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Abstract— For massive multiple-input multiple-output (m-MIMO)
uplink, the performances of the linear minimum mean-square error
(MMSE) detector are considered near optimal, and they occupy
benchmark place for most linear iterative detectors. However, the
MMSE algorithm is known by its load computational complexity
due to the implication of large-scale matrix inversions, and in other
hand, iterative methods are often preferred in signal detection
because of its low complexity. In this paper, we propose a New
Damped Jacobi (NDJ) detector in order to improve the
performance of the classical Jacobi linear algorithm. Starting from
the classical Jacobi technique to our new proposal, we go through
the development of two variants; one uses a damping factor and the
other uses a stair-matrix. However, the NDJ incorporates a
damping factor in its construction and basing also on stair matrix
instead of diagonal matrix. The performances in terms of
convergence and low complexity of each Jacobi variant studied in
this paper are analyzed. Finally, some simulation examples are
given to illustrate the advantages of the new proposed algorithm.

Index Terms—Massive MIMO, iterative Jacobi method, diagonal matrix, stair
matrix, damping factor.

I. INTRODUCTION

A communication system structured on a massive antenna array, whose purpose is to serve

simultaneously multiple users, is commonly called a massive MIMO system. This last represents one

of the key and promising technologies for 5G mobile communications, in fact, it has the capability to

combat the severe fading of mm-wave signals and to eliminate interference in multi-layer and denser

networks, and it is also able to ensure wireless links [1]. In addition, this system takes care to achieve

some challenges among which the increasing complexity of the detection task especially when the

number of used antennas is large.

Signal detection in massive MIMO uplink is a core technology for the future 5G wireless

communications, furthermore, detecting efficiently and accurately signals in such new system is of

vital importance [2]. In literature, the set of algorithms used for massive MIMO signal detection can

be classified either into linear detection algorithm or nonlinear detection algorithm according to

different calculation methods [3]. Although the linear algorithms are less complex compared to the

nonlinear ones, however, their main difficulty goes back to the calculation of the inverse matrix of a
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higher rank matrix created mostly from a massive MIMO system of very large scale.

In recent years, many researchers in the field of mobile communications and massive MIMO

technology have achieved abundant works concerning system uplink detection. The general purpose

of their researches was to achieve good tradeoff between the performance and the computational

complexity of the system. Additionally, various low-complexity detection schemes have been

developed in order to reach near-optimal performance [4]-[6].

Among the well know iterative linear methods which have been developed to avoid or to

approximate channel matrix inversion there are Jacobi method [7], Gauss-Seidel method [8],

successive over-relaxation (SOR) method [9], Newton iterations method [10], Richardson method

[11], and Neumann series [12]. The low-complexity of Jacobi iterative method leads some authors to

work on improving its performance in terms of convergence rate. The refinement of Jacobi iterative

method proposed in [13] has offered a new low-complexity MMSE detector, in fact, this refinement

has been given by the use of band matrix to accelerate the convergence rate and guarantee the near-

optimal BER performance. In [14], a Jacobi method-based scheme has been established by using an

initial estimation provided by steepest descent technique. In the same context, authors of [15] have

proposed a novel joint conjugate gradient and Jacobi iteration method to speed up the convergence

rate with lower implementation complexity and latency. A decision-aided Jacobi (DA-Jacobi)

iteration has been proposed in [16], this proposition can extensively improve the convergence speed

as compared to the traditional Jacobi, and at the same time, may result in lower computational

complexity. By providing a damping factor [17], a damped Jacobi method has been appeared lately to

reduce the computational complexity of the classical MMSE detector, and to ensure the fast

convergence thanks to the multiplication of the initial solution by a reasonable damping factor.

Here it is worth pointing out that most proposals in existing literature extensively use the diagonal

matrix in their development to solve linear equations. Furthermore, the application of stair matrix in

massive MIMO systems has been recently taken into account in [18] when the authors have addressed

two fundamental issues in the development of their iterative method using stair matrix; 1- the

probability that the convergence conditions are satisfied for saying whether the stair matrix is

applicable or not in massive MIMO, and 2- the convergence rate which reveals the advantages over

the use of diagonal matrix.

