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Damping of mechanical vibrations by free electrons in metallic nanoresonators
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We investigate the effect of free electrons on the quality factor (Q) of a metallic nanomechanical resonator
in the form of a thin elastic beam. The flexural and longitudinal modes of the beam are modeled using thin
beam elasticity theory, and simple perturbation theory is used to calculate the rate at which an externally
excited vibration mode decays due to its interaction with free electrons. We find that electron-phonon interaction
significantly affects the Q of longitudinal modes, and may also be of significance to the damping of flexural
modes in otherwise high-Q beams. The finite geometry of the beam is manifested in two important ways. Its finite
length breaks translation invariance along the beam and introduces an imperfect momentum conservation law in
place of the exact law. Its finite width imposes a quantization of the electronic states that introduces a temperature
scale for which there exists a crossover from a high-temperature macroscopic regime, where electron-phonon
damping behaves as if the electrons were in the bulk, to a low-temperature mesoscopic regime, where damping is
dominated by just a few dissipation channels and exhibits sharp nonmonotonic changes as parameters are varied.
This suggests a scheme for probing the electronic spectrum of a nanoscale device by measuring the Q of its
mechanical vibrations.
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I. INTRODUCTION

The design and fabrication of high-Q mechanical res-
onators is an ongoing effort that has intensified with the
advent of microelectromechanical systems (MEMS) and even
more with the recent progression toward nanoelectromechan-
ical systems (NEMS).1–3 One requires low-loss mechanical
resonators for a host of nanotechnological applications, such
as low phase-noise oscillators;4 highly sensitive mass,5–8 spin,9

and charge detectors;10 and ultrasensitive thermometers11 and
displacement sensors;12,13 as well as for basic research in
the mesoscopic physics of phonons,14 and the general study
of the behavior of mechanical degrees of freedom at the
interface between the classical and the quantum worlds.15–18

It is therefore of great importance to understand the dominant
damping mechanisms in small mechanical resonators.

A variety of different mechanisms—such as internal fric-
tion due to bulk or surface defects,19–27 phonon-mediated
damping,28–31 and clamping losses32–36—may contribute to
the dissipation of energy in mechanical resonators, and thus
impose limits on their quality factors. The dissipated energy
is transferred from a particular mode of the resonator, which
is driven externally, to energy reservoirs formed by all other
degrees of freedom of the system. Here, we focus our
attention on electron-phonon damping, arising from energy
transfer between the driven mode of the resonator and free
electrons. This dissipation mechanism is avoided altogether
by fabricating resonators from dielectric materials, but for
different practical reasons one often prefers to fabricate
MEMS and NEMS resonators from metals, such as platinum,37

gold,38,39 and aluminum.40–42 Free electrons are also present
in metallic carbon-nanotube resonators43,44 and in resonating
nanoparticles.45–47 All these different resonators exhibit a wide
range of quality factors, from as low as about 10 and up to
around 105, yet one still lacks a full understanding of their
damping mechanisms.

It is well known from at least as early as the 1950s
that electron-phonon scattering is a dominant source of

attenuation of longitudinal sound waves in bulk metals at
low temperatures,48–53 and indications exist that it may play
a significant role in the damping of longitudinal vibrations
in freely suspended bipyramid gold nanoparticles.46 We note
that the effect of electron-phonon scattering on electronic
transport through suspended nanomechanical beams,54 carbon
nanotubes,55–57 fullerenes,58 atomic wires,59–61 and molecular
junctions62–66 is well documented and intensively studied.
There is also evidence for the effect of electron-phonon
scattering on heat transport in nanostructures.67,68 Motivated
by all of these considerations, it is our aim here to estimate the
contribution of electron-phonon interaction to the damping of
vibrational modes in small metallic resonators, while focusing
on the effects of their finite dimensions.

We describe the interaction between electrons and phonons
by means of a simple screened electrostatic potential. We
assume that initially both electrons and phonons are at thermal
equilibrium at the same temperature, except for a single mode,
which is externally excited by the addition of just a single
phonon to its thermal population. This allows us to assume that
the electrons remain almost thermally distributed at all times,
even though they do not actually relax back to equilibrium.
The decay rate of the excited mode is calculated perturbatively,
using Fermi’s “golden rule,” as the difference between the rates
at which phonons enter and leave the excited mode through
their interaction with free electrons. This requires us to assume
that the electron and phonon energies are precisely known, or
in other words that the a priori lifetimes of both the electrons
and the phonons are much longer than all other relevant time
scales.

For the phonons this means that all other damping mecha-
nisms must be much weaker than electron-phonon damping—
although we show later that additional damping mechanisms
do not significantly alter the results of our calculations. For
the electrons, on the other hand, this implies that we are
working in the high-frequency, or unrelaxed, adiabatic limit,
with ωqτe > 1, where ωq is the vibration frequency and τe is
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the mean lifetime of the electron due to its scattering with other
electrons, thermal phonons, defects, etc. However, as discussed
in detail in Sec. 5.12 of the book by Ziman,52 it is often
sufficient to satisfy the spatial version of this requirement,
namely that �eq > 1—where �e is the electron mean free
path and q is the wave number of the excited mode—which
is easier to satisfy because the ratio of the phonon group
velocity to the electron Fermi velocity is typically very small.
Intuitively speaking, it is as if the moving electron explores
the elastic wave much faster than it would have if it were
standing in place and waiting for the wave to go by. When the
adiabatic limit is not met one is inevitably required to address
the relaxation of the electronic distribution by employing
the Boltzmann equation or other approaches.50,51,69 In bulk
metals it is difficult to satisfy even the spatial requirement,
although it has been reached, for example, in aluminum70,71

and iron.72 Based on past and current experiments,73 it seems
reasonable to assume that clean nanometer-scale metallic
devices oscillating at very high frequencies, and operating at
sufficiently low temperatures, will be able to meet the adiabatic
limit (�eq > 1). We therefore assume that this is the case, and
alert the reader to the fact that our results may be less applicable
at high temperatures.

We describe the vibrational modes of the nanomechanical
resonator using continuum elasticity theory, which is often
employed for treating nanomechanical systems, even in the
case of carbon nanotubes,74–76 and also in the quantum
regime.77–79 The small size of such nanostructures may raise
the question of the validity of a continuum elastic approach.
However, explicit comparisons with atomistic calculations and
experimental results have shown that continuum elasticity is
valid down to dimensions of a few nanometers,80–83 and may
indeed be used even for carbon nanotubes, as long as one uses
appropriate effective parameters.84,85

Finally, we investigate beams with typical dimensions that
are much larger than the bulk Fermi wavelength. In such
systems it is usually assumed that the effect of the boundaries
on the free electrons can be ignored and that the electrons
are essentially unconfined. However, as we demonstrate here,
the transverse dimensions of the beam set a temperature
scale—between a few K to more than a hundred K for the beam
geometries considered here—below which the confinement of
the electrons can no longer be ignored, and electron-phonon
damping is expected to behave qualitatively different.

The paper is organized as follows. In Sec. II we describe
the quantized vibrational modes of a nanomechanical beam.
The interaction between these modes and free electrons
is addressed in Sec. III, and the resulting expressions
for the dimensionless damping Q−1 are derived in Sec. IV.
The reader who is not interested in the technical details of
the calculations is invited to skip directly to Sec. V, where
we discuss and explain the results of the calculation and
their physical implications. We conclude with a summary in
Sec. VI.

II. QUANTIZED VIBRATIONAL MODES
OF A NANOMECHANICAL BEAM

We consider a mechanical resonator in the form of a thin
elastic beam with a rectangular cross section, although we

expect the essence of our calculation to be independent of
the specific geometry of the resonator. In what follows we
describe the classical longitudinal and flexural normal modes
of vibration, obtained within standard theories of thin elastic
beams,86,87 and quantize these modes as a collection of simple
harmonic oscillators. We do not consider the twist modes of
the thin beam because the displacement fields of these modes
have zero divergence and therefore do not couple significantly
to free electrons, as explained in the next section.

