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ABSTRACT

Transverse oscillations of small amplitude are commonly seen in high-resolution observations of filament threads,
i.e., the fine structures of solar filaments/prominences, and are typically damped in a few periods. Kink wave modes
supported by the thread body offer a consistent explanation of these observed oscillations. Among the proposed
mechanisms to explain the kink mode damping, resonant absorption in the Alfvén continuum seems to be the
most efficient as it produces damping times of about three periods. However, for a nonzero-f plasma and typical
prominence conditions, the kink mode is also resonantly coupled to slow (or cusp) continuum modes, which could
further reduce the damping time. In this Letter, we explore for the first time both analytically and numerically the
effect of the slow continuum on the damping of transverse thread oscillations. The thread model is composed of a
homogeneous and straight cylindrical plasma, an inhomogeneous transitional layer, and the homogeneous coronal
plasma. We find that the damping of the kink mode due to the slow resonance is much less efficient than that due

to the Alfvén resonance.
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1. INTRODUCTION

The existence of the fine structure of solar filaments/
prominences is clearly shown in high-resolution observations
by both ground-based and satellite-on-board telescopes. These
fine-structures, here called threads, have a typical width, W,
and length, L, in the ranges 0.2arcsec < W < 0.6arcsec
and Sarcsec < L < 20arcsec (Lin et al. 2005). Filament
and prominence threads are believed to be thin magnetic flux
tubes partially filled with prominence-like plasma and whose
footpoints are anchored in the photosphere. Observers usu-
ally report the presence of transverse oscillations and waves
in these fine structures (e.g., Lin et al. 2003, 2005, 2007;
Okamoto et al. 2007), which have been interpreted in terms
of magnetohydrodynamic (MHD) waves (e.g., Terradas et al.
2008). The reader is referred to Oliver & Ballester (2002),
Ballester (2006), and Banerjee et al. (2007) for reviews of
these events. In addition, a typical property of small-amplitude
prominence oscillations observed in Doppler series is that they
are quickly damped, with damping times of the order of sev-
eral periods (Molowny-Horas et al. 1999; Terradas et al. 2002).
Since small-amplitude oscillations are of local nature and related
to periodic motions of threads, there must exist some mecha-
nism which is able to damp thread oscillations in an efficient
way.

The damping of prominence oscillations has recently been
investigated in a number of papers (this topic has been re-
viewed by Oliver 2008). Soler et al. (2008) modeled a fil-
ament thread as a homogeneous cylinder embedded in an
unbounded corona and studied the effect of nonadiabatic mech-
anisms (thermal conduction, radiative losses, and heating) on
the wave damping. As in previous works (Carbonell et al. 2004;
Soler et al. 2007), they concluded that thermal effects are only
efficient in damping the slow mode, the fast kink mode being
almost undamped. Subsequently, Arregui et al. (2008) used a
more realistic thread model and included an inhomogeneous
transition region between the cylindrical thread and the exter-
nal medium. He neglected plasma pressure and adopted the
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so-called 8 = 0 approximation, where 8 is the ratio of the
plasma pressure to the magnetic pressure. These authors found
that the kink mode is resonantly coupled to Alfvén continuum
modes due to the presence of the transverse inhomogeneous
layer, and obtained a ratio of the damping time to the period
/P ~ 3 for typical prominence conditions. In the case of
coronal loops (see, for example, recent reviews by Goossens
et al. 2006; Goossens 2008), resonant absorption has been ex-
tensively investigated as a damping mechanism for the kink
mode.

