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ABSTRACT Data movement between the CPU and main memory is a first-order obstacle against

improving performance, scalability, and energy efficiency in modern systems. Computer systems employ

a range of techniques to reduce overheads tied to data movement, spanning from traditional mechanisms

(e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging techniques such

as Near-Data Processing (NDP), where some computation is moved close to memory. Prior NDP works

investigate the root causes of data movement bottlenecks using different profiling methodologies and

tools. However, there is still a lack of understanding about the key metrics that can identify different data

movement bottlenecks and their relation to traditional and emerging data movement mitigation mechanisms.

Our goal is to methodically identify potential sources of data movement over a broad set of applications

and to comprehensively compare traditional compute-centric data movement mitigation techniques (e.g.,

caching and prefetching) to more memory-centric techniques (e.g., NDP), thereby developing a rigorous

understanding of the best techniques to mitigate each source of data movement.

With this goal in mind, we perform the first large-scale characterization of a wide variety of applications,

across a wide range of application domains, to identify fundamental program properties that lead to data

movement to/from main memory. We develop the first systematic methodology to classify applications

based on the sources contributing to data movement bottlenecks. From our large-scale characterization of

77K functions across 345 applications, we select 144 functions to form the first open-source benchmark suite

(DAMOV) for main memory data movement studies. We select a diverse range of functions that (1) represent

different types of data movement bottlenecks, and (2) come from a wide range of application domains. Using

NDP as a case study, we identify new insights about the different data movement bottlenecks and use these

insights to determine the most suitable data movement mitigation mechanism for a particular application.

We open-source DAMOV and the complete source code for our new characterization methodology at https:

//github.com/CMU-SAFARI/DAMOV.

INDEX TERMS benchmarking, data movement, energy, memory systems, near-data processing, perfor-

mance, processing-in-memory, workload characterization, 3D-stacked memory

I. INTRODUCTION

T
ODAY’S computing systems require moving data from

main memory (consisting of DRAM) to the CPU cores

so that computation can take place on the data. Unfortunately,

this data movement is a major bottleneck for system perfor-

mance and energy consumption [1, 2]. DRAM technology

scaling is failing to keep up with the increasing memory

demand from applications [2]–[29], resulting in significant

latency and energy costs due to data movement [1]–[3, 5, 6,

30]–[49]. High-performance systems have evolved to include

mechanisms that aim to alleviate data movement’s impact on

system performance and energy consumption, such as deep
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cache hierarchies and aggressive prefetchers. However, such

mechanisms not only come with significant hardware cost

and complexity, but they also often fail to hide the latency

and energy costs of accessing DRAM in many modern and

emerging applications [1, 5, 50]–[52]. These applications’

memory behavior can differ significantly from more tra-

ditional applications since modern applications often have

lower memory locality, more irregular access patterns, and

larger working sets [36, 45, 46, 53]–[61]. One promising

technique that aims to alleviate the data movement bottleneck

in modern and emerging applications is Near-Data Process-

ing (NDP) [1, 33, 34, 46]–[48, 54, 55, 59]–[118],1 where the

cost of data movement to/from main memory is reduced by

placing computation capability close to memory. In NDP, the

computational logic close to memory has access to data that

resides in main memory with significantly higher memory

bandwidth, lower latency, and lower energy consumption

than the CPU has in existing systems. There is very high

bandwidth available to the cores in the logic layer of 3D-

stacked memories, as demonstrated by many past works

(e.g., [1, 46, 59, 60, 62]–[64, 67]–[69, 74, 76, 99, 119]). To

illustrate this, we use the STREAM Copy [120] workload

to measure the peak memory bandwidth the host CPU and

an NDP architecture with processing elements in the logic

layer of a single 3D-stacked memory (e.g., Hybrid Memory

Cube [73]) can leverage.2 We observe that the peak memory

bandwidth that the NDP logic can leverage (431 GB/s) is

3.7× the peak memory bandwidth that the host CPU can

exploit (115 GB/s). This happens since the external memory

bandwidth is bounded by the limited number of I/O pins

available in the DRAM device [121].

Many recent works explore how NDP can benefit various

application domains, such as graph processing [46, 47, 54,

63, 74, 93, 122]–[126], machine learning [1, 61, 69, 70, 84,

85, 103], bioinformatics [59, 60, 68], databases [55, 61, 63,

66, 67, 74, 86, 102], security [71, 105, 106], data manip-

ulation [49, 86, 88, 89, 127]–[130], and mobile workloads

[1, 61]. These works demonstrate that simple metrics such

as last-level CPU cache Misses per Kilo-Instruction (MPKI)

and Arithmetic Intensity (AI) are useful metrics that serve

as a proxy for the amount of data movement an applica-

tion experiences. These metrics can be used as a potential

guide for choosing when to apply data movement mitigation

mechanisms such as NDP. However, such metrics (and the

corresponding insights) are often extracted from a small set

of applications, with similar or not-rigorously-analyzed data

movement characteristics. Therefore, it is difficult to general-

ize the metrics and insights these works provide to a broader

set of applications, making it unclear what different metrics

can reveal about a new (i.e., previously uncharacterized)

application’s data movement behavior (and how to mitigate

its associated data movement costs).

1We use the term NDP to refer to any type of Processing-in-
Memory [37].

2See Section II for our experimental evaluation methodology.

We illustrate this issue by highlighting the limitations

of two different methodologies commonly used to identify

memory bottlenecks and often used as a guide to justify the

use of NDP architectures for an application: (a) analyzing a

roofline model [131] of the application, and (b) using last-

level CPU cache MPKI as an indicator of NDP suitability

of the application. The roofline model correlates the com-

putation requirements of an application with its memory

requirements under a given system. The model contains two

roofs: (1) a diagonal line (y = Peak Memory Bandwidth ×
Arithmetic Intensity) called the memory roof, and (2) a hori-

zontal line (y = Peak System Throughput) called the compute

roof [131]. If an application lies under the memory roof, the

application is classified as memory-bound; if an application

lies under the compute roof, it is classified as compute-bound.

Many prior works [99, 103, 132]–[144] employ this roofline

model to identify memory-bound applications that can bene-

fit from NDP architectures. Likewise, many prior works [1,

36, 51, 54, 55, 145]–[150] observe that applications with high

last-level cache MPKI3 are good candidates for NDP.

Figure 1 shows the roofline model (left) and a plot of

MPKI vs. speedup (right) of a system with general-purpose

NDP support over a baseline system without NDP for a

diverse set of 44 applications (see Table 8). In the MPKI vs.

speedup plot, the MPKI corresponds to a baseline host CPU

system. The speedup represents the performance improve-

ment of a general-purpose NDP system over the baseline (see

Section II-D for our methodology). We make the following

observations. First, analyzing the roofline model (Figure 1,

left), we observe that most of the memory-bound applications

(yellow dots) benefit from NDP, as foreseen by prior works.

We later observe (in Section III-C1) that such applications

are DRAM bandwidth-bound and are a natural fit for NDP.

However, the roofline model does not accurately account

for the NDP suitability of memory-bound applications that

(i) benefit from NDP only under particular microarchitectural

configurations, e.g., either at low or high core counts (green

dots, which are applications that are either bottlenecked by

DRAM latency or suffer from L3 cache contention; see

Sections III-C3 and III-C4); or (ii) experience performance

degradation when executed using NDP (blue dots, which

are applications that suffer from the lack of a deep cache

hierarchy in NDP architectures; see Section III-C6). Second,

analyzing the MPKI vs. speedup plot (Figure 1, right), we

observe that while all applications with high MPKI ben-

efit from NDP (yellow dots with MPKI higher than 10),

some applications with low MPKI can also benefit from

NDP in all of the NDP microarchitecture configurations we

evaluate (yellow dots with MPKI lower than 10) or under

specific NDP microarchitecture configurations (green dots

with MPKI lower than 10). Thus, even though both the

roofline model and MPKI can identify some specific sources

of memory bottlenecks and can sometimes be used as a proxy

3Typically, an MPKI value greater than 10 is considered high by prior
works [151]–[157].
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Figure 1: Roofline (left) and last-level cache MPKI vs. NDP speedup (right) for 44 memory-bound applications.

Applications are classified into four categories: (1) those that experience performance degradation due to NDP (blue;

Faster on CPU), (2) those that experience performance improvement due to NDP (yellow; Faster on NDP), (3) those

where the host CPU and NDP performance are similar (red; Similar on CPU/NDP), (4) those that experience either

performance degradation or performance improvement due to NDP depending on the microarchitectural configuration

(green; Depends).

for NDP suitability, they alone cannot definitively determine

NDP suitability because they cannot comprehensively iden-

tify different possible sources of memory bottlenecks in a

system.

Our goal in this work is (1) to understand the major sources

of inefficiency that lead to data movement bottlenecks by

observing and identifying relevant metrics and (2) to develop

a benchmark suite for data movement that captures each

of these sources. To this end, we develop a new three-step

methodology to correlate application characteristics with the

primary sources of data movement bottlenecks and to deter-

mine the potential benefits of three example data movement

mitigation mechanisms: (1) a deep cache hierarchy, (2) a

hardware prefetcher, and (3) a general-purpose NDP archi-

tecture.4 We use two main profiling strategies to gather key

metrics from applications: (i) an architecture-independent

profiling tool and (ii) an architecture-dependent profiling

tool. The architecture-independent profiling tool provides

metrics that characterize the application memory behavior

independently of the underlying hardware. In contrast, the

architecture-dependent profiling tool evaluates the impact of

the system configuration (e.g., cache hierarchy) on the mem-

ory behavior. Our methodology has three steps. In Step 1,

we use a hardware profiling tool to identify memory-bound

functions across many applications. This step allows for a

quick first-level identification of many applications that suf-

fer from memory bottlenecks and functions that cause these

bottlenecks. In Step 2, we use the architecture-independent

profiling tool to collect metrics that provide insights about the

4We focus on these three data movement mitigation mechanisms for two
different reasons: (1) deep cache hierarchies and hardware prefetchers are
standard mechanisms in almost all modern systems, and (2) NDP represents
a promising paradigm shift for many modern data-intensive applications.

memory access behavior of the memory-bottlenecked func-

tions. In Step 3, we collect architecture-dependent metrics

and analyze the performance and energy of each function

in an application when each of our three candidate data

movement mitigation mechanisms is applied to the system.

By combining the data obtained from all three steps, we can

systematically classify the leading causes of data movement

bottlenecks in an application or function into different bottle-

neck classes.

Using this new methodology, we characterize a large,

heterogeneous set of applications (345 applications from 37

different workload suites) across a wide range of domains.

Within these applications, we analyze 77K functions and find

a subset of 144 functions from 74 different applications that

are memory-bound (and that consume a significant fraction

of the overall execution time). We fully characterize this

set of 144 representative functions to serve as a core set of

application kernel benchmarks, which we release as the open-

source DAMOV (DAta MOVement) Benchmark Suite [158].

Our analyses reveal six new insights about the sources of

memory bottlenecks and their relation to NDP:

1) Applications with high last-level cache MPKI and low

temporal locality are DRAM bandwidth-bound. These

applications benefit from the large memory bandwidth

available to the NDP system (Section III-C1).

2) Applications with low last-level cache MPKI and low

temporal locality are DRAM latency-bound. These ap-

plications do not benefit from L2/L3 caches. The NDP

system improves performance and energy efficiency by

sending L1 misses directly to DRAM (Section III-C2).

3) A second group of applications with low LLC MPKI and

low temporal locality are bottlenecked by L1/L2 cache

capacity. These applications benefit from the NDP system
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at low core counts. However, at high core counts (and

thus larger L1/L2 cache space), the caches capture most

of the data locality in these applications, decreasing the

benefits the NDP system provides (Section III-C3). We

make this observation using a new metric that we develop,

called last-to-first miss-ratio (LFMR), which we define

as the ratio between the number of LLC misses and the

total number of L1 cache misses. We find that this metric

accurately identifies how efficient the cache hierarchy is

in reducing data movement.

4) Applications with high temporal locality and low LLC

MPKI are bottlenecked by L3 cache contention at high

core counts. In such cases, the NDP system provides

a cost-effective way to alleviate cache contention over

increasing the L3 cache capacity (Section III-C4).

5) Applications with high temporal locality, low LLC MPKI,

and low AI are bottlenecked by the L1 cache capacity.

The three candidate data movement mitigation mecha-

nisms achieve similar performance and energy consump-

tion for these applications (Section III-C5).

6) Applications with high temporal locality, low LLC

MPKI, and high AI are compute-bound. These

applications benefit from a deep cache hierarchy

and hardware prefetchers, but the NDP system degrades

their performance (Section III-C6).

We publicly release our 144 representative data movement

bottlenecked functions from 74 applications as the first open-

source benchmark suite for data movement, called DAMOV

Benchmark Suite, along with the complete source code for

our new characterization methodology [158].

This work makes the following key contributions:

• We propose the first methodology to characterize data-

intensive workloads based on the source of their data

movement bottlenecks. This methodology is driven by

insights obtained from a large-scale experimental charac-

terization of 345 applications from 37 different benchmark

suites and an evaluation of the performance of memory-

bound functions from these applications with three data-

movement mitigation mechanisms.

• We release DAMOV, the first open-source benchmark suite

for main memory data movement-related studies, based

on our systematic characterization methodology. This suite

consists of 144 functions representing different sources of

data movement bottlenecks and can be used as a base-

line benchmark set for future data-movement mitigation

research.

• We show how our DAMOV benchmark suite can aid the

study of open research problems for NDP architectures,

via four case studies. In particular, we evaluate (i) the

impact of load balance and inter-vault communication in

NDP systems, (ii) the impact of NDP accelerators on

our memory bottleneck analysis, (iii) the impact of dif-

ferent core models on NDP architectures, and (iv) the

potential benefits of identifying simple NDP instructions.

We conclude that our benchmark suite and methodology

can be employed to address many different open research

and development questions on data movement mitigation

mechanisms, particularly topics related to NDP systems

and architectures.

II. METHODOLOGY OVERVIEW

We develop a new workload characterization methodology

to analyze data movement bottlenecks and the suitability of

different data movement mitigation mechanisms for these

bottlenecks, with a focus on Near-Data Processing (NDP).

Our methodology consists of three main steps, as Figure 2

depicts: (1) memory-bound function identification using ap-

plication profiling; (2) locality-based clustering to analyze

spatial and temporal locality in an architecture-independent

manner; and (3) memory bottleneck classification using a

scalability analysis to nail down the sources of memory

boundedness, including architecture-dependent characteriza-

tion. Our methodology takes as input an application’s source

code and its input datasets, and produces as output a clas-

sification of the primary source of memory bottleneck of

important functions in an application (i.e., bottleneck class of

each key application function). We illustrate the applicability

of this methodology with a detailed characterization of 144

functions that we select from among 77K analyzed functions

of 345 characterized applications. In this section, we give an

overview of our workload characterization methodology. We

use this methodology to drive the analyses we perform in

Section III.

A. EXPERIMENTAL EVALUATION FRAMEWORK

As our scalability analysis depends on the hardware archi-

tecture, we need a hardware platform that can allow us to

replicate and control all of our configuration parameters.

Unfortunately, such an analysis cannot be performed practi-

cally using real hardware, as (1) there are very few available

NDP hardware platforms, and the ones that currently exist

do not allow us to comprehensively analyze our general-

purpose NDP configuration in a controllable way (as existing

platforms are specialized and non-configurable); and (2) the

configurations of real CPUs can vary significantly across the

range of core counts that we want to analyze, eliminating

the possibility of a carefully controlled study. As a result,

we must rely on accurate simulation platforms to perform

an accurate comparison across different configurations. To

this end, we build a framework that integrates the ZSim

CPU simulator [159] with the Ramulator memory simu-

lator [160] to produce a fast, scalable, and cycle-accurate

open-source simulator called DAMOV-SIM [158]. We use

ZSim to simulate the core microarchitecture, cache hierarchy,

coherence protocol, and prefetchers. We use Ramulator to

simulate the DRAM architecture, memory controllers, and

memory accesses. To compute spatial and temporal locality,

we modify ZSim to generate a single-thread memory trace

for each application, which we use as input for the locality

analysis algorithm described in Section II-C (which statically
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Figure 2: Overview of our three-step workload characterization methodology.

computes the temporal and spatial locality at word-level

granularity).