We take the length l of the beam to lie along the x axis from
x = −l/2 to x = l/2, and its transverse dimensions along the
y axis from y = 0 to y = a, and along the z axis from z = 0
to z = b. In equilibrium, the beam is unstrained, unstressed,
and at temperature T everywhere. Departure of the beam from
equilibrium is described by a displacement field ui (i = x,y,z).
The displacement field ui as well as the strain and stress tensors
uij and σij are all functions of position and time. Yet, we
assume that the temperature of the beam remains uniform
and constant during the vibration, thus ignoring thermoelastic
effects.28 We take the surfaces of the beam to be stress free,
which implies that all but the σxx component of the stress
tensor vanish on the surface. Because the beam is thin, this
approximately holds in its interior as well. Hooke’s law for the
thin beam then takes a rather simple form:

uxx = 1

E
σxx, (1a)

uyy = uzz = − σ

E
σxx, (1b)

uxy = uyz = uzx = 0, (1c)

where E is Young’s modulus, and σ is Poisson’s ratio.

A. Quantized longitudinal modes

To describe longitudinal vibrations in the thin beam we
make an additional simplifying assumption of neglecting any
contribution to the dynamics that arises from having a nonzero
Poisson ratio. We therefore take uy = uz = 0, take ux to
be independent of y and z, and ignore any deviation of the
cross section of the beam from its rectangular shape. Under
these assumptions, longitudinal vibrations are governed by
a standard dispersionless wave equation. Thus, a mode of
wave number q vibrates at a frequency ωq = clq, where
cl = √

E/ρ is the speed of sound of longitudinal waves in
the bulk, and ρ is the mass density of the beam. Taking σ �= 0
in Eq. (1b) would lead to the so-called Love equation86 and
to dispersive longitudinal modes, which we do not consider
here.

In the limit l → ∞ of an infinitely long thin beam it is
convenient to describe the longitudinal modes as traveling
waves leading to a phonon field operator of the form

ux =
∑

q

√
h̄

2Mωq

eiqx(bq + b
†
−q), (2)

where b
†
q and bq are bosonic creation and annihilation

operators, M = ρV is the mass of the beam, V = abl is
its volume, and we use a large volume normalization of the
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phononic wave functions as M and V tend to infinity along
with l. In this limit, the sum

∑
q is to be interpreted as an

integral l
∫
dq/2π .

For beams of finite length we consider either doubly
clamped boundary conditions, with ux = 0 at both ends of
the beam, which is a common experimental geometry, or
stress-free boundary conditions, with dux/dx = 0 at both
ends, which may be suitable for describing freely suspended
resonators in solution.45–47 The phonon field operator is then
given by

ux =
∞∑

n=1

√
h̄

Mωqn

(An sin qnx + Bn cos qnx)
(
bqn

+ b†qn

)
, (3)

where qn = nπ/l, and for doubly clamped modes

[An,Bn] =
{

[0,1], odd n,

[1,0], even n,
(4)

while for stress-free modes

[An,Bn] =
{

[1,0], odd n,

[0,1], even n.
(5)

B. Quantized flexural modes

We describe flexural vibrations in the thin beam by the
transverse motion w(x,t) of the neutral axis of the beam in the
z direction. We make the usual Euler-Bernoulli assumption
that the transverse dimensions of the beam, a and b, are
sufficiently small compared with the length l of the beam and
the radius of curvature R of the bending that any plane cross
section, initially perpendicular to the axis of the beam, remains
perpendicular to the neutral axis during bending. We further
assume that the rectangular shape of the cross section remains
unaltered during the bending motion. Such an approximation
is justified for small deflections since the error it introduces is
only on the order of the transverse beam dimension divided
by the radius of curvature of the bending. Since we assume a
nondeformable cross section, there is in fact a neutral surface
running through the length of the beam, at z = b/2, which
suffers no extension or contraction during its bending. One
can then show87 that the longitudinal strain component uxx , a
distance δz = z − b/2 away from the neutral surface, is equal
to δz/R. By replacing the curvature of the beam 1/R with
−∂2w/∂x2 we express the nonzero components of the strain
field in the beam as

uxx = −
(

z − b

2

)
∂2w

∂x2
, (6a)

uyy = uzz = σ

(
z − b

2

)
∂2w

∂x2
. (6b)

Using this strain field it is possible to write down the
Lagrangian density of the beam and derive its equation of
motion. This equation contains two kinetic terms, one that is
associated with the transverse motion of the beam and one that
is associated with the rotation of the cross section. The latter is
smaller by a factor of b/R, and is therefore usually neglected,

leading to the Euler-Bernoulli equation of motion

ρA
∂2w

∂t2
+ ∂2

∂x2

(
EI

∂2w

∂x2

)
= 0, (7)

where A = ab is the area of the cross section, and I = ab3/12
is the moment of inertia of the cross section. The resulting
flexural modes possess a quadratic dispersion, ωq = Gq2,
where G = √

EI/ρA = b
√

E/12ρ.
In the limit of an infinitely long beam, as in Eq. (2),

it is again convenient to describe the transverse modes as
traveling waves with a quantized phonon field operator of the
form

w =
∑

q

√
h̄

2Mωq

eiqx(bq + b
†
−q). (8)

For beams of finite length we consider doubly clamped
boundary conditions, taking w = dw/dx = 0 at both ends.
The phonon field operator is then given by

w =
∞∑

n=1

√
h̄

2Mωqn

(An sin qnx + Bn cos qnx + Cn sinh qnx

+Dn cosh qnx)
(
bqn

+ b†qn

)
, (9)

where the wave numbers qn are solutions of the transcen-
dental equation cos qnl cosh qnl = 1, with qnl tending to odd
multiples of π/2 as n increases. The numerical coefficients
An,Bn,Cn,Dn are determined through the boundary conditions
and the normalization of the phonon wave functions, where
by symmetry An = Cn = 0 for odd n, and Bn = Dn = 0 for
even n.

III. ELECTRON-PHONON INTERACTION

We assume a standard screened static interaction potential88

v(r − r′) = −4πZe2

q2
TF

δ(r − r′), (10)

between the negative charge −e of the electron density∑
σ ψ†

σ (r)ψσ (r) and the positive charge Ze of the disturbance
in the density n0δv(r′) of the ionic background, induced by the
vibration. Here qTF is the Thomas-Fermi wave number, e is the
magnitude of the electron charge, σ is the electron spin (not to
be confused with Poisson’s ratio), Z is the number of valence
electrons per atom in the material, n0 is the atomic density,
and δv(r) is the local volume change induced by the vibration.
The electron-phonon interaction Hamiltonian, derived from
this potential, is

He-ph = −g

∫
V

∑
σ

ψ†
σ (r)ψσ (r)δv(r)d3r, (11)

where

g = 4πZn0e
2

q2
TF

. (12)

For small deformations, to first order in the displacement
field, the local change in volume δv(r) = ∇ ·u. For twist modes
∇ ·u = 0 giving δv(r) = 0, which is why we have ignored
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them here; for longitudinal modes ∇ · u = ∂ux/∂x, where ux

is given by either Eq. (2) or (3); and for flexural modes we find
from Eqs. (6) that

∇ ·u = (2σ − 1)

(
z − b

2

)
d2w

dx2
, (13)

where w is given by either Eq. (8) or (9).
We take two approaches for describing the electron field

ψ(r), where from here onward we suppress the spin index.
As discussed in Sec. I, treating the electrons as bulklike is a
common approximation for structures of the size considered
in this work. Thus we can use a simple free electron field of
the form

ψ(r) =
∑

k

1√
V

eik·rck, (14)

where ck is a fermionic annihilation operator. Within this
approximation it is permissable to treat the transverse di-
mensions of the beam as being infinite from the point of
view of the electrons. Accordingly, the sum

∑
k is replaced

by a three-dimensional integral V
∫
dk/(2π )3. This leads to a

simplification of the calculations and the resulting expressions
below.

