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DAMPED WAVE EQUATION
WITH A CRITICAL NONLINEARITY

NAKAO HAYASHI, ELENA I. KAIKINA, AND PAVEL I. NAUMKIN

ABSTRACT. We study large time asymptotics of small solutions to the Cauchy
problem for nonlinear damped wave equations with a critical nonlinearity

8?u+8tu—Au+)\ul+% =0, zeR™ t>0,
u(0, ) = eug (), 0:u(0,z) = eur (z),z € R",

where £ > 0, and space dimensions n = 1,2,3. Assume that the initial data
up € H* NH®, uy e HO"BONHI,

where § > 4, weighted Sobolev spaces are

(@)™ (i0:) ¢ (@) , < oo}

(z) = V1 + z2. Also we suppose that

Vi >0,/u0 (z)dz > 0,

H'" = {peL|

where
0 :/(uo (@) + w1 (@) da.

Then we prove that there exists a positive g such that the Cauchy problem
above has a unique global solution u € C ([O, 00) ;H‘s’o) satisfying the time
decay property

7

Hu (t) — e0G (t,z) e #®) HLP < Cel+Eg1-3 (3 07)

for all t >0, 1 < p < oo, where € € (0,0].

1. INTRODUCTION
We study the large time asymptotics of solutions to the Cauchy problem for the
nonlinear damped wave equation
Lu+ N (u) =0, z€R", ¢t >0,
u(0,2) = eup (z), Ou(0,x) =euy (x), x € R",
where £ = 92 + 0; — A, € > 0, the spatial dimension n = 1,2,3, and the critical
nonlinearity A (u) is defined by

(1.1)

2

N (u) =uttn.
Recently much attention was drawn to nonlinear wave equations with dissipa-
tive terms. We mention here some recent works concerning global existence and
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1166 NAKAO HAYASHI, ELENA I. KAIKINA, AND PAVEL I. NAUMKIN

nonexistence of solutions. The blow-up results were proved in [I7], [I§] for the case
N (u)=ul’, 1 <p<1+2 X<0, when the initial data ug € H', u; € L? have a
compact support and are such that [ug (x)dz > 0, [u; (z)dz > 0. This blow-up
result was extended to the critical and subcritical cases 1 < p < 1+ % in [19].
In [I0] Li and Zhou obtained an upper bound of the life-span of solutions to (L))
with M (u) = [ul”, 1 < p < 1+ 2, XA < 0 with certain small initial data. In [14],
the blow-up result was obtained for problem (LI) with A (u) = |u/*" " u, A < 0 in
the space dimension n = 3 under the conditions 1 < p < 1+ % and ug (z) = 0,
ug (z) > 0, [u1 (x)dx > 0. Note that similar behavior was first discovered in [I]
for the nonlinear heat equation u; — Au = u” in the critical and subcritical cases
l<p<1+ % We mention here some works regarding the nonlinear heat equation
in the critical case (i.e. equation (LI) with £ = 8; — A and N (u) = u't7). If
A < 0, there are blow-up results for positive solutions (see [3], [9]). For any space
dimension and A > 0, it was shown that positive solutions have an additional time
decay compared to the linear heat equation; more precisely, it was proved that (see

21, @, [5])

w3

lu (Dl < C A+ (1+log (1+1)”

From the heuristic point of view the term with the second time derivative us in
the nonlinear damped wave equation ([LI]) has an additional time decay, hence it
cannot affect essentially the large time asymptotic behavior of solutions to ().
Therefore we can also expect an additional time decay for solutions of the nonlinear
damped wave equation ([I]). Below we state more precisely the conditions which
guarantee global existence and decay of solutions to (LTI).

