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Abstract: Fast and accurate tracking of periodic reference trajectories is highly desirable in many
nanopositioning applications, including scanning probe microscopy. Performance in common position-
ing stage designs is limited by the presence of lightly damped resonances, and actuator nonlinearities
such as hysteresis and creep. To improve the tracking performance in such systems, several damping
and tracking control schemes have been presented in the literature. In this paper, five different control
schemes are presented and applied to a nanopositioning system for experimental comparison. They
include schemes applying damping control in the form of positive position feedback, integral resonant
control, integral force feedback, and passive shunt-damping. Also, a control scheme requiring only a
combination of a low-pass filter and an integrator is presented. The control schemes are fixed-structure,
low-order control laws, for which few results exist in the literature with regards to optimal tuning. A
practical tuning procedure for obtaining good tracking performance for all of the presented control
schemes is therefore presented. The schemes provide similar performance, and the main differences are
due to the specific implementation of each scheme.
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1. INTRODUCTION

Nanopositioning devices are used for high-resolution position-
ing, including, but not limited to, scanning probe microscopy
and its many applications for imaging and manipulation. Some
tasks require periodic reference trajectory tracking, typically
for imaging, while other tasks require arbitrary reference tra-
jectory tracking, such as for manipulation, fabrication, and
lithography. In order to improve throughput in such settings,
high bandwidth control is required (Salapaka and Salapaka,
2008; Clayton et al., 2009; Devasia et al., 2007).

Most high-speed nanopositioning devices use piezoelectric ac-
tuators, as they produce large forces and provide friction-less
motion. As such, they are ideal for high-speed, high-resolution
positioning. A positioning device applying piezoelectric actu-
ators typically exhibit lightly damped resonances. This is a
disadvantage, as it limits the usable bandwidth because ref-
erence signals with high frequency components will excite
the vibration modes, prohibiting accurate positioning. It also
makes the device susceptible to environmental disturbances,
such as sound and floor vibrations. The hysteresis and creep
non-linearities in piezoelectric actuators is an additional chal-
lenge. These are loss-phenomena that prevent the system from
having a linear response, introducing bounded input distur-
bances dependent on the driving voltage signal (Devasia et al.,
2007). There also exist several sources of dynamic uncertainty.
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Hysteresis, in addition to introducing an input disturbance,
change the effective gain of the actuator depending on the
amplitude of the driving voltage signal. Actuator gain is also
dependent on temperature, and reduces over time due to depo-
larization (Bertotti and Mayergoyz, 2005, Ch. 4). In addition,
users typically need to position payloads of various masses,
thus resonant frequencies and the effective gain of the mechan-
ical structure change as a result.

Tracking control for nanopositioning devices can be achieved
using feed-forward and feedback control techniques. Although
feed-forward techniques can provide very good results (Clay-
ton et al., 2009), feedback control may be necessary in order to
reduce sensitivity to uncertainty and disturbances. In order to
control lightly damped vibrational modes in active structures,
several control schemes that introduce damping have been
developed. These include fixed-structure, low-order control
laws, such as positive position feedback (Fanson and Caughey,
1990), integral force feedback (Preumont et al., 1992), passive
shunt-damping (Hagood and von Flotow, 1991), resonant con-
trol (Pota et al., 2002) and integral resonant control (Aphale
et al., 2007). By coupling such schemes with an integral control
law, significantly better reference tracking performance can be
achieved. With the exception of passive shunt-damping, this
has been experimentally demonstrated in Aphale et al. (2008);
Fleming et al. (2010); Fleming (2010). The main reason for
the increased performance, is that a reduction of the dominant
resonant peak of the system leads to an increased gain margin,
enabling a higher gain to be used for the reference tracking
integral control law (Fleming, 2010).

General model based control laws can also be used, such
as H∞-synthesis (Skogestad and Postlethwaite, 2005), linear-



Fig. 1. Custom flexure-guided nanopositioning stage.

quadratic-gaussian regulator (Goodwin et al., 2000), or out-
put feedback control laws such as pole-placement and model
reference control (Ioannou and Sun, 1995). The advantage of
using fixed-structure, low-order control laws is mostly prac-
tical, as such control laws are simple to implement and have
low computational complexity. This allows for the highest
possible sampling frequency when implementing using digital
signal processing equipment, which will reduce the noise floor
due to sampling and quantization in the analog-to-digital con-
verter (Lyons, 2010). The simplicity also makes them feasible
for implementation using analog circuit elements. This can be
beneficial, as it avoids noise due to sampling and quantiza-
tion altogether. The disadvantage of using fixed-structure, low-
order control laws, is a lack of methods for optimal tuning,
which is a long standing and challenging control engineering
problem.