Alternatively, we do not neglect the finite transverse
dimensions (but the length of the beam is still considered to
be infinite as far as the electrons are considered), and view the
electrons as being geometrically confined. We then obtain the
“particle in a box” field operators

ψ(x,y,z) =
∑

k

2√
V

eikxx sin kyy sin kzz ck, (15)

with ky = nyπ/a, kz = nzπ/b, and ny,nz = 1,2,3, . . .. In both
cases the energy of the free electrons is given by

εk = h̄2

2m

(
k2
x + k2

y + k2
z

) = h̄2k2

2m
, (16)

but when the lateral confinement of the electrons is not
neglected it takes the explicit form of parabolic bands,

εk = εmin
ny,nz

+ h̄2k2
x

2m
, with εmin

ny,nz
= h̄2π2

2m

(
n2

y

a2
+ n2

z

b2

)
.

(17)

A. Interaction of free electrons with longitudinal phonons

To obtain the interaction Hamiltonian (11) for longitudinal
phonons with unconfined free electrons in an infinite beam
we use the derivative of Eq. (2) for the quantized elastic
displacement field, and the field operator (14) for unconfined
electrons. This yields

He-ph = −i
g

V

∑
k,k′,q

√
h̄

2Mωq

q

∫ ∞

−∞
dyei(ky−k

′
y )y

∫ ∞

−∞
dzei(kz−k

′
z)z

×
∫ ∞

−∞
dxei(kx−k

′
x+q)xc

†
k′ck(bq + b

†
−q)

= −ig
∑
k,q

√
h̄

2Mωq

qc
†
k+qck(bq + b

†
−q), (18)

where q = qx̂, and where we have performed the sum over k′
to eliminate the three δ functions that appear as exponential
integrals in the first two lines of Eq. (18). We note that
the integrations in the y and z directions involve only the
unconfined electron wave numbers. Thus, the width and
thickness of the beam can effectively be taken to be infinite,
which leads to momentum conservation in the y and z

directions.
When the confinement of the electrons is not neglected, the

electronic field (14) is replaced with the one given by Eq. (15).
When longitudinal phonons in an infinite beam are considered,
the replacement of the continuous electron spectrum (16) with
the set of parabolic bands given by Eq. (17) yields the same
formal expression for the interaction Hamiltonian as above in
Eq. (18). The only difference is that the summations over ky

and kz become discrete.
To obtain the interaction Hamiltonian of longitudinal modes

with unconfined electrons in a beam of finite length we use the
derivative of the elastic displacement field given by Eq. (3).
This then yields

He-ph = − g

V

∑
k,k′,qn

√
h̄qn

Mcl

∫ ∞

−∞
dyei(ky−k

′
y )y

∫ ∞

−∞
dzei(kz−k

′
z)z

×
∫ l/2

−l/2
dxei(kx−k

′
x )x(An cos qnx − Bn sin qnx)

× c
†
k′ck

(
bqn

+ b†qn

)
= −g

2

∑
k,k′

x ,qn

√
h̄qn

Mcl

[
(An − iBn) sinc

(qn + �kx) l

2

+ (An + iBn) sinc
(qn − �kx) l

2

]

×c
†
k+�kck

(
bqn

+ b†qn

)
, (19)

where �k = �kxx̂, with �kx = k′
x − kx , and where the

sinc(α) = sin(α)/α functions replace the momentum conser-
vation δ function that exists for the infinite beam in Eq. (18).

We note that by taking the limit of l → ∞ in the first
line of Eq. (19) we obtain the interaction Hamiltonian for an
infinitely long beam as written in the basis of standing waves
instead of the basis of traveling waves, used in Eq. (18). Using
this Hamiltonian it is possible to calculate the decay rate of
a standing wave mode in an infinitely long beam, which is
identical to the one obtained from the Hamiltonian in Eq. (18)
for a traveling wave. Alternatively, by converting the creation
and annihilation operators of the standing waves in Eq. (19)
into creation and annihilation operators of traveling waves, it is
possible to show that the Hamiltonian in Eq. (19) is identical to
that of Eq. (18) in the limit of an infinite beam and continuous
phonon wave numbers.

B. Interaction of free electrons with flexural phonons

For flexural vibrations interacting with laterally confined
electrons in an infinite beam, we substitute the divergence (13)
of the quantized elastic displacement field (8) together with
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the field operator (15) for laterally confined electrons into
the general expression (11) of the electron-phonon interaction
Hamiltonian. We then obtain

He-ph = 4g(2σ − 1)

V

∑
k,k′,q

√
h̄q2

2MG

∫ a

0
dy sin kyy sin k′

yy

×
∫ b

0
dz

(
z − b

2

)
sin kzz sin k′

zz

×
∫ ∞

−∞
dxei(kx−k′

x+q)xc
†
k′ck(bq + b

†
−q)

= 8g(1 − 2σ )b

π2

∑
k,k′

z,q

√
h̄q2

2MG

nzn
′
z(

n2
z − n′2

z

)2

× c
†
k+�kck(bq + b

†
−q), (20)

where now �k = qx̂ + �kzẑ, with �kz = k′
z − kz, and where

the last sum is restricted to pairs of integers nz and n′
z that are

of different parity. Note that owing to the transverse nature of
the vibration the electron momentum changes both in the x

and in the z directions.
The interaction Hamiltonian between the flexural modes

and unconfined free electrons in an infinitely long beam is

He-ph = g(1 − 2σ )

V

∑
k,k′,q

√
h̄q2

2MG

∫ ∞

−∞
dxei(kx−k′

x+q)x

×
∫ ∞

−∞
dyei(ky−k′

y )y
∫ b

0
dz

(
z − b

2

)
ei(kz−k′

z)z

× c
†
k′ck(bq + b

†
−q)

= i
g(1 − 2σ )

b

∑
k,k′

z,q

√
h̄q2

2MG

2 sin �kzb

2 − �kzb cos �kzb

2

�k2
z

× e−i(�kzb/2)c
†
k+�kck(bq + b

†
−q), (21)

where as above �k = qx̂ + �kzẑ, with �kz = k′
z − kz. The

linear dependence of δv on the distance from the neutral axis
of the beam, which is a result of the Euler-Bernoulli thin-beam
approximation, precludes the replacement of the finite limits
of integration in the z direction with integration over an infinite
range, even though we consider unconfined electronic states,
since it leads to an unphysical divergence of the decay rate.
A more realistic model for the flexural modes may saturate
this effect and lead to finite results even in the limit of
large b.

The interaction Hamiltonian for flexural vibrations in a fi-
nite beam is obtained by replacing the quantized displacement
field of the infinite beam (8) with the one given by Eq. (9),
yielding

He-ph = 8g(1 − 2σ )b

π2

√
h̄

2MG

∑
k,k′

x ,k
′
z,qn

qn

nzn
′
z(

n2
z − n′2

z

)2

×Ln(kx − k′
x)c†k+�kck

(
bqn

+ b†qn

)
, (22)

where here �k = �kxx̂ + �kzẑ, and

Ln(κ) = 1

l

∫ l/2

−l/2
eiκx(An sin qnx + Bn cos qnx

−Cn sinh qnx − Dn cosh qnx)dx (23)

replaces the momentum conservation δ function that exists in
the infinite beam (20).