From the previous works [8], [11] we know that under the condition (5)6 U (€),
€)1y (¢) € L2 with 6 > %, the Fourier transform of a solution to the linearized
problem corresponding to (II]) decays exponentially in time and behaves like a
solution of the linear wave equation in the high-frequency part || > %, and in the
low-frequency part || < 1 it is similar to a solution of the linear heat equation.
These facts were used to prove large time decay estimates and global existence of
solutions to (I for the super critical cases p > 1+ 2. In [I8], Todorova and
Yordanov proved global existence and large time decay estimates of solutions to
the Cauchy problem for the damped wave equation (ILI)) with nonlinearity A (u) =
lul”, where 1+ 2 < p < - in the case of sufficiently small initial data having
a compact support. When the initial data are in the usual Sobolev space 0%ug €
LINL>®, |a| <1, u; € L' NL*, problem (L)) was considered in [I3]. By making
use of the fundamental solution of the linear problem, global existence of small
solutions and large time decay estimates |lully, < C’t_%(l_%), 1 < g < oo, for
space dimension n = 3, was proved. Later these requirements on the initial data
were relaxed in [16] as follows ug € L', 0%ug € L?, |a| < 1, u; € L' NL?, under the
additional assumptions on p and ¢ such that p <5, ¢ < 6 for the space dimension
n =3 and ¢ < oo for the two-dimensional case n = 2.

Applying energy type estimates obtained in [11] and [§] it was proved in [7] that
solutions of the nonlinear damped wave equation (II]) in the super critical cases
1+ % <p< 5, ifn=3and 1+ % < p < oo, if n = 1,2, with arbitrary initial
data up € H' N LY, uy € L2N LY (i.e. without smallness assumption on the initial
data) have the same large time asymptotics as that for the linear heat equation
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DAMPED WAVE EQUATIONS 1167

L = 0; — A, that is,

1

u(t) — MG (#)||p, = 0 (t’%(k;))

ast — oo, where 2 < p < 2% forn=3,2<p<ooforn=2and 2<p< oo

n—2
2

for n = 1; here G (t,z) = (47rt)7% e~'it is the heat kernel and M is a constant.
Recently in [I5], sharp LP-time decay estimates of solutions to the nonlinear damped
wave equation (IIT)) were obtained in the subcritical case 1 < p < 1+ % under the
condition that the initial data decay exponentially at infinity without any restriction
on the size, where 2 < p < nEQ for the space dimensionn > 3,2 < p < oo for n = 2
and 2 < p < oo for n = 1. As far as we know, there are no results on the large time
asymptotic behavior for the critical damped nonlinear wave equations.

For the case of higher dimensions 4 < n < 5, global existence and L? - time
decay estimates for p < ¢ < -£= were obtained via Fourier analysis in paper [12]

p—1
(see Theorem 1.3), when the power of the nonlinearity p is such that 1—&—% <p< Z—Jjg

and the initial data are small enough and satisfy ug, 9%ug € L N L71 ,0Pug € L2,
u; € LINL#71, 9%, € L2, la| <1,18] < 2. Thus we see that due to the hyperbolic
character of the equation some regularity assumptions on the initial data are needed
to be able to treat the case of higher space dimensions. However, the nonlinear term
under consideration does not possess enough regularity. This is one of the reasons
why we restrict our attention below to the case n < 3. Another reason is that in
order to get an additional time decay of solutions we translate the original equation
to another one containing time derivative of a solution (see ([B.6) below), which
require more regularity properties of the solution and prevents us from considering
higher-dimensional cases.
Define by

B = {0 € 12 (o) i0.)' ¢ o)

the weighted Sobolev space, (£) = /1 + £2. Denote

< oo}
L2

n 5
<n+2) '

n z|2
Define g (t) = 1 + plog (t) and let G (¢, x) = (4wt)” 2 e~ be the heat kernel.
Our main result is the following.

3

= / (1o () + w1 (&) d, = 7 (ef)

Theorem 1.1. Let the initial data ug, uy be such that
up € HYONH*®, wy e HO MO nHI,
where § > 5. Also we assume
AO% >0, /uo (x)dx > 0.

Then there exists €9 > 0 such that for any 0 < € < g the Cauchy problem (LT
has a unique global solution u € C ([07 00); H‘S’O) satisfying the asymptotic property

u(t) — G (t,x) e #O| < CeltigTE (1) (1))
H .
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1168 NAKAO HAYASHI, ELENA I. KAIKINA, AND PAVEL I. NAUMKIN

forallt>0,1<p < oo, where
e —g(t)| < Cev logg (t),

for allt > 0.