B. STEP 1: MEMORY-BOUND FUNCTION

IDENTIFICATION

The first step (labeled ❶ in Figure 2) aims to identify the

functions of an application that are memory-bound (i.e.,

functions that suffer from data movement bottlenecks). These

bottlenecks might be caused at any level of the memory

hierarchy. There are various potential sources of memory

boundedness, such as cache misses, cache coherence traffic,

and long queuing latencies. Therefore, we need to take all

such potential causes into account. This step is optional if

the application’s memory-bound functions (i.e., regions of

interest, roi, in Figure 2) are already known a priori.

Hardware profiling tools, both open-source and propri-

etary, are available to obtain hardware counters and metrics

that characterize the application behavior on a computing

system. In this work, we use the Intel VTune Profiler [161],

which implements the well-known top-down analysis [162].

Top-down analysis uses the available CPU hardware counters

to hierarchically identify different sources of CPU system

bottlenecks for an application. Among the various metrics

measured by top-down analysis, there is a relevant one called

Memory Bound [163] that measures the percentage of CPU

pipeline slots that are not utilized due to any issue related to

data access. We employ this metric to identify functions that

suffer from data movement bottlenecks (which we define as

functions where Memory Bound is greater than 30%).

C. STEP 2: LOCALITY-BASED CLUSTERING

Two key properties of an application’s memory access pat-

tern are its inherent spatial locality (i.e., the likelihood of

accessing nearby memory locations in the near future) and

temporal locality (i.e., the likelihood of accessing a memory

location again in the near future). These properties are closely

related to how well the application can exploit the memory

hierarchy in computing systems and how accurate hardware

prefetchers can be. Therefore, to understand the sources of

memory bottlenecks for an application, we should analyze

how much spatial and temporal locality its memory accesses

inherently exhibit. However, we should isolate these prop-

erties from particular configurations of the memory subsys-

tem. Otherwise, it would be unclear if memory bottlenecks

are due to the nature of the memory accesses or due to

the characteristics and limitations of the memory subsystem

(e.g., limited cache size, too simple or inaccurate prefetching

policies). As a result, in this step (labeled ❷ in Figure 2), we

use architecture-independent static analysis to obtain spatial

and temporal locality metrics for the functions selected in the

previous step (Section II-B). Past works [164]–[173] propose

different ways of analyzing spatial and temporal locality in

an architecture-independent manner. In this work, we use the

definition of spatial and temporal metrics presented in [166,

167].

The spatial locality metric is calculated for a window of

memory references5 of length W using Equation 1. First, for

every W memory references, we calculate the minimum dis-

tance between any two addresses (stride). Second, we create

a histogram called the stride profile, where each bin i stores

how many times each stride appears. Third, to calculate the

spatial locality, we divide the percentage of times stride i is

referenced (stride profile(i)) by the stride length i and sum

the resulting value across all instances of i.

Spatial Locality =

#bins∑

i=1

stride profile(i)

i
(1)

A spatial locality value close to 0 is caused by large stride

values (e.g., regular accesses with large strides) or random

accesses, while a value equal to 1 is caused by a completely

sequential access pattern.

The temporal locality metric is calculated by using a

histogram of reused addresses. First, we count the number

of times each memory address is repeated in a window of

L memory references. Second, we create a histogram called

reuse profile, where each bin i represents the number of times

a memory address is reused, expressed as a power of 2. For

each memory address, we increment the bin that represents

5We compute both the spatial and temporal locality metrics at the
word granularity. In this way, we keep our locality analysis architecture-
independent, using only properties of the application under study.
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the corresponding number of repetitions. For example, reuse

profile(0) represents memory addresses that are reused only

once. reuse profile(1) represents memory addresses that are

reused twice. Thus, if a memory address is reused N times,

we increment reuse profile(⌊log2N⌋) by one. Third, we ob-

tain the temporal locality metric with Equation 2.

Temporal Locality =

#bins∑

i=0

2i × reuse profile(i)

total memory accesses

(2)

A temporal locality value of 0 indicates no data reuse, while

a value close to 1 indicates very high data reuse (i.e., a

value equal to 1 means that the application accesses a single

memory address continuously).

To calculate these metrics, we empirically select window

lengths W and L to 32. We find that different values chosen

for W and L do not significantly change the conclusions of our

analysis. We observe that our conclusions remain the same

when we set both values to 8, 16, 32, 64, and 128.

D. STEP 3: BOTTLENECK CLASSIFICATION

While Step 2 allows us to understand inherent application

sources for memory boundedness, it is important to under-

stand how hardware architectural features can also result in

memory bottlenecks. As a result, in our third step (❸ in

Figure 2), we perform a scalability analysis of the func-

tions selected in Step 1, where we evaluate performance

and energy scaling for three different system configurations.

The scalability analysis makes use of three architecture-

dependent metrics: (1) Arithmetic Intensity (AI), (2) Misses

per Kilo-Instruction (MPKI), and (3) a new metric called

Last-to-First Miss-Ratio (LFMR). We select these metrics for

the following reasons. First, AI can measure the compute in-

tensity of an application. Intuitively, we expect an application

with high compute intensity to not suffer from severe data

movement bottlenecks, as demonstrated by prior work [174].

Second, MPKI serves as a proxy for the memory intensity

of an application. It can also indicate the memory pressure

experienced by the main memory system [45, 47, 48, 58,

151, 153, 156, 175]–[177]. Third, LFMR, a new metric we

introduce and is described in detail later in this subsection,

indicates how efficient the cache hierarchy is in reducing data

movement.

As part of our methodology development, we eval-

uate other metrics related to data movement, including

raw cache misses, coherence traffic, and DRAM row

misses/hits/conflicts. We observe that even though such

metrics are useful for further characterizing an applica-

tion (as we do in some of our later analyses in Sec-

tion III-C), they do not necessarily characterize a specific

type of data movement bottleneck. We show in Section IV-A

that the three architecture-dependent and two architecture-

independent metrics we select for our classification are

enough to accurately characterize and cluster the different

types of data movement bottlenecks in a wide variety of

applications.

1) Definition of Metrics.

We define Arithmetic Intensity (AI) as the number of arith-

metic and logic operations performed per L1 cache line ac-

cessed.6 This metric indicates how much computation there

is per memory request. Intuitively, applications with high AI

are likely to be computationally intensive, while applications

with low AI tend to be memory intensive. We use MPKI at

the last-level cache (LLC), i.e., the number of LLC misses per

one thousand instructions. This metric is considered to be a

good indicator of NDP suitability by several prior works [1,

36, 51, 54, 55, 145]–[149]. We define the LFMR of an

application as the ratio between the number of LLC misses

and the total number of L1 cache misses. We find that this

metric accurately identifies how much an application benefits

from the deep cache hierarchy of a contemporary CPU. An

LFMR value close to 0 means that the number of LLC misses

is very small compared to the number of L1 misses, i.e., the

L1 misses are likely to hit in the L2 or L3 caches. However,

an LFMR value close to 1 means that very few L1 misses hit

in L2 or L3 caches, i.e., the application does not benefit much

from the deep cache hierarchy, and most L1 misses need to

be serviced by main memory.

2) Scalability Analysis and System Configuration.

The goal of the scalability analysis we perform is to nail

down the specific sources of data movement bottlenecks in

the application. In this analysis, we (i) evaluate the perfor-

mance and energy scaling of an application in three different

system configurations; and (ii) collect the key metrics for our

bottleneck classification (i.e., AI, MPKI, and LFMR). During

scalability analysis, we simulate three system configurations

of a general-purpose multicore processor:

• A host CPU with a deep cache hierarchy (i.e., private L1

(32 kB) and L2 (256 kB) caches, and a shared L3 (8 MB)

cache with 16 banks). We call this configuration Host CPU.

• A host CPU with a deep cache hierarchy (same cache

configurations as in Host CPU), augmented with a stream

prefetcher [178]. We call this configuration Host CPU with

prefetcher.

• An NDP CPU with a single level of cache (only a private

read-only7 L1 cache (32 kB), as assumed in many prior

NDP works [1, 46, 51, 63, 66, 74, 99, 101, 119, 179]) and

no hardware prefetcher. We call this configuration NDP.

The remaining components of the processor configuration are

kept the same (e.g., number of cores, instruction window

6We consider AI to be architecture-dependent since we consider the
number of cache lines accessed by the application (and hence the hardware
cache block size) to compute the metric. This is the same definition of AI
used by the hardware profiling tool we employ in Step 1 (i.e., the Intel VTune
Profiler [161]).

7We use read-only L1 caches to simplify the cache coherence model
of the NDP system. Enabling efficient synchronization and cache coherence
in NDP architectures is an open-research problem, as we discuss in Sec-
tion III-F.
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size, branch predictor) to isolate the impact of only the

caches, prefetchers, and NDP. This way, we expect that

the performance and energy differences between the three

configurations to come exclusively from the different data

movement requirements. For the three configurations, we

sweep the number of CPU cores in our analysis from 1 to 256,

as previous works [46, 66, 180] show that large core counts

are necessary to saturate the bandwidth provided by modern

high-bandwidth memories, and because modern CPUs and

NDP proposals can have varying core counts. The core count

sweep allows us to observe (1) how an application’s perfor-

mance changes when increasing the pressure on the memory

subsystem, (2) how much Memory-Level Parallelism (MLP)

[176, 181]–[184] the application has, and (3) how much the

cores leverage the cache hierarchy and the available memory

bandwidth. We proportionally increase the size of the CPU’s

private L1 and L2 caches when increasing the number of

CPU cores in our analysis (e.g., when scaling the CPU core

count from 1 to 4, we also scale the aggregated L1/L2 cache

size by a factor of 4). We use out-of-order and in-order

CPU cores in our analysis for all three configurations. In

this way, we build confidence that our trends and findings

are independent of a specific underlying general-purpose

core microarchitecture. We simulate a memory architecture

similar to the Hybrid Memory Cube (HMC) [73], where (1)

the host CPU accesses memory through a high-speed off-

chip link, and (2) the NDP logic resides in the logic layer

of the memory chip and has direct access to the DRAM

banks (thus taking advantage of higher memory bandwidth

and lower memory latency). Table 1 lists the parameters of

our host CPU, host CPU with prefetcher, and NDP baseline

configurations.

3) Choosing an NDP Architecture.

We note that across the proposed NDP architectures in lit-

erature, there is a lack of consensus on whether the archi-

tectures should make use of general-purpose NDP cores or

specialized NDP accelerators [36, 37]. In this work, we focus

on general-purpose NDP cores for two major reasons. First,

many prior works (e.g., [1, 46, 51, 63, 66, 76, 99, 101,

119, 147, 179, 190, 192]–[194]) suggest that general-purpose

cores (especially simple in-order cores) can successfully

accelerate memory-bound applications in NDP architectures.

In fact, UPMEM [83], a start-up building some of the first

commercial in-DRAM NDP systems, utilizes simple in-order

cores in their NDP units inside DRAM chips [83, 140].

Therefore, we believe that general-purpose NDP cores are

a promising candidate for future NDP architectures. Second,

the goal of our work is not to perform a design space explo-

ration of different NDP architectures, but rather to understand

the key properties of applications that lead to memory bottle-

necks that can be mitigated by a simple NDP engine. While

we expect that each application could potentially benefit

further from an NDP accelerator tailored to its computational

and memory requirements, such customized architectures

open many challenges for a methodical characterization, such

as the need for significant code refactoring, changes in data

mapping, and code partitioning between NDP accelerators

and host CPUs.8,9

III. CHARACTERIZING MEMORY BOTTLENECKS
In this section, we apply our three-step workload character-

ization methodology to characterize the sources of memory

bottlenecks across a wide range of applications. First, we ap-

ply Step 1 to identify memory-bound functions within an ap-

plication (Section III-A). Second, we apply Step 2 and cluster

the identified functions using two architecture-independent

metrics (spatial and temporal locality) (Section III-B). Third,

we apply Step 3 and combine the architecture-dependent

and architecture-independent metrics to classify the different

sources of memory bottlenecks we observe (Section III-C).

We also evaluate various other aspects of our three-step

workload characterization methodology. We investigate the

effect of increasing the last-level cache on our memory bot-

tleneck classification in Section III-D. We provide a valida-

tion of our memory bottleneck classification in Section III-E.

We discuss the limitations of our proposed methodology in

Section III-F.

A. STEP 1: MEMORY-BOUND FUNCTION

IDENTIFICATION

We first apply Step 1 of our methodology across 345 appli-

cations (listed in Appendix C) to identify functions whose

performance is significantly affected by data movement. We

use the previously-proposed top-down analysis methodol-

ogy [162] that has been used by several recent workload

characterization studies [5, 195, 196]. As discussed in Sec-

tion II-B, we use the Intel VTune Profiler [161], which we

run on an Intel Xeon E3-1240 processor [197] with four

cores. We disable hyper-threading for more accurate profiling

results, as recommended by the VTune documentation [198].

For the applications that we analyze, we select functions

(1) that take at least 3% of the clock cycles, and (2) that

have a Memory Bound percentage that is greater than 30%.

We choose 30% as the threshold for this metric because,

in preliminary simulation experiments, we do not observe

significant performance improvement or energy savings with

data movement mitigation mechanisms for functions whose

Memory Bound percentage is less than 30%.

The applications we analyze come from a variety of

sources, such as popular workload suites (Chai [199],

CORAL [200], Parboil [201], PARSEC [202],

Rodinia [203], SD-VBS [204], SPLASH-2 [205]),

benchmarking (STREAM [120], HPCC [206], HPCG [207]),

bioinformatics [208], databases [209, 210], graph processing

frameworks (GraphMat [211], Ligra [212]), a map-reduce

framework (Phoenix [213]), and neural networks (AlexNet

8We show in Section V-B that our DAMOV benchmark suite is useful
to rigorously study NDP accelerators.

9The development of a new methodology or extension of our method-
ology to perform analysis targeting function-specific, customized, or recon-
figurable NDP accelerators is a good direction for future work.
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Table 1: Evaluated Host CPU and NDP system configurations.

Host CPU Configuration

Host CPU
Processor

1, 4, 16, 64, and 256 cores @2.4 GHz, 32 nm; 4-wide out-of-order

1, 4, 16, 64, and 256 cores @2.4 GHz, 32 nm; 4-wide in-order

Buffers: 128-entry ROB; 32-entry LSQ (each)

Branch predictor: Two-level GAs [185]. 2,048 entry BTB; 1 branch per fetch

Private
L1 Cache

32 KB, 8-way, 4-cycle; 64 B line; LRU policy

Energy: 15/33 pJ per hit/miss [51, 186]

Private
L2 Cache

256 KB, 8-way, 7-cycle; 64 B line; LRU policy

MSHR size: 20-request, 20-write, 10-eviction

Energy: 46/93 pJ per hit/miss [51, 186]

Shared
L3 Cache

8 MB (16-banks), 0.5 MB per bank, 16-way, 27-cycle

64 B line; LRU policy; Bi-directional ring [187]; Inclusive; MESI protocol [188]

MSHR size: 64-request, 64-write, 64-eviction

Energy: 945/1904 pJ per hit/miss [51, 186]

Host CPU with Prefetcher Configuration

Processor,

Private L1 Cache, Private L2 Cache,

and Share L3 Cache
Same as in Host CPU Configuration

L2 Cache Prefetcher Stream prefetcher [178, 189]: 2-degree; 16 stream buffers; 64 entries

NDP Configuration

NDP CPU
Processor

1, 4, 16, 64, and 256 cores @2.4 GHz, 32 nm; 4-wide out-of-order

1, 4, 16, 64, and 256 cores @ 2.4 GHz, 32 nm; 4-wide in-order

Buffers: 128-entry ROB; 32-entry LSQ (each)

Branch predictor: Two-level GAs [185]. 2,048 entry BTB; 1 branch per fetch

Private
L1 Cache

32 KB, 8-way, 4-cycle; 64 B line; LRU policy; Read-only Data Cache

Energy: 15/33 pJ per hit/miss [51, 186]

Common

Main Memory

HMC v2.0 Module [73] 32 vaults, 8 DRAM banks/vault, 256 B row buffer

8 GB total size; DRAM@166 MHz; 4-links@8 GHz

8 B burst width at 2:1 core-to-bus freq. ratio; Open-page policy; HMC default interleaving [45, 73]10

Energy: 2 pJ/bit internal, 8 pJ/bit logic layer [51, 64, 190], 2 pJ/bit links [51, 76, 191]

[214], Darknet [215]). We explore different input dataset

sizes for the applications and choose real-world input

datasets that impose high pressure on the memory subsystem

(as we expect that such real-world inputs are best suited for

stressing the memory hierarchy). We also use different inputs

for applications whose performance is tightly related to the

input dataset properties. For example, we use two different

graphs with varying connectivity degrees (rMat [217] and

USA [218]) to evaluate graph processing applications and

two different read sequences to evaluate read alignment

algorithms [60, 219, 220].