Although the plasma g in solar prominences is probably
small, it is definitely nonzero. Hence, if gas pressure is taken
into account in the model of Arregui et al. (2008), i.e., the
B # 0 case, it turns out that the kink mode phase speed, namely,
¢k, is also within the slow (or cusp) continuum that extends
between the internal, cy;, and external, ¢, sound speeds, i.e.,
Csi < Cr < Cse. Inthis case, the kink mode is not only resonantly
coupled to Alfvén continuum modes but also to slow continuum
modes. The frequency of the kink mode is both within the
Alfvén and slow continua because of the high density and low
temperature of the prominence material in comparison with the
coronal values. Hence, the slow continuum damping arises as
an additional mechanism to damp the kink mode in filament
threads, and its efficiency needs to be assessed. Although the
slow resonance has been previously investigated in the context
of absorption of driven MHD waves in the solar atmosphere
(e.g., Cadez et al. 1997; Erdélyi et al. 2001) and sunspots (e.g.,
Keppens 1996), the present work studies for the first time the
effect of the slow resonance on the damping of the kink mode
in filament threads. For coronal loops the kink speed is outside
the slow continuum. A coronal loop is presumably hotter and
denser than its surrounding corona, so the ordering of sound,
Alfvén, and kink speeds iS ¢, < ¢ < VAi < Ck < Vae-
Therefore, there is no slow resonance for the kink mode in
coronal loops and the present study does not apply to coronal
loops.

This Letter is organized as follows. Section 2 contains a
description of the model configuration and the mathematical
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Figure 1. Sketch of the model configuration.

method. The results are presented and discussed in Section 3.
Finally, our conclusions are given in Section 4.

2. MODEL AND METHOD

The model for the equilibrium configuration considered here
is equivalent to that of Arregui et al. (2008). We model a
filament thread as a straight cylinder with prominence-like
conditions embedded in an unbounded corona, with a transverse
inhomogeneous layer between both media (see Figure 1). We
use cylindrical coordinates, namely, r, ¢, and z for the radial,
azimuthal, and longitudinal coordinates, respectively. We adopt
the density profile by Ruderman & Roberts (2002) which only
depends on the radial direction,

pi, if r<a-—1/2,
,oo(r)z{pn(r), if a—-1/2<r<a+l/2, @))]
Des if r=za+l/2,

with

_ P Pey (1= )sin[Z o =
,Otr(r)—z{(l+pi> (1 pi)sm[l(r a)”. 2)

In these expressions, p; is the internal density, p, is the external
(coronal) density, a is the tube mean radius, and / is the
transitional layer width. The limits /[/a = 0 and [/a = 2
correspond to a homogeneous tube and a fully inhomogeneous
tube, respectively. We use the following densities: p; = 5 X
107" kgm™ and p, = 2.5 x 1073 kg m—>. Therefore, the
density contrast between the internal and external plasma is
pi/pe = 200. The plasma temperature is related to the density
through the usual ideal gas equation. We consider 7; = 8000 K
and 7, = 10° K for the internal and external temperatures,
respectively. The magnetic field is taken homogeneous and
orientated along the z-direction, By = Bz, with By = 5 G
everywhere. With these conditions, 8 ~ 0.04.

2.1. Analytical Dispersion Relation

We consider the linear, ideal MHD equations for the 8 # 0
case. Since ¢ and z are ignorable coordinates, the perturbed
quantities are put proportional to exp (iwt + img — ik,z), where
w is the frequency, and m and k, are the azimuthal and
longitudinal wavenumbers, respectively. In the absence of a
transitional layer, i.e., [/a = O, the dispersion relation of
magnetoacoustic waves is obtained by imposing the continuity
of the radial displacement, &,, and the total pressure perturbation,
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pr, at r = a. This dispersion relation (Edwin & Roberts 1983)
is D, (w, k;) = 0, with

D, (. k) m; J), (m;a) me

'm (W, = Pe - Pi

O =) Tnmia) (02 R
K, (m.a) 3)
K, (m.a)’

where va; . = Bo/./Itpi. 1s the internal /external Alfvén speed,
and the quantities m; and m, are given by
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where cri e = CsicVAie / \ /cfi’e + vii’e is the internal/external

cusp (or tube) speed.