1.1 Contributions

Five different damping and tracking control schemes are pre-
sented and applied to a nanopositioning system for experimen-
tal comparison. All the schemes combine integral action with a
control law that introduces damping of the dominant vibration
mode of the system. The damping control schemes considered,
are positive position feedback (PPF), integral resonant con-
trol (IRC), integral force feedback (IFF), and passive shunt-
damping (PSD).

A control scheme based on the work in Eielsen et al. (2011) is
also presented, and the tuning methodology therein is general-
ized and also applied to the presented control schemes based on
PPF, IRC, IFF, and PSD. IRC has been applied in Fleming et al.
(2010), and IFF in Fleming (2010). PPF, as well as polynomial-
based control, is applied in Aphale et al. (2008).

2. SYSTEM DESCRIPTION AND MODELING

2.1 Description of the Experimental System

The experimental set-up consists of a dSPACE DS1103 hard-
ware-in-the-loop (HIL) system, an ADE 6810 capacitive gauge,
an ADE 6501 capacitive probe from ADE Technologies, a
Piezodrive PDX200 voltage amplifier, two SIM 965 pro-
grammable filters from Stanford Research Systems, and the
custom-made long-range serial-kinematic nanopositioner shown
in Fig. 1. The nanopositioner is fitted with a Noliac SCMAP07-
H10 actuator, where one of the stack elements is used as a force
transducer. The transducer current is measured using a Burr-
Brown OPA2111 configured with a 10 kΩ resistor, thus having
a sensitivity of -10 V/mA. The capacitive probe has a first-order

response and a bandwidth of 100 kHz, and the voltage ampli-
fier with the capacitive load of the actuator, has a first-order
response and a bandwidth in excess of 100 kHz. The voltage
amplifier is also fitted with a current monitor with a sensitivity
of 1 V/A, which enables the current in the actuator circuit to be
measured. The capacitive measurement has a sensitivity of 1/5
V/µm and the voltage amplifier has a gain of 20 V/V. With the
DS1103 board, a sampling frequency of fs = 100 kHz is used
for all the experiments. For numerical integration, a third-order
Runge-Kutta scheme is used.

A diagram of the system used is shown in Fig. 2. The positioner
dynamics is represented by Gp(s), the amplifier and recon-
struction filter dynamics by Wr(s), and the sensor and anti-
aliasing filter dynamics by Wa(s). The signal u is the input
generated by the digital-to-analog converter, ym is the output
from the anti-aliasing filter, n is the sensor noise, and w is
the input disturbance, mostly caused by hysteresis, creep, and
environmental vibration noise.

Wr WaGp

u

w n

ymup yp

Fig. 2. System diagram.

2.2 Mechanical Model

The nanopositioning stage used is shown in Fig. 1. The serial-
kinematic motion mechanism is designed to make the first
vibration mode dominant and to occur in the actuation direction
(piston mode). More details on the design of this stage can be
found in Leang and Fleming (2009).

The displacement is generated using a piezoelectric actuator.
Such actuators generate a force proportional to an applied
voltage (Preumont, 2006). The applied external force from the
piezoelectric actuator fa (N) can be expressed as

fa = ea(ua + w) , (1)

where ea (N V−1 = C N−1) is the effective gain of the piezo-
electric actuator from voltage to force, and ua (V) is the applied
voltage. Piezoelectric actuators introduce hysteresis and creep
when driven by an external voltage signal. These effects occur
in the electrical domain (Newcomb and Flinn, 1982), and it is a
reasonable assumption to consider this behavior as a bounded
disturbance added to the input, represented by the term w (V)
(Stepanenko and Su, 1998).

The dynamics due to an applied voltage ua or disturbance
w of a point d (m) on the flexible structure, as observed by
a co-located sensor, is adequately described by the following
lumped parameter, truncated linear model (Preumont, 2002),

Gd(s) = ea
d

fa
(s) ≈

nd
∑

i=1

βi

s2 + 2ζiωis+ ωi
2
+Dr (2)

where nd is the number of vibration modes included. Here,
{βi} (m s−2 V−1) are the control gains, {ζi} are the damping
coefficients for each mode, and {ωi} (rad s−1) are the natural
frequencies for the modes. The term Dr (m V−1) is the residual
mode, which is an approximation of the non-modeled higher
frequency modes, and can be included to improve prediction
of zero-locations. The addition of Dr produces a model that
is not strictly proper, but as the instrumentation, such as the
amplifier and sensors, have limited bandwidth, Dr can be
considered equal to zero for this system. Eq. (2) has a pole-zero



interleaving property (Preumont, 2002), which is the origin
of positive-realness (passivity) and negative-imaginariness for
certain input-output pairs (Petersen and Lanzon, 2010). The
inclusion of instrumentation dynamics, and sensor-actuator
pairs that are not perfectly co-located, will in general invalidate
the the pole-zero interleaving property (Preumont, 2002).

