes a shared control approach where several modules con-

currently have some responsibility for control of the robot.

In order to achieve this, a common interface is established so

that modules can communicate their intentions without

regard for the level of planning involved.

Votes from all behaviors are used in determining what the

next action should be, so that compromises are made when

possible; however, if two behaviors suggest actions that can

not be reconciled, then one of the two must be chosen. Meta-

level control may be exerted so that behaviors with mutually

exclusive goals do not operate simultaneously; however,

plans are not used in a top-down fashion but rather as a

source of advice, so that the flexibility of the reactive level is

preserved.

The hypothesis proposed here is that centralized arbitra-

tion of votes from distributed, independent decision-making

processes provides coherent, rational, goal-directed behavior

while preserving real-time responsiveness to its immediate

physical environment.

2. Interfaces-- How can human expertise be easily
brought into an agent’s decisions? Will the agent need to

translate natural language internally before it can interact

with the world?

Natural language is not needed for human-computer interac-

tion, and in many domains would actually be more difficult

for an operator to use than other modes of interaction. For

example geometric information or mission goals can be

more easily specified via a Graphical User Interface (GUI),

and direct control of the robot can be better effected through

the use of a joystick, for example.

In DAMN, the user may specify which behaviors are to be

active and what their relative weights should be, either a pri-

ori or during run-time via a GUI, thus providing meta-level

control. Behaviors that support teleoperation have also been

implemented, so that the user may specify the robot path via

waypoints in a video image, by using a joystick, or by typing

simple keystroke commands. As with all other behaviors, the

user’s input is expressed as votes which are then combined

with the votes of other behaviors and arbitrated.

3. Representation-- How much internal representation
of knowledge and skills is needed? How should the agent

organize and represent its internal knowledge and skills?

Is more than one representational formalism needed?

The DAMN system only requires votes from each behav-

ior, so that each module is free to use whatever representa-

tion and paradigm best serves for its particular task.

However, the selection of which behaviors should be

active at any given time is currently done in a fairly rudi-

mentary way; an explicit representation of each behavior’s

skills would allow for more dynamic and flexible

responses to unforeseen situations, and may also facilitate

learning.

4. Structural-- How should the computational

capabilities of an agent be divided, structured, and

interconnected? How much does each level~component of

an agent architecture have to know about the other levels/

components ?

The capabilities of an agent should be divided up as finely

as is practical among task-achieving behaviors which

operate asynchronously. They should be completely mod-
ular and independent, so that new capabilities may be

added in an evolutionary fashion without a need to disrupt
or modify existing functionality.

Ideally, higher level components that exert meta-level

control should only need to know which skills are pro-

vided by the lower levels, without any knowledge of how

those skills are implemented whatsoever.

5. Performance-- What types of performance goals and

metrics can realistically be used for agents operating in

dynamic, uncertain, and even actively hostile

environments ?

The most straightforward means of evaluation is to

attempt to define measures of the quality of the path which

a vehicle has traversed under autonomous control. The

measures I suggest within the body of the paper are the

path’s utility, smoothness, and accuracy; please refer to the

appropriate section for further details.

6. Psychology-- Why should we build agents that mimic

anthropomorphic functionalities? How far can~should we

draw metaphoric similarities to human~animal
psychology? How much should memory organization

depend on human~animal psychology?

Existing systems, i.e. humans and other animals, should

serve merely as an inspiration, never as a constraint. Fur-

thermore, good software engineering practices dictates

that robotic systems must evolve in a more orderly fashion

than their biological counterparts.

7. Simulation-- What, if any, role can advanced

simulation technology play in developing and verifying

176

modules and~or systems? Can we have standard virtual

components~test environments that everybody trusts and can

play a role in comparing systems to each other? How far can

development of modules profitably proceed before they

shouM be grounded in a working system?