" or |u|1+% if we
assume A > 0 or A0 > 0 instead of \@n > 0, respectively. In these cases u =
A 2 3 2 A2 g2 o1 (o)

= (elo)n (n—+2) for |u[™ u and p = F-en 6] 0 (—) . We note that our

n+2
conditions always keep p > 0.

Remark 1.2. The nonlinearity u't % can be replaced by |u

n

We denote by F the Fourier transformation

u(€) =Fu= (277)7%/ e %y () da

n

and by F~! the inverse Fourier transformation

—_n

i(zr) =F tu=(2m) 2 / €%y (€) dE.
In what follows we denote by C' different positive constants. The rest of the paper is
organized as follows. In Sectionlwe obtain some preliminary estimates of the Green
operator solving the linearized Cauchy problem corresponding to ([LI]). Section [3
is devoted to the proof of Theorem [l

2. PRELIMINARY LEMMAS

The solution of the linear Cauchy problem

Lu= f(t,x), € R™ ¢t >0,
u(0,2) = eug (z), Ou(0,2) =euy (z), x € R",

where £ = 07 + 9, — A, £ > 0, can be written by the Duhamel formula

(2.1)

u(t) = eGo (t) up + Gy (t) uy + /0 G (t—1) f(r)dr,

where .
G (t) = e 2 F'L; (,6) F,
7=0,1, and
5 1 1
LO (tvf) = COs (t |£| - 4> + §Ll (tag),
sin (t l€? — i)
Ll (t7§) = 5
€ — &

(we take the principal value of the square root). Also we define the operators

Gl (1) = f*lg (e iz 0) 7.
Note that the symbols Lo (¢,£) and Ly (t,£) are smooth and bounded: L; (,§) €
C>(R"), j = 0,1; moreover, the symbol L; (¢,&) decays as % for || — oo, this
means the gain of regularity concerning the initial datum wu;. We first collect some
preliminary estimates for the Green operators G (t), G1 (t).
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DAMPED WAVE EQUATIONS 1169

Lemma 2.1. The estimates

1(=2)"G; (1) 6l < €| (=) () * g

.
|ar @y g e, <om™|ar @i .
and
1% G5 ()@l < C 117 @) %] +Cm? @) Fef
;Z,Z?”e true for allt >0, j = 0,1, where a > 0, provided that the right-hand sides are
nite.

Proof. Since
ILj (£,6)] < Cet ()7,
forallt >0,& € R", j=0,1, we have

I(=2)"G; (1) Sl = Ce =

6P L; (1.6 6(9)]
< e @)

L2

<C
L2

|(—2)" (&) 4]

Lz

Thus the first estimate of the lemma is true. For the second estimate we note that

2
% (e*%LO (t,f)) = ﬁe*% sinh <; 1-4 §|2>

V1-4lg?

% (e_%Ll (t’g)) — o 5—EV1-4le?

2
- 4[¢| e~ 2 sinh (;\/14|§2>.

1—4|¢)? (1+ 1—4|§|2>

and

Therefore, we have the estimate
0 [ _: —1 je\1—j
S (et ) <cw e
forallt >0, € R"™ j=0,1, hence

[CINRPNREFACE!

L2

= cllerio ) (s 0.9) @
ol @ a )
€7 |(-a) (@) g

L2

IN
<)

L2

IN

Lz

To prove the last estimate we note that

(—8) L (1,6)] < () et ()7
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forallt >0, € R"™ j=0,

1H1° G (8) bl = Ce

NAKAO HAYASHI, ELENA I. KAIKINA, AND PAVEL I. NAUMKIN

1, k > 0; therefore, by the Leibnitz rule we obtain

Heareos@],

< Ceh <§>f'Lj<t,5>H H(—A>%<s>‘j$(5>]
e zZH RG] il [P I
x <—A>§<s>ﬂ$<£> g
< Cll(-8)%©) 7 b L2+O§<t> HGREIG]
< oot +emt|oeo),
< ofHm @ Ee  +om?