2.3 Charge

When applying passive shunt-damping, the induced charge in
the actuator circuit is utilized. The charge in the actuator circuit
can be found as (Eielsen and Fleming, 2010)

q = ead+ Cpua = Cp(ua + αd) ,

where Cp (F) is the capacitance of the piezoelectric stack ac-

tuator, and α (V m−1) is a constant determining the amount of
voltage generated by the direct piezoelectric effect due to the
displacement d of the mechanical structure. The transfer func-
tion from applied voltage ua to induced charge q is therefore

Gq(s) =
q

ua

(s) = Cp(1 + αGd(s)) . (3)

2.4 Force Transducer

The integral force feedback scheme utilizes a co-located piezo-
electric force transducer. The force transducer generates a
charge, depending on the applied force. The current or charge
produced by the force transducer is typically converted to a
voltage signal using a simple op-amp circuit with a high input
impedance. The output voltage from such a sensor when mea-
suring the charge, can be found to be (Preumont, 2002)

vf = ks(d− kfua) ,

where d is the displacement of the mechanical structure, ua is
the applied voltage to the actuator, kf (m V−1) is the gain of

the feed-through term, and ks (V m−1) is the sensor gain. The
transfer-function from applied voltage ua to measured sensor
voltage vf can therefore be found as

Gf (s) =
vf
ua

(s) = ks(Gd(s)− kf ) . (4)

2.5 Identification and Uncertainty

In order to identify the parameters in (2), (3), and (4), the
frequency responses for the displacement, charge, and force are
recorded using a SR780 Dynamic Signal Analyzer from Stan-
ford Research Systems, applying a 150-mV RMS bandwidth-
limited white noise excitation signal. The models are fitted into
the procured data using the MATLAB System Identification
and Optimization Toolboxes. As the noise from the force trans-
ducer is orders of magnitude lower than the noise from the
displacement sensor (Fleming, 2010), the frequency response
for the displacement is inferred from (4). The frequency re-
sponse obtained using the displacement sensor is used to find
the parameters in (3) and (4). The responses for Gd(s), Gq(s),
and Gf (s) are displayed in Figs. 3a, 3c, and 3e, respectively.
The identified parameter values are presented in Tab. 1. For
the displacement model (2), three vibration modes, nd = 3,
are included. By inspection of Fig. 3a, it can be seen that the
second mode at 1660 Hz is the dominant piston mode.

The uncertainty of the models can be quantified as unstructured
multiplicative perturbations. Since the control schemes con-
sidered are either single-input-single-output (SISO), or single-
input-multiple-output (SIMO), the uncertainty description of

the models from the scalar input up to the output vector yp
has the form (Heath and Gayadeen, 2011)

ypi = Gi(s)(1 + δi(s)∆i(s))up ; ‖∆i(s)‖ ≤ 1 , (5)

where i denotes the index into the output vector yp, such that
Gi(s) corresponds to the transfer function from the input up

to the output ypi, and δi(s) is the corresponding frequency
dependent uncertainty weight. The uncertainty weights {δi(s)}
are determined experimentally, for each of the outputs, and are
presented in Figs. 3b, 3d, and 3f. Over-bounding weights were
also found to introduce more conservativeness.

Table 1. Identified model parameters.

Displacement model (2)
{

β1, β2, β3

} {

1.80 · 104, 2.54 · 106, 4.83 · 106
}

µm s−2 V−1

{

ζ1, ζ2, ζ3
} {

0.0726, 0.0196, 0.0312
}

-
{

ω1, ω2, ω3

} {

2π · 490, 2π · 1660, 2π · 3400
}

rad s−1

Charge model (3)

Cp 195 nF

α 3.95 V µm−1

Force model (4)

ks 2.52·10−7 V µm−1

kf 0.0451 µm V−1

3. CONTROL DESIGN

The control schemes presented will be analyzed with regards
to the general control structure shown in Fig. 4.

3.1 Performance Measures

The control schemes considered are either single-input-single-
output (SISO), or single-input-multiple-output (SIMO). Con-
sidering the general SIMO case, it can be seen that for the
control structure in Fig. 4, the control input is given as

up = C(s)(r − F (s)yp) , (6)

where C(s) is a one-row feed-forward transfer-matrix, and
F (s) is a diagonal feedback transfer-matrix.

Breaking the loop at the error e of the one-column plant
transfer-matrix Gp(s), the loop transfer-matrix is

L(s) = F (s)Gp(s)C(s) ,

which defines the output sensitivity transfer-matrix SO(s) as

e = SO(s)r = (I + L(s))−1r , (7)

where e = r−F (s)yp. The complementary sensitivity transfer-
matrix T (s) becomes

yp = T (s)r = Gp(s)C(s)SO(s)r . (8)

In addition, the transfer-matrix N(s) from the additive sensor
noise n to the output yp is

yp = N(s)n = −T (s)F (s)n , (9)

and the transfer-matrix E(s), measuring the deviation of the
plant output yp from the reference trajectory r, ǫ = r − yp, is

ǫ = E(s)r = (I − T (s))r . (10)

Note that ǫ 6= e, if F (s) 6= I .