Simulation technology can be a very important tool for

developing systems which are eventually realized in a physi-

cal implementation, but the former must not replace the lat-

ter. In my experiences in developing navigation systems,

simulation has often played a key role in their success. Simu-

lation provides a means to develop and extensively test the

system with minimal resources and without risking physical

damage to a robot or its surroundings. Subsequent testing on

a real robot then provides not only a means of validating the

system, but also a means of discovering the flaws in the sim-

ulation so that its fidelity may be improved for future use.

Any attempt to standardize the virtual components of a
robotic system would be premature at this point, as there is

still much debate as to what form the decomposition of the

architecture should take. Also, different needs in terms of

complexity, responsiveness, and optimality will require dif-

ferent architectures which make different trade-offs.
Standardized test environments, however, are something

that is sorely needed so that architectures may be compared

to each other in a systematic way. Again, different environ-
ments with different demands in complexity, responsiveness,

and optimality will be needed to highlight the relative

strengths and weaknesses of each architecture in various

domains. While a real robot provides the best testbed, simu-

lation can also play an important role because of its accessi-

bility, its low cost, and because it provides the ability to

record every aspect of a trial for analysis and for reproducing

results.

8. Learning-- How can a given architecture support

learning? How can knowledge and skills be moved between

different layers of an agent architecture ?

There are many different forms of learning that can be sup-

ported in many different ways. There currently is no learning

within the DAMN architecture, but reinforcement learning

would be a natural means of acquiring information regarding

the utility of various actions in different circumstances. The

relevance and usefulness of each behavior in particular situa-

tions might also be learned through techniques such as

genetic algorithms. Simulation would most likely play a sig-

nificant role in such learning schemes.

References

Agre, P. & Chapman, D. (1987), Pengi: An Implementation

of a Theory of Activity, Proc. of Sixth AAAI, pp. 268-

272, Seattle, WA.

Arkin, R. (1987), Motor Schema Based Navigation for a

Mobile Robot: An Approach to Programming by

Behavior, in Proceedings of the International Conference

on Robotics and Automation.

Albus, J., McCain, H. & Lumia, R. (1987), NASA/NBS

Standard Reference Model for Telerobot Control System

Architecture (NASREM), NBS Tech. Note 1235,

Gaithersburg, MD.

Bayes, T. (1763), An Essay Towards Solving a Problem in

the Doctrine of Chances, in Philosophical Transactions,
vol. 3, pp. 370-418.

Brooks, R. (1986), A Robust Layered Control System for a

Mobile Robot, IEEE Journal of Robotics and Automation
voi. RA-2, no. 1, pp. 14-23, April 1986.

Brooks, R. (1993), Intelligence Without Reason, in

Proceedings of the International Joint Conference on

Artificial Intelligence.

Daily, M., Harris, J., Keirsey, D., Olin, K., Payton, D.,
Reiser, K., Rosenblatt, J., Tseng, D. and Wong, V. (1988),

Autonomous Cross-Country Navigation with the ALV, in

IEEE Conference on Robotics and Automation,
Philadelphia, PA, April, 1988. (Also appears in DARPA

Knowledge Based Planning Workshop, December, 1987

pp 20-1 to 20-10).

Kamada, H., Naoi, S. & Goto, T. (1990), A Compact

Navigation System Using Image Processing and Fuzzy

Control, IEEE Southeastcon, New Orleans, April 1-4,

1990

Kay, J., Thorpe, C. (1993), STRIPE Supervised

Telerobotics Using Incremental Polygonal Earth

Geometry. In Proc. Intelligent Autonomous Systems

Conference.

Keirsey, D.M., Payton, D.W. & Rosenblatt, J.K. (1988),

Autonomous Navigation in Cross-Country Terrain, in

Proceedings of Image Understanding Workshop,

Cambridge, MA, April, 1988.