The rest of this paper is organized as follows. Section II introduces the Massive-MIMO system

model. Section III describes briefly and shows the form of diagonal and stair matrices. Section IV

reviews the conventional Jacobi method, then presents the Damped Jacobi version, after that

generalizes the Jacobi linear detector based on stair matrix, then explains the principle of the New

Damped Jacobi (NDJ) linear detector using stair matrix, and finally discusses the computation

complexity analysis. The performances of the discussed approaches are validated by means of

numerical and simulation results in section V. Finally, the conclusion is drawn in section VI.
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II. SYSTEM MODEL

We consider the uplink of a massive MIMO system as shown in Fig.1, in such system, U single-

antenna users communicate with the base station (BS) which is equipped with N antennas, where

N U . The modulated data symbols ( s ) are transmitted through the massive MIMO channel

described by N UH C ´Î . Each element in H is independently generated by the complex Gaussian

random variable with zero mean and unit variance.

The received signal vector 1Ny C ´Î at base station can be expressed as:

y Hs n= + (1)

with 1Nn C ´Î is the zero-mean complex Gaussian distributed noise vector with variance 2
ns .

Fig. 1. Massive MIMO model with N antennas at BS to serve U users.

The transmitted signal can be recovered by the MMSE detector and expressed as:

( ) 12 1ˆ H H
n MFH H I H y A ys s

- -= + = (2)

Where 2
nA G Is= + denotes the MMSE filtering matrix, I is the identity matrix, HG H H= is the

Gram matrix, and H
MFy H y= represents the matched-filter output of y .

III. FROM DIAGONAL MATRIX TO STAIR MATRIX

In theory, a matrix D is called diagonal matrix if its elements outside the main diagonal are all

zeros [19], for instance, a 6 6´ diagonal matrix can be given as:

x 0 0 0 0 0
0 x 0 0 0 0
0 0 x 0 0 0
0 0 0 x 0 0
0 0 0 0 x 0
0 0 0 0 0 x

D

é ù
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ë û

(3)
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A tridiagonal matrix T is a matrix whose all the elements on the main diagonal, super diagonal

(above main diagonal) and sub-diagonal (below main diagonal) are non-zeros. All the rest of the

elements are zeros, for example, a 6 6´ tridiagonal matrix takes the following form:

x x 0 0 0 0
x x x 0 0 0
0 x x x 0 0
0 0 x x x 0
0 0 0 x x x
0 0 0 0 x x

T

é ù
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ë û

(4)

A stair matrix is a special tridiagonal matrix that satisfies one of the following conditions:

1) ( ), 1 0m mT - = , ( ), 1 0m mT + = , where    2   1m k= - , ( )  1  , 2, ,    1  / 2k N= ¼ + . That means, the non-

diagonal elements in the odd rows of tridiagonal matrix are zeros.

2) ( ), 1 0m mT - = , ( ), 1 0m mT + = , where    2m k= ,   1  , 2, ,  / 2k N= ¼ . And that means, the non-

diagonal elements in the even rows of tridiagonal matrix are zeros.

According to the two above conditions, we can define a stair matrix S as a tridiagonal matrix where

the off-diagonal entries on either the odd or the even row are zeros [18]. For example, a 6 6´ stair

matrix can have one of the two following forms corresponding to the first and second previous

conditions, respectively:

x 0 0 0 0 0
x x x 0 0 0
0 0 x 0 0 0

1
0 0 x x x 0
0 0 0 0 x 0
0 0 0 0 x x

S

é ù
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ë û

or

x x 0 0 0 0
0 x 0 0 0 0
0 x x x 0 0

2
0 0 0 x 0 0
0 0 0 x x x
0 0 0 0 0 x

S

é ù
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ë û

(5)

The stair matrix ( ), 1 , , 1,  , m m m m m mS stair s s s- += is nonsingular if and only if mms , 1  , 2,   , m N= ¼ are

nonsingular, furthermore, its inverse 1S- is also a stair matrix given by:

( )1 1 12s s sS D D S D- - -= - (6)

where ( )11 22,  ,  ,s mmD diag s s s= ¼ is diagonal matrix extracted from the stair matrix S .

Then, a stair linear system Sx b= can be easily solved by computing 1S b- .

IV. DETECTION ALGORITHMS

For this section, we mainly focus on the description of a well known iterative method which has

been proposed recently to solve the MMSE algorithm problem for signal detection in Massive MIMO

systems; it’s about the Jacobi method. From this last, we derive then different variants.
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A. Conventional Jacobi method
The iterative conventional Jacobi (CJ) method is one of the promising approaches that have been

presented to avoid the direct calculation of matrix inversion. The basic idea of this method is to re-

express the MMSE estimation equation, then apply a matrix decomposition [7]. In other words, Jacobi

iterative method can solve efficiently diagonally dominant systems of linear equation Ax b= .

Rewriting equation (2) to:

ˆ MFAs y= (7)

Decomposing the matrix A into two parts: a diagonal-component matrix D and a remainder

matrix R as A D R= + . The diagonal elements of D are identical to those of A and its off-

diagonal elements are zeros, while the diagonal elements of R are zeros and its off-diagonal elements

are identical to those of A .