Breaking the loop at the input up of the plant, the loop transfer-
matrix is

LI(s) = C(s)F (s)Gp(s) ,

and the input sensitivity transfer-matrix SI(s) from the distur-
bance w to the input up is therefore

up = SI(s)w = (I + LI(s))
−1w , (11)
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(a) Frequency response for the displacement model Gd(s).
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(b) Multiplicative uncertainty weight δd(s).
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(c) Frequency response for the charge model Gq(s).
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(e) Frequency response for the force model Gf (s).
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Fig. 3. Frequency responses and uncertainties.

which provides the transfer-matrix D(s) from the disturbance
w to the output yp as

yp = D(s)w = Gp(s)SI(s)w . (12)

up Gp
yp

w

n
C

F

r
-
e

Fig. 4. General control structure.

The performance will be evaluated with regards to the flatness
of the response of T (s), the bandwidth of E(s), the attenuation
of the input disturbance w to the displacement d, and the ampli-
fication of sensor noise n to the displacement d. The bandwidth
of E(s) is defined as the frequency where |E(jω)| first crosses
the line of -3 dB from below at the frequency response diagram.
At this frequency the tracking error ǫ is 50% of the reference r,
thus there is effectively no tracking of frequency components
above the bandwidth. The attenuation of the input disturbance
is measured by the H∞-norm, ‖D(s)‖∞, which corresponds
to the peak magnitude of D(s). The added displacement noise
is measured by the H2-norm, ‖N(s)‖2, which provides the
root-mean-square displacement noise response if n is taken
to be equal to unity variance Gaussian white noise. E.g., the
displacement variance due to sensor noise can be found as
σd

2 = ‖N(s)‖2
2
σn

2.

3.2 Robust Stability Measure

The SIMO robust stability criterion described in Heath and
Gayadeen (2011), for multiplicative uncertainty on the form (5),
can straight-forwardly be adapted to the control structure in
Fig. 4. Robust stability can be ensured if

sup
ω

ny
∑

i=1

|SI(jω)Gi(jω)Ci(jω)Fi(jω)δi(jω)| = γ ≤ 1 ,

(13)
where the matrix elements Ci(s) and Fi(s) correspond to
the output ypi, and ny is the number of outputs. The inverse
value of the norm, 1/γ, provides a measure of the minimum
amount of additional multiplicative uncertainty that the system
can tolerate before it becomes unstable, for a given frequency
weight, δi.

3.3 Tuning

Control design for fixed-structure, low-order control laws using
output feedback is a long-standing and challenging problem in
control engineering. A common approach to output feedback
problems, is to use H∞-synthesis. If the control law is allowed
to have any order and every matrix of the control law is freely
tunable, H∞-synthesis guarantees a solution to the control
design problem by convex optimization.

For a control law with a fixed structure and lower order than
the plant, this approach can not be applied. There exist some
results for fixed low-order control problems, solved with the
use of linear matrix inequalities, but these methods do not
allow for the use of unstructured uncertainty, do not guarantee
global, and in many cases not even local, convergence, and
might not accommodate for control laws where the structure
is fixed in addition to the order (Syrmos et al., 1997; Ibaraki
and Tomizuka, 2001). In other words, there does not exist any
general control design method for output feedback using fixed-
structure, low-order control laws. A practical optimization pro-
cedure is therefore proposed in order to obtain good tracking
performance.



Control design is often a trade-off between conflicting goals.
For nanopositioning systems, it is desirable to have a high
bandwidth for E(s) in order to have good reference tracking.
Also, the system is required to well damped in order to avoid
excessive vibrations. This translates to an absence of peaks in
T (s). To counter hysteresis and creep, as well as environmental
disturbances, D(s) must provide a high degree of attenuation.
In addition, the amplification of sensor noise should be as
small as possible, meaning that N(s) should have the smallest
bandwidth possible. Due to the restriction imposed by the Bode
sensitivity integral (Goodwin et al., 2000), it is impossible to
meet these criteria simultaneously.

As the purpose of damping control is to reduce peaks in the
closed-loop response due to lightly damped vibration modes,
and since ideal tracking performance is achieved when d =
r ⇒ T (s) = 1, it appears that a good overall performance
criterion is the flatness of |T (jω)|. Let θc be the vector of
control law parameters. It is here proposed that the flatness
criterion can be expressed using the cost function

J(θc) = ‖1− |T (θc; jω)|‖2 , (14)

where ‖ · ‖2 is the L2-norm. The expression 1− |T (θc; jω)| is
typically not square-integrable with respect to ω, thus the L2-
norm is truncated as needed in order to produce a finite value, ,
integrating over the domain [0,Ω], where Ω > 0 is well above
the bandwidth of the mechanical system.