In total, our application analysis covers more than 77K

functions. To date, this is the most extensive analysis of data

movement bottlenecks in real-world applications. We find a

set of 144 functions that take at least 3% of the total clock

cycles and have a value of the Memory Bound metric greater

or equal to 30%, which forms the basis of DAMOV, our

new data movement benchmark suite. We provide a list of all

144 functions selected based on our analysis and their major

characteristics in Appendix A.

After identifying memory-bound functions over a wide

10The default HMC interleaving scheme (Row:Column:Bank:Vault [73])
interleaves consecutive cache lines across vaults, and then across
banks [216].

range of applications, we apply Steps 2 and 3 of our method-

ology to classify the primary sources of memory bottlenecks

for our selected functions. We evaluate a total of 144 func-

tions out of the 77K functions we analyze in Step 1. These

functions span across 74 different applications, belonging to

16 different widely-used benchmark suites or frameworks.

From the 144 functions that we analyze further, we select

a subset of 44 representative functions to explore in-depth in

Sections III-B and III-C and to drive our bottleneck classi-

fication analysis. We use the 44 representative functions to

ease our explanations and make figures more easily readable.

Table 8 in Appendix A lists the 44 representative functions

that we select. The table includes one column that indicates

the class of data movement bottleneck experienced by each

function (we discuss the classes in Section III-C), and an-

other column representing the percentage of clock cycles

of the selected function in the whole application. We select

representative functions that belong to a variety of domains:

benchmarking, bioinformatics, data analytics, databases, data

mining, data reorganization, graph processing, neural net-

works, physics, and signal processing. In Section III-E, we

validate our classification using the remaining 100 functions

and provide a summary of the results of our methodology

when applied to all 144 functions.
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B. STEP 2: LOCALITY-BASED CLUSTERING

We cluster the 44 representative functions across both spatial

and temporal locality using the K-means clustering algo-

rithm [221]. Figure 3 shows how each function is grouped.

We find that two groups emerge from the clustering: (1) low

temporal locality functions (orange boxes in Figure 3), and

(2) high temporal locality functions (blue boxes in Figure 3).

Intuitively, the closer a function is to the bottom-left corner

of the figure, the less likely it is to take advantage of a

multi-level cache hierarchy. These functions are more likely

to be good candidates for NDP. However, as we see in

Section III-C, the NDP suitability of a function also depends

on a number of other factors.

C. STEP 3: BOTTLENECK CLASSIFICATION

Within the two groups of functions identified in Section III-B,

we use three key metrics (AI, MPKI, and LFMR) to classify

the memory bottlenecks. We observe that the AI of the

analyzed low temporal locality functions is low (i.e., always

less than 2.2 ops/cache line, with an average of 1.3 ops/cache

line). Among the high temporal locality functions, there are

some with low AI (minimum of 0.3 ops/cache line) and

others with high AI (maximum of 44 ops/cache line). LFMR

indicates whether a function benefits from a deeper cache

hierarchy. When LFMR is low (i.e., less than 0.1), then a

function benefits significantly from a deeper cache hierarchy,

as most misses from the L1 cache hit in either the L2 or L3

caches. When LFMR is high (i.e., greater than 0.7), then most

L1 misses are not serviced by the the L2 or L3 caches, and

must go to memory. A medium LFMR (0.1–0.7) indicates

that a deeper cache hierarchy can mitigate some, but not

a very large fraction of L1 cache misses. MPKI indicates

the memory intensity of a function (i.e., the rate at which

requests are issued to DRAM). We say that a function is

memory-intensive (i.e., it has a high MPKI) when the MPKI

is greater than 10, which is the same threshold used by prior

works [151]–[157].

We find that six classes of functions emerge, based on

their temporal locality, AI, MPKI, and LFMR values, as

we observe from Figures 3 and 4. We observe that spatial

locality is not a key metric for our classification (i.e., it

does not define a bottleneck class) because the L1 cache,

which is present in both host CPU and NDP system con-

figurations, can capture most of the spatial locality for a

function. Figure 4 shows the LFMR and MPKI values for

each class. Note that we do not have classes of functions

for all possible combinations of metrics. In our analysis, we

obtain the temporal locality, AI, MPKI, and LFMR values

and their combinations empirically. Fundamentally, not all

value combinations of different metrics are possible. We list

some of the combinations we do not observe in our analysis

of 144 functions:

• A function with high LLC MPKI does not display low

LFMR. This is because a low LFMR happens when most

L1 misses hit the L2/L3 caches. Thus, it becomes highly

unlikely for the L3 cache to suffer many misses when the

L2/L3 caches do a good job in fulfilling L1 cache misses.

• A function with high temporal locality does not display
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Figure 3: Locality-based clustering of 44 representative functions.
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Figure 4: L3 Cache MPKI and Last-to-First Miss Ratio (LFMR) for 44 representative functions.

both high LFMR and high MPKI. This is because a func-

tion with high temporal locality will likely issue repeated

memory requests to few memory addresses, which will

likely be serviced by the cache hierarchy.

• A function with low temporal locality does not display low

LFMR since there is little data locality to be captured by

the cache hierarchy.

We discuss each class in detail below, identifying the mem-

ory bottlenecks for each class and whether the NDP system

can alleviate these bottlenecks. To simplify our explanations,

we focus on a smaller set of 12 representative functions

(out of the 44 representative functions) for this part of the

analysis. Figure 5 shows how each of the 12 functions scales

in terms of performance for the host CPU, host CPU with

prefetcher, and NDP system configurations.

1) Class 1a: Low Temporal Locality, Low AI, High LFMR, and

High MPKI (DRAM Bandwidth-Bound Functions)

Functions in this class exert high main memory pressure

since they are highly memory intensive and have low data

reuse. To understand how this affects a function’s suitability

for NDP, we study how performance scales as we increase

the number of cores available to a function, for the host CPU,

host CPU with prefetcher, and NDP system configurations.

Figure 5(a) depicts performance11 as we increase the core

count, normalized to the performance of one host CPU core,

for two representative functions from Class 1a (HSJNPO and

LIGPrkEmd; we see similar trends for all functions in the

class).

We make three observations from the figure. First, as the

number of host CPU cores increases, performance eventually

stops increasing significantly. For HSJNPO, host CPU per-

formance increases by 27.5× going from 1 to 64 host CPU

cores but only 27% going from 64 host CPU cores to 256

11Performance is the inverse of application execution time.

host CPU cores. For LIGPrkEmd, host CPU performance

increases by 33× going from 1 to 64 host CPU cores but

decreases by 20% going from 64 to 256 host CPU cores.

We find that the lack of performance improvement at large

host CPU core counts is due to main memory bandwidth

saturation, as shown in Figure 6. Given the limited DRAM

bandwidth available across the off-chip memory channel, we

find that Class 1a functions saturate the DRAM bandwidth

once enough host CPU cores (e.g., 64) are used, and thus

these functions are bottlenecked by the DRAM bandwidth.

Second, the host CPU system with prefetcher slows down

the execution of the HSJNPO (LIGPrkEmd) function com-

pared with the host CPU system without prefetcher by 43%

(38%), on average across all core counts. The prefetcher

is ineffective since these functions have low temporal and

spatial locality. Third, when running on the NDP system, the

functions see continued performance improvements as the

number of NDP cores increases. By providing the functions

with access to the much higher bandwidth available inside

memory, the NDP system can greatly outperform the host

CPU system at a high enough core count. For example, at

64/256 cores, the NDP system outperforms the host CPU

system by 1.7×/4.8× for HSJNPO, and by 1.5×/4.1× for

LIGPrkEmd.

Figure 7 depicts the energy breakdown for our two rep-

resentative functions. We make two observations from the

figure. First, for HSJNPO, the energy spent on DRAM for

both host CPU system and NDP system are similar. This is

due to the function’s poor locality, as 98% of its memory

requests miss in the L1 cache. Since LFMR is near 1, L1

miss requests almost always miss in the L2 and L3 caches and

go to DRAM in the host CPU system for all core counts we

evaluate, which requires significant energy to query the large

caches and then to perform off-chip data transfers. The NDP

system does not access L2, L3, and off-chip links, leading
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Figure 5: Performance of 12 representative functions on three systems: host CPU, host CPU with prefetcher, and NDP,

normalized to one host CPU core.
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Figure 6: Host CPU system IPC vs. utilized DRAM Band-

width for representative Class 1a functions.

to large system energy reduction. Second, for LIGPrkEmd,

the DRAM energy is higher in the NDP system than in the

host CPU system. Since the function’s LFMR is 0.7, some

memory requests that would be cache hits in the host CPU’s

L2 and L3 caches are instead sent directly to DRAM in the

NDP system. However, the total energy consumption on the

host CPU system is still larger than that on the NDP system,

again because the NDP system eliminates the L2, L3 and off-

chip link energy.
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Figure 7: Cache and DRAM energy breakdown for repre-

sentative Class 1a functions at 1, 4, 16, 64, and 256 cores.

DRAM bandwidth-bound applications such as those in

Class 1a have been the primary focus of a large number

of proposed NDP architectures (e.g., [1, 46, 54, 69, 76,

132, 133, 192, 222, 223]), as they benefit from increased

main memory bandwidth and do not have high AI (and,

thus, do not benefit from complex cores on the host CPU

system). An NDP architecture for a function in Class 1a

needs to extract enough MLP [57, 176, 181]–[184, 224]–

[229] to maximize the usage of the available internal memory

bandwidth. However, prior work has shown that this can be

challenging due to the area and power constraints in the logic

layer of a 3D-stacked DRAM [1, 46]. To exploit the high

memory bandwidth while satisfying these area and power

constraints, the NDP architecture should leverage application

memory access patterns to efficiently maximize main mem-

ory bandwidth utilization.

We find that there are two dominant types of memory

access patterns among our Class 1a functions. First, functions

with regular access patterns (DRKYolo, STRAdd, STRCpy,

STRSca, STRTriad) can take advantage of specialized ac-

celerators or Single Instruction Multiple Data (SIMD) archi-

tectures [1, 66], which can exploit the regular access patterns

to issue many memory requests concurrently. Such accelera-

tors or SIMD architectures have hardware area and thermal

dissipation that fall well within the constraints of 3D-stacked

DRAM [1, 46, 64, 230]. Second, functions with irregu-

lar access patterns (HSJNPO, LIGCompEms, LIGPrkEmd,

LIGRadiEms) require techniques to extract MLP while still

fitting within the design constraints. This requires techniques

that cater to the irregular memory access patterns, such as

prefetching algorithms designed for graph processing [46,

231]–[235], pre-execution of difficult access patterns [57,

58, 151, 183, 184, 236]–[243] or hardware accelerators for

pointer chasing [55, 56, 149, 193, 244]–[246].
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2) Class 1b: Low Temporal Locality, Low AI, High LFMR, and

Low MPKI (DRAM Latency-Bound Functions)

While functions in this class do not effectively use the host

CPU caches, they do not exert high pressure on the main

memory due to their low MPKI. Across all Class 1b func-

tions, the average DRAM bandwidth consumption is only

0.5 GB/s. However, all the functions have very high LFMR

values (the minimum is 0.94 for CHAHsti), indicating that

the host CPU L2 and L3 caches are ineffective. Because the

functions cannot exploit significant MLP but still incur long-

latency requests to DRAM, the DRAM requests fall on the

critical path of execution and stall forward progress [57, 58,

151, 176, 247]. Thus, Class 1b functions are bottlenecked by

DRAM latency. Figure 5(b) shows performance of both the

host CPU system and the NDP system for two representative

functions from Class 1b (CHAHsti and PLYalu). We ob-

serve that while performance of both the host CPU system

and the NDP system scale well as the core count increases,

NDP system performance is always higher than the host CPU

system performance for the same core count. The maximum

(average) speedup with NDP over host CPU at the same core

count is 1.15× (1.12×) for CHAHsti and 1.23× (1.13×) for

PLYalu.

We find that the NDP system’s improved performance is

due to a reduction in the Average Memory Access Time

(AMAT) [248]. Figure 8 shows the AMAT for our two

representative functions. Memory accesses take significantly

longer in the host CPU system than in the NDP system due

to the additional latency of looking up requests in the L2 and

L3 caches, even though data is rarely present in those caches,

and going through the off-chip links.
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Figure 8: Average Memory Access Time (AMAT) for

representative Class 1b functions.

Figure 9 shows the energy breakdown for Class 1b rep-

resentative functions. Similar to Class 1a, we observe that

the L2/L3 caches and off-chip links are a large source of

energy usage in the host CPU system. While DRAM energy

increases in the NDP system, as L2/L3 hits in the host CPU

system become DRAM lookups with NDP, the overall energy

consumption in the NDP system is greatly smaller (by 69%

maximum and 39% on average) due to the lack of L2 and L3

caches.

Class 1b functions benefit from the NDP system, but

primarily because of the lower memory access latency (and

energy) that the NDP system provides for memory requests

that need to be serviced by DRAM. These functions could
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Figure 9: Energy breakdown for representative Class 1b

functions.

benefit from other latency and energy reduction techniques,

such as L2/L3 cache bypassing [51, 249]–[260], low-latency

DRAM [15, 22]–[26, 89, 127, 261]–[276], and better mem-

ory access scheduling [153]–[157, 175]–[177, 247, 277]–

[290]. However, they generally do not benefit significantly

from prefetching (as seen in Figure 5(b)), since infrequent

memory requests make it difficult for the prefetcher to suc-

cessfully train on an access pattern.

3) Class 1c: Low Temporal Locality, Low AI, Decreasing

LFMR with Core Count, and Low MPKI (L1/L2 Cache Capacity

Bottlenecked Functions)

We find that the behavior of functions in this class depends on

the number of cores they are using. Figure 5(c) shows the host

CPU system and the NDP system performance as we increase

the core count for two representative functions (DRKRes

and PRSFlu). We make two observations from the figure.

First, at low core counts, the NDP system outperforms the

host CPU system. With a low number of cores, the functions

have medium to high LFMR (0.5 for DRKRes at 1 and 4

host CPU cores; 0.97 at 1 host CPU core and 0.91 at 4 host

CPU cores for PRSFlu), and behave like Class 1b functions,

where they are DRAM latency-sensitive. Second, as the core

count increases, the host CPU system begins to outperform

the NDP system. For example, beyond 16 (64) cores, the

host CPU system outperforms the NDP system for DRKRes

(PRSFlu). This is because as the core count increases, the

aggregate L1 and L2 cache size available at the host CPU

system grows, which reduces the miss rates of both L2 and

L3 caches. As a result, the LFMR decreases significantly

(e.g., at 256 cores, LFMR is 0.09 for DRKRes and 0.35

for PRSFlu). This indicates that the available L1/L2 cache

capacity bottlenecks Class 1c functions.