When an inhomogeneous transitional layer is present in the
model, we cannot obtain an analytical expression for the dis-
persion relation unless some assumptions are made. An ele-
gant method for obtaining an analytical dispersion relation is to
combine the jump conditions and the approximation of the thin
boundary (TB). The jump conditions were derived by Sakurai
etal. (1991a) and Goossens et al. (1995) for the driven problem
and by Tirry & Goossens (1996) for the eigenvalue problem.
This method was used, for example, by Sakurai et al. (1991b)
for determining the absorption of sound waves in sunspots,
Goossens et al. (1992) for determining surface eigenmodes in
incompressible and compressible plasmas, and Van Doorsse-
laere et al. (2004) for kink eigenmodes in pressureless coronal
loops. This method is valid if the inhomogeneous length-scale
within the resonant layer is sufficiently small in comparison with
the tube radius. Apart from the Alfvén resonance, Sakurai et al.
(1991a) also provided jump conditions for the slow resonance,
which can be applied to the present situation. Hence, the TB
formalism allows us to assess the particular contribution of the
slow resonance to the kink mode damping.

In our model, the magnetic field is straight and constant so
that the variations of the local Alfvén frequency and the local
cusp (or slow) frequency are only due to the variation of density.
In that case the jump conditions at the Alfvén resonance point,
namely, r = ru, can be written as

)

mz/ri

5. ., P
w%\ |8r:00|A

(6] = —im T, [prl=0, at r=ra, (5

where wp and |9, pg| 5 are the Alfvén frequency and the modulus
of the radial derivative of the density profile, respectively, both
quantities evaluated at r = ra. The respective jump conditions
at the slow resonance point, namely r;, are

k2 C2 2
rl = —im S 2 ) = 01
(&-] o2 orpol, <Cs2 " U/2\> pr.  [prl
at r =ry, (6)

where w, and |9, pg|, are the cusp frequency and the modulus of
the radial derivative of the density profile, respectively, both

2
quantities evaluated at r = ry, while the factor (535) =
5 A

(ﬁ) ~ 0.034 is a constant everywhere in the equilibrium,
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with y = 5/3 the adiabatic index. The jump conditions (6) are
independent of the azimuthal wavenumber, m, but they depend
on the longitudinal wavenumber, k.. So, for k, = 0, jump
conditions (6) become [§,] = [pr] = 0, meaning that there
is no slow resonance in such a case.

Next, we use jump conditions (5) and (6) to obtain a correction
to the dispersion relation (3) due to both resonances in the TB
approximation,

2.2 2 2 2
Dy (w, k) R /er Pibe  _ 'J'rk—z ( S 2) Pife_
i 19rp0la w2 \c2+vy/) 19,00l
@)
The first term on the right-hand side of Equation (7) corresponds
to the effect of the Alfvén resonance, while the second term is

present due to the slow resonance.

2.1.1. Expressions in the Thin Tube Approximation

Further analytical progress can be made by combining the
TB and the thin tube (TT) approximations. This was done
extensively by Goossens et al. (1992). We perform a asymptotic
expansion of the Bessel functions present in the dispersion
relation (7) by considering the long-wavelength limit, i.e.,
k.a < 1, and only keep the lowest order, nonzero term of
the expansion. Thus, the dispersion relation (7) becomes,

mfa mja___ . |:m2/ri 1
P o inpip. | T
(@2 —k203) 7 (02 = k20R,) @ 10,00l
2
+k_z2 ( c? ) 1 o "
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Now, we write the frequency as w = wg +iw;. It follows from
the resonant conditions that wa = @, = wg. The position of the
Alfvén, ra, and slow, r, resonance points can be computed by
equating the real part of the kink mode frequency to the local
Alfvén and slow frequencies, respectively. By this procedure,
we obtain

l P — 203 k2 ;
ra = a + — arcsin |:'0’ Pe _ A; . } . O
T Pi + Pe oy (P + pe)

for the Alfvén resonance point, and

— 2c2k? i
ry = a4+ — arcsin |:p, Pe _ “2 :_ P
m Pi + Pe wr (P + Pe)