IV. INVERSE QUALITY FACTOR

The damping of mechanical vibrations is estimated by
assuming that both electrons and phonons are in thermal
equilibrium except for a single vibration mode, which is
externally excited by adding just a single phonon to its thermal
population. The rate at which the excited mode decays is
evaluated as the difference between the rates at which phonons
leave it and enter it due to their scattering with electrons.
These rates are calculated with Fermi’s golden rule using the
interaction Hamiltonians He-ph derived above. The decay rate
of an externally excited vibration mode of wave number q is
thus given by

�q = 2π

h̄

∑
k,k′,σ

|〈f−|He-ph|i〉|2δ(εk − εk′ + h̄ωq)

− 2π

h̄

∑
k,k′,σ

|〈f+|He-ph||i〉|2δ(εk − εk′ − h̄ωq), (24)

where |f−〉 is the state with one less phonon and |f+〉 is the
state with one more phonon, namely

|i〉 = |nk,nk′ ,Nq + 1〉, (25a)

|f−〉 = |nk − 1,nk′ + 1,Nq〉, (25b)

|f+〉 = |nk − 1,nk′ + 1,Nq + 2〉, (25c)

where, without any loss of generality, for infinitely long beams
we consider modes with a positive wave number q > 0. The
dimensionless damping, or inverse quality factor, of a mode
with wave number q is then defined as Q−1

q = �q/ωq . In
Eqs. (25) nk stands for the Fermi-Dirac distribution and Nq

for the Bose-Einstein distribution. We note that we do not take
into account the change in the electronic chemical potential
as the temperature is increased above zero, but rather assume
that it remains equal to the Fermi energy of the beam. The
latter is calculated for each specific thickness and width of
the beam when the confinement of the electrons is taken into
account.

This procedure presupposes that the electron and phonon
energies that appear in the δ functions in Eq. (24) are exact,
or equivalently that the a priori lifetimes of electrons and
phonons are infinite. For this to be valid we require (1) that
all other vibration damping mechanisms be much weaker
than electron-phonon damping; and (2) that scattering rates
of electrons—with other electrons, thermal phonons, defects,
or surface imperfections—be much slower than the frequency
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of the mechanical vibration. As we demonstrate in Sec. V D,
removal of the first requirement does not significantly affect
the contribution of electron-phonon scattering to the overall
damping, as long as the different damping mechanisms
are assumed to be independent of each other. The second
requirement implies that our calculation is valid in the
adiabatic limit, ωqτe > 1, where τe is the mean lifetime of the
electron. This requirement will be better satisfied for cleaner
and smaller—hence, higher-frequency—devices at sufficiently
low temperatures.

In what follows we give the derivation of the exact
expressions for the inverse quality factors, using Eq. (24)
along with the interaction Hamiltonians of Sec. III. The reader
who is not interested in these rather technical derivations is
welcome to skip to the next section where we discuss the
physical consequences of these expressions.

A. Damping of longitudinal vibrations by unconfined
electrons in an infinite beam

Using the Hamiltonian of Eq. (18) and the general expres-
sion (24) for the decay rate we obtain

Q−1
q = πg2

Mc2
l

∑
k,σ

[nk(1 − nk+q)(Nq + 1)δ(εk − εk+q + h̄ωq)

− nk(1 − nk−q)(Nq + 2)δ(εk − εk−q − h̄ωq)], (26)

where q = qx̂. We convert the sum over wave vectors in
Eq. (26) into three integrals and change the energy conser-
vation δ functions into momentum δ functions,

δ(εk − εk±q ± h̄ωq) = m

h̄2q
δ

[
kx −

(
mcl

h̄
∓ q

2

)]
. (27)

After performing the integration over kx, ky , and kz and
summing over the spin index we obtain

Q−1
q = g2m2

2πh̄4ρc2
l βq

[
(Nq + 1)2

(
βh̄ωq − ln

1 + eγ−

1 + eγ+

)

− (Nq + 2)Nq

(
βh̄ωq − ln

1 + eγ+

1 + eγ−

)]
, (28)

where

γ± = βh̄2

2m

[(
clm

h̄
± q

2

)2

− k2
F

]
. (29)

Both logarithmic terms in Eq. (28) are negligible as long as
clm/h̄ and q/2 are small compared to kF (which is the case for
all reasonable values of q). For such vibrational wave numbers

γ+ 
 γ− and the logarithms vanish. Combining the two terms
in the square brackets in Eq. (28) then yields

Q−1
q = g2m2

2πh̄3ρcl

, (30)

which is the same as the result for the damping of bulk
longitudinal acoustic waves in the adiabatic limit (Ziman,52

Eq. 8.10.9, and Kokkedee53). The damping in Eq. (30) is
independent of the mode wave number, the temperature, and
the geometry of the beam. In fact, Q depends only on the
material parameters of the beam, and typically varies between
10 and 103 for different metals.

B. Damping of longitudinal vibrations by unconfined
electrons in a finite beam

We substitute the Hamiltonian of Eq. (19) into Eq. (24) and
again convert the sums over the electronic wave vectors into
integrals. After summing over the spin index we obtain

Q−1
qn

= g2n

16π2ρc2
l qn

∫
dkdk′

xnk(1 − nk+�k)Wn(kx − k′
x)

× [(
Nqn

+ 1
)
δ
(
εk − εk+�k + h̄ωqn

)
− (

Nqn
+ 2

)
δ
(
εk − εk+�k − h̄ωqn

)]
, (31)

where �k = (k′
x − kx)x̂, and

Wn(κ) = An

(
sinc

(κ − qn) l

2
+ sinc

(κ + qn) l

2

)2

+Bn

(
sinc

(κ − qn) l

2
− sinc

(κ + qn) l

2

)2

. (32)

We perform the integration over ky and kz and change the
energy δ functions into a δ function of the variable k′

x ,

δ
(
εk − εk+�k + h̄ωqn

) = m

h̄2k′0
x

[
δ
(
k′
x − k′0

x

) + δ
(
k′
x + k′0

x

)]
,

(33a)

and a δ function of the variable kx ,

δ
(
εk − εk+�k − h̄ωqn

) = m

h̄2k0
x

[
δ
(
kx − k0

x

) + δ
(
kx + k0

x

)]
,

(33b)

where (k′0
x )2 = k2

x + 2mclqn/h̄, and (k0
x)2 = k′2

x + 2mclqn/h̄.
We integrate over k′

x for the first δ function and over kx for the
second δ function and obtain

Q−1
qn

= ng2m2

8πh̄4ρc2
l βqn

[ (
Nqn

+ 1
)2

∫ ∞

−∞

dkx

k′0
x

(
βh̄ωqn

+ ln
1 + e(βh̄2/2m)(k2

x−k2
F)

1 + e(βh̄2/2m)(k2
x+2mclqn/h̄−k2

F)

) [
Wn

(
kx − k′0

x

) + Wn

(
kx + k′0

x

)]

−Nqn

(
Nqn

+ 2
) ∫ ∞

−∞

dkx

k′0
x

(
βh̄ωqn

+ ln
1 + e(βh̄2/2m)(k2

x+2mclqn/h̄−k2
F)

1 + e(βh̄2/2m)(k2
x−k2

F)

) [
Wn

(
k′0
x − kx

) + Wn

(−k′0
x − kx

)] ]
, (34)
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where we have dropped the prime from the integration
variable.

The integrands in Eq. (34) nearly vanish for most values of
kx unless it is relatively close to ± (mcl/h̄ − qn/2). For these
values of kx (and as long as qn is small compared to kF) both
k2
x − k2

F and k2
x + 2mclqn/h̄ − k2

F are nearly equal to −k2
F and

the logarithmic functions in Eq. (34) can be neglected. Finally,
by using the fact that Wn(κ) = Wn(−κ) we find that

Q−1
qn

= ng2m2

8πh̄3ρcl

∫ ∞

−∞

dkx

k′0
x

[
Wn

(
kx − k′0

x

) + Wn

(
kx + k′0

x

)]
.

(35)

We note that the damping for the infinite beam in Eq. (30)
and for the finite beam in Eq. (35), due to interaction with
unconfined electrons, are both independent of temperature and
of the length of the beam for a given mode.