11

22

0 0
0 0

0 0 NN

a
a

D

a

é ù
ê ú
ê ú=
ê ú
ê ú
ë û




   


(8)

and

12 1

21 2

1 2

0
0

0

N

N

N N

a a
a a

R

a a

é ù
ê ú
ê ú=
ê ú
ê ú
ë û




   


(9)

By employing the Jacobi iterative method in the detection, the estimated-transmitted signal vector

ŝ can be obtained iteratively as follows [16]:

[ ]1
1ˆ ˆi i MFDs Rs y-
+ = +

( )1
î MFD D A s y-= - +é ùë û (10)

where îs and 1îs + are the approximations of ŝ in the thi and ( )1 thi + iterations, respectively.

Since the convergence rate of the iteration is highly based on the initial setting, we consider the

initial solution 0s as:

1
0 MFs D y-= (11)

A sufficient but not necessary condition that guarantees convergence for the Jacobi iteration is

diagonally dominance. In this case and according to the theorem 8.3.7 of [20], the Jacobi method

converges if and only if the spectral radius ( )CJBr of its iteration matrix is less than one. This is

expressed mathematically as:

( ) ( ) 1CJ max CJB Br l= < (12)
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where ( )1 1
CJB D A D I D A- -= - - = - is the iteration matrix of conventional Jacobi, and

( )max CJBl denotes largest eigenvalue of CJB .

B. Damped Jacobi method
Based on the ordinary Jacobi iteration method, the damped version (DJ) is a simple way which is

used to improve the system detection performance in terms of convergence speed. In fact, the

estimations correction ( ( )1
î MFD As y- - ) at each iteration is damped by real parameter w , thus, the

damped Jacobi iterative method can be expressed as:

( )1
1   ˆˆ ˆi i i MFss s D A yw -
+ = - - (13)

From expression (13), it can be shown that:

( ) ( )1
1ˆ ˆ ˆ ˆ ˆi i i i i MFs s s s D As yw w w -
+ = + - - -

( ) ( )1ˆ ˆ ˆ1i i MF is D As y Dsw w -= - - - -

( ) ( )1ˆ ˆ1 ( )i i MFs D D A s yw w -= - + - +

( ) ( )1ˆ ˆ1 ( )i i MFs D D A s yw w -= - + - +

( ) ( )1ˆ ˆ1 i MF is D y Rsw w -= - + - (14)

For the signal detection using damped Jacobi method, we can use an initial solution given as

follows:
1

0 MFs D y-= (15)

By generalizing the convergence condition of the Jacobi method, we obtain that the convergence

for its damped version is ensured by the following constraint:

( ) ( ) 1DJ max DJB Br l= < (16)

where ( )DJBr denotes the spectral radius of the iteration matrix of the damped Jacobi which is

( ) ( )1 11DJB I D A D I D Aw w w- -= - - - = - , and ( )max DJBl denotes the biggest eigenvalue of

DJB .

In addition, choosing a good damping factor value plays an important role in the convergence of the

damped Jacobi method. This method convergences regularly when w satisfies 0     2 / maxw l£ £ .

C. Jacobi based on stair matrix
Jacobi based on stair matrix (JS) algorithm is considered as a modified Jacobi approach that uses a

stair matrix in the MMSE filtering matrix decomposition instead of a diagonal matrix. Such iterative

method based on the stair matrix class can be easily implemented for parallel computation [19]. In this

particular case, the iterative algorithm structure is formulated as:

[ ]1
1ˆ ˆi s i MFs S R s y-
+ = +

https://orcid.org/0000-0001-9137-7900


Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 20, No. 1, March 2021

Brazilian Microwave and Optoelectronics Society-SBMO received 22 May 2020; for review 31 May 2020; accepted 10 Dec 2020
Brazilian Society of Electromagnetism-SBMag © 2021 SBMO/SBMag ISSN 2179-1074

DOI: 10.1590/2179-10742021v20i1889 98

( )1 ˆ  i MFS S A s y-= - +é ùë û
1 1ˆ ˆi i MFS A Ss ys - -= - + (17)

where îs denotes the thi estimation, S is the stair matrix, and A remains always the MMSE filtering

matrix.

