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ABSTRACT

Aims. The role of collisions between ions, electrons and neutrals in a partially ionised plasma is assessed as a possible wave damping
mechanism. The relevance of this mechanism in the damping of small amplitude prominence oscillations is evaluated.
Methods. A one-fluid MHD set of equations taking into account various effects in a partially ionised solar plasma (collisions between
different species and Joule dissipation) is derived. Assuming small perturbations, these equations are next linearised about a uniform
equilibrium configuration and the dispersion relation of magnetoacoustic waves in an unbounded medium is obtained.
Results. The presence of neutrals in the plasma only affects the fast wave in a relevant way. An approximate expression for the
damping rate is obtained which shows that the strongest damping takes place in a medium with strong magnetic field, low density and
low ionisation fraction. Wave attenuation arises mostly from collisions between ions and neutrals.
Conclusions. Given the poor knowledge about the values of the density and ionisation fraction in prominences, it is hard to judge
the importance of the physics of partial ionisation in the damping of fast waves in solar prominences. Nevertheless, note that a very
idealised case, with no stratification and no equilibrium currents, is considered here, so the addition of these features to the model
may change the results of this work.

Key words. magnetohydrodynamics (MHD) – Sun: prominences – Sun: oscillations

1. Introduction

Prominences are relatively cool objects embedded in the hotter
corona, with temperature one hundred times smaller and density
one hundred times larger than that of the coronal medium. These
objects are observed in Hα as bright features above the solar
limb and as thin, dark ribbons, called filaments, on the disc. They
often appear as a sheet of plasma with a long horizontal dimen-
sion (length ∼ 105 km, width ∼ 104 km). The composition of the
prominences is not well known, but it seems that the abundance
of helium is smaller than 10% and the abundance of hydrogen
is higher than 90%. Other elements are present in the promi-
nence plasma, although in very small quantities. In addition to
this, the prominence material seems to be partially ionised, but
the ionisation degree of prominences varies over a wide range
(with the ratio of electron to neutral hydrogen density roughly
between 0.1 and 10, see Patsourakos & Vial 2002). In connec-
tion with this issue, it is worth mentioning the recent advances
in the non-LTE modelling of solar prominences (e.g. Labrosse &
Gouttebroze 2004; Anzer & Heinzel 2005; Heinzel et al. 2005;
Chiuderi Drago 2005), which can shed some light on their inti-
mate structure.

One of the important goals of the study of prominences is
to develop models that explain how such cool, dense clouds
can exist in the surrounding hot, tenuous coronal plasma. These
models assume that prominences are supported against grav-
ity by the coronal magnetic field. In general, models of promi-
nences invoke a support mechanism for the prominence mate-
rial that involves an upward magnetic force, which balances the

downward gravitational force. However, if the prominence
plasma is only partially ionised one may wonder how the neutral
component of the plasma is supported. For a plausible solution
to this problem see Gilbert et al. (2002).

A possible path for a deeper understanding of prominences
is to exploit their oscillatory nature. From the observational
point of view, prominence oscillations can be grossly clas-
sified, according to the amplitude of periodic variations, in
large- and small-amplitude oscillations. The analysis of data
provided by time series of several indicators (line width, line
intensity and Doppler velocity) has permitted to establish that
small-amplitude prominence oscillations are of local nature and
to classify them in long-period oscillations (T > 40 min),
intermediate-period (10 min < T < 40 min) and short-period
(T < 10 min), although this classification does not reflect the
origin or nature of the perturbations causing the different peri-
ods. On the other hand, so far there is little information about
the wavelength, phase speed and lifetime of oscillations, which
are of remarkable interest for a detailed comparison with theo-
retical models of prominence vibrations. Recent reviews of the
topic can be found in Oliver (1999), Engvold (2001) and Oliver
& Ballester (2002).

The existence of various dissipative mechanisms (e.g. vis-
cosity, thermal and electric conductivity, radiative cooling, etc.)
can result in the dissipation of the wave energy, which is conse-
quently absorbed by the medium and hence the wave amplitude
is progressively attenuated. The damping mechanisms consid-
ered in Ballai (2003), for spatial damping, and Terradas et al.
(2001) and Carbonell et al. (2004), for temporal damping, only
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allow to explain the damping of slow waves, so it is necessary to
take into account other damping mechanisms in order to explain
the attenuation of fast waves. The frictional damping of magne-
toacoustic waves in a partially ionised plasma is much stronger
than in a fully ionised plasma because the presence of neutral
atoms causes the Joule dissipation to increase as a result of
collisions of electrons with neutrals and ions and, what is more
important, of collisions of ions with neutrals (Khodachenko et al.
2004). A comparative study of the role of ion-neutral damping
of MHD waves and their damping due to viscosity and ther-
mal conductivity has made by Khodachenko et al. (2004) and
Khodachenko et al. (2006) and it was found that collisional
damping is dominant. It is well known that the role of neutrals
can be very relevant in a cold (T ∼ 10 000 K) plasma, such as
has been recently found by Leake & Arber (2006) in the context
of the magnetic flux emergence from the solar interior into the
corona. These authors find that the chromospheric partial ion-
isation leads to an increased rate of flux emergence and, more
importantly, that the magnetic field becomes force-free after
crossing the chromosphere.