C. Damping of longitudinal vibrations by laterally confined
electrons in an infinite beam

As noted in Sec. III, the Hamiltonian for the interaction be-
tween longitudinal phonons and laterally confined electrons is
formally identical to the one describing the interaction between
longitudinal phonons and unconfined free electrons, with the
integrals over ky and kz in Eq. (18) replaced by discrete sums
over the allowed values of ky and kz. These discrete sums yield

Q−1
q = g2m

h̄2EAq

∑
ky ,kz

[
n(k−

x ,ky ,kz)

(
1 − n(k+

x ,ky ,kz)

)
(Nq + 1)

− n(k+
x ,ky ,kz)

(
1 − n(k−

x ,ky ,kz)

)
(Nq + 2)

]
, (36)

where

k±
x = mcl

h̄
± q

2
. (37)

D. Damping of flexural vibrations by laterally confined
electrons in an infinite beam

The Hamiltonian of Eq. (20) which describes the interaction
between flexural modes in an infinite beam with confined

electrons together with the general expression for the decay
rate (24) yield

Q−1
q = 64πg2(2σ − 1)2

G2b2M

∑
k,k′

z,σ

k2
z k

′2
z(

k2
z − k′2

z

)4

× [nk(1 − nk+q+�k)(Nq + 1)δ(εk − εk+q+�k + h̄ωq)

− nk(1 − nk−q+�k)(Nq + 2)δ(εk − εk−q+�k − h̄ωq)],

(38)

where here �k = (k′
z − kz)ẑ.

We sum over the spin index and change the δ functions in
Eq. (38) into δ functions of the variable kx ,

δ(εk − εk+�k±q ± h̄ωq) = m

h̄2q
δ(kx − κ±), (39)

where

κ± = mGq

h̄
± k2

z − k′2
z

2q
∓ q

2
. (40)

We express the sum over kx as an integral, and use Eqs. (39)
and (40) to obtain

Q−1
q = 768g2m(2σ − 1)2

π4h̄2EAq

∑
ky ,kz,k′

z

n2
zn

′2
z(

n2
z − n′2

z

)4

× [
n(κ+,ky ,kz)

(
1 − n(κ++q,ky ,k′

z)
)
(Nq + 1)

− n(κ−,ky ,kz)
(
1 − n(κ−−q,ky ,k′

z)
)
(Nq + 2)

]
. (41)

E. Damping of flexural vibrations by laterally confined
electrons in a finite beam

The inverse quality factors of flexural modes in a finite beam
are obtained in a similar way but without exact momentum
conservation. Thus, the momentum δ functions are replaced
with the Ln functions, given by Eq. (23), and the integral over
kx remains in the final expression,

Q−1
qn

= 384(2σ − 1)2g2ml2

π5h̄2EA

∑
ky ,kz,k′2

z <k2
z + 2mωqn

h̄

n2
zn

′2
z(

n2
z − n′2

z

)4

∫ ∞

−∞

dkx√
k2
x + k2

z − k′2
z + 2mωqn

h̄

×
(∣∣∣∣Ln

(
kx −

√
k2
x + k2

z − k′2
z + 2mωqn

h̄

)∣∣∣∣
2

+
∣∣∣∣Ln

(
kx +

√
k2
x + k2

z − k′2
z + 2mωqn

h̄

)∣∣∣∣
2)

×
{(

Nqn
+ 1

)
n

(
h̄2k2

2m

)[
1 − n

(
h̄2k2

2m
+ h̄ωqn

)]
− (

Nqn
+ 2

)
n

(
h̄2k2

2m
+ h̄ωqn

)[
1 − n

(
h̄2k2

2m

)]}

+
∑

ky ,kz,k′2
z <k2

z − 2mωqn
h̄

n2
zn

′2
z(

n2
z − n′2

z

)4

∫ ∞

−∞

dkx√
k2
x + k2

z − k′2
z − 2mωqn

h̄

×
(∣∣∣∣Ln

(
− kx +

√
k2
x + k2

z − k′2
z − 2mωqn

h̄

)∣∣∣∣
2

+
∣∣∣∣Ln

(
− kx −

√
k2
x + k2

z − k′2
z + 2mωqn

h̄

)∣∣∣∣
2)

×
{(

Nqn
+ 1

)
n

(
h̄2k2

2m
− h̄ωqn

)[
1 − n

(
h̄2k2

2m

)]
− (

Nqn
+ 2

)
n

(
h̄2k2

2m

)[
1 − n

(
h̄2k2

2m
− h̄ωqn

)]}
. (42)
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TABLE I. Material properties of bulk aluminum at room tem-
perature, used for calculating the results in Sec. V.

E (Ref. 89) 70 GPa
σ (Ref. 89) 0.35
ρ (Ref. 89) 2.7 g/cm3

Z 3
λTF (Ref. 90) 0.049 nm

V. RESULTS AND DISCUSSION

We use the material properties of aluminum in our numer-
ical calculations below, because, according to our model, it
is expected to have the highest dissipation among the typical
materials used in the fabrication of metallic nanomechanical
beams. We use the room-temperature values of these proper-
ties, listed in Table I, as they do not change much between
room temperature and cryogenic temperatures.89 We consider
beams with cross-sectional dimensions that vary between 10
and 50 nm, and finite lengths that vary between 500 nm and
2.0 μm. Because our model involves many approximations,
the calculated values of Q−1 given below should be considered
only as a rough order of magnitude estimate of electron-
phonon damping. Nevertheless, we believe that we describe
correctly the qualitative behavior of the damping as a function
of the different physical and geometrical parameters.

A. Damping of longitudinal vibrations as a function
of temperature and wave number

The inverse quality factors of the first 50 longitudinal
modes of a 1-μm-long beam—calculated using Eq. (35),
which assumes that the electrons are unconfined by the lateral
dimensions of the beam—are shown in Fig. 1, for both clamped
and stress-free boundary conditions. As one should expect, for
sufficiently short wavelengths the damping is not affected by
the finite length of the beam. Accordingly, both sets of results
converge to the value of Q−1, calculated for an infinite beam
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0.120.12

Mode Number

Q
−

1
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Stress−Free
Infinite Beam

FIG. 1. (Color online) Inverse quality factors, on a logarithmic
scale, of the first 50 longitudinal modes interacting with unconfined
electrons, in a finite beam with stress-free and clamped boundary
conditions, compared with Q−1 of an infinite beam.

using Eq. (30), which gives an estimated Q of about 40 for
short-wavelength (large q) modes in aluminum beams. For
long-wavelength (small q) modes the finite length of the beam
has a significant effect on the damping. The inverse quality
factor of the lowest clamped mode is about 25% smaller than
Q−1 of an infinite beam, and that of the lowest stress-free mode
is almost four times larger than Q−1 of an infinite beam, with
a difference larger than 10% persisting up to about the tenth
stress-free mode.

The lack of an intrinsic energy scale in the spectrum
of the unconfined electrons—other than the Fermi energy
which is too high to be relevant—results in electron-phonon
damping that is temperature independent for both infinite and
finite beams, as is apparent from Eqs. (30) and (35). This
changes when the lateral confinement of the electrons is no
longer ignored, introducing a mesoscopic energy scale �Em =
kBTm. This energy scale—in the simple case of longitudinal
vibrations—is determined by the transverse dimensions a and
b of the beam through the typical energy difference between
successive electronic band minima, given by Eq. (17). It
is on the order of h̄2π2/2ma2 to h̄2π2/2mb2, to within a
multiplicative numerical factor arising from the values of
ny and nz near the Fermi energy. Indeed, Fig. 2 shows that
Q−1, when calculated using Eq. (36) which takes into account
the lateral confinement of the electrons, is a function of
temperature up to some Tm ∝ 1/a2 for beams with square cross
sections. For example, in the case of aluminum, the crossover
occurs at Tm 
 250 K for a = b = 10 nm (not shown in the
figure), and at Tm 
 10 K for a = b = 50 nm.