For the control schemes presented in the following sections,
a practical and straight-forward method to find control law
parameters that provide good tracking performance for a par-
ticular scheme is then to solve

θc
∗ = arg min

θc

J(θc) s.t. Re{λi} ∈ R
− ∧ γ < 1 , (15)

where {λi} is the set of eigenvalues for the closed-loop system.
The optimization problem can be solved either by using an
exhaustive grid search over a domain of reasonable control
law parameter values, or by using an unstructured optimization
algorithm, e.g. the Nelder-Mead method (Lagarias et al., 1998).

4. CONTROL SCHEMES

4.1 Positive Position Feedback (PPF)

Damping and tracking control using PPF (Fanson and Caughey,
1990) combined with an integral control law can be imple-
mented using the control structure in Fig. 5. This is equivalent
to the control scheme in Aphale et al. (2008). The damping
control law consists of a low-pass filter with negative gain

Cd(s) =
−kd

s2 + 2ζdωds+ ωd
2
, (16)

were kd > 0 is the control law gain, ζd the damping coefficient
and ωd is the cut-off frequency. The tracking control law
consists of an integrator with a negative gain, which will be
inverted by the negative gain of the filter (16),

Ct(s) =
−kt
s

. (17)

Here, kt > 0 is the gain of the integral term.

Ct Cd Wr Gd Wa
ua

w

d

n

–

r
–

u

Fig. 5. Structure when using PPF and IRC.

To analyze the nominal performance of the control scheme,
the control structure in Fig. 5 can be put on the equivalent
formulation adhering to the control structure in Fig. 4. The
feed-forward filter is found as

C(s) = Wr(s)Cd(s)Ct(s) , (18)

and the feedback filter is found as

F (s) = Wa(s)(1 + C−1

t (s)) . (19)

Using the above expressions, and assuming

Gp(s) = Gd(s) ,

it is straight forward to find the transfer functions for the
sensitivity (7), the complementary sensitivity (8), the noise
attenuation (9), the error attenuation (10), and the disturbance
rejection (12). Here, Wr(s) = Wa(s), and are second-order
Butterworth filters, with a cut-off frequency at 20 kHz.

The robust stability with regards to the multiplicative model
uncertainty can be evaluated using the stability criterion (13),
using (8), (18) and (19).

There are four tunable control law parameters

θc = [kd, ζd, ωd, kt]
T
,

the feedback filter gain gf , the damping ratio ζf , the cut-off
frequency ωf , and the tracking integral control law gain kt. The
optimal control law parameters for (16) and (17) found when
solving (15) are

kd = 2.32·108 , ζd = 0.564 , ωd = 2π·1470 , kt = 2.31·104 .
The resulting nominal frequency responses for T (S), E(s),
and D(s) are shown in Fig. 9a.

4.2 Integral Resonant Control (IRC)

Damping and tracking control applying IRC (Aphale et al.,
2007) to introduce damping can also be implemented using
the control structure in Fig. 5. In this control scheme (Fleming
et al., 2010) the damping control law is

Cd(s) =
−kd

s− kdDf

. (20)

Eq. (20) is the result of rearranging the IRC scheme to a
form suitable for tracking control (Fleming et al., 2010). Here
kd > 0 is the integral damping gain, while Df is a feedthrough
term. In addition, the tracking control law is

Ct(s) =
−kt
s

, (21)

where kt > 0 is the gain of the integral term.

As this scheme uses the same structure as the one based on
PPF in Section 4.1, the scheme can be analyzed using the
same equivalent formulation with regards to the general control
structure in Fig. 4, i.e., with

C(s) = Wr(s)Cd(s)Ct(s) (22)

and
F (s) = Wa(s)(1 + C−1

t (s)) . (23)

Here, Wr(s) = Wa(s), and are second-order Butterworth
filters, with a cut-off frequency at 20 kHz.

For this scheme, there are three tunable control parameters

θc = [Df , kd, kt]
T
,

the feedthrough term Df , the integral damping gain kd, and the
tracking integral control law gain kt. The optimal control law
parameters for (20) and (21) found when solving (15) are

Df = −0.116 , kd = 8.75 · 104 , kt = 7.12 · 103 .



The resulting nominal frequency responses for T (S), E(s),
and D(s) are shown in Fig. 9b.

4.3 Integral Force Feedback (IFF)

The dual-sensor damping and tracking control scheme pro-
posed in Fleming (2010), is based on IFF (Preumont et al.,
1992), and can be implemented using the control structure
shown in Fig. 6, where Gf (s) is as described in (4).