This completes the proof of Lemma 211

Denote by G (t, z)

O

n 212
= (4dnt)" 2 e~ the heat kernel. The following lemma says

that the asymptotic behavior of solutions to the linear Cauchy problem (1)) is

similar to that for the heat equation.
Lemma 2.2. The estimates

=% (o,

16— G(t.2)5(0))]

) L?

< o))
ror=m o @yt iyt el
ot || <A>—%¢} Lf‘? Ay ;%
|2 @) (g me-actns0)|

SR R SV NN
Sxe s [OF <A>—%¢f‘; @yt ®
o= of )t [yt

and

[ (606 -ct.2)50) |,

< cfje @t
Dl PR o N
Lot |8 Ay R g j (A4 ; Eh
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DAMPED WAVE EQUATIONS 1171

are true for all t > 1, j = 0,1, where § > Z

7,a02>20,0<79< min(l,é—%),
provided that the right-hand sides are finite.

Proof. By the Schwartz inequality with v > 0, § — v > Z we obtain, choosing
1
s I° -3
o=, Il > o,

2 (/Rn (0 +x2)”‘§dm>é

1

N

e < ([ 0+ a) el 6 (0 o)

< Coztr=? </ i (0% + %) |6 (@) d:c) i
@D < Co gl + ot 0ol <0 0fel Ll et
Hence we get
e (3@ -s0)| _=c|aFe@)| . < I ¢l
nt2y nt2y
< c||ee| 7 el
Taking into account the estimates
[ (b s ey )| tEE,
H@j L (t’g)HLM(\e\zn = ¢
and
HK'OHrv etV Leqe<n) = i, H|§|ae—t|£\2 L(ezn = Ce
for all t > 1, we get
|27 (60 -G 0 d)]
= ¢l (e i e d© - e )|
< ol (et ma - )| 0TSO e
o] (Sl WO [l (CREIG R OREI0)] .
voet @ wol | o et er e,
+C“<5>_j$(£)“Lw(\s\31> ng‘ae_tw L2(|¢[>1)
ST [CRSar i (PN s
o Pk [of @t [t
ot | a)a)

Thus the first estimate of the lemma is valid.
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Since

HI£| ( e"2L; (L€ )>+|§2e—ts|2)

L2(lg]<1)
and

< Ce 1

@ 5 (t20.9)

Le(|¢]=1)

for all t > 1, we get

2@ (g me-s0acwn)|

(9
= clare (5 (s 0.0) 3@ + i 3 0)

g
< c|er (5 (e—%Lj (1.6)) + el BN (RGN
+C ke ey €7 (@7 0@ - @ SO)]
ot (e 9 (eh, (16)) N LICRLI0! R
+C“<€>_j$(£)"Lw(\ews1> H| | L2(J¢[>1)
< o )T @) E e«
R L wu*u
+Or A H RN _W’Lz'

Whence the second estimate of the lemma follows. To prove the last estimate we

write
12’ (¢, )0 G (t.2) 6 )|,
< Cf|j)f (@ et o - ) @),
(2.3) +C|[(=a)F e (© 7 o - ) 7o),

Denote i (§) € C*(R"™) such that x;(£) = 1 for |{] < 1 and x3 (§) = 0 for
|€] > 2, also we define x2 (§) = 1 — x1 (£). Note that there exists a smooth and
rapidly decaying kernel

K (ta) = F (€7 e 1L (.6 — e 1) i ()

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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so that by the Young inequality we have

H\ P F ((<£>J’ e L, (t€) - *“5‘2) a(©) ©7 6

L2

IN

IN
Q

\|x\5K<t,x>HL2 H<A>—% ¢<x>HL1

(2.4) +C 1K (t2) s ||lal” (2)
By the estimate

(A ((1©7 5L (1) =) v () < 0 0T ey (9)
for all t > 0, |¢€] < 2,7 =0,1, k > 0, we have