] . (10

for the slow resonance point. In order to derive Equation (10),
we have used the approximation w? ~ ¢2k2, which is valid for
c? < v3. Note that we need the value of wg to determine ra
and r,;. Expressions for |0, 00|, and |9, pgl, are obtained from

the density profile (Equation (1)),

Pi = Pe\ T
[0, p0la = 7 — cosaa,

2

uwm=<”;“>%mmy (11)

with p = 7 (ra —a)/l and oy = 7 (r; —a) /l. We insert
these expressions in Equation (8) and neglect terms with wlz,
i.e., low-damping situation. Then we obtain an expression for
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the ratio wg/w; after some algebraic manipulations. Since the
oscillatory period, P, and the damping time, tp, are related to
the frequency as follows

2 1
P=—, 1mp=—, (12)
WR wr

it is then straightforward to give an expression for 7/ P,

TD_]_.I Pi + Pe m
P (fa) \pi — p.) [cosan

—1
k.a)? 2\
+( Za) < CA 2) , (13)
m c2+vi/) cosay

where F is a numerical factor that depends on the density profile
(F = 2/m in our case). As in previous expressions, the term
with k, corresponds to the contribution of the slow resonance. If
this term is dropped and m = 1 and cosaa = 1, Equation (13)
is equivalent to Equation (3) of Arregui et al. (2008), which only
takes the Alfvén resonance into account and was first obtained
by Goossens et al. (1992) (see also equivalent expressions in
Ruderman & Roberts 2002; Goossens et al. 2002).

Next, we assume ra ~ r; & a for simplicity, so cosas =
cos o & 1. The ratio of the two terms in Equation (13) is

%MN%W<CEY

(tp), m? \c2+v%

(14)

where (tp), and (1p), are the damping times exclusively due
to the Alfvén and slow resonances, respectively. To make a
simple calculation we note that the observed wavelengths of
prominence oscillations correspond to 1073 < k.a < 107"
For m = 1 and k.a = 1072 we obtain (tp), / (tp), ~ 1077,
meaning that the Alfvén resonance is much more efficient than
the slow resonance for damping the kink mode. Note that even
in the extreme case of a very large g, i.e., cf, — o0 and so

( e ) — 1, (tp)a / (tp); < 1 for typical values of k.a. By

2.7
CJ+UA

means of this simple calculation, we can anticipate that the slow
resonance will be irrelevant for the kink mode damping.

2.2. Numerical Computations

In addition to the analytical approximations, we also numeri-
cally solve the full eigenvalue problem by means of the PDE2D
code (Sewell 2005). We consider the resistive version of the
linear MHD equations. The magnetic Reynolds number, R,,,
in the corona is considered to be around 10'%, but using this
value requires taking an enormous number of grid points in the
numerical computations. We therefore use a smaller value of
R,,, and consequently a smaller number of grid points, but we
make sure that the resonant plateau is reached and the damping
time becomes independent of the magnetic diffusivity. We use
a nonuniform grid with a large density of grid points within the
inhomogeneous layer in order to correctly describe the small
spatial scales that develop due to both resonances. In the next
section, these numerical results are compared with the analytical
TB approximations.

3. RESULTS

We focus our investigation on the damping of the kink
mode (m = 1). First, we fix the longitudinal wavenumber to
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Figure 2. Modulus in arbitrary units of kink mode perturbations: (a) v, (b) By, (¢) p1, (d) vz, () By;, and (f) p1, as functions of r/a for [/a = 0.2 and k.a = 1072,
The small panel in each graphic corresponds to an enhancement of the eigenfunction within the transitional layer.