For this modified Jacobi algorithm that uses a stair matrix, the initial estimation is established as:
1

0 MFs S y-= (18)

Basing on the same convergence conditions of conventional Jacobi method, we come back to find

that the sufficient condition which requires a Jacobi-stair to converge is as follows:

( ) ( ) 1JS max JSB Br l= < (19)

For the Jacobi-stair method, the iteration matrix is calculated using the stair matrix S and it is

given as follows:

( )1 1
JS uB S A S I S A- -= - - = - (20)

D. Proposed method
The idea of our new proposed algorithm is to adopt the use of stair matrix in a damped Jacobi

version. Thus, this proposition which is named new damped Jacobi (NDJ) detector combines both

advantages of the Jacobi based on stair matrix instead of diagonal matrix and the damped Jacobi

which is based on a damping parameter.

In layman terms, the proposed iterative algorithm expression can be easily deduced from the

combination of the equations (13) and (17) as follows:

( )1
1ˆ ˆ ˆ i i i MFs s S As yw -
+ = - -

( ) ( )1ˆ ˆ1 i MF s is S y R sw w -= - + - (21)

where sR A S= - , and w being the damping factor.

The initial estimation of the proposed algorithm (NDJ or DJS) can be expressed as:
1

0 MFs S y-= (22)

We summarize the complete steps of the proposed method output detection in algorithm I.

Algorithm I: Damped Jacobi detector using stair matrix
Input:H , y , 2

ns ,N , U , i ,and w .

Output: ŝ : the estimated value of s
Initialization
1: HG H H= , 2

nA G Is= + , H
MFy H y= ,

2: ( ), 1 , , 1,  , n n n n n nS stair A A A- +=

3: sR A S= -

4: ( ) 10 MFs S y-= ; Initial estimation

https://orcid.org/0000-0001-9137-7900
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Iteration
For 1, , k i= ¼ do

( ) ( ) ( ) ( )( )11 1 MF ss k s k S y R s kw w -+ = - + -

end for
Return: ( )ˆ 1s s k= +

To have a guarantee on the convergence of damped-Jacobi-stair variant, it is necessary that the

spectral radius of its iteration matrix, which is constituted by both a damping parameter and a stair

matrix, fulfills the following condition:

( ) ( ) 1DJS max DJSB Br l= < (23)

with:

( ) ( )1 11DJSB I D A S I S Aw w w- -= - - - = - (24)

From (24) the eigen-values of the iteration matrix of damped Jacobi based on stair matrix DJSB are

included in the following range:

( ) ( ) ( )1 11 1min n DJS maxS A B S Awl l wl- -- £ £ - (25)

where ( )n DJSBl is the thn eigen-value of DJSB .

From (23) and (25) we can deduce that two conditions are required for the convergence of Damped-

Jacobi-stair variant:

1 01minwl w- Þ >< (26)

11 2 /min maxwl w l- <> - Þ (27)

The two previous expressions can be reformulated into one as follows:

0     2 / maxw l£ £ (28)

The convergence analysis of our four studied algorithms leads us to classify them according to the

speed convergence rate as follows; damped Jacobi based on stair matrix, damped Jacobi, Jacobi based

on stair matrix, and then conventional Jacobi. This ranking results from the comparison between the

spectral radius of iteration matrices which shows the following:

( ) ( ) ( ) ( )DJS DJ JS CJB B B Br r r r< < < (29)

So, the smaller spectral radius is, the faster the iteration method converges.

E. Computational complexity
One of the essential concepts in evaluating the performance of massive MIMO detection algorithms

is the computational complexity. To evaluate the computational complexity of our studied algorithms

we need to analyze it in terms of the number of real number multiplications-divisions. For theoretical

analysis, the overall computational complexity is split into two parts which are the initialization step

and the iterations process. For our proposed method where its important steps are pointed out above

https://orcid.org/0000-0001-9137-7900
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in Algorithm I, in the initialization part, the computation of A , MFy and 1S- , needs 22NU , 4NU

and ( 4 - 3U ) respectively. In addition, the initial estimation computation requires

( )1 12 2 8 2 8 4
2 2

U UU U+ -
+ ´ + + ´ = - . Thus, the total initialization computation is

22 4 12 - 7NU NU U+ + . On another side, in the iteration part, the calculation of ( ) ( )1- s kw

requires 6 4 7 4U U U+ - = - and ( ) ( )( )1
MFS S A s k yw - - + requires

( )2 1U U´ - ( ) ( ) 21 14 1 4 3 6 10 4
2 2

U UU U U U+ -
+ - ´ + - ´ = - + . Thus, the total computation

of the iteration part is ( )26 3i U U- .

A comparison of computational complexity between the different studied Jacobi variants that can

be used for N U´ massif MIMO detector is shown in Table I.