Jie™ ¢ ., < 7 ],
< ol ((ein -y ©)|  <cwm
hence via estimate (Z2) with v = 0,
|l K )|, < cP

and

1K (o)l < C||¢)° K| 1K # < om

Therefore (24) yields
[P (@ ety 6 - _W) a(©) ©7 6

c@ii 6@ SR
25) IO (NN ¢HL2

L2

We have

(8 (167 5L (1.6) — ) xa (9)) < e
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forallt >0, & € R" j=0,1, k > 0; therefore, by the Leibnitz rule we obtain

[ (€7 et e - ") e @) 107 5(6)

l\)|

L2

< C H( Je=5 i (t,6) — e’t|§|2) Y2 (QHLOO H(_A)% <§>*j a(g)’ 5
+CZH P (1) L, (1) = ) 3 (9)) [T
<[ (e ety f>*e*”f‘2)><z ) vm%r%m\m
o)< cet |7 dE|, com |0 @) F

In the same manner, using the heat kernel,
G(t,x)=F? (e*tlﬁlz) = (4rt)" e,
and Gy (t) = F~le 6P F we write
_A% —t|¢|? -z — 07 $(0
|(-a)te (<§> @ -07s0)|,
[121” (92 1)) 2 6= G (t,2)0) 7 60))

L2

Taking v € [0,1], v < §— %, changing the dependent variables z = &Vtandy =0Vt
we write

2l (G2 (1) (8) "2 6 — G (t,2) (0) 7 6(0)

_n |1‘|6 ( _ (@—y)? L2> y _i
4 2 Lind IS T — e 4t A)72 d
[ e e )l (187 0) () dy
) ? | e’ <e“4i’>2 e) yl” ((4) 7 6) () dy
lI>vi [yl

5
— (47r)7% t%/ Q (e—(g_
In|<1 il

27)  +@m) e /:f,|< 2_6_f>n|5(<ﬁ>%¢

Applying the inequality

)
1€

5
Il

_E-n? €2
4 —e 4

) o )
el +lal® e | g

In|° In|
< CeCE=’ 4 08¢

I
\
IN

for all |n| > 1 and the estimate

)
1€
n|”

_E-n? _&2
T — 1

< CeCE=—m? L cp—C¢
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for all |n| <1, in view of ([22]) we obtain from (2.7])

1217 (92 (1)) 72 6~ G (t,2) (0) 7 6(0) )|

L2

< CiitE /77<1 ||§ Sl ((8) 7 0) (nvi) do ’
R /n|>1 ;" " (1)) (nvE) an .

< [ (e (o) ),
oot [ (e e i rrte) ()]

< it |n|w(w%)H ottt i ()74 0) ()],

< ot “aﬁH +CH|| 729,

< ot <->5<A>_%¢;+5 ‘b‘ S

(28  +C M

for all ¢ > 1. Substitution of (Z3)), (2:6]) and ([Z8)) into (23)) yields the third estimate
of the lemma. Lemma is proved. O

We let
g(t) =1+ rlog (t)

with some £ > 0 (in the proof of the theorem we put x = p) and we define two

norms
lolx = sup sup (5% |(-a)F o)
t>0 0<a<é L
+sup sup (01T (—) % a) a0 (1)
t>0 0<a<s L2
n_3 Py
+sup(t)* 2 ||| t‘
sup (1) {170,
and
loly = swp swp (BEFE|(-a)F ) E o) |
t>0 0<a<d L
n_3§ _1
+sup () F |1 ) E o )|
t>0 L

Next lemma will be necessary for estimating the nonlinear term in the proof of the
theorem.
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Lemma 2.3. Let the function f (t,z) have a zero mean value ]?(t,O) = 0. Then
the inequality

<Clfly
X

Hg o [ G -7 f () dr

is valid, provided that the right-hand side is finite.