Figure 10 shows the energy breakdown for Class 1c func-

tions. We make three observations from the figure. First,

for functions with larger LFMR values (PRSFlu), the NDP

system provides energy savings over the host CPU system

at lower core counts, since the NDP system eliminates the

energy consumed due to L3 and off-chip link accesses.

Second, for functions with smaller LFMR values (DRKRes),

the NDP system does not provide energy savings even for

low core counts. Due to the medium LFMR, enough requests

still hit in the host CPU system L2/L3 caches, and these

cache hits become DRAM accesses in the NDP system,
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which consume more energy than the cache hits. Third, at

high-enough core counts, the NDP system consumes more

energy than the host CPU system for all Class 1c functions.

As the LFMR decreases, the functions effectively utilize the

caches in the host CPU system, reducing the off-chip traffic

and, consequently, the energy Class 1c functions spend on

accessing DRAM. The NDP system, which does not have L2

and L3 caches, pays the larger energy cost of a DRAM access

for all L2/L3 hits in the host CPU system.
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Figure 10: Energy breakdown for representative Class 1c

functions.

We find that the primary source of the memory bottle-

neck in Class 1c functions is limited L1/L2 cache capacity.

Therefore, while the NDP system improves performance and

energy of some Class 1c functions at low core counts (with

lower associated L1/L2 cache capacity), the NDP system

does not provide performance and energy benefits across all

core counts for Class 1c functions.

4) Class 2a: High Temporal Locality, Low AI, Increasing

LFMR with Core Count, and Low MPKI (L3 Cache Contention

Bottlenecked Functions)

Like Class 1c functions, the behavior of the functions in

this class depends on the number of cores that they use.

Figure 5(d) shows the host CPU system and the NDP system

performance as we increase the core count for two repre-

sentative functions (PLYGramSch and SPLFftRev). We

make two observations from the figure. First, at low core

counts, the functions do not benefit from the NDP system.

In fact, for a single core (16 cores), PLYGramSch slows

down by 67% (3×) when running on the NDP system, com-

pared to running on the host CPU system. This is because,

at low core counts, these functions make reasonably good

use of the cache hierarchy, with LFMR values of 0.03 for

PLYGramSch and lower than 0.44 for SPLFftRev until

16 host CPU cores. We confirm this in Figure 11, where we

see that very few memory requests for PLYGramSch and

SPLFftRev go to DRAM (5% for PLYGramSch, and at

most 13% for SPLFftRev) at core counts lower than 16.

Second, at high core counts (i.e., 64 for PLYGramSch and

256 for SPLFftRev), the host CPU system performance

starts to decrease. This is because Class 2a functions are

bottlenecked by cache contention. At 256 cores, this con-

tention undermines the cache effectiveness and causes the

LFMR to increase to 0.97 for PLYGramSch and 0.93 for

SPLFftRev. With the last-level cache rendered essentially

ineffective, the NDP system greatly improves performance

over the host CPU system: by 2.23× for PLYGramSch and

3.85× for SPLFftRev at 256 cores.
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Figure 11: Memory request breakdown for representative

Class 2a functions.

One impact of the increased cache contention is that it

converts these high-temporal-locality functions into memory

latency-bound functions. We find that with the increased

number of requests going to DRAM due to cache contention,

the AMAT increases significantly, in large part due to queu-

ing at the memory controller. At 256 cores, the queuing

becomes so severe that a large fraction of requests (24% for

PLYGramSch and 67% for SPLFftRev) must be reissued

because the memory controller queues are full. The increased

main memory bandwidth available to the NDP cores allows

the NDP system to issue many more requests concurrently,

which reduces the average length of the queue and, thus,

the main memory latency. The NDP system also reduces

memory access latency by getting rid of L2/L3 cache lookup

and interconnect latencies.

Figure 12 shows the energy breakdown for the two rep-

resentative Class 2a functions. We make two observations.

First, the host CPU system is more energy-efficient than the

NDP system at low core counts, as most of the memory re-

quests are served by on-chip caches in the host CPU system.

Second, the NDP system provides large energy savings over

the host CPU system at high core counts. This is due to

the increased cache contention, which increases the number

of off-chip requests that the host CPU system must make,

increasing the L3 and off-chip link energy.
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Figure 12: Energy breakdown for representative Class 2a

functions.

We conclude that cache contention is the primary scala-

bility bottleneck for Class 2a functions, and the NDP sys-

tem can provide an effective way of mitigating this cache

contention bottleneck without incurring the high area and
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energy overheads of providing additional cache capacity in

the host CPU system, thereby improving the scalability of

these applications to high core counts.

5) Class 2b: High Temporal Locality, Low AI, Low/Medium

LFMR, and Low MPKI (L1 Cache Capacity Bottlenecked

Functions)

Figure 5(e) shows the host CPU system and the NDP system

performance for PLYgemver and SPLLucb. We make two

observations from the figure. First, as the number of cores

increases, performance of the host CPU system and the NDP

system scale in a very similar fashion. The NDP system and

the host CPU system perform essentially on par with (i.e.,

within 1% of) each other at all core counts. Second, even

though the NDP system does not provide any performance

improvement for Class 2b functions, it also does not hurt

performance. Figure 13 shows the AMAT for our two repre-

sentative functions. When PLYgemver executes on the host

CPU system, up to 77% of the memory latency comes from

accessing L3 and DRAM, which can be explained by the

function’s medium LFMR (0.5). For SPLLucb, even though

up to 73% of memory latency comes from L1 accesses,

some requests still hit in the L3 cache (its LFMR is 0.2),

translating to around 10% of the memory latency. However,

the latency that comes from L3 + DRAM for the host CPU

system is similar to the latency to access DRAM in the NDP

system, resulting in similar performance between the host

CPU system and the NDP system.
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Figure 13: AMAT for representative Class 2b functions.

We make a similar observation for the energy consumption

for the host CPU system and the NDP system (Figure 14).

Even though a small number of memory requests hit in L3,

the total energy consumption for both the host CPU system

and the NDP system is similar due to L3 and off-chip link

energy. For some functions in Class 2b, we observe that the

NDP system slightly reduces energy consumption compared

to the host CPU system. For example, the NDP system

provides an 12% average reduction in energy consumption,

across all core counts, compared to the host CPU system for

PLYgemver.

We conclude that while the NDP system does not solve any

memory bottlenecks for Class 2b functions, it can be used

to reduce the overall SRAM area in the system without any

performance or energy penalty (and sometimes with energy

savings).
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Figure 14: Energy breakdown for representative Class 2b

functions.

6) Class 2c: High Temporal Locality, High AI, Low LFMR,

and Low MPKI (Compute-Bound Functions).

Aside from one exception (PLYSymm), all of the 11 functions

in this class exhibit high temporal locality. When combined

with the high AI and low memory intensity, we find that these

characteristics significantly impact how the NDP system

performance scales for this class. Figure 5(f) shows the host

CPU system and the NDP system performance for HPGSpm

and RODNw, two representative functions from the class. We

make two observations from the figure. First, the host CPU

system performance is always greater than the NDP system

performance (by 44% for HPGSpm and 54% for RODNw, on

average). The high AI (more than 12 ops per cache line),

combined with the high temporal locality and low MPKI,

enables these functions to make excellent use of the host

CPU system resources. Second, both of the functions benefit

greatly from prefetching in the host CPU system. This is a

direct result of these functions’ high spatial locality, which

allows the prefetcher to be highly accurate and effective in

predicting which lines to retrieve from main memory.

Figure 15 shows the energy breakdown consumption for

the two representative Class 2c functions. We make two ob-

servations. First, the host CPU system is 77% more energy-

efficient than the NDP system for HPGSpm, on average

across all core counts. Second, the NDP system provides

energy savings over the host CPU system at high core counts

for RODNw (up to 65% at 256 cores). When the core count

increases, the aggregate L1 cache capacity across all cores

increases as well, which in turn decreases the number of

L1 cache misses. Compared to executing on a single core,

executing on 256 cores decreases the L1 cache miss count by

43%, reducing the memory subsystem energy consumption

by 40%. However, due to RODNw’s medium LFMR of 0.5, the

host CPU system still suffers from L2 and L3 cache misses at

high core counts, which require the large L3 and off-chip link

energy. In contrast, the NDP system eliminates the energy

of accessing the L3 cache and the off-chip link energy by

directly sending L1 cache misses to DRAM, which, at high

core counts, leads to lower energy consumption than the host

CPU system.

We conclude that Class 2c functions do not experience

large memory bottlenecks and are not a good fit for the

NDP system in terms of performance. However, the NDP

system can sometimes provide energy savings for functions

that experience medium LFMR.
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Figure 15: Energy breakdown for representative Class 2c

functions.

D. EFFECT OF THE LAST-LEVEL CACHE SIZE

The bottleneck classification we present in Section III-C

depends on two key architecture-dependent metrics (LFMR

and MPKI) that are directly affected by the parameters and

the organization of the cache hierarchy. Our analysis in

Section III-C partially evaluates the effect of caching by

scaling the aggregated size of the private (L1/L2) caches

with the number of cores in the system while maintaining

the size of the L3 cache fixed at 8 MB for the host CPU

system. However, we also need to understand the impact of

the L3 cache size on our bottleneck classification analysis. To

this end, this section evaluates the effects on our bottleneck

classification analysis of using an alternative cache hierarchy

configuration, where we employ a Non-Uniform Cache Ar-

chitecture (NUCA) [291] model to scale the size of the L3

cache with the number of cores in the host CPU system.

In this configuration, we maintain the sizes of the private

L1 and L2 caches (32 kB and 256 kB per core, respectively)

while increasing the shared L3 cache size with the core

count (we use 2 MB/core) in the host CPU system. The

cores, shared L3 caches, and DRAM memory controller are

interconnected using a 2D-mesh Network-on-Chip (NoC)

[292]–[299] of size (n+1)×(n+1) (an extra interconnection

dimension is added to place the DRAM memory controllers).

To faithfully simulate the NUCA model (e.g., including net-

work contention in our simulations), we integrate the M/D/1

network model proposed by ZSim++ [300] in our DAMOV

simulator [158]. We use a latency of 3 cycles per hop in

our analysis, as suggested by prior work [301]. We adapt

our energy model to account for the energy consumption of

the NoC in the NUCA system. We consider router energy

consumption of 63 pJ per request and energy consumed per

link traversal of 71 pJ, same as previous work [251].

Figure 16 shows the performance scalability curves for

representative functions from each one of our bottleneck

classes presented in Section III-C for the baseline host CPU

system (Host with 8MB Fixed LLC), the host CPU NUCA

system (Host with NUCA 2MB/Core LLC), and the NDP

system. We make two observations. First, the observations

we make for our bottleneck classification (Section III-C) are

not affected by increasing the L3 cache size for Classes

1a, 1b, 1c, 2b, and 2c. We observe that Class 1a functions

benefit from a large L3 cache size (by up to 1.9×/2.3×
for HSJNPO/LIGPrkEmd at 256 cores). However, the NDP

system still provides performance benefits compared to the

host CPU NUCA system. We observe that increasing the

L3 size reduces some of the pressure on main memory but

cannot fully reduce the DRAM bandwidth bottleneck for

Class 1a functions. Functions in Class 1b do not benefit

from extra L3 capacity (we do not observe a decrease in

LFMR or MPKI). Functions in Class 1c do not benefit from

extra L3 cache capacity. We observe that the private L1 and

L2 caches capture most of their data locality, as mentioned

in Section III-C3, and thus, these functions do not benefit

from increasing the L3 size. Functions in Class 2b do not

benefit from extra L3 cache capacity, which can even lead to

a decrease in performance at high core counts for the host

CPU NUCA system in some Class 2b functions due to long

NUCA L3 access latencies. For example, we observe that

PLYgemver’s performance drops 18% when increasing the

core count from 64 to 256 in the host CPU NUCA system.

We do not observe such a performance drop for the host

CPU system with fixed LLC size. The performance drop in

the host CPU NUCA system is due to the increase in the

number of hops that L3 requests need to travel in the NoC

at high core counts, which increase the function’s AMAT.

Class 2c functions benefit from a larger last-level cache. We

observe that their performance improves by 1.3×/1.2× for

HPGSpm/RODNw compared to the host CPU system with

8MB fixed LLC at 256 cores.

Second, we observe two different types of behavior for

functions in Class 2a. Since cache conflicts are the ma-

jor bottleneck for functions in this class, we observe that

increasing the L3 cache size can mitigate this bottleneck.

In Figure 16, we observe that for both PLYGramSch and

SPLFftRev, the host system with NUCA 2MB/Core LLC

provides better performance than the host system with 8MB

fixed LLC. However, the NDP system can still provide per-

formance benefits in case of contention on the L3 NoC (e.g.,

in SPLFftRev). For example, the NDP system provides

14% performance improvement for SPLFftRev compared

to the NUCA system (with 512 MB L3 cache) for 256 cores.

In summary, we conclude that the key takeaways and

observations we present in our bottleneck classification in

Section III-C are also valid for a host system with a shared

last-level cache whose size scales with core count. In partic-

ular, different workload classes get affected by an increase in

L3 cache size as expected by their characteristics distilled by

our classification.

Figure 17 shows the energy consumption for representative

functions from each one of our bottleneck classes presented

in Section III-C. We observe that the NDP system can

provide substantial energy savings for functions in different

bottleneck classes, even compared against a system with very

large (e.g., 512 MB) cache sizes. We make the following

observations for each bottleneck class:

• Class 1a: First, for both representative functions in this

bottleneck class, the host CPU NUCA system and the

NDP system reduce energy consumption compared to the

baseline host CPU system. However, we observe that the
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Figure 16: Performance of the host and the NDP system as we vary the LLC size, normalized to one host core with a

fixed 8MB LLC size.

NDP system provides larger energy savings than the host

CPU NUCA system. On average, across all core counts,

the NDP system and the host CPU NUCA system reduce

energy consumption compared to the host CPU system

for HSJNPO/LIGPrkEmd by 46%/65% and 25%/22%, re-

spectively. Second, at 256 cores, the host CPU NUCA sys-

tem provides larger energy savings than the NDP system

for both representative functions. This happens because at

256 cores, the large L3 cache (i.e., 512 MB) captures a

large portion of the dataset for these functions, reducing

costly DRAM traffic. The host CPU NUCA system reduces

energy consumption compared to the host CPU system

for HSJNPO/LIGPrkEmd at 256 cores by 2.0×/2.2×
while the NDP system reduces energy consumption by

1.6×/1.8×. The L3 cache capacity needed to make the host

CPU NUCA system more energy efficient than the NDP

system is very large (512 MB SRAM), which is likely not

cost-effective.

• Class 1b: First, for CHAHsti, the host CPU NUCA sys-

tem increases energy consumption compared to the host

CPU system by 9%, on average across all core counts.

In contrast, the NDP system reduces energy consumption

by 57%. Due to its low spatial and temporal locality

(Figure 3), this function does not benefit from a deep cache

hierarchy. In the host CPU NUCA system, the extra energy

from the large amount of NoC traffic further increases

the cache hierarchy’s overall energy consumption. Second,

for PLYalu, the host CPU NUCA system and the NDP

system reduce energy consumption compared to the host

CPU system by 76% and 23%, on average across all

core counts. Even though the increase in LLC size does

not translate to performance improvements, the large LLC

sizes in the host CPU NUCA system aid to reduce DRAM

traffic, thereby providing energy savings compared to the

baseline host CPU system.

• Class 1c: First, for DRKRes, the host CPU NUCA system

reduces energy consumption compared to the host CPU

system by 15%, on average across all core counts. In

contrast, the NDP system increases energy consumption

by 30%, which is due to the function’s medium LFMR

(Section III-C3). Second, for PRSFlu, we observe that

the NDP system provides large energy savings than the

host CPU NUCA system. The host CPU NUCA system

reduces energy consumption compared to the host CPU

system by 21%, while the NDP system reduces energy

consumption by 25%, on average across all core counts.