TABLE I. COMPUTATIONAL COMPLEXITY COMPARISON

Methods Initialization step Iteration process
Conventional Jacobi (CJ) 22 4NU NU+ ( )24 2i U U-

Damped Jacobi (DJ) ( )2 2 1U NU N+ + ( )26 3i U U-

Jacobi-Stair (JS) 22 4 10 7NU NU U+ + - ( )24 2i U U-

Damped Jacobi-Stair (DJS) 22 4 12 7NU NU U+ + - ( )26 3i U U-

From Table I, we can note that the damped Jacobi method as compared to the conventional Jacobi

method adds 2U and ( )22U U- of complexity respectively in the initialization step and the

iteration process, while the Jacobi based on stair matrix as compared to the conventional method adds

(10 7)U - of complexity only in its initialization step. It is also noteworthy that the proposed method

brings a small increase in its complexity compared to that of the basic algorithm and which is

determined as ( )12 7U - and ( )22U U- in the initialization and the iteration parts, respectively.

Further, the overall computational cost of all the previous analyzed methods is low and is in the same

order which is ( )2O U . Hence the proposed method (NDJ) has a complexity which is quadratic with

respect to the users number, that means one order of magnitude less than MMSE with direct matrix

inversion. Therefore, the damped Jacobi based on stair matrix offers a new low-complexity algorithm

for massive MIMO detection without complicated matrix inversion.

V. SIMULATION RESULTS

In this section, some simulations are designed to evaluate the performance of the proposed new

damped Jacobi iteration algorithm. The Monte-Carlo simulation is followed and its results are

provided on the BER performance to compare the proposed algorithm with the other studied Jacobi

https://orcid.org/0000-0001-9137-7900
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version detectors. The simulation environment is assumed to be uplink massive MIMO system

equipped with 128 antennas at BS serving 32 single-antenna users and with 64-QAM modulation

scheme.

The performance of the different studied Jacobi variants in massive MIMO systems are here

evaluated in terms of BER curves and using the MMSE detector as the benchmark for comparison.

The results are shown in figures 2, 3 and 4. As is observed from these figures, all modifications

applied to the basic Jacobi algorithm provide improvements where each Jacobi version comes with its

own enhancement degree which is different to that of another version. These modification versions

can be classified according to the achieved improvement as follows; Damped-Jacobi-stair, Damped-

Jacobi, then Jacobi-stair.
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Damped-Jacobi
Jacobi-stair
Damped-Jacobi-stair

Fig. 2. BER performance comparison between different iterative methods for 2 iterations.

Comparing Fig. 2, Fig. 3 and Fig. 4, we can find that with an increasing number of iterations the

BER performances of all considered iterative detectors improve where the BER gains between these

detectors becomes more measurable. It can be seen also from Fig. 4 for example where �=4 that a

small BER difference between the damped Jacobi variants is achieved. In addition, compared with the

exact MMSE algorithm and for relatively small iterations, a satisfying performance can be achieved

generally by the damped algorithms and more particularly by our new damped Jacobi basing on stair

matrix. It is worth noting that the damping factor value plays a significant role in the algorithm

convergence, and in our simulations a damping parameter equal to 0.6 is selected.
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Fig. 3. BER performance comparison between different iterative methods for 3 iterations.
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Fig. 4. BER performance comparison between different iterative methods for 4 iterations.

We also perform another simulation in order to show the influence of the increase in the number of

BS antennas on the BER, and results are illustrated in Fig. 5. We test our proposed algorithm (NDJ)

by considering in almost the same previous conditions a fixed number of users, �=32, but the number

of BS antennas � is varied from 64 to 140, and a value of SNR=12dB is adopted. It can be seen that,

by increasing the number of BS antennas, the BER performance of both considered algorithms

(MMSE and NDJ) improves. In addition, with a small number of iterations (i.e., � =4) and high

number of antennas, the performance of the NDJ algorithm approximates the exact performance of the

MMSE algorithm. Thus, higher � is suggested to compensate the BER performance difference while

retaining relatively small iteration value.
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Fig. 5. BER performance comparison against the number of BS antennas.

VI. CONCLUSION

The work presented in this paper introduces a new approach for massive MIMO signal detection

based specially on the low complexity Jacobi algorithm. Moreover, using the matrices introduced in

the present paper, we can develop and also create some other iterative scheme variants based on other

conventional iterative detection techniques. The proposition of damped Jacobi scheme using stair

matrix is a very new beneficial idea because it is able to reach a considerable compromise between

speed convergence rate and low computational complexity. In fact, the new proposed algorithm which

is called NDJ combines the both advantages of a damped approach and a simple decomposition

technique basing on stair matrix.
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