The advantage of using this scheme, is that the piezoelectric
force transducer has a noise density orders of magnitude lower
than a capacitive probe, thus allowing high bandwidth, but
with substantially lower displacement noise due to feedback.
The drawback is reduced range, as the force sensor replaces
parts of the actuator, and additional instrumentation to amplify
the charge generated by the transducer. The force sensor also
requires good calibration, and the response is slightly non-
linear, but this is an insignificant source of error at higher
frequencies.

The control scheme requires an integral control law,

Ci(s) =
ki
s

, (24)

to be implemented, where ki > 0 is the gain. In addition,
two splitting filters, a low-pass and a high-pass filter, must be
implemented. The low-pass filter is given as

Wlp(s) =
ωf

s+ ωf

, (25)

while the high-pass filter is given as

λWhp(s) = λ
s

s+ ωf

, (26)

where the gain λ is found as

λ = |Gd(0)/Gf (0)| . (27)

The cut-off frequency ωf determines the split between the
frequency range for where to use displacement feedback, and
where to use force feedback. For the implementation, this was
chosen to be ωf = 2π · 50. Better noise properties can be
achieved by reducing ωf , but this is limited to some extent by
the need to high-pass filter the force measurement. The high-
pass filter is used both to allow the use of the capacitive probe
measurement at low frequencies, and to remove bias com-
ponents in the charge measurement. As the force transducer
response is slightly non-linear, sufficient bandwidth for the
capacitive probe measurement is required to improve linearity.

This is a single-input-multiple-output (SIMO) system, and the
measurement vector is given as

yp = [d, vf ]
T
, (28)

while the input is the applied voltage ua. With regards to Fig. 4,
the plant transfer-matrix is

Gp(s) = [Gd(s), Gf (s)]
T ∈ C

2×1 , (29)

the feed-forward transfer-matrix is given as

C(s) = [Wr(s)Ci(s), −Wr(s)Ci(s)] , (30)

and the feedback transfer-matrix is given as

F (s) = diag
(

Wlp(s)Wa(s) , λWhp(s)Wa(s)
)

. (31)

Here, Wr(s) = Wa(s), and are second-order Butterworth
filters, with a cut-off frequency at 20 kHz.

There is one tunable control parameter

θc = ki ,

ua d
w

r
+ vf

λWhp

Wlp
nd

nf

– Wr
Gd

Gf
Ci

Wa

Wa

u

Fig. 6. Structure when using IFF.

the integral gain ki. The optimal control law parameter for (24)
found when solving (15) is

ki = 1.37 · 105 .
It can also be found using a root-locus plot. The resulting
nominal frequency responses for T (S), E(s), and D(s) are
shown in Fig. 9c.

4.4 Passive Shunt-Damping (PSD)

PSD (Hagood and von Flotow, 1991) can introduce damping by
adding an inductor and a resistor in series with the piezoelectric
actuator, which acts as a capacitor, due to the large dielectric
constant of the piezoelectric material. Tuning the resulting
LCR-circuit for maximum damping creates a resonant LCR-
circuit that works analogously to a tuned mechanical absorber.
Adding an integral control law for tracking, results in the
control structure shown in Fig. 7, where Gq(s) is as given in
(3). As discussed below, this configuration does not result in
the same tuning of the LCR-circuit as would be the case when
optimizing for maximum damping only.

The transfer function for the added shunt is (Eielsen and
Fleming, 2010)

Z(s) = sL+R , (32)

where L (H) is the inductance, and R (Ω) is the resistance. The
integral control law is

Ci(s) =
ki
s

, (33)

where ki > 0 is the gain.

This can be interpreted as a single-input-multiple-output (SIMO)
system, where the measurement vector is given as

y = [d, vf ]
T

(34)

and the input is the applied voltage ua. With regards to Fig. 4,
the plant transfer-matrix is

G(s) = [Gd(s), Gq(s)]
T ∈ C

2×1 , (35)

the feed-forward transfer-matrix is

C(s) = [Wr(s)Ci(s), sZ(s)] , (36)

and the feedback transfer-matrix is given by

F (s) = diag
(

Wa(s) , 1
)

. (37)

Here, Wr(s) = Wa(s), and are second-order Butterworth
filters, with a cut-off frequency at 20 kHz.

There are three tunable control parameters

θc = [L,R, ki]
T
,

the shunt inductance L, the shunt resistance R, as well as the
tracking integral control law gain ki. The optimal control law
parameters for (32) and (33) found when solving (15) are

L = 49.5 mH , R = 613 Ω , ki = 7.50 · 104 .
The resulting nominal frequency responses for T (S), E(s),
and D(s) are shown in Fig. 9d.
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Fig. 7. Structure when using PSD.