However, the energy savings of both host CPU NUCA and

NDP systems compared to the host CPU system reduces at

high-enough core counts (the energy consumption of the

host CPU NUCA system (NDP system) is 0.6× (0.9×)

that of the host CPU system at 64 cores and 1.1× (1.3×)

that of the host CPU system at 256 cores). This result is

expected for Class 1c functions since the functions in this

class have decreasing LFMR, i.e., the functions effectively

utilize the private L1/L2 caches in the host CPU system at

high-enough core counts.

• Class 2a: First, for PLYGramSch, compared to the host

CPU system the host CPU NUCA system reduces energy

consumption by 2.53× and the NDP system increases

energy consumption by 55%, on average across all core

counts. Even though at high core counts (64 and 256

cores) the host CPU NUCA system provides larger energy

savings than the NDP system compared to the host CPU

system (the host CPU NUCA system and the NDP system

reduce energy consumption compare to the host CPU

system by 9× and 65% respectively, averaged across 64

and 256 cores), such large energy savings come at the

cost of very large (e.g., 512 MB) cache sizes. Second, for

SPLFftRev, the host CPU NUCA system and the NDP

system reduce energy consumption compared to the host
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Figure 17: Energy of the host and the NDP system as we vary the LLC size. Host refers to the host system with a fixed

8MB LLC size; Host NUCA refers to the host system with 2MB/Core LLC.

CPU system by 42% and 7%, on average across all core

counts. The NDP system increases energy consumption

compared to the host CPU system at low core counts (an

increase of 33%, averaged across 1, 4, and 16 cores).

However, it provides similar energy savings as the host

CPU NUCA system for large core counts (99% and 75%

energy reduction compare to the host CPU system for the

host CPU NUCA system and the NDP system, respec-

tively, averaged across 64 and 256 cores counts). Since the

function suffers from high network contention, the increase

in core count increases NoC traffic, which in turn increases

energy consumption for the host CPU NUCA system. We

conclude that the NDP system provides energy savings for

Class 2a applications compared to the host CPU system at

lower cost than the host CPU NUCA system.

• Class 2b: First, for PLYgemver, the host CPU NUCA

system increases energy consumption compared to the host

CPU system by 2%, on average across all core counts.

In contrast, the NDP system reduces energy consumption

by 13%. This function does not benefit from large L3

cache sizes since Class 2b functions are bottlenecked by

L1 capacity. Thus, the NoC only adds extra static and

dynamic energy consumption. Second, for SPLLucb, the

host CPU NUCA system consumes the same energy as the

host CPU system while the NDP system increases energy

consumption by 5%, averaged across all core counts.
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• Class 2c: For both representative functions in this class,

the host CPU NUCA system reduces energy consumption

compared to the host CPU system while the NDP system

increases energy consumption. For HPGSpm/RODNw, the

host CPU NUCA system reduces energy consumption by

6%/9% while the NDP system increases energy consump-

tion by 74%/22%, averaged across all core counts. This

result is expected since Class 2c functions are compute-

bound and highly benefit from a deep cache hierarchy.

In conclusion, the NDP system can provide substantial

energy savings for functions in different bottleneck classes,

even compared against a system with very large (e.g.,

512 MB) cache sizes.

E. VALIDATION AND SUMMARY OF OUR WORKLOAD

CHARACTERIZATION METHODOLOGY

In this section, we present the validation and a summary of

our new workload characterization methodology. First, we

use the remaining 100 memory-bound functions we obtain

from Step 1 (see Section III-A) to validate our workload

characterization methodology. To do so, we calculate the ac-

curacy of our workload classification by using the remaining

100 memory-bound functions, which were not used to iden-

tify the six classes we found and described in Section III-C.

Second, we present a summary of the key metrics we obtain

for all 144 memory-bound functions, including our analysis

of the host CPU system and the NDP system using two types

of cores (in-order and out-of-order).

1) Validation of Our Workload Characterization Methodology

Our goal is to evaluate the accuracy of our workload char-

acterization methodically on a large set of functions. To this

end, we apply Step 2 and Step 3 of our memory bottleneck

classification methodology (as described in Sections II-C and

II-D) to the remaining 100 memory-bound functions we ob-

tain from Step 1 (in Section III-A). Then, we perform a two-

phase validation to calculate the accuracy of our workload

characterization.

In phase 1 of our validation, we calculate the threshold

values that define the low/high boundaries of each of the four

metrics we use to cluster the initial 44 functions in the six

memory bottleneck classes in Section III-C (i.e., temporal

locality, LFMR, LLC MPKI, and AI). We also include the

LFMR curve slope to indicate when the LFMR increases,

decreases or stays constant as we scale the core count. We

calculate the threshold values for a metric M by computing

the middle point between (i) the average value of M across

the memory bottleneck classes with low values of M and (ii)

the average value of M across the memory bottleneck classes

with high values of M values out of the 44 functions. In phase

2 of our validation, we calculate the accuracy of our workload

characterization by classifying the remaining 100 memory-

bound functions using the threshold values obtained from

phase 1 and the LFMR curve slope. After phase 2, a function

is considered to be accurately classified into a correct mem-

ory bottleneck class if and only if it (1) fits the definition of

the assigned class using the threshold values obtained from

phase 1 and (2) follows the expected performance trends of

the assigned class when the function is executed in the host

CPU system and the NDP system. For example, a function is

correctly classified into Class 1a if and only if it (1) displays

low temporal locality, low AI, high LFMR, high MPKI and

(2) the NDP system outperforms the host CPU system as

we scale the core count when executing the function. The

final accuracy of our workload characterization methodology

is calculated by computing the percentage of the functions

that are accurately classified into one of the six memory

bottleneck classes.

First, by applying phase 1 of our two-phase validation,

we obtain that the threshold values are: 0.48 for temporal

locality, 0.56 for LFMR, 11.0 for MPKI, and 8.5 for AI.

Second, by applying phase 2 of our two-phase validation,

we find that we can accurately classify 97% of the 100

memory-bound functions into one of our six memory

bottleneck classes (i.e., the accuracy of our workload

characterization methodology is 97%). We observe that three

functions (Ligra:ConnectedComponents:compute:rMat,

Ligra:MaximalIndependentSet:edgeMapDense:USA, and

SPLASH-2:Oceanncp:relax) could not be accurately

classified into their correct memory bottleneck class

(Class 1a). We observe that these functions have LLC MPKI

values lower than the MPKI threshold expected for Class 1a

functions. We expect that the accuracy of our methodology

can be further improved by incorporating more workloads

into our workload suite and fine-tuning each metric to

encompass an even larger set of applications.

We conclude that our workload characterization methodol-

ogy can accurately classify a given new application/function

into its appropriate memory bottleneck class.

2) Summary of Our Workload Characterization Results.

Figure 18a summarizes the metrics we collect for all 144

functions across all core counts (i.e., from 1 to 256 cores)

and different core microarchitectures (i.e., out-of-order and

in-order cores). The figure shows the distribution of the key

metrics we use during our workload characterization for

each memory bottleneck class in Section III-C, including

architecture-independent metrics (i.e., temporal locality) and

architecture-dependent metrics (i.e., AI, LFMR, and LLC

MPKI). We report the architecture-dependent metrics for

two core models: (i) in-order and (ii) out-of-order cores.12

Together with the out-of-order core model that we use in

Section III-C, we incorporate an in-order core model to our

analysis, so as to show that our memory bottleneck classifi-

cation methodology focuses on data movement requirements

and works independently of the core microarchitecture. Fig-

ure 18b shows the distribution of speedups we observe for

12In Section III-C, we collect and report the values of the architecture-
independent metrics and architecture-dependent metrics for a subset of 44
representative functions out of the 144 memory-bound functions we identify
in Step 1 of our workload characterization methodology. In Section III-E2,
we report values for the complete set of 144 memory-bound functions.
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Figure 18: Summary of our characterization for all 144 memory-bound functions. Each box is lower-bounded by the

first quartile and upper-bounded by the third quartile. The median falls within the box. The inter-quartile range (IQR)

is the distance between the first and third quartiles (i.e., box size). Whiskers extend to the minimum and maximum data

point values on either sides of the box.

when we offload the function to our general-purpose NDP

cores, while employing the same core type as the host CPU

system.

We make two key observations from Figure 18. First, we

observe similar values for each architecture-dependent key

metric (i.e., LFMR, MPKI, AI) regardless of core type for

all 144 functions (in Figure 18a). Second, we observe that

the NDP system achieves similar speedups over the host

CPU system, when using both in-order and out-of-order core

configurations (in Figure 18b). The speedup provided by the

NDP system compared to the host CPU system when both

systems use out-of-order (in-order) cores for Classes 1a, 1b,

1c, 2a, 2b, and 2c is 1.59 (1.77), 1.22 (1.15), 0.96 (0.95),

1.04 (1.22), 0.94 (1.01), and 0.56 (0.76), respectively, on

average across all core counts and functions within a memory

bottleneck class. The NDP system greatly outperforms the

host CPU system across all core counts for Class 1a and 1b

functions, with a maximum speedup for the out-of-order (in-

order) core model of 4.8 (3.5) and 3.4 (2.9), respectively.

The NDP system greatly outperforms the host CPU system

at low core counts for Class 1c functions and at high core

counts for Class 2a functions, with a maximum speedup

for the out-of-order (in-order) core model of 2.3 (2.4) and

3.8 (3.4), respectively. The NDP system provides a modest

speedup compared to the host CPU system across all core

counts for Class 2b functions and slowdown for Class 2c

functions, with a maximum speedup for the out-of-order (in-

order) core model of 1.2 (1.1) and 1.0 (1.0), respectively. We

observe that, averaged across all classes and core types, the

average speedup provided by the NDP system using in-order

cores is 11% higher than the average speedup offered by the

NDP system using out-of-order cores. This is because the

host CPU system with out-of-order cores can hide the perfor-

mance impact of memory access latency to some degree (e.g.,

using dynamic instruction scheduling) [57, 58, 183, 184,

240, 302]. On the other hand, the host CPU system using in-

VOLUME 4, 2016 19



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3110993, IEEE Access

Geraldo F. Oliveira et al.: DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks

order cores has little tolerance to hide memory access latency

[57, 58, 183, 184, 240, 302].

We conclude that our methodology to classify memory

bottlenecks of applications is robust and effective since we

observe similar trends for the six memory bottleneck classes

across a large range of (144) functions and two very different

core models.

F. LIMITATIONS OF OUR METHODOLOGY

We identify three limitations to our workload characteriza-

tion methodology. We discuss each limitation next.

NDP Architecture Design Space. Our methodology uses

the same type and number of cores in the host CPU and

the NDP system configurations for our scalability analysis

(Section III-C) because our main goal is to highlight the

performance and energy differences between the host CPU

system and the NDP system that are caused by data move-

ment. We do not consider practical limitations related to

area or thermal dissipation that could affect the type and the

maximum number of cores in the NDP system, because our

goal is not to propose NDP architectures but to characterize

data movement and understand the different data movement

bottlenecks in modern workloads. Proposing NDP architec-

tures for the workload classes that our methodology identifies

as suitable for NDP is a promising topic for future work.

Function-level Analysis. We choose to conduct our analy-

sis at a function granularity rather than at the application

granularity for two major reasons. First, general-purpose

NDP architectures are typically leveraged as accelerators to

which only parts of the application or specific functions

are offloaded [1, 47, 48, 54, 59, 64, 65, 83, 86, 89, 92,

98, 100, 102, 133, 192, 193, 303]–[307], rather than the

entire application. Functions typically form natural bound-

aries for parts of algorithms/applications that can potentially

be offloaded. Second, it is well-known that applications go

through distinct phases during execution. Each phase may

have different characteristics (e.g., a phase might be more

compute-bound, while another one might be more memory-

bound) and thus fall into different classes in our analysis.

A fine-grained analysis at the function level enables us to

identify each of those phases and hence, identify more fine-

grained opportunities for NDP offloading. However, the main

drawback of function-level analysis is that it does not take

into account data movement across function boundaries,

which affects the performance and energy benefits the NDP

system provides over the host CPU system. For example,

the NDP system might hurt overall system performance and

energy consumption when a large amount of data needs to

be continuously moved between a function executing on the

NDP cores and another executing on the host CPU cores [63,

74].

Overestimating NDP Potential. Offloading kernels to NDP

cores incurs overheads that our analysis does not account for

(e.g., maintaining coherence between the host CPU and the

NDP cores [63, 74], efficiently synchronizing computation

across NDP cores [101, 140], providing virtual memory

support for the NDP system [47, 55, 308], and dynamic

offloading support for NDP-friendly functions [48]). Such

overheads can impact the performance benefits NDP can pro-

vide when considering the end-to-end application. However,

deciding how to and whether or not to offload computation

to NDP is an open research topic, which involves several

architecture-dependent components in the system, such as

the following two examples. First, maintaining coherence

between the host CPU and the NDP cores is a challenging

task that recent works tackle [63, 74]. Second, enabling ef-

ficient synchronization across NDP cores is challenging due

to the lack of shared caches and hardware cache coherence

protocols in NDP systems. Recent works, such as [101,

309], provide solutions to the NDP synchronization problem.

Therefore, to focus our analysis on the data movement char-

acteristics of workloads and the broad benefits of NDP, we

minimize our assumptions about our target NDP architecture,

making our evaluation as broadly applicable as possible.

IV. DAMOV: THE DATA MOVEMENT BENCHMARK SUITE
In this section, we present DAMOV, the DAta MOVement

Benchmark Suite. DAMOV is the collection of the 144 func-

tions we use to drive our memory bottleneck classification

in Section III. The benchmark suite is divided into each

one of the six classes of memory bottlenecks presented in

Section III. DAMOV is the first benchmark suite that en-

compasses real applications from a diverse set of application

domains tailored to stress different memory bottlenecks in a

system. We present the complete description of the functions

in DAMOV in Appendix A. We highlight the benchmark

diversity of the functions in DAMOV in Section IV-A. We

open source DAMOV [158] to facilitate further rigorous

research in mitigating data movement bottlenecks, including

in near data processing.

A. BENCHMARK DIVERSITY

We perform a hierarchical clustering algorithm with the 44

representative functions we employ in Section III-C.13 Our

goal is to showcase our benchmark suite’s diversity and

observe whether a clustering algorithm produces a noticeable

difference from the application clustering presented Sec-

tion III. The hierarchical clustering algorithm [310] takes as

input a dataset containing features that define each object in

the dataset. The algorithm works by incrementally grouping

objects in the dataset that are similar to each other in terms

of some distance metric (called linkage distance), which is

calculated based on the features’ values. Two objects with

a short linkage distance have more affinity to each other

than two objects with a large linkage distance. To apply the

hierarchical clustering algorithm, we create a dataset where

each object is one of the 44 representative functions from

13In Section IV-A, we use the same 44 representative functions that
we use during our bottleneck classification instead of the entire set of 144
functions in DAMOV, in order to visualize better the clustering produced by
the hierarchical clustering algorithm.
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Figure 19: Hierarchical clustering of 44 representative functions.

DAMOV. We use as features the same metrics we use for

our analysis, i.e., temporal locality, MPKI, LFMR, and AI.

We also include the LFMR curve slope to indicate when the

LFMR increases, decreases or stays constant when scaling

the core count. We use Euclidean distance [310] to calcu-

late the linkage distance across features in our dataset. We

evaluate other linkage distance metrics (such as Manhattan

distance [310]), and we observe similar clustering results.

Figure 19 shows the dendrogram that the hierarchical clus-

tering algorithm produces for our 44 representative functions.

We indicate in the figure the application class each function

belongs to, according to our classification. We make three

observations from the figure.