Proof. By Lemma [ZT] we get

a2 [ )G (- ) ] (7) dr

L2

< o[ oot @ tio|, ooy,

wle

H(A) (a3 o, /g () Gu (¢~ 7) £ (7) dr

L2

No)
(S

H(—A) @ G- f () dr

L2

IN

C’/Otg_l M|[caF @ E @] <cifly

and

< c/otg—l(r><t—f>°%

GTAY @ dr<Ciflly

for all ¢t € [0, 1], where « € [0, 6] . We now consider ¢ > 1. In view of Lemma 2.2] we

obtain
a2 [ moe-nrea|
< /fg-wr)H(—A)?gl<t—r>f<f>\L2dr
o @eaiae-nse), e
< o memnE 2 W) () ar
0
2 _aty_n § _1 25 _1 1-355
e RO 4(H<-> @l rm|,,
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whence

INA
Q
QQ\
!
©
N—
=<
|
\]
N~—
|
¥
IN
\]
o}
!
ISH
\]

< CtiTEg N @) 1 flly -

g
< o[-0 et e
el T (H<>‘s NI g [Nl
Flor @) et sl ) ar
o [ e et @t e
whence
[carto [ moie-nima|
< C %971(7)(15—7)*%”*%*172 ldr
0
xsup (1) (0 |[(-2)F @) F o,
[y Erm|| @ F @ )| )
s[4 (@) (=) T  arep (0 | (-a)F ()
< Cr iR )l
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Finally, for all ¢ > 1, applying the third estimate of Lemma we get

H|| )G (t—7) f(r)dr <C/ <A>_%f(7')’L2dT
+C/ ()7 <H<~>5 (A)72 f (1) ; <A>*%f(7)‘;%
F|er @y fm\ Flartre] ) e
ve [ o (o @t o, +e-n @ re],,) o
whence 2
HII VG (t—7) f(7)dr
t L
= (/ g ()7 %*1df+/jg*1<f> <t—7>55”-2‘731d7>
<@ (@7t s @], + 07 a7 )
< CWFE e flly -
This completes the proof of Lemma O

Consider the Cauchy problem

L (K (t) (¢! — B)) :meetf/v ,z)) d
(2.9) g (W (1) (e = 8) — ﬁh’(),

h(0) =1,k (0) =0,

where v (¢, z) is an auxiliary given function. Denote

n

He1tplogt), =" (s (") >0
g(t)= +u0g<>,u7%(€) nt 2

and define vg (t) = ¢ Z;:O Gj (t) u;
Lemma 2.4. Suppose that
lollx < Ce, o) = o (D)l < Ce*rg™ (1) (1) 2 ()

for allt >0, 1 < p < oo, then there exists a unique solution h(t) € C!((0,00)) of
the Cauchy problem ([29) such that

(2.10) h(t) —g(t)] < Cenlogg (t), | ()] <Cex ()"
for allt > 0.

Proof. Integration of (IﬂZI) with respect to time yields

n(t) = 3 et /dTe /N (1,2)

n+2 [P =08) ., 2 t _
(2.11) +2(et_ﬁ)/d7 e WO =g o) = 1
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Integration by parts gives us

/OtheT/./\/(v(T,x))d:U = et/./\/(v(t’x))dg;_/N(U(O7x))dx

(2.12) /Ot dTeT/aTN (v(r,2))d.
Therefore by virtue of (I?Z:D) and (212) we have
(2.13) { W) = 35 IN(O) o) de+Q),
where
Q) = nge (/N (t,z)) d:vf//\/ (0,))
7/ dTeT/f)TN (v (7, x))daz)
n—|—2 / dr W (r )>2 i ﬂ(lt—_hﬂ(t)).

We solve the Cauchy problem 213) by the successive approximations. Denote
ho (t) = g (t) and define hy,,11 (), m > 0 as a solution of the linearized Cauchy

problem

/7n+1 _naefN ’ ))d$+Qm(t),
(2.14) { Py (0) =1,
where

Qm () = ne@et (/N (t,z) dx—//\f (0,2))

- /0 dre” / DN (v (T,x))dx>

nt2 [ ) o B b (1)
+2(et—ﬁ)/o I oy i (D) |

We prove that for all m > 0,

(2.15) b (£) = g ()] < Cen log g (t), |h, (1)] < Cen (1)

For m = 0 estimates (ZI3]) are valid. By induction we suppose that (ZI5) is true
for some m > 0. Then in view of the inequality ||v]|x < Ce, we see that @, (t) has
a better time decay

_3
@ (1)] < Cev ()72
for all ¢ > 0. Hence in view of ([2.14)

Ryt ( —1——//./\/ (1,2)) dedr
enb

v (r,x))dedr| .