k.a = 1072 and consider //a = 0.2. We numerically compute
(see Figure 2) the eigenfunctions: the velocity perturbation (v,,
Ve, V), the magnetic field perturbation (By., Biy, Bi;), the
density perturbation (p;), and the gas pressure perturbation
(p1). The behavior of v, and By, is similar to that of B;, and
vy, respectively, and hence they are not displayed in Figure 2.
Because of the resonances the perturbations show large peaks
in the transitional layer. The small panels of Figure 2 display
the behavior of the eigenfunctions within the inhomogeneous
layer, which allows us to ascertain the position of the peaks
in more detail. The peaks of the perturbations v,, By, and p;
are related to the Alfvén resonance, while the perturbations v,
Bj., and p, are more affected by the slow resonance and their
peaks appear at a different position. Moreover, we see that peaks
related to the Alfvén resonance are wider than those related to
the slow resonance, meaning that the slow resonance produces
smaller spatial scales within the resonant layer. Considering the
numerical value of wg, we getra/a ~ 1 and ry/a ~ 1.08 from
Equations (9) and (10), respectively. Both values are in a good
agreement with the position of peaks in Figure 2.

Next, we plot in Figure 3 the ratio of the damping time to
the period, p/ P, as a function of k,a corresponding to the kink
mode for //a = 0.2. In this figure, we compare the numerical
results with those obtained from the TB approximation. At first
sight, we see that the slow resonance (dashed line in Figure 3)
is much less efficient than the Alfvén resonance (symbols) in
damping the kink mode. The individual contribution of each
resonance in the TB approximation has been determined by
solving Equation (7) and only taking the term on the right-
hand side related to the desired resonance into account. For
the wavenumbers relevant to prominence oscillations, 1073 <
k.a < 107!, the value of tp/P related to the slow resonance
is between 4 and 8 orders of magnitude larger than the ratio

10° T

10°+

10%+

Ty /P

10%+

700 1 Ik Il 1 1 Il
1707° 107* 107% 107% 107" 10° 10" 10°
k,a

Figure 3. Ratio of the damping time to the period, tp/ P, as a function of the
dimensionless wavenumber, k,a, corresponding to the kink mode for//a = 0.2.
The solid line is the complete numerical solution obtained with the PDE2D
code. The symbols and the dashed line are the results of the TB approximation
corresponding to the Alfvén and slow resonances (the effect of the first and
second terms on the right-hand side of Equation (7), respectively). The shaded
zone corresponds to the range of typically observed wavelengths in prominence
oscillations.

obtained by the Alfvén resonance. The result of the thin tube
limit (Equation (14)) agrees with this. On the other hand, the
complete numerical solution (solid line) is close to the result for
the Alfvén resonance. In agreement with Arregui et al. (2008),
we obtain tp/ P ~ 3 in the relevant range of k,a. As was stated
by Arregui et al. (2008, Figure 2(d)), the discrepancy between
the numerical result and the TB approximation increases with
l/a, the difference being around 20% for //a = 1. However, for
small, realistic values of //a this discrepancy is less important
and the TB approach is a very good approximation to the
numerical result. For short wavelengths (k.a > 10°) the value of
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Tp/ P increases and the efficiency of the Alfvén resonance as a
damping mechanism decreases. For k.a ~ 10 both the slow and
the Alfvén resonances produce similar (and inefficient) damping
times.

4. CONCLUSION

In this Letter, we have studied the kink mode damping in
filament threads due to resonant coupling to slow continuum
modes. As far as we know, this is the first time that this
phenomenon is studied in the context of solar prominences.
By considering the TB approximation, we have found that,
contrary to the Alfvén resonance, the slow resonance is very
inefficient in damping the kink mode for typical prominence-
like conditions. This conclusion also holds for fluting modes
(m > 2). The very small damping due to the slow resonance
is comparable to that due to thermal effects studied in previous
papers (Soler et al. 2008). Therefore, we conclude that the effect
of the slow resonance is not relevant to the damping of transverse
thread oscillations, which is probably governed by the Alfvén
resonance.
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