It should be noted that the values for L and R found using (15)
are not the same as when optimizing for maximum damping.
In that case L = 46.6 mH and R = 165 Ω, which produces
a resonant LCR-circuit response due to the much smaller
resistance value. Since

Ḡd(s) =
d

us

(s) =
Gd(s)

1 + sZ(s)Gq(s)
= Ws(s)Gd(s)

when the shunt is present, the source voltage us is filtered
by Ws(s) before it is applied to the actuator. The response
obtained for Ws(s) when using the values of L and R found
when solving (15) is almost identical to that of a Butterworth

filter with cut-off frequency ωc =
√

1/LCp, although there
is still some additional damping introduced due to the αGd(s)
term in (3). This means that the shunt can be approximated by
a second-order low-pass Butterworth filter, as done in Sec. 4.5.

The shunt was implemented using an inductor constructed us-
ing a closed ferrite core and approximately 45 turns of copper
wire. A potentiometer was used to implement the required re-
sistance. The inductor and resistor were tuned to their required
values using an Agilent U1733C LCR meter.

4.5 Damping Integral Control (DI)

As noted in Sec. 4.4, the optimal values for the resistance and
inductance for the shunt result in a low-pass filter when con-
nected to the capacitance of the actuator, with approximately
the same response as a second-order low-pass Butterworth
filter. Implementing a control scheme on a microcontroller or
a computer, reconstruction and anti-aliasing filters must be
present in order to avoid aliasing and reduce quantization noise.
Instead of applying a shunt circuit, the reconstruction and anti-
aliasing filters that are already present as part of the instrumen-
tation can be used. The resulting control structure is shown in
Fig. 8, and corresponds to the scheme presented in Eielsen et al.
(2011).

As when using passive shunt-damping, only an integral control
law needs to be implemented, i.e.,

Ci(s) =
ki
s

, (38)

where ki > 0 is the gain. The cut-off frequency, ωc, for the
filters Wr(s) and Wa(s) must be tuned as well. Here it is
assumed that Wr(s) = Wa(s) for simplicity. The filters used
in the experimental set-up are second-order Butterworth filters,

Wr(s) = Wa(s) = ωc
2/(s2 +

√
2ωcs+ ωc

2) . (39)

The combined filter Wr(s)Wa(s) is of fourth-order, but the
closed-loop response of the system is almost identical to the
case when using a passive shunt. The added benefit in this case
is that the shunt is no longer needed.

Formulating the control scheme in terms of the general control
structure in Fig. 4, the feed-forward filter is

C(s) = Wr(s)Ci(s) (40)

Ci Wr Gd Wa
ua

w

d

n

–

r u

Fig. 8. Structure when introducing damping by applying a low-
pass filter in the signal chain, in this case by utilizing the
filter Wr(s)Wa(s).

and the feedback filter is

F (s) = Wa(s) . (41)

There are two tunable control parameters

θc = [ωc, ki]
T
,

the filter cut-off frequency ωc, and the tracking integral control
law gain ki.The optimal control law parameters for (38) and
(39) found when solving (15) are

ωc = 2π · 2150 , ki = 6.68 · 104 .
The resulting nominal frequency responses for T (S), E(s),
and D(s) are shown in Fig. 9e.

5. EXPERIMENTAL RESULTS AND DISCUSSION

The five different control schemes were implemented on the
hardware-in-the-loop system, described in Sec. 2, and the
tracking performance when using a triangle wave reference
signal with a fundamental frequency of 80 Hz and an ampli-
tude of 1 µm is recorded for each scheme. The fundamental
frequency of the reference signal is chosen in order for the 21st
harmonic of the signal to be close to the dominant vibration
mode. The displacement for all the schemes is measured on
a separate channel using an anti-aliasing filter with a 35 kHz
cut-off frequency. The generated current from the force trans-
ducer is measured, and integrated numerically. The cut-off
frequency for the anti-aliasing filter for this measurement is
always 20 kHz, for all the experiments.

Nominal frequency responses for the various schemes are
found in Figs. 9a, 9b, 9c, 9d, and 9e. The measures from Sec. 3
are summarized in Tab. 2. Note that the values for 1/γ are not
directly comparable between SISO and SIMO systems.

The results when tracking a triangle-wave reference signal
are presented in Fig. 10. The maximum error (ME) ranges
from 15% to 24%, and the root-mean-square error (RMSE)
ranges from 0.11 µm to 0.20 µm. The error values are also
summarized in Tab. 2. Note that tracking performance can be
increased by adding feed-forward, but this is not done in order
for the error signals to be significantly larger than the noise
in the measured displacement signal, to avoid obfuscating the
actual results achieved due to feedback.