< C’en

(2.16) Wy ()] < Cem ()73 427
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‘We write

/N (t,z)) dz — (0)" /J\f (t, 7))
(2.17) = /(N(v (t,x))—N(vo))d:v+/(N(vo)—N(sﬁG (xt 3

n €Z 2
where G (t,x) = (4nt)” 2 et By the condition

w3
—
[
I
S e
-

o (£) = vo (D)l < C g™t () ()™

we obtain

(2.18) ’/ (N (v (t,z)) — N (vg)) dz
and via Lemmas [2.J] and we have

(2.19) ‘ / (N (v0) — N (0G (¢, 2))) dar

<Cetn () g ()

< Celtn ()71,

A direct calculation shows

2 INED) ™ [ _(raz)iel?
2.20 —/N edG t,l‘ dx = 771,/6 (1+n) 1 dx
Y L
where 3 = 22— (0) " (n +2) : . Therefore by virtue of (ZI7)-220) we get

[N @) de =g () +C=Elogg (1),

whence by (210) the estimates (2.15) follow with m replaced by m+ 1. In the same

manner we estimate the differences
|hm+1 (t) — hm (t)‘ <

[P0 (8) = By, (8)] <

% [hm (£) — hm—1 (t)| and
1 !/

L b ()~ By )]

)

Hence there exists a unique solution h (¢
(Z9) satisfying estimates (ZI0) for all ¢ > 0. Lemma [2.4] is proved.

3. PrROOF oF THEOREM [I.1]

€ C!((0,00)) of the Cauchy problem

Following the method of paper [4] we make a change of the dependent variable

u(t,z) = e ?My(t,z) in the damped wave equation () to get
(3.1) Lv = f,
where £ = 07 + 9, — A and

f==Xe "N (v) + 2¢"v; + (sO" — (@) + w') v
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Now we choose ¢ (t) by the condition [ f (¢,x)dx = 0, i.e. ¢ (t) is a solution of the
following equation

e ne) /./\/(v (t,z))dx + 24’ (t)/vt (t,z)dz
(32) e - W7o ) [vitadn=o

and also we suppose that ¢ (0) = ¢’ (0) = 0. Integrating (B.1]) with respect to x and
using (3.2) we obtain

%/(vt (t,z)+v(t,x))de =0
which implies
(3.3) /(vt (t,z)+v(t,z))de = /(vt (0,2) +v(0,z)) dz
= 5/ (uo () + w1 (x)) dox = €0,

since u (0, ) = e=?Dv (0,2) and u; (0,2) = —¢' (0) e~ ¥Ov (0,2) + e v, (0, z).
By (B3) we have

whence it follows that

/v (t,z)dx = €6 (1 — ﬁeft) ,
where 8 = § [u; () dz. By virtue of B3) and [B2) we get

" (t) (1—Be") + (1+Be ") ¢ (¢)

(3.4) = E%e_%"”(t) / N (v (t,x)) da + (¢ (1))° (1 — Be™?).
We put £ (t) = e##®) then multiplying @) by '+ %*®) we find

d ,, 2

pr (B (t) ("= B)) = ¢ /N(U(t,x))dx
(35 g (0 (0 (=) = 1 (1),

with initial conditions h (0) = 1, A’ (0) = 0. Thus we obtain the following system of
equations for (v (¢,z),h (t))

Lv = f,
& (W (1) (' = B)) =mgeth ) da
(3.6) +o 2 (W (1) (¢! — B) — m%m
v(0,2) = eug (x), v (0,2) = euy (),
h(O)zl,h’(O):O,
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where

AN @)+ (0028 (v + (0 (1)~ (¢ (1)) v
A
h

o (e

+W/N@ (t,2)) dx

We find a solution (v (t,z),h (t)) of the Cauchy problem (B6) using the successive
approximations method in the function space