Thus, there are two qualitatively distinct regimes in the
behavior of electron-phonon damping in our model of metallic
nanomechanical resonators. For T sufficiently greater than
Tm, which is obtained either by increasing the temperature
or by increasing the transverse dimensions of the beam,
the resonator operates in a macroscopic or bulklike regime,
where damping approaches its temperature-independent value,
as calculated for unconfined electrons. In the macroscopic

0 10 20 30 40 50
0

0.05

0.1

0.15

T(K)

Q
−

1

 

 

10nm
15nm
20nm
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Bulk electrons

FIG. 2. (Color online) Inverse quality factor of the longitudinal
mode q = π/103 nm−1 as a function of temperature in infinitely long
beams with square cross sections, where the lateral confinement of
the electrons is taken into account. The value of Q−1 for unconfined
electrons is shown for comparison.
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regime electrons behave as they do in three-dimensional bulk
systems and one can safely ignore their confinement by the
finite geometry of the resonator. For T sufficiently less than
Tm, which is obtained either by lowering the temperature
or by decreasing the transverse dimensions of the beam,
the resonator is in a mesoscopic regime, where damping, as
we explain below, depends nonmonotonically on temperature
and other parameters. In this regime the electrons behave
as a collection of effective one-dimensional particles, each
characterized by its own parabolic band, given by Eq. (17).

It follows from Eq. (36), due to the lack of any displacement
in the y and z directions, that a longitudinal phonon can be
created or annihilated only via intraband electronic transitions.
Moreover, due to momentum conservation in the x direction
along with energy conservation, a phonon of wave number q

can interact with only two specific electronic states in any
given band, whose momentum in the x direction is given
by kx

±, as defined in Eq. (37). An electron in the state with
kx

− can absorb a phonon and scatter into the state with kx
+,

whereas an electron with kx
+ can emit a phonon and scatter

into the state with kx
−. The difference between these two

processes, for each such pair of electronic states, constitutes a
dissipation channel, which may contribute to electron-phonon
damping. It then follows from the form of the Fermi-Dirac
factors n(1 − n), whose width is of the order of kBT , that
if the two states happen to lie on either side of the Fermi
energy, the corresponding dissipation channel is active at any
temperature. More generically, the channel is active only if the
two states are located within a window of order kBT near the
Fermi energy. This is demonstrated schematically in Fig. 3.
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FIG. 3. (Color online) Schematic plot of the electronic band
structure near the Fermi energy. The scattering of a longitudinal
phonon with a positive wave number q is considered. At a very
low temperature (T1) the damping is very weak because there is no
dissipation channel within the narrow temperature window around εF.
At a somewhat higher temperature (T2) the temperature window is
wider and the dissipation channel with kx

±, marked by open circles,
becomes active. The two nearby dissipation channels (marked by open
squares) remain inactive as they are outside the temperature window.
The black intervals around the markers represent schematically the
electronic states that can scatter a phonon when the length of the
beam is finite and momentum conservation is imperfect.
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FIG. 4. (Color online) Inverse quality factor of the longitudinal
mode q = π/103 nm−1 of an infinitely long beam with a = b =
20 nm plotted as a function of temperature, showing that up to
T 
 5 K electron-phonon damping is dominated by a single dissi-
pation channel as explained in the text.

In generic situations, at a sufficiently low temperature all
the dissipation channels are inactive and electron-phonon
damping vanishes, as can be seen in all the curves in Fig. 2.
As the temperature increases, at some point the dissipation
channel that is closest to the Fermi energy becomes active,
and electron-phonon damping is dominated by this single
dissipation channel. To confirm this, we compare in Fig. 4 the
total value of Q−1, as obtained from the full sum in Eq. (36), to
the contribution of just a single term in the sum, corresponding
to the dissipation channel that is closest to the Fermi energy.
The contribution of a given dissipation channel to the overall
damping is maximal at a temperature that is roughly given by
kBT 
 | h̄2

2m
((k±

x )2 + k2
y + k2

z ) − εF|. These maxima are well
pronounced unless a second dissipation channel happens to
be relatively close to the Fermi energy (as is the case for
a = 30 nm in Fig. 2). As the temperature is further increased
the number of active dissipation channels gradually increases
until eventually the behavior crosses over to the bulk regime.

B. Damping of flexural vibrations in an infinite beam
as a function of temperature and wave number

The inverse quality factors for flexural modes of a given
wave number q in infinitely long beams—as calculated
using Eq. (41), taking into account the lateral confinement
of the electrons—are plotted in Fig. 5 as a function of
temperature. We again identify two qualitatively distinct
regimes of behavior—a low-temperature mesoscopic regime,
where electron-phonon damping is dominated by just a
single or a few dissipation channels, and a high-temperature
macroscopic regime, where electron-phonon damping ap-
proaches its temperature-independent value as expected for
unconfined bulk electrons. We show below that the high-
temperature limit of the expression for Q−1 in Eq. (41) is
indeed temperature-independent and independent of a, and
that for long-wavelength modes, with qb � 1, it behaves
approximately as (qb)2. This is indeed the behavior observed
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FIG. 5. (Color online) Inverse quality factor of the flexural mode
q = 8π/(0.5 × 103) nm−1 in an infinitely long beam with square
cross sections a = b = 10, 20, 30, 40, 50 nm, and rectangular cross
sections a1 = 40 nm, b1 = 20 nm and a2 = 10 nm, b2 = 20 nm, as
a function of temperature. Note the independence of the asymptotic
value on a.

in Fig. 5. The mesoscopic regime, which is shown in greater
detail in Fig. 6, is again characterized by electron-phonon
damping that tends to zero at very low temperatures, followed
by peaks at slightly higher temperatures that may result in
damping that is several times larger than the high-temperature
constant asymptotic value.

For flexural modes, it follows from Eq. (41) that the emis-
sion and absorption of phonons involve interband electronic
transitions, where the value of nz increases or decreases by an
odd integer. Momentum and energy conservation again restrict
the number of electronic states that can interact with a given
phonon of wave number q, leaving two possible dissipation
channels for each pair of bands [ny,nz] and [ny,n

′
z], with

nz + n′
z an odd integer. The contribution of these dissipation

channels to Q−1 decreases rapidly as the difference between
nz and n′

z increases, due to the prefactor n2
zn

′2
z /(n2

z − n′2
z )4 in
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FIG. 6. (Color online) Zoom-in on the low-temperature behavior
of Q−1 of the flexural mode given in Fig. 5.

Eq. (41). Thus, the major contribution to Q−1 comes from
dominant channels with n′

z = nz ± 1, while the remaining
channels can usually be neglected.

As before, a dissipation channel is active when its two
electronic states are within a temperature window of the order
of kBT around the Fermi energy, yet for flexural modes the
situation is slightly more involved. To see this, let us examine
the dissipation channels in more detail. It follows from Eq. (41)
that an electron in the band labeled [ny,nz] with momentum in
the x direction given by k1 = κ+ [as defined in Eq. (40)] and
a corresponding energy ε1 [according to Eq. (16)], can absorb
a phonon with a wave number q and scatter into a state in the
band [ny,n

′
z] with momentum in the x direction k2 = κ+ + q

and energy ε2 = ε1 + h̄ωq . The reverse is possible via phonon
emission. Alternatively, an electron in the band labeled [ny,nz]
with momentum in the x direction given by k3 = κ− and energy
denoted by ε3, can emit a phonon with a wave number q and
scatter into a state in the band [ny,n

′
z] with momentum in the x

direction k4 = κ− − q and energy ε4 = ε3 − h̄ωq . The reverse
occurs via phonon absorption.