Table 2. Bandwidth (BW) of E(s), ||N(s)||2 from nd to d,
||D(s)||∞ from w to d, 1/γ, root-mean-square error (RMSE),

and maximum error (ME).

Scheme BW ||N(s)||2 ||D(s)||∞ 1/γ RMSE ME

PPF 318 Hz 61.1 191·10−3 1.66 0.194 µm 0.231 µm

IRC 369 Hz 78.4 281·10−3 1.01 0.173 µm 0.213 µm

IFF 329 Hz 12.6 424·10−4 1.14 0.123 µm 0.146 µm

PSD 338 Hz 60.0 139·10−3 1.14 0.178 µm 0.218 µm

DI 372 Hz 58.6 204·10−3 1.66 0.197 µm 0.235 µm

The best performing control schemes in terms of the error is
the scheme using IFF. The worst performance is obtained when
using PPF and the DI scheme, while when using IRC and PSD,
errors in the middle of the range are obtained.
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(a) Positive position feedback (PPF).
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(b) Integral resonant control (IRC).
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(c) Integral force feedback (IFF).
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(d) Passive shunt-damping (PSD).
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(e) Damping integral control (DI).

Fig. 9. Nominal frequency responses.

The error figures in terms of ME and RMSE can be changed by
the control law tuning, but a reduction in RMSE typically leads
to an increase in ME, due to a more oscillatory response.

The simplest control schemes to implement on a digital plat-
form are the PSD based and DI schemes, as they only re-
quire a single integrator. The DI scheme is the simplest with
regards to extra instrumentation, as it is not necessary to add

a shunt circuit, although for the PSD based control law, the
anti-aliasing filter is not necessary, and can be omitted. For
an analog implementation, the DI scheme, and the schemes
based on PPF, IRC, and PSD are almost equivalent in terms
of complexity. The IFF based scheme also only requires three
integrators in the implementation, but has the disadvantage of
reduced range due to the force transducer, and it requires more
instrumentation and good calibration. On the other hand, the
noise performance is superior, due to the extremely low noise
density of the force transducer, although this benefit is lost for
a digital implementation, due to quantization noise and digital-
to-analog converter (DAC) artifacts.

As quantization noise is the dominant noise source in the exper-
imental system, it is not possible to obtain reliable closed-loop
noise measurements. However, due to the low noise and high
sensitivity of the force transducer, the effect of quantization
noise and DAC artifacts can be measured. An example of this
is shown in Fig. 11, where the time derivative of the force mea-
surement is shown when using the IFF based scheme and the
PSD scheme. The PSD scheme, as well as the DI scheme, has a
low-pass filter with a low cut-off frequency before the voltage
is applied to the piezoelectric actuator, and so the noise and
disturbances coming from the DAC are effectively attenuated.
For the PPF, IRC, and IFF based schemes, the reconstruction
filter has a cut-off frequency of 20 kHz, and thus the non-
ideal DAC behavior is much more noticeable. This beneficial
effect can also be achieved when using PPF and IRC schemes
by implementing the damping control law Cd(s) using analog
components, as it takes the form of a low-pass filter in either
case, but implementing the whole scheme using analog com-
ponents by adding an analog integrator might then be a better
option.

Overall, the performance is fairly similar among the five
schemes, but the excellent nominal noise performance of the
IFF based scheme and the simplicity of the DI scheme is note-
worthy.

Table 3. Feature summary.

PPF IRC IFF DI PSD

Suitable for digital implementation • •
Low implementation complexity • •

High overall performance and robustness •

6. CONCLUSIONS

Five fixed-structure, low-order control schemes for damping
and tracking control for a nanopositioning device have been
presented, experimentally assessed, and compared with regards
to performance. Investigated schemes were based on PPF,
IRC, IFF, and PSD, in addition to DI. The paper furthermore
presented a practical and systematic tuning method for the
schemes.

Overall, the performance was fairly similar among the schemes,
but features of notice is the noise performance of the IFF based
scheme and the simplicity of the DI scheme. It was demon-
strated that when implementing control schemes on a digital
platform, it is beneficial to use control schemes that reduce
the effect of quantization noise and digital-to-analog-converter
artifacts by using low-pass filters with low cut-off frequencies
before the input to the actuator. Of the schemes investigated,
this is most easily done using the PSD based scheme and the DI
scheme. It was also demonstrated that the noise benefits when
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Fig. 10. Steady-state tracking performance when applying a
1 µm amplitude, 80 Hz triangle-wave reference signal.
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Fig. 11. Time derivative of force measurement; effect of filter-
ing on DAC artifacts in the applied voltage when using a
filter with high vs. low cut-off frequency.

using the IFF based scheme are lost for a digital implementa-
tion, due to quantization noise and digital-to-analog converter
artifacts. Tab. 3 summarizes some of these features.
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