Z = {(v,h) € X x C[0,00);[|(v, )|, < o0},

where the norm

I m)llz = el +sup sup g(t)(6)* 03 o (0) v ()]s

<p<Loo

+sup (logg (1))~ [h(t) — g ()] +sup {ty|n @),

where
lolx = sup sup (7% |[(-a)F o (0)|| ,
t>0 0<a<s L
sup sup (1) |[(=2)F (A)7F auo (1)
t>0 0<a<s
n s
+sup(t)+ 2 t
up (1) o).
and

A

2 n %
9(0) =1+ plog (1), = 2 (ch) (n+2> .

We now define v () = ¢ E;:o Gj (t)uj, ho (t) = g (t), and for (vpm41 (), hm1 (1)),
m > 0, we consider the linearized system of equations corresponding to (B.6)

L'l/m+1 .fm;
5 (P (0 (' = B)) = 25" [N ( vm (t,2)) dz
(3.7) 52 (P () (¢ = B) = Bl (8),

Um+1 (Oa :L') = €U (:E) ) atvm-Fl (O,Z) =¢&uy ( ) )
hm—i—l (0) = 1) h;n+1 (0) = Oa

where for m > 1,

Ly ) ('
= N (o) - Gt (L

- Um + atvm)
/./\/(vm (t,7)) du.

L AUy,
ehpmy1 (t) (6 — Be )
We now prove that for all m > 0,

(3.8) lomllxc < Ce, [vm () — vo ()|, < Ce o= () (1) 5073)
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and
(3.9) | (£) — g ()| < Cew log g (t), |Oehum ()] < Cen (1)

for all t > 0, 1 < p < oo. By Lemmas 2] and we see that (B8) and (B9) are
valid for m = 0. We assume by induction that (B8] and ([33]) are true for some m.
By the definition of h,, (t) = e #= () it follows that

/fm (t,x)dz =0
and
/'Um+]_ (t,z)dz =6 (1 —Be")

for all £ > 0. We write equation Lv,,+1 = f, in the integral form v,,11 = vo +
fg G1 (t = 7) fm (1) d7 and apply Lemma 2.3 to get

2
(3.10) (w41 = v0) gllx < Cllfmglly < Ce™ 7,
where
Iflly = swp swp (BFEFE|(a)Fa)Er )
>0 0<a<s L
n_3§ _1
+sup ()10 Q) Er ) -
>0 L
Whence in view of the Sobolev embedding theorem it follows that
(3.11) lom1 () = w0 (Dl < Ce4ig™ (1) )20,
for all t > 0, 1 < p < oo. We also find by Lemma 2.4] that
(312)  |Amsr (1) = g (1)l < Celogg (1), |hi,y ()] < Ce® (1)

Therefore the estimates (3.8) and ([3.9) are valid for any m.
For the difference wy,, = vymy1 — Uy we get from ([B.7)

Lwm = frmg1 — fm,
Wy, (0,2) =0, Opwp, (0,2) = 0.

Since

[ s t.2) = fo (020 do =0,
applying Lemma 23] we obtain

1
lwmllx < 5 llwm-1llx
2

and by Lemma [2.4]

sup (g (6) ™" o1 () = B (8] < 5 il

These estimates imply that there exists a unique solution (v, h) € Z of the Cauchy
problem ([B.6]) satisfying in view of (BI1)) and (BI2]) the estimates

_n(1_1
o (t) = vo (1)l < Ce+Eg=t (1) (1) 2073)
forallt > 0,1 <p<ooand

en#® — g (t)| < Ce™ logg (1)
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for all £ > 0. Since u = e~ %¥v, we have

Hu (t) e?® — G (t, :E)HLP

IN

c Hu (1) e?® g (t)HLp +C |lvo (t) — €0G (¢, 2)]|L.»

2 1

< CceMigT )y E0E),
hence
Hu (t) — e0G (t,z) e ?D HL < CeltigTTE (1) <t>*%(1*%)

for all £ > 0, 1 < p < oo. This completes the proof of Theorem [Tl
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