First, our benchmarks exhibit a wide range of behavior

diversity, even among those belonging to the same class.

For example, we observe that the functions from Class 1a

are divided into two groups, with a linkage distance of 3.

Intuitively, functions in the first group (HSJNPO, STRAdd,

STRCpy, STRSca, STRTriad) have regular access pat-

terns while functions in the second group (DRKYolo,

LIGCompEms, LIGPrkEmd, LIGRadiEms) have irregu-

lar access patterns. We observe a similar clustering in Sec-

tion III-C1.

Second, we observe that our application clustering (Sec-

tion III-C) matches the clustering that the hierarchical clus-

tering algorithm provides (Figure 19). From the dendrogram

root, we observe that the right part of the dendrogram consists

of functions with high temporal locality (from Classes 2a, 2b,

and 2c). Conversely, the left part of the dendrogram consists

of functions with low temporal locality (from Classes 1a,

1b, and 1c). The functions in the right and left part of the

dendrogram have a high linkage distance (higher than 15),

which implies that the metrics we use for our clustering are

significantly different from each other for these functions.

Third, we observe that functions within the same class are

clustered into groups with a linkage distance lower than 5.

This grouping matches the six classes of data movement

bottlenecks present in DAMOV. Therefore, we conclude

that our methodology can successfully cluster functions into

distinct classes, each one representing a different memory

bottleneck.

We conclude that (i) DAMOV provides a heterogeneous

and diverse set of functions to study data movement bottle-

necks and (ii) our memory bottleneck clustering methodol-

ogy matches the clustering provided by a hierarchical clus-

tering algorithm (this section; Figure 19).

V. CASE STUDIES
In this section, we demonstrate how our benchmark suite is

useful to study open questions related to NDP system de-

signs. We provide four case studies. The first study analyzes

the impact of load balance and communication on NDP exe-

cution. The second study assesses the impact of tailored NDP

accelerators on our memory bottleneck analysis. The third

study evaluates the effect of different core designs on NDP

system performance. The fourth study analyzes the impact

of fine-grained offloading (i.e., offloading small blocks of

instructions to NDP cores) on performance.

A. CASE STUDY 1: IMPACT OF LOAD BALANCE AND

INTER-VAULT COMMUNICATION ON NDP SYSTEMS

Communication between NDP cores is one of the key chal-

lenges for future NDP system designs, especially for NDP ar-

chitectures based on 3D-stacked memories, where accessing

a remote vault incurs extra latency overhead due to network

traffic [46, 101, 311]. This case study aims to evaluate

the load imbalance and inter-vault communication that the

NDP cores experience when executing functions from the

DAMOV benchmark suite. We statically map a function to

an NDP core, and we assume that NDP cores are connected

using a 6x6 2D-mesh Network-on-Chip (NoC), similar to

previous works [66, 70, 312]–[314]. Figure 20 shows the

performance overhead that the interconnection network im-

poses to NDP cores when running several functions from

our benchmark suite. We report performance overheads of

functions from different bottleneck classes (i.e., from Classes
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1a, 1b, 2a, and 2b) that experience at least 5% of perfor-

mance overhead due to the interconnection network. We

calculate the interconnection network performance overhead

by comparing performance with the 2D-mesh versus that

with an ideal zero-latency interconnection network. We ob-

serve that the interconnection network performance overhead

varies across functions, with a minimum overhead of 5%

for SPLOcpSlave and a maximum overhead of 26% for

SPLLucb.

0

5

10

15

20

25

30

C
H
ABsB

ez

C
H
AH

st
i

LI
G
Bfs

Em
s

SPLF
ftR

ev

SPLF
ftT

ra

SPLL
uc

b

SPLO
cn

pL
ap

SPLO
cp

Sla
ve

STR
Sca

STR
Tr

ia
d

In
te

rc
o
n
n
e
c
ti
o
n
 N

e
tw

o
rk

  
 P

e
rf

o
rm

a
n
c
e
 O

ve
rh

e
a
d
 (

%
)

Figure 20: Interconnection network performance over-

head in our NDP system.

We further characterize the traffic of memory requests

injected into the interconnection network for these functions,

aiming to understand the communication patterns across

NDP cores. Figure 21 shows the distribution of all memory

requests (y-axis) in terms of how many hops they need to

travel in the NoC between NDP cores (x-axis) for each

function. We make the following observations. First, we

observe that, on average, 40% of all memory requests need

to travel 3 to 4 hops in the NoC, and less than 5% of all

requests are issued to a local vault (0 hops). Even though the

functions follow different memory access patterns, they all

inject similar network traffic into the NoC.14 Therefore, we

conclude that the NDP design can be further optimized by

(i) employing more intelligent data mapping and scheduling

mechanisms that can efficiently allocate data nearby the NDP

core that accesses the data (thereby reducing inter-vault com-

munication and improving data locality) and (ii) designing

interconnection networks that can better fit the traffic patterns

that NDP workloads produce. The DAMOV benchmark suite

can be used to develop new ideas as well as evaluate existing

ideas in both directions.

B. CASE STUDY 2: IMPACT OF NDP ACCELERATORS

ON OUR MEMORY BOTTLENECK ANALYSIS

In our second case study, we aim to leverage our memory

bottleneck classification to evaluate the benefits an NDP

accelerator provides compared to the same accelerator ac-

cessing memory externally. We use the Aladdin accelerator

simulator [315] to tailor an accelerator for an application

function. Aladdin works by estimating the performance of a

custom accelerator based on the data-flow graph of the appli-

14We use the default HMC data interleaving scheme in our experiments
(Table 1).
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Figure 21: Distribution of NoC hops traveled per memory

request.

cation. The main difference between an NDP accelerator and

a regular accelerator (i.e., compute-centric accelerator) is that

the former is placed in the logic layer of a 3D-stacked mem-

ory device and thus can leverage larger memory bandwidth,

shorter memory access latency, and lower memory access

energy, compared to the compute-centric accelerator that is

exemplary of existing compute-centric accelerator designs.

To evaluate the benefits of NDP accelerators, we select

three functions from our benchmark suite for this case study:

DRKYolo (from Class 1a), PLYalu (from Class 1b), and

PLY3mm (from Class 2c). We select these functions and

memory bottleneck classes because we expect them to benefit

the most (or to show no benefit) from the near-memory place-

ment of an accelerator. According to our memory bottleneck

analysis, we expect that the functions we select to (i) benefit

from NDP due to its high DRAM bandwidth (Class 1a), (ii)

benefit from NDP due to its shorter DRAM access latency

(Class 1b), or (iii) do not benefit from NDP in any way

(Class 2c).

Figure 22 shows the speedup that the NDP accelerator

provides for the different functions compared to the compute-

centric accelerator. We make four observations. First, as

expected based on our classification, the NDP accelerator

provides performance benefits compared to the compute-

centric accelerator for functions in Classes 1a and 1b. It

does not provide performance improvement for the function

in Class 2c. Second, the NDP accelerator for DRKYolo

shows the largest performance benefits (1.9× performance

improvement compared to the compute-centric accelerator).

Since this function is DRAM bandwidth-bound (Class 1a,

Section III-C1), the NDP accelerator can leverage the larger

memory bandwidth available in the logic layer of the 3D-

stacked memory device. Third, we observe that the NDP

accelerator also provides speedup (1.25×) for the PLYalu

function compared to the compute-centric accelerator, since

the NDP accelerator provides shorter memory access la-

tency to the function, which is latency-bound (Class 1b,

Section III-C2). Fourth, the NDP accelerator does not provide

performance improvement for the PLY3mm function since

this function is compute-bound (Class 2c, Section III-C6).

In conclusion, our observations for the performance of

NDP accelerators are in line with the characteristics of the

three memory bottleneck classes we evaluate in this case
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Figure 22: Speedup of the NDP Accelerators over the

Compute-Centric Accelerators for three functions from

Classes 1a, 1b, and 2c.

study. Therefore, our memory bottleneck classification can

be applied to study other types of system configurations, e.g.,

the accelerators used in this section. However, since NDP

accelerators are often employed under restricted area and

power constraints (e.g., limited area available in the logic

layer of a 3D-stacked memory [63, 74]), the core model

of the compute-centric and NDP accelerators cannot always

be the same. We leave a thorough analysis that takes area

and power constraints in the study of NDP accelerators into

consideration for future research.

C. CASE STUDY 3: IMPACT OF DIFFERENT CORE

MODELS ON NDP ARCHITECTURES

This case study aims to analyze when a workload can benefit

from different core models and numbers of cores while

respecting the area and power envelope of the logic layer of

a 3D-stacked memory. Many prior works employ 3D-stacked

memories as the substrate to implement NDP architectures

[1, 46]–[48, 54, 55, 59]–[61, 63]–[70, 74]–[77, 79, 80, 99,

101]–[103, 137, 146, 192, 194, 305, 316]–[324]. However,

3D-stacked memories impose severe area and power restric-

tions on NDP architectures. For example, the area and power

budget of the logic layer of a single HMC vault are 4.4 mm2

and 312 mW , respectively [1, 63].

In the case study, we perform an iso-area and iso-power

performance evaluation of three functions from our bench-

mark suite. We configure the host CPU system and the NDP

system to guarantee an iso-area and iso-power evaluation,

considering the area and power budget for a 32-vault HMC

device [1, 63]. We use four out-of-order cores with a deep

cache hierarchy for the host system configuration and two

different NDP configurations: (1) one using six out-of-order

NDP cores (NDP+out-of-order) and (2) using 128 in-order

NDP cores (NDP+in-order), without a deep cache hierarchy.

We choose functions from Classes 1a, 1b, and 2b for this case

study since the major effects distinct microarchitectures have

on the memory system are: (a) how much DRAM bandwidth

they can sustain, and (b) how much DRAM latency they can

hide. Classes 1a, 1b, and 2b are the most affected by memory

bandwidth and access latency (as shown in Section III).

We choose two representative functions from each of these

classes.

Figure 23 shows the speedup provided by the two NDP

system configurations compared to the baseline host system.

We make two observations. First, in all cases, the NDP+in-

order system provides higher speedup than the NDP+out-of-

order system, both compared to the host system. On average

across all six functions, the NDP+in-order system provides

4× the speedup of the NDP+out-of-order system. The larger

speedup the NDP+in-order system provides is due to the

high number of NDP cores in the NDP+in-order system.

We can fit 128 in-order cores in the logic layer of the 3D-

stacked memory as opposed to only six out-of-order cores

in the same area/power budget. Second, we observe that the

speedup the NDP+in-order system provides compared to the

NDP+out-of-order system does not scale with the number

of cores. For example, the NDP+in-order system provides

only 2× the performance of the NDP+out-of-order system

for DRKYolo and PLYalu, even though the NDP+in-order

system has 21× the number of NDP cores of the NDP+out-

of-order system. This implies that even though the functions

benefit from a large number of NDP cores available in the

NDP+in-order system, static instruction scheduling limits

performance on the NDP+in-order system.

1a 1b 2b

DRKYolo LIGPrkEmd PLYalu SPLOcpSlave CHABsBez SPLLucb
0

5

10

15

20

S
p

e
e

d
u

p
 o

f 
N

D
P

 
 o

ve
r 

h
o

s
t

NDP+in−order NDP+out−of−order

Figure 23: Speedup of NDP architectures over 4 out-of-

order host CPU cores for two NDP configurations: using

128 in-order NDP cores (NDP+in-order) and 6 out-of-

order NDP cores (NDP+out-of-order) for representative

functions from Classes 1a, 1b, and 2b.

We believe, and our previous observations suggest, that

an efficient NDP architecture can be achieved by leverag-

ing mechanisms that can exploit both dynamic instruction

scheduling and many-core design while fitting in the area and

power budget of 3D-stacked memories. For example, past

works [57, 58, 183, 184, 224, 325]–[343] propose techniques

that enable the benefits of simple and complex cores at

the same time, via heterogeneous or adaptive architectures.

These ideas can be examined to enable better core and system

designs for NDP systems, and DAMOV can facilitate their

proper design, exploration, and evaluation.

D. CASE STUDY 4: IMPACT OF FINE-GRAINED

OFFLOADING TO NDP ON PERFORMANCE

Several prior works on NDP (e.g., [47, 54, 86, 89, 100, 146,

303, 306, 344]–[346]) propose to identify and offload to

the NDP system simple primitives (e.g., instructions, atomic

operations). We refer to this NDP offloading scheme as a

fine-grained NDP offloading, in contrast to a coarse-grained

NDP offloading scheme that offloads whole functions and

applications to NDP systems. A fine-grained NDP offloading

scheme provides two main benefits compared to a coarse-

grained NDP offloading scheme. First, a fine-grained NDP
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offloading scheme allows for a reduction in the complexity

of the processing elements used as NDP logic, since the

NDP logic can consist of simple processing elements (e.g.,

arithmetic units, fixed function units) instead of entire in-

order or out-of-order cores often utilized when employing

a coarse-grained NDP offloading scheme. Second, a fine-

grained NDP offloading scheme can help developing simple

coherence mechanism needed to allow shared host and NDP

execution [47]. However, identifying arbitrary NDP instruc-

tions can be a daunting task since there is no comprehensive

methodology that indicates what types of instructions are

good offloading candidates.

As the first step in this direction, we exploit the key

insight provided by [151, 347] to identify potential regions

of code that can be candidates for fine-grained NDP of-

floading. [151, 347, 348] show that few instructions are

responsible for generating most of the cache misses during

program execution in memory-intensive applications. Thus,

these instructions are naturally good candidates for fine-

grained NDP offloading. Figure 24 shows the distribution

of unique basic blocks (x-axis) and the percentage of last-

level cache misses (y-axis) the basic block produces for three

representative functions from our benchmark suite. We select

functions from Classes 1a (LIGKcrEms), 1b (HSJPRH), and

1c (DRKRes) since functions in these classes have higher L3

MPKI than functions in Classes 2a, 2b, and 2c. We observe

from the figure that 1% to 10% of the basic blocks in each

function are responsible for up to 95.3% of the LLC misses.

We call these basic blocks the hottest basic blocks.15 We

investigate the data-flow of each basic block and observe that

these basic blocks often execute simple read-modify-write

operations, with few arithmetic operations. Therefore, we

believe that such basic blocks are good candidates for fine-

grained offloading. Figure 25 shows the speedup obtained

by offloading (i) the hottest basic block we identified for the

three representative functions and (ii) the entire function to

the NDP system, compared to the host system. Our initial

evaluations show that offloading the hottest basic block of

each function to the NDP system can provide up to 1.25×
speedup compared to the host CPU, which is half of the

1.5× speedup achieved when offloading the entire function.

Therefore, we believe that methodically identifying simple

NDP instructions can be a promising research direction for

future NDP system designs, which our DAMOV Benchmark

Suite can help with.

VI. KEY TAKEAWAYS
We summarize the key takeaways from our extensive charac-

terization of 144 functions using our new three-step method-

ology to identify data movement bottlenecks. We also high-

light when NDP is a good architectural choice to mitigate a

particular memory bottleneck.

15We observe for the 44 functions we evaluate in Section III that in
many cases (for 65% of the evaluated workloads), a single basic block
is responsible for 90% to 100% of the LLC misses during the function’s
execution.
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Figure 24: Distribution of unique basic blocks (x-axis)

and the percentage of last-level cache misses they produce

(y-axis) for three representative functions from Classes 1a

(LIGKcrEms), 1b (HSJPRH), and 1c (DRKRes).
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Figure 25: Speedup of offloading to NDP the hottest basic

block in each function versus the entire function.

Figure 26 pictorially represents the key takeaways we

obtain from our memory bottleneck classification. Based on

four key metrics, we classify workloads into six classes of

memory bottlenecks. We provide the following key take-

aways:

1) Applications with low temporal locality, high LFMR,

high MPKI, and low AI are DRAM bandwidth-bound

(Class 1a, Section III-C1). They are bottlenecked by

the limited off-chip memory bandwidth as they exert

high pressure on main memory. We make three observa-

tions for Class 1a applications. First, these applications

do benefit from prefetching since they display a low

degree of spatial locality. Second, these applications

highly benefit from NDP architectures because they

take advantage of the high memory bandwidth available

within the memory device. Third, NDP architectures

significantly improve energy for these applications since

they eliminate the off-chip I/O traffic between the CPU

and the main memory.