Langer, D., Rosenblatt, J. &. Hebert, M. (1994),

Behavior-Based System For Off-Road Navigation, in

IEEE Journal of Robotics and Automation, vol. 10, no. 6,
pp. 776-782, December 1994; (also appears as An

Integrated System For Autonomous Off-Road

Navigation, in the Proceedings of the IEEE International

Conference on Robotics and Automation, San Diego,

May 1994).

177

Lee, C. (1990), Fuzzy Logic in Control Systems: Fuzzy Logic
Controller -- Parts I & I1, IEEE Transactions on Systems,

Man and Cybernetics, Voi 20 No 2, March/April 1990.

Nilsson, N. (1980), Principles of Artificial Intelligence, Tioga

Pub. Co., Palo Alto, Calif.

Niisson, N. (1984), Shakey the Robot, SRI Tech. Note 323,

Menlo Park, Calif.

Payton, D. (I 986), An Architecture for Reflexive Autonomous

Vehicle Control, in IEEE International Conference on

Robotics and Automation, San Francisco, CA, April 7-10,

1986, pp. 1838-1845.

Payton, D. (1990), Internalized Plans: A Representation for

Action Resources, Robotics and Autonomous Systems,

6(1), 1990, pp. 89-103. (Also in Designing Autonomous

Agents, ed. Pattie Maes, MIT Press, Cambridge, Mass.
1991, pp. 89-103.)

Payton, D., Rosenblatt, J. & Keirsey, D. (1990), Plan Guided
Reaction. IEEE Transactions on Systems Man and

Cybernetics, 20(6), pp. 1370-1382.

Payton, D., Keirsey, D., Kimble, D., Krozel, J. & Rosenblatt,

J. (1993), Do Whatever Works: A Robust Approach to

Fault-Tolerant Autonomous Control, Journal of Applied

Intelligence, Volume 3, pp 226-250.

Pearl, J. (1988), Probabilistic Reasoning in Intelligent

Systems: Networks of Plausible Inference, Morgan

Kaufmann Publishers.

Pomerleau, D. (1992), Neural Network Perception for Mobile

Robot Guidance, Ph.D. dissertation, Carnegie-Mellon
Technical Report CMU-CS-92-115.

Rosenblatt, J. & Payton, D. (1989), A Fine-Grained

Alternative to the Subsumption Architecture for Mobile

Robot Control. in Proc. of the IEEE/INNS International
Joint Conference on Neural Networks, Washington DC,

vol. 2, pp. 317-324, June 1989 (also appears in 1989 AAAI

Spring Symposium Series).

Rosenschein, S. & Kaelbling, L. (1986), The Synthesis of

Digital Machines with Provable Epistemic Properties. in

proceedings Theoretical Aspects of Reasoning about

Knowledge. pp 83-98.

Shafer, G. (1976), A Mathematical Theory of Evidence,

Princeton University Press.

Simmons, R., Lin, L.J., Fedor, C. (1990) Autonomous Task

Control for Mobile Robots, in Proc. IEEE Symposium on

Intelligent Control, Philadelphia, PA, September 1990.

Stentz, A. (1993), Optimal and Efficient Path Planning for

Unknown and Dynamic Environments, Carnegie-Mellon

Technical Report CMU-RI-TR-93-20.

Stentz, A. & Hebert, M. (1994), A Complete Navigation
System for Goal Acquisition in Unknown Environments,

Carnegie-Mellon Technical Report CMU-RI-TR-94-7.

Thorpe, C., Amidi, O., Gowdy, J., I-Iebert, M. &

Pomerleau, D. (1991), Integrating Position

Measurement and Image Understanding for Autonomous
Vehicle Navigation. Proc. Workshop on High Precision

Navigation, Springer-Verlag Publisher.

Yen, J. & Pfluger, N. (1992), A Fuzzy Logic Based Robot
Navigation System, AAAI Fall Symposium.

Zadeh, L. (1973), Outline of a New Approach to the

Analysis of Complex Systems and Decision Processes,

IEEE Transactions on Systems, Man and Cybernetics,

Vol 3 No 1, January 1973

178