Such a pair of dissipation channels, associated with a
given pair of bands, are depicted schematically in Fig. 7
for dominant channels with n′

z = nz + 1. The energy scale
�ε(ny,nz)—associated with the difference in energy between
the two dissipation channels—is given by

�ε(ny,nz) = h̄Gπ2

b2
(2nz + 1) ∝ 1

b
, (43)

whereas the average energy ε(ny,nz) associated with both
channels, in the limit of long-wavelength vibrations, is given
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FIG. 7. (Color online) A schematic plot of two electronic energy
bands characterized by the same ny and with n′

z = nz + 1 showing
the pair of dissipation channels associated with a flexural mode with
wave number q > 0 as explained in the text. At the temperature T ,
indicated by a dashed line, only one of the two channels is active; at
a higher temperature both channels would be active and one would
lose the ability to resolve them, as demonstrated below in Fig. 10.
The black intervals around the four markers represent schematically
the electronic states that can scatter a phonon in finite-length beams
where there is only approximate conservation of momentum.
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by

ε(ny,nz) = lim
qb→0

εi = h̄2π2

2m

[
n2

y

a2
+

(
π

qb2

)2(
nz + 1

2

)2]
,

(44)

where εi is any one of the four energies ε1 · · · ε4 mentioned
earlier and shown schematically in Fig. 7.

At high temperatures, the leading term in an expansion of
Eq. (41) in powers of βh̄ωq � 1 shows that each active pair of
dominant dissipation channels with n′

z = nz ± 1 is responsible
for a contribution to the damping that is proportional to
βh̄ωq/abq, which in turn is proportional to βq/a. To estimate
the total damping, one simply needs to count the number of
integer pairs (ny,nz) corresponding to dissipation channels
whose electronic energies ε(ny,nz) are a distance of order kBT

within εF. The density of such states, obtained directly from
Eq. (44), yields a number that is proportional to qab2kBT ,
and therefore to a total damping proportional to (qb)2 and
independent of a and T , as mentioned earlier.

In Fig. 8 we plot Q−1 as a function of phonon wave
number q for several temperatures. At low temperatures, in the
mesoscopic regime, Q−1 fluctuates greatly as q is increased,
although the general trend is an increase in the damping. How-
ever, as the temperature crosses over to the macroscopic regime
the fluctuations are suppressed and the damping converges to
a single monotonically rising curve. The large fluctuations in
Q−1 in the mesoscopic regime again stem from the small num-
ber of active dissipation channels, whose positions depend very
sensitively on the value of q. Thus, for narrow temperature win-
dows around the Fermi energy, small changes in q can easily
cause an active dissipation channel to become inactive or vice
versa. On the other hand, in the macroscopic regime the num-
ber of active channels is large, and small changes in q affect the
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FIG. 8. (Color online) Inverse quality factor of flexural modes
with q = π/(0.5 × 103) nm−1 to 60 × π/(0.5 × 103) nm−1 (which
approximately correspond to the first 60 flexural modes of a l =
0.5 μm beam) in an infinitely long beam with a = b = 20 nm for
different temperatures.

damping only monotonically. Figure 8 confirms that for small
q in the macroscopic regime Q−1 is indeed proportional to q2.

C. Damping of flexural vibrations in an infinite beam
as a function of εF

As an example of the delicate sensitivity of electron-phonon
damping to changing system parameters in the mesoscopic
regime, we consider the dependence on the Fermi energy.
The latter may be varied in real experiments by means of an
external gate voltage, suggesting an intriguing way to probe
the electronic spectrum by measuring the Q of mechanical vi-
brations. As for longitudinal modes, the existence of individual
dissipation channels can be discerned as long as kBT is smaller
than the energy scales characterizing the difference between
channels. For flexural modes there are two such energy scales.
The first is the energy difference (43) between two dissipation
channels belonging to the same pair of energy bands, and
the second and larger energy scale is the difference between
pairs of dissipation channels belonging to different pairs of
electronic energy bands (44).

Low-temperature results for T = 10 K are shown in Fig. 9
for flexural vibrations in an infinite beam with a square
cross section. The damping is zero up to a threshold value
of εF, which according to Eq. (44) is approximately equal
to ε(1,1) 
 9π4h̄2/8mq2b4. As the Fermi energy is raised
above this threshold, the damping exhibits a series of narrow
peaks, while remaining zero for most values of εF. For the
particular beam geometry and energy range considered in
Fig. 9, the observed damping peaks are associated with pairs
of dissipation channels belonging to bands [ny,nz = 1] and
[ny,n

′
z = 2], with ny increasing by 1 from one peak to the next.

The increase of ny by 1 between consecutive peaks results in
a linear increase of the energy separation between the peaks
as the Fermi energy increases, in accordance with Eq. (44).

In Fig. 10 we zoom-in on one of the peaks and lower the
temperature even further to reveal the expected inner structure,
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FIG. 9. (Color online) Inverse quality factor of the flexural mode
q = 2π/103 nm−1 in an infinitely long beam with a = b = 10 nm at
T = 10 K as a function of the Fermi energy.
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FIG. 10. (Color online) Inverse quality factor of the flexural mode
q = 2π/(103) nm−1 in an infinitely long beam with a = b = 10 nm
at T = 2 K and 10 K as a function of the Fermi energy.

consisting of two subpeaks. The two subpeaks are distinct
from each other if the temperature is small compared to the
energy difference �ε between the two energy channels as is
the case for T = 2 K in Fig. 10. As the temperature increases
the subpeaks become less distinct—as can be seen in Fig. 10
for T = 10 K—and eventually merge as the temperature
becomes comparable to the energy difference between the
adjacent channels as given by Eq. (43).

In Fig. 11 we show how Q−1 varies with εF at a high
temperature of T = 300 K. The dense peaks near εF = 15 eV
in Fig. 9 broaden and merge into a single large asymmetric
peak. As the Fermi energy increases—and along with it so
does the separation between the probed pairs of dissipation
channels—individual peaks start to emerge and become
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FIG. 11. (Color online) Inverse quality factor of the flexural mode
q = 2π/103 nm−1 in an infinitely long beam with a = b = 10 nm at
T = 300 K as a function of the Fermi energy.

visible. However, the subpeak structure within each main peak
remains indiscernible.

Equations (43) and (44) continue to provide a good
qualitative understanding of the calculated damping peaks for
other system parameters, as long as qb remains smaller than 1.
For example, doubling the transverse dimensions of the beam
to a = b = 20 nm lowers the threshold energy by a factor of
24 = 16 to somewhat below 1 eV, and the entire peak structure
shown in Fig. 9 is shifted to between about 1 and 2.5 eV. At
higher Fermi energies the structure becomes less ordered than
the one shown in Fig. 9, because the energy is sufficiently large
for the value of nz to start changing between peaks as well.

D. Electron-phonon damping in the presence
of other dissipation mechanisms

The calculation of the phonon decay rate in Eq. (24)
assumes that initially both electron and phonon lifetimes are
infinite, and therefore their spectral functions are given by
Dirac δ functions. This assumes that the electron mean-free
path is greater than the wavelength of the vibration mode, and
that all other damping mechanisms are much weaker than the
damping caused by electron-phonon scattering. As a quick
aside, we wish to account for the effect of other damping
mechanisms by adapting our calculation to allow for phonon
states with a priori finite lifetimes, or broadened spectral func-
tions. We adopt an approximate phenomenological method
used in electron transport simulations,91–94 in which collisional
broadening of electrons is taken into account. We replace the
sharp energy conservation δ functions in the expression for the
decay rate (24) with a convolution over a broadened spectral
function of the phonon in the form of a Lorentzian,

A(ε) = 1

π

h̄�/2

ε2 + (h̄�/2)2 . (45)

We ignore any shift in the energy of the phonon that might
be caused by other damping mechanisms and continue to take
the electron spectral functions to be δ functions. Thus, we
replace the δ functions δ(εk − εk′ ± h̄ωq) in Eq. (24) with
their convolution with the Lorentzian spectral function (45) of
the phonons,

A(εk − εk′ ± h̄ωq) =
∫

A(E − h̄ωq)δ(εk − εk′ ± E)dE.