2) Applications with low temporal locality, high LFMR,

low MPKI, and low AI are DRAM latency-bound

(Class 1b, Section III-C2). We make three observations

for Class 1b applications. First, these applications do not

significantly benefit from prefetching since infrequent

memory requests make it difficult for the prefetcher to

train successfully on an access pattern. Second, these

applications benefit from NDP architectures since they

take advantage of NDP’s lower memory access latency

and the elimination of deep L2/L3 cache hierarchies,

which fail to capture data locality for these workloads.

Third, NDP architectures significantly improve energy
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Figure 26: Summary of our memory bottleneck classification.

for these applications since they eliminate costly (and

unnecessary) L3 cache look-ups and the off-chip I/O

traffic between the CPU and the main memory.

3) Applications with low temporal locality, decreasing

LFMR with core count, low MPKI, and low AI are

bottlenecked by the available L1/L2 cache capacity

(Class 1c, Section III-C3). We make three observations

for Class 1c applications. First, these applications are

DRAM latency-bound at low core counts, thus taking

advantage of NDP architectures, both in terms of per-

formance improvement and energy reduction. Second,

NDP’s benefits reduce when core count becomes larger,

which consequently allows the working sets of such

applications to fit inside the cache hierarchy at high core

counts. Third, NDP architectures can be a good design

choice for such workloads in systems with limited area

budget since NDP architectures do not require large

L2/L3 caches to outperform or perform similarly to

the host CPU (in terms of both system throughput and

energy) for these workloads.

4) Applications with high temporal locality, increasing

LFMR with core count, low MPKI, and low AI are

bottlenecked by L3 cache contention (Class 2a, Sec-

tion III-C4). We make three observations for Class 2a

applications. First, these applications benefit from a

deep cache hierarchy and do not take advantage of NDP

architectures at low core counts. Second, the number of

cache conflicts increases when the number of cores in

the system increases, leading to more pressure on main

memory. We observe that NDP can effectively mitigate

such cache contention for these applications without in-

curring the high area and energy overheads of providing

additional cache capacity in the host. Third, NDP can

improve energy for these workloads at high core counts,

since it eliminates the costly data movement between

the last-level cache and the main memory.

5) Applications with high temporal locality, low LFMR,

low MPKI, and low AI are bottlenecked by L1 cache

capacity (Class 2b, Section III-C5). We make two obser-

vation for Class 2b applications. First, NDP can provide

similar performance and energy consumption than the

host system by leveraging lower memory access latency

and avoiding off-chip energy consumption for these

applications. Second, NDP can be used to reduce the

overall SRAM area (by eliminating L2/L3 caches) in the

system without a performance or energy penalty.

6) Applications with high temporal locality, low LFMR,

low MPKI, and high AI are compute-bound (Class 2c,

Section III-C6). We make three observations for

Class 2c applications. First, these applications suffer

performance and energy penalties due to the lack of

a deep L2/L3 cache hierarchy when executed on the

NDP architecture. Second, these applications highly

benefit from prefetching due to their high temporal and

spatial locality. Third, these applications are not good

candidates to execute on NDP architectures.

A. SHAPING FUTURE RESEARCH WITH DAMOV

A key contribution of our work is DAMOV, the first

benchmark suite for main memory data movement studies.

DAMOV is the collection of 144 functions from 74 different

applications, belonging to 16 different benchmark suites or

frameworks, classified into six different classes of data move-

ment bottlenecks.

We believe that DAMOV can be used to explore a wide

range of research directions on the study of data move-

ment bottlenecks, appropriate mitigation mechanisms, and

open research topics on NDP architectures. We highlight

DAMOV’s usability and potential benefits with four brief

case studies, which we summarize below:

• In the first case study (Section V-A), we use DAMOV

to evaluate the interconnection network overheads that

NDP cores placed in different vaults of a 3D-stacked

memory suffer from. We observe that a large portion

of the memory requests an NDP core issues go to re-

mote vaults, which increases the memory access latency
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for the NDP core. We believe that DAMOV can be

employed to study better data mapping techniques and

interconnection network designs that aim to minimize

(i) the number of remote memory accesses the NDP

cores execute and (ii) the interconnection network la-

tency overheads.

• In the second case study (Section V-B), we evaluate

the benefits that NDP accelerators can provide for three

applications from our benchmark suite. We compare

the performance improvements an NDP accelerator pro-

vides against the compute-centric version of the same

accelerator. We observe that the NDP accelerator pro-

vides significant performance benefits compared to the

compute-centric accelerator for applications in Classes

1a and 1b. At the same time, it does not improve

performance for an application in Class 2c. We believe

that DAMOV can aid the design of NDP accelerators

that target different memory bottlenecks in the system.

• In the third case study (Section V-C), we perform

an iso-area/-power performance evaluation to compare

NDP systems using in-order and out-of-order cores.

We observe that the in-order cores’ performance ben-

efits for some applications are limited by the cores’

static instruction scheduling mechanism. We believe

that better NDP systems can be built by leveraging

techniques that enable dynamic instruction scheduling

without incurring the large area and power overheads of

out-of-order cores. DAMOV can help in the analysis and

development of such NDP architectures.

• In the fourth case study (Section V-D), we evaluate

the benefits of offloading small portions of code (i.e.,

a basic block) to NDP, which simplifies the design of

NDP systems. We observe that for many applications,

a small percentage of basic blocks is responsible for

most of the last-level cache misses. By offloading these

basic blocks to an NDP core, we observe a performance

improvement of up to 1.25×. We believe that DAMOV

can be used to identify simple NDP instructions that

enable building efficient NDP systems in the future.

VII. RELATED WORK
To our knowledge, this is the first work that methodically

characterizes data movement bottlenecks and evaluates the

benefits of different data movement mitigation mechanisms,

with a focus on Near-Data Processing (NDP), for a broad

range of applications. This is also the first work that provides

an extensive open-source benchmark suite, with a diverse

range of real world applications, tailored to stress different

memory-related data movement bottlenecks in a system.

Many past works investigate how to reduce data move-

ment cost using a range of different compute-centric (e.g.,

prefetchers [56, 189, 244, 349]–[369], speculative execution

[57, 58, 183, 184, 349, 370], value-prediction [349, 356,

371]–[387], data compression [388]–[405], approximate

computing [40, 371, 406, 407]) and memory-centric tech-

niques [1, 35, 47, 54, 63]–[65, 81, 194, 222, 223, 250, 251,

335, 408]–[417]. These works evaluate the impact of data

movement in different systems, including mobile systems

[1, 39, 418]–[420], data centers [5, 31, 355, 421]–[425], ac-

celerators-based systems [1, 59, 60, 179, 220, 423, 426], and

desktop computers [202, 427, 428]. They use very different

profiling frameworks and methodologies to identify the root

cause of data movement for a small set of applications. Thus,

it is not possible to generalize prior works’ findings to other

applications than the limited set they analyze.

We highlight two of these prior works, [426] and [1],

since they also focus on characterizing applications for NDP

architectures. In [426], the authors provide the first work that

characterizes workloads for NDP. They analyze five appli-

cations (FFT, ray tracing, method of moments, image un-

derstanding, data management). The NDP organization [426]

targets is similar to [429], where vector processing compute

units are integrated into the DDRx memory modules. Even

though [426] has a similar goal to our work, it understandably

does not provide insights into modern data-intensive appli-

cations and NDP architectures as it dates from 2001. Also,

[426] focuses its analysis only on a few workloads, whereas

we conduct a broader workload analysis starting from 345

applications. Therefore, a new, more comprehensive and

rigorous analysis methodology of data movement bottlenecks

in modern workloads and modern NDP systems is necessary.

A more recent work investigates the memory bottlenecks

in widely-used consumer workloads from Google and how

NDP can mitigate such bottlenecks [1]. This work focuses

its analysis on a small number of consumer workloads. Our

work presents a comprehensive analysis of a much broader

set of applications (345 different applications, and a total

of 77K application functions), which allows us to provide a

general methodology, a comprehensive workload suite, and

general takeaways and guidelines for future NDP research.

With our comprehensive analysis, this work is the first to

develop a rigorous methodology to classify applications into

six groups, which have different characteristics with respect

to how they benefit from NDP systems as well as other data

movement bottleneck mitigation techniques.

VIII. CONCLUSION
This paper introduces the first rigorous methodology to

characterize memory-related data movement bottlenecks in

modern workloads and the first data movement benchmark

suite, called DAMOV. We perform the first large-scale char-

acterization of applications to develop a three-step workload

characterization methodology that introduces and evaluates

four key metrics to identify the sources of data movement

bottlenecks in real applications. We use our new methodol-

ogy to classify the primary sources of memory bottlenecks

of a broad range of applications into six different classes

of memory bottlenecks. We highlight the benefits of our

benchmark suite with four case studies, which showcase how

representative workloads in DAMOV can be used to explore

open-research topics on NDP systems and reach architec-

tural as well as workload-level insights and conclusions. We
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open-source our benchmark suite and our bottleneck analysis

toolchain [158]. We hope that our work enables further

studies and research on hardware and software solutions for

data movement bottlenecks, including near-data processing.
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.

APPENDIX A APPLICATION FUNCTIONS IN THE DAMOV
BENCHMARK SUITE
We present the list of application functions in each one of the

six classes of data movement bottlenecks we identify using

our new methodology.

Our benchmark suite is composed of 144 different ap-

plication functions, collected from 74 different applications.

These applications belong to a different set of previously

published and widely used benchmark suites. In total, we col-

lect applications from 16 benchmark suites, including: BWA

[430], Chai [199], Darknet [215], GASE [208], Hardware

Effects [431], Hashjoin [209], HPCC [206], HPCG [207],

Ligra [212], PARSEC [202], Parboil [201], PolyBench

[432], Phoenix [213], Rodinia [203], SPLASH-2 [205],

STREAM [120]. The 144 application functions that are part

of DAMOV are listed across six tables, each designating one

of the six classes we identify in Section III-C:

• Table 2 lists application functions in Class 1a, i.e.,

that are DRAM bandwidth-bound (characterized in Sec-

tion III-C1);

• Table 3 lists application functions in Class 1b, i.e.,

that are DRAM latency-bound (characterized in Sec-

tion III-C2);

• Table 4 lists application functions in Class 1c, i.e., that

are bottlenecked by the available L1/L2 cache capacity

(characterized in Section III-C3);

• Table 5 lists application functions in Class 2a, i.e., that

are bottlenecked by L3 cache contention (characterized

in Section III-C4);

• Table 6 lists application functions in Class 2b, i.e., that

are bottlenecked by L1 cache size (characterized in

Section III-C5);

• Table 7 lists application functions in Class 2c, i.e., that

are compute-bound (characterized in Section III-C6).

In each table we list the benchmark suite, the applica-

tion name, and the function name. We also list the input

size/problem size we use to evaluate each application func-

tion.
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Table 2: List of application functions in Class 1a.

Class Suite Benchmark Function
Input Set/

Problem Size
Representative

Function?

1a Chai [199] Transpose cpu -m 1024 -n 524288 No

1a Chai [199] Vector Pack run_cpu_threads -m 268435456 -n 16777216 No

1a Chai [199] Vector Unpack run_cpu_threads -m 268435456 -n 16777216 No

1a Darknet [215] Yolo gemm ref Yes

1a Hardware Effects [431] Bandwidth Saturation - Non Temporal main ref No

1a Hardware Effects [431] Bandwidth Saturation - Temporal main ref No

1a Hashjoin [209] NPO knuth -r 12800000 -s 12000000 -x 12345 -y 54321 No

1a Hashjoin [209] NPO ProbeHashTable -r 12800000 -s 12000000 -x 12345 -y 54321 Yes

1a Hashjoin [209] PRH knuth -r 12800000 -s 12000000 -x 12345 -y 54321 No

1a Hashjoin [209] PRH lock -r 12800000 -s 12000000 -x 12345 -y 54321 No

1a Hashjoin [209] PRHO knuth -r 12800000 -s 12000000 -x 12345 -y 54321 No

1a Hashjoin [209] PRHO radix -r 12800000 -s 12000000 -x 12345 -y 54321 No

1a Hashjoin [209] PRO knuth -r 12800000 -s 12000000 -x 12345 -y 54321 No

1a Hashjoin [209] PRO parallel -r 12800000 -s 12000000 -x 12345 -y 54321 No

1a Hashjoin [209] PRO radix -r 12800000 -s 12000000 -x 12345 -y 54321 No

1a Hashjoin [209] RJ knuth -r 12800000 -s 12000000 -x 12345 -y 54321 No

1a Ligra [212] Betweenness Centrality edgeMapSparse rMat No

1a Ligra [212] Breadth-First Search edgeMapSparse rMat No

1a Ligra [212] Connected Components compute rMat No

1a Ligra [212] Connected Components compute USA No

1a Ligra [212] Connected Components edgeMapDense USA No

1a Ligra [212] Connected Components edgeMapSparse USA Yes

1a Ligra [212] K-Core Decomposition compute rMat No

1a Ligra [212] K-Core Decomposition compute USA No

1a Ligra [212] K-Core Decomposition edgeMapDense USA No

1a Ligra [212] K-Core Decomposition edgeMapSparse rMat No

1a Ligra [212] Maximal Independent Set compute rMat No

1a Ligra [212] Maximal Independent Set compute USA No

1a Ligra [212] Maximal Independent Set edgeMapDense USA No

1a Ligra [212] Maximal Independent Set edgeMapSparse rMat No

1a Ligra [212] Maximal Independent Set edgeMapSparse USA No

1a Ligra [212] PageRank compute rMat No

1a Ligra [212] PageRank compute USA No

1a Ligra [212] PageRank edgeMapDense USA Yes

1a Ligra [212] Radii compute rMat No

1a Ligra [212] Radii compute USA No

1a Ligra [212] Radii edgeMapSparse USA No

1a Ligra [212] Triangle Count edgeMapDense rMat Yes

1a SPLASH-2 [205] Oceancp relax simlarge No

1a SPLASH-2 [205] Oceanncp relax simlarge No

1a STREAM [120] Add Add 50000000 Yes

1a STREAM [120] Copy Copy 50000000 Yes

1a STREAM [120] Scale Scale 50000000 Yes

1a STREAM [120] Triad Triad 50000000 Yes
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Table 3: List of application functions in Class 1b.

Class Suite Benchmark Function
Input Set/

Problem Size
Representative

Function?

1b Chai [199] Canny Edge Detection gaussian ref No

1b Chai [199] Canny Edge Detection supression ref No

1b Chai [199] Histogram - input partition run_cpu_threads ref Yes

1b Chai [199] Select run_cpu_threads -n 67108864 No

1b GASE [208] FastMap 2occ4 Wg2 No

1b GASE [208] FastMap occ4 Wg2 No

1b Hashjoin [209] PRH HistogramJoin -r 12800000 -s 12000000 -x 12345 -y 54321 Yes

1b Phoenix [213] Linear Regression linear_regression_map key_file_500MB No

1b Phoenix [213] PCA main ref No

1b Phoenix [213] String Match string_match_map key_file_500MB Yes

1b PolyBench [432] linear-algebra lu LARGE_DATASET Yes

1b Rodinia [203] Kmeans euclidDist 819200.txt No

1b Rodinia [203] Kmeans find 819200.txt No

1b Rodinia [203] Kmeans main 819200.txt No

1b Rodinia [203] Streamcluster pengain ref No

1b SPLASH-2 [205] Oceancp slave2 simlarge Yes

Table 4: List of application functions in Class 1c.

Class Suite Benchmark Function
Input Set/

Problem Size

Representative

Function?

1c BWA [430] Align bwa_aln_core Wg1 No

1c Chai [199] Breadth-First Search comp USA-road-d No

1c Chai [199] Breadth-First Search fetch USA-road-d No

1c Chai [199] Breadth-First Search load USA-road-d No

1c Chai [199] Breadth-First Search run_cpu_threads USA-road-d No

1c Chai [199] Canny Edge Detection hystresis ref No

1c Chai [199] Canny Edge Detection sobel ref No

1c Chai [199] Histogram - output partition run_cpu_threads ref No

1c Chai [199] Padding run_cpu_threads -m 10000 -n 9999 Yes

1c Chai [199] Select fetch -n 67108864 No

1c Chai [199] Stream Compaction run_cpu_threads ref No

1c Darknet [215] Resnet gemm ref Yes

1c Hashjoin [209] NPO lock -r 12800000 -s 12000000 -x 12345 -y 54321 No

1c Ligra [212] BFS-Connected Components edgeMapSparse rMat No

1c Ligra [212] Triangle Count compute rMat No

1c Ligra [212] Triangle Count compute USA No

1c Ligra [212] Triangle Count edgeMapDense USA No

1c PARSEC [202] Blackscholes BlkSchlsEqEuroNoDiv simlarge No

1c PARSEC [202] Fluidaminate ProcessCollision2MT simlarge Yes

1c PARSEC [202] Streamcluster DistL2Float simlarge No

1c Rodinia [203] Myocyte find 1000000 No

1c Rodinia [203] Myocyte master 1000000 No
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Table 5: List of application functions in Class 2a.

Class Suite Benchmark Function
Input Set/

Problem Size

Representative

Function?

2a HPCC [206] RandomAccess main ref No

2a HPCC [206] RandomAccess update ref No

2a Ligra [212] Betweenness Centrality Compute rMat No

2a Ligra [212] Betweenness Centrality Compute USA No

2a Ligra [212] Betweenness Centrality edgeMapDense rMat No

2a Ligra [212] Betweenness Centrality *edgeMapSparse USA Yes

2a Ligra [212] BFS-Connected Components Compute rMat No

2a Ligra [212] BFS-Connected Components Compute USA No

2a Ligra [212] BFS-Connected Components edgeMapSparse USA Yes

2a Ligra [212] Breadth-First Search compute rMat No

2a Ligra [212] Breadth-First Search compute USA No

2a Ligra [212] Breadth-First Search edgeMapDense rMat No

2a Ligra [212] Breadth-First Search edgeMapSparse USA Yes

2a Ligra [212] Connected Components edgeMapDense rMat No

2a Ligra [212] Maximal Independent Set edgeMapDense rMat No

2a Ligra [212] PageRank edgeMapDense(Rmat) rMat No

2a Phoenix [213] WordCount main word_100MB No

2a PolyBench [432] linear-algebra gramschmidt LARGE_DATASET Yes

2a Rodinia [203] CFD Solver main fvcorr.domn.193K No

2a SPLASH-2 [205] FFT2 Reverse simlarge Yes

2a SPLASH-2 [205] FFT2 Transpose simlarge Yes

2a SPLASH-2 [205] Oceancp jacobcalc simlarge No

2a SPLASH-2 [205] Oceancp laplaccalc simlarge No

2a SPLASH-2 [205] Oceanncp jacobcalc simlarge Yes

2a SPLASH-2 [205] Oceanncp laplaccalc simlarge Yes

2a SPLASH-2 [205] Oceanncp slave2 simlarge No

Table 6: List of application functions in Class 2b.

Class Suite Benchmark Function
Input Set/

Problem Size
Representative

Function?

2b Chai [199] Bezier Surface main_thread ref Yes

2b Hardware Effects [431] False Sharing - Isolated main ref No

2b PolyBench [432] convolution convolution-2d LARGE_DATASET No

2b PolyBench [432] linear-algebra gemver LARGE_DATASET Yes

2b SPLASH-2 [205] Lucb Bmod simlarge Yes

2b SPLASH-2 [205] Radix slave2 simlarge Yes
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Table 7: List of application functions in Class 2c.

Class Suite Benchmark Function
Input Set/

Problem Size

Representative

Function?

2c BWA [430] Align bwa_aln_core Wg2 No

2c Chai [199] Transpose run_cpu_threads -m 1024 -n 524288 No

2c Darknet [215] Alexnet gemm ref No

2c Darknet [215] vgg16 gemm ref No

2c Hardware Effects [431] False Sharing - Shared main ref No

2c HPCG [207] HPCG ComputePrologation ref Yes

2c HPCG [207] HPCG ComputeRestriction ref Yes

2c HPCG [207] HPCG ComputeSPMV ref Yes

2c HPCG [207] HPCG ComputeSYMGS ref Yes

2c Ligra [212] K-Core Decomposition edgeMapDense rMat No

2c Ligra [212] Radii edgeMapSparse rMat No

2c Parboil [201] Breadth-First Search BFS_CPU ref No

2c Parboil [201] MRI-Gridding CPU_kernels ref No

2c Parboil [201] Stencil cpu_stencil ref No

2c Parboil [201] Two Point Angular Correlation Function doCompute ref No

2c PARSEC [202] Bodytrack FilterRow ref No

2c PARSEC [202] Ferret DistL2Float ref Yes

2c Phoenix [213] Kmeans main ref No

2c PolyBench [432] linear-algebra 3mm LARGE_DATASET Yes

2c PolyBench [432] linear-algebra doitgen LARGE_DATASET Yes

2c PolyBench [432] linear-algebra gemm LARGE_DATASET Yes

2c PolyBench [432] linear-algebra symm LARGE_DATASET Yes

2c PolyBench [432] stencil fdtd-apml LARGE_DATASET Yes

2c Rodinia [203] Back Propagation adjustweights 134217728 No

2c Rodinia [203] Back Propagation layerfoward 134217728 No

2c Rodinia [203] Breadth-First Search main graph1M_6 Yes

2c Rodinia [203] Needleman-Wunsch main 32768 Yes

2c Rodinia [203]a Srad FIN ref No

2c SPLASH-2 [205] Barnes computeForces simlarge No

2c SPLASH-2 [205] Barnes gravsub simlarge No
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APPENDIX B REPRESENTATIVE APPLICATION
FUNCTIONS

Table 8: 44 representative application functions studied in detail in this work.∗

Suite Benchmark Function Short Name Class %

Chai [199]

Bezier Surface Bezier CHABsBez 2b 100

Histogram Histogram CHAHsti 1b 100

Padding Padding CHAOpad 1c 75.1

Darknet [215]
Resnet 152 gemm_nn DRKRes 1c 95.2

Yolo gemm_nn DRKYolo 1a 97.1

Hashjoin [209]
NPO ProbeHashTable HSJNPO 1a 47.8

PRH HistogramJoin HSJPRH 1b 53.1

HPCG [207]

HPCG ComputeProlongation HPGProl 2c 34.3

HPCG ComputeRestriction HPGRes 2c 42.1

HPCG ComputeSPMV HPGSpm 2c 30.5

HPCG ComputeSYMGS HPGSyms 2c 63.6

Ligra [212]

Betweenness Centrality EdgeMapSparse (USA [218]) LIGBcEms 2a 78.9

Breadth-First Search EdgeMapSparse (USA) LIGBfsEms 2a 67.0

BFS-Connected Components EdgeMapSparse (USA) LIGBfscEms 2a 68.3

Connected Components EdgeMapSparse (USA) LIGCompEms 1a 25.6

PageRank EdgeMapDense (USA [218]) LIGPrkEmd 1a 57.2

Radii EdgeMapSparse (USA) LIGRadiEms 1a 67.0

Triangle EdgeMapDense (Rmat) LIGTriEmd 1a 26.7

PARSEC [202]
Ferret DistL2Float PRSFerr 2c 18.6

Fluidaminate ProcessCollision2MT PRSFlu 1c 23.9

Phoenix [213]
Linear Regression linear_regression_map PHELinReg 1b 76.2

String Matching string_match_map PHEStrMat 1b 38.3

PolyBench [432]

Linear Algebra 3 Matrix Multiplications PLY3mm 2c 100.0

Linear Algebra Multi-resolution analysis kernel PLYDoitgen 2c 98.3

Linear Algebra Matrix-multiply C=alpha.A.B+beta.C PLYgemm 2c 99.7

Linear Algebra Vector Mult. and Matrix Addition PLYgemver 2b 44.4

Linear Algebra Gram-Schmidt decomposition PLYGramSch 2a 100.0

Linear Algebra LU decomposition PLYalu 1b 100.0

Linear Algebra Symmetric matrix-multiply PLYSymm 2c 99.9

Stencil 2D Convolution PLYcon2d 2b 100.0

Stencil 2-D Finite Different Time Domain PLYdtd 2c 39.8

Rodinia [433]
BFS BFSGraph RODBfs 2c 100.0

Needleman-Wunsch runTest RODNw 2c 84.9

SPLASH-
2 [205]

FFT Reverse SPLFftRev 2a 12.7

FFT Transpose SPLFftTra 2a 8.0

Lucb Bmod SPLLucb 2b 77.6

Oceanncp jacobcalc SPLOcnpJac 2a 30.7

Oceanncp laplaccalc SPLOcnpLap 2a 23.4

Oceancp slave2 SPLOcpSlave 1b 24.4

Radix slave_sort SPLRad 2b 41.1

STREAM [120]

Add Add STRAdd 1a 98.4

Copy Copy STRCpy 1a 98.3

Scale Scale STRSca 1a 97.5

Triad Triad STRTriad 1a 99.1
∗ Short names are encoded as XXXYyyZzz, where XXX is the source application suite, Yyy is the application name, and Zzz is the function (if more than one per benchmark). For

graph processing applications from Ligra, we test two different input graphs, so we append the graph name to the short benchmark name as well. The % column indicates the

percentage of clock cycles that the function consumes as a fraction of the execution time of the entire benchmark.
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Table 9: List of the evaluated 345 applications.
Benchmark Suite Application Benchmark Suite Application Benchmark Suite Application

ArtraCFD [434] ArtraCFD

HPCG [207]

Global Dot Product

SD-VBS - Vision [435]

disparity
blasr [436] Long read aligner Multigrid preconditione localization
BWA [437] aln Sparse Matrix Vector Multiplication (SpMV) mser

fastmap Symmetric Gauss-Seidel smoother (SymGS) multi_ncut

Chai [199]

BFS Vector Update pca
BS

IMPICA Workloads [55]
btree sift

CEDD hashtable stitch
HSTI llubenchmark svm
HSTO

libvpx [438]
VP8 texture_synthesis

OOPPAD VP9 tracking
OOPTRNS

Ligra [212]

BC
sort-merge-joins [439]

m-pass
SC BellmanFord m-way
SELECT BFS

SPEC CPU2006 [440]

400.perlbench
TRNS BFS-Bitvector 401.bzip2
VPACK BFS-CC 403.gcc
VUPACK CF 410.bwaves

clstm [441] clstm Components 416.gamess

CombBLAS [442]

BetwCent KCore 429.mcf
BipartiteMatchings MIS 433.milc
CC PageRank 434.zeusmp
DirOptBFS PageRankDelta 435.gromacs
FilteredBFS Radii 436.cactusADM
FilteredMIS Triangle 437.leslie3d
MCL3D

Metagraph [443]
annotate 444.namd

Ordering/RCM classify 445.gobmk
TopDownBFS

MKL [444]

ASUM 447.dealII

CORAL [200]

AMG2013 AXPY 450.soplex
CAM-SE DOT 453.povray
Graph500 GEMM 454.calculix
HACC GEMV 456.hmmer
Hash

Parboil [201]

mri-q 458.sjeng
homme1_3_6 BFS 459.GemsFDTD
Integer Sort cutcp 462.libquantum
KMI histo 464.h264ref
LSMS lbm 465.tonto
LULESH mri-gridding 470.lbm
MCB sad 471.omnetpp
miniFE sgemm 473.astar
Nekbone spmv 481.wrf
QBOX stencil 482.sphinx3
SNAP tpacf 483.xalancbmk
SPECint2006"peak"

PARSEC [202]

blackscholes

SPEC CPU2017 [445]

500.perlbench_r
UMT2013 bodytrack 502.gcc_r

Darknet [215]

AlexNet canneal 503.bwaves_r
Darknet19 dedup 505.mcf_r
Darknet53 facesim 507.cactuBSSN_r
Densenet 201 ferret 508.namd_r
Extraction fluidanimate 510.parest_r
Resnet 101 freqmine 511.povray_r
Resnet 152 raytrace 519.lbm_r
Resnet 18 streamcluster 520.omnetpp_r
Resnet 34 swaptions 521.wrf_r
Resnet 50 vips 523.xalancbmk_r
ResNeXt 101 x264 525.x264_r
ResNext 152

Phoenix [213]

histogram 526.blender_r
ResNeXt50 kmeans 527.cam4_r
VGG-16 linear-regression 531.deepsjeng_r
Yolo matrix multiply 538.imagick_r

DBT-5 [446] TPC-E pca 541.leela_r

DBx1000 [447]

TPCC DL_DETECT string_match 544.nab_r
TPCC HEKATON word_count 548.exchange2_r
TPCC NO_WAIT

PolyBench [432]

2mm 549.fotonik3d_r
TPCC SILO 3mm 554.roms_r
TPCC TICTOC atax 557.xz_r
YCSB DL_DETECT bicg 600.perlbench_s
YCSB HEKATON cholesky 602.gcc_s
YCSB NO_WAIT convolution-2d 603.bwaves_s
YCSB SILO convolution-3d 605.mcf_s
YCSB TICTOC correlation 607.cactuBSSN_s

DLRM [448]

RM1-large [133] covariance 619.lbm_s
RM1-small [133] doitgen 620.omnetpp_s
RM2-large [133] durbin 621.wrf_s
RM2-small [133] fdtd-apm 623.xalancbmk_s

GASE [208]
FastMap gemm 625.x264_s
gale_aln gemver 627.cam4_s

GraphMat [211]

BFS gramschmidt 628.pop2_s
DeltaStepping gramschmidt 631.deepsjeng_s
Incremental PageRank lu 638.imagick_s
LDA lu 641.leela_s
PageRank mvt 644.nab_s
SDG symm 648.exchange2_s
SSSP syr2k 649.fotonik3d_s
Topological Sort syrk 654.roms_s
Triangle Counting trmm 657.xz_s

APPENDIX C COMPLETE LIST OF EVALUATED
APPLICATIONS
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Benchmark Suite Application Benchmark Suite Application Benchmark Suite Application

Hardware Effects [431]

4k aliasing resectionvolume [449] resectionvolume

SPLASH-2 [205]

barnes
bandwidth saturation non-temporal

Rodinia [203]

b+tree cholesky
bandwidth saturation temporal backprop fft
branch misprediction sort bfs fmm
branch misprediction unsort cfd lu_cb
branch target misprediction heartwall lu_ncb
cache conflicts hotspot ocean_cp
cache/memory hierarchy bandwidth hotspot3D ocean_ncp
data dependencies kmeans radiosity
denormal floating point numbers lavaMD radix
denormal floating point numbers flush leukocyte raytrace
DRAM refresh interval lud volrend
false sharing mummergpu water_nsquared
hardware prefetching myocyte water_spatial
hardware prefetching shuffle nn

Tailbench [450]

img-dnn
hardware store elimination nw masstree
memory-bound program particlefilter moses
misaligned accesses pathfinder shore
non-temporal stores srad silo
software prefetching streamcluster specjbb
store buffer capacity

SD-VBS- Cortex [435]

lda sphinx
write combining libl xapian

Hashjoin [209]

NPO me

WHISPER [451]

ctree
PRH pca echo
PRHO rbm exim
PRO sphinix hashmap
RJ srr memcached

HPCC [206] RandomAccesses svd nfs
redis
sql
tpcc
vacation
ycsb

ZipML [452] SGD
Stream [120] STREAM
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