(46)

We assume an initial broadening with Q−1
0 = �/h̄ωq

that is much larger than the values calculated above for
electron-phonon damping. This corresponds to situations
where other sources of damping completely obscure the effect
of electron-phonon damping. Nevertheless, if for such initial
broadening the contribution of electron-phonon damping is
not significantly altered, then it will not be affected when the
initial damping is smaller and electron-phonon damping is a
dominant effect. As an example, we take Q−1

0 to be equal
to 10−3 (which reflects a metallic beam with a relatively
poor quality factor) and recalculate one of the damping peaks
obtained in the previous section as function of εF for a flexural
mode with q = 2π/103 nm−1 in an infinitely long beam with
a = b = 10 nm at T = 10 K. As can be seen from Fig. 9,
Q−1

q of this mode is smaller by at least an order of magnitude
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FIG. 12. (Color online) Variation of Q−1 of the flexural mode
q = 2π/103 nm−1 in an infinite beam with a = b = 10 nm at
T = 10 K as a function of the Fermi energy. A solid (blue) line shows
the results obtained if one ignores other damping mechanisms, while
a dashed (red) line shows the results obtained using a broadened
phonon spectral function in the form of a Lorentzian with Q−1

0 =
�/h̄ωq = 10−3.

compared to Q−1
0 . In Fig. 12 we show that the effect of an

initial broadening on such a peak is very small—a result
which holds also for the rest of the peaks as well as for
lower temperatures. This indicates that even for relatively
high damping by other dissipation mechanisms (compared
to “stand-alone” electron-phonon damping), the contribution
of electron-phonon interaction to the total damping is nearly
unaffected.

E. Damping of flexural vibrations in a finite beam

Finally, we consider the effect of the finite length of the
beam by calculating the inverse quality factors of flexural
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FIG. 13. (Color online) Inverse quality factor of the lowest forty
flexural modes of a finite beam with l = 0.5 μm and a = b = 20 nm
at T = 10 K. The results obtained for the same values of q for an
infinite beam are given for comparison.

modes in a finite beam using Eq. (42), which takes into
account the lateral confinement of the electrons. Figure 13
shows the low-temperature behavior of Q−1 as a function
of wave number q in a finite beam, as compared with the
values calculated earlier for an infinite beam. We can still
identify the nonmonotonic dependence on parameters, which
is characteristic of the low-temperature mesoscopic regime,
although the sharp features average out in the finite beam.
The damping in the finite beam deviates significantly from the
damping in the infinite beam, exhibiting smaller fluctuations
away from the general increasing trend, although the relative
difference between the two results decreases with increasing
wave number q.

The difference between the finite beam and the infinite
beam is due to the replacement of the momentum δ functions in
Eq. (20) for an infinite beam with theLn functions appearing in
Eq. (22) for a finite beam. Thus, exact momentum conservation
is replaced by an approximate or an imperfect momentum
conservation. As a consequence, the discrete electronic states
that form a dissipation channel in an infinite beam are replaced
by small intervals of states—shown schematically in Fig. 7—
causing the smearing or averaging effect that we observe.

In order to recover the infinite beam results, theLn functions
need to be sufficiently sharp compared to all other scales
related to the momentum conservation in the x direction. At
high temperatures this is simply the case for short-wavelength
modes, where qnl  1. However, at low temperatures we need
to require in addition that the Ln functions be sufficiently
narrow compared to the width of the Fermi-Dirac factors of
the form n(1 − n). Thus, as the temperature increases and
with it the width of the Fermi-Dirac factors, the difference
between the damping of the finite beam and of the infinite
beam decreases, as shown in Fig. 14.

VI. SUMMARY AND CONCLUSIONS

We have estimated the effect of free electrons in thermal
equilibrium on the damping of mechanical vibrations in
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FIG. 14. (Color online) Inverse quality factors of the lowest forty
flexural modes of the same beam as in Fig. 13, but at T = 300 K,
compared again with the inverse quality factors of an infinite beam.
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metallic nanoresonators in the form of thin long beams. In
doing so we made a sequence of assumptions: (1) phonon
wave functions were obtained by quantizing the normal modes
of vibration obtained by the simplest thin-beam elasticity
theories; (2) electrons were considered as free noninteract-
ing particles either totally unconfined, as in bulk material,
or confined by the lateral surfaces of the resonators; (3)
electron-phonon interaction was described by means of a
short-range electrostatic potential, where electrons couple
to phonons only through local volume changes, which are
largest for longitudinal modes leading to Q’s on the order
of 10 (a result that is compatible with the one found exper-
imentally for the longitudinal vibrations of bipyramid gold
nanoparticles),46 are smaller for flexural modes leading to Q’s
on the order of 103–106, and are nonexistent for twist modes;
(4) the calculation itself was performed at the level of
Fermi’s golden rule, considering an electron-phonon system
at thermal equilibrium with just a single additional phonon
in the vibration mode of interest; (5) the a priori lifetimes of
the electrons and the phonons were assumed infinite, thereby
imposing the adiabatic limit, and assuming that all other
vibration damping mechanisms are much weaker (although
we showed that the latter requirement is not too stringent);
and (6) to obtain actual results we used the material properties
of bulk aluminum, neglecting their dependence on size and
temperature. Aluminum was chosen because it is expected to
exhibit a relatively high degree of electron-phonon damping
among the common metals used to fabricate nanomechanical
resonators. Despite all of our assumptions and approximations,
we believe that our results provide an adequate qualitative
understanding of the behavior of electron-phonon damping
in metallic nanoresonators in the adiabatic limit. We note
that the quality factors calculated here for longitudinal modes
are similar to the ones found experimentally for bipyramid
gold nanoparticles.46 Furthermore, the measured damping
(Q−1 
 10−4) of the fundamental flexural mode, at T = 4 K,
of a platinum nanoresonator with a geometry quite similar to
ours,37 indicates that the low-temperature effects of electron-
phonon damping of flexural modes presented here may be
observable in the near future.

Within these assumptions, electron-phonon interaction is
restricted by energy conservation (through Fermi’s golden
rule), and by momentum conservation along the length of
the beam when the beam is considered to be infinite. These
conservation laws severely restrict the number of electronic
states that can contribute to the damping of a given vibration
mode, leading to the appearance of discrete dissipation
channels. The energy separation between dissipation channels
is determined by the dimensions of the cross section of

the beam, and for flexural modes also by the phonon wave
number. This in turn sets a temperature scale Tm for the
crossover from high-temperature macroscopic behavior, where
electron-phonon damping behaves as if the electrons were
in the bulk, to low-temperature mesoscopic behavior, where
damping is dominated by just a few dissipation channels
and exhibits sharp nonmonotonic changes as parameters are
varied. As a consequence, for example, at sufficiently low
temperatures one can perform spectroscopy of the electronic
states by measuring the quality factor of a given vibration
mode, while varying an external gate potential.

In beams of finite length one lacks translation invariance,
and momentum conservation along the length of the beam is
lost. Nevertheless, for sufficiently long beams compared to
the wavelength of the vibration, one still retains approximate,
or imperfect, momentum conservation, where δ functions
are replaced by finite yet sharply peaked functions, whose
width is inversely proportional to the length of the beam.
The infinite-length limit is recovered when the width of these
functions becomes sufficiently small compared to all other
relevant momentum scales along the length of the beam. At
high temperatures the only relevant scale is the wavelength
of the mode, and the infinite-length limit is simply recovered
when the wavelength becomes small compared to the length
of the beam. At low temperatures the infinite limit is obtained
only when, in addition, the width of the imperfect conservation
functions becomes smaller than the widths of the Fermi-Dirac
factors that appear in the expressions for the inverse quality
factor. Thus, longer beams are required as temperature is
decreased.

To conclude, we have demonstrated several interesting
features of the damping of vibrational modes in metallic
nanoresonators. These features arise from finite-size effects
that lead to a quantization of the electronic spectrum as well as
to imperfect momentum conservation, and are dominant in the
low-temperature mesoscopic regime. At high temperatures the
damping becomes similar to the one obtained for unconfined
electrons. Our analysis was carried out within a simple specific
geometry. Nevertheless, we believe that the different regimes
we have identified are relevant to electron-phonon damping in
other types and geometries of metallic nanoresonators.
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