The aim of the present work is to study the effect of colli-
sions between ions, electrons and neutrals in the damping of the
oscillations of a partially ionised prominence. In Sect. 2 we in-
troduce the basic set of equations for a partially ionised plasma;
in Sect. 3 we obtain the dispersion relations for a unbounded,
uniform medium in the linear regime; in Sect. 4 the equations
derived in Sect. 3 are applied to a prominence plasma and the
results are presented; Sect. 5 presents a comparison with the
work of Braginskii (1965); finally, in Sect. 6 our conclusions
are drawn.

2. Partially ionised plasma: one-fluid
MHD equations

Let us consider a partially ionised hydrogen plasma with Tα, ρα,
nα, pα and Vα respectively representing the temperature, density,
number density, pressure and velocity of the different plasma
species: ions (α = i), neutrals (α = n) and electrons (α = e).
Obviously, in a hydrogen plasma the number density of ions and
electrons is equal, i.e. ne = ni. Moreover, ρα = mαnα, with mα
the particle mass.

The total density, total pressure and centre of mass velocity
are ρ = ρe + ρi + ρn ≈ ρn + ρi, p = pe + pi + pn = 2pi + pn and

V =
Σα=e,i,nραVα

ρ
≈ ξiVi + ξnVn, (1)

where the assumptions ρeVe � ρiVi and ρeVe � ρnVn have
been made. Here the relative densities of neutrals and ions are
defined as

ξi =
ρi

ρ
≈ ni

ni + nn
, ξn =

ρn

ρ
≈ nn

ni + nn
· (2)

The degree of ionisation of the plasma is characterized by the
ionisation fraction, µ̃, defined as the mean atomic weight (the
average mass per particle in units of mp). Then,

µ̃ =
1

1 + ξi
, (3)

which implies that µ̃ = 0.5 for a fully ionised plasma and µ̃ = 1
for a neutral gas. Although we retain the relative densities of ions
and neutrals in the following, they can be expressed in terms of
µ̃ as ξi = 1/µ̃ − 1 and ξn = 2 − 1/µ̃.

In this work we do not include the effects of particle ion-
isation and recombination, and also assume a strong thermal
coupling between the species, which leads electrons, ions and
neutrals to have the same temperature (Te = Ti = Tn = T ).
Then, it makes no sense to consider separate continuity, momen-
tum and energy equations for the three components. The sepa-
rate governing equations for the three species can be easily sub-
stituted by a set of one-fluid equations for the whole partially
ionised plasma. We now outline the derivation of these expres-
sions, where isotropic pressure has been assumed and gravity,
viscosity, heat conduction and non-adiabatic effects have been
neglected; CGS units are used throughout.

1. The continuity equation can be obtained by adding the
individual continuity equations for ρα, which yields

∂ρ

∂t
+ ∇ · (ρV) = 0. (4)

2. To derive the momentum equation we start from the re-
spective equations for each species (Eqs. (2.2e) and (2.2i) in
Braginskii (1965) for electrons and ions, and a similar one for
neutrals). These formulae contain a term that accounts for the
transfer of momentum between species; in this work this effect
arises from particle collisions and can be treated as in p. 277
of Braginskii (1965). Now the three momentum equations are
added and the electron inertia term is neglected in comparison
with that of ions and neutrals. Thus, we obtain

ρ
dV
dt
= −∇p +

1
c

j × B − ∇ · (ξn ξi ρww) , (5)

where d/dt = ∂/∂t + V · ∇, j = c/(4π)∇ × B and w = Vi −
Vn. The term containing w in Eq. (5), which is caused by the
species inertia, is usually neglected in solar applications and also
vanishes in the linear regime. An expression forw is given below.

3. To derive the energy equation the starting point are the
individual energy equations as given by Braginskii (1965) or in
the more convenient form of Eq. (2.63) of Goedbloed & Poedts
(2004). These equations are added and, after some simplifica-
tions, we get

dp
dt
+ γp∇ · V = (γ − 1)qJoule, (6)

where the Joule heating term, qJoule, is discussed below. Only
Joule dissipation is considered in our treatment, although other
mechanisms can be included in this formula.

4. The equation of state is only needed to determine the tem-
perature from n and p. It is given by the sum of the equations of
state of electrons, ions and neutrals,

p = nkBT = (2ni + nn)kBT. (7)

5. The generalised Ohm’s law plays a crucial role in the
derivation of the induction equation and qJoule of a partially
ionised plasma. Our first step is to calculate an expression for w
by adding the momentum equations of electrons and ions mul-
tiplied by ξn and the momentum equation of neutrals multiplied
by −ξi. The result is

w = − G
αn
+
ξn

cαn
j × B +

αen

αn

j
eni
− ξnξi
αn
ρ

(
diVi

dt
− dnVn

dt

)
, (8)

with dα/dt = ∂/∂t+Vα ·∇. Moreover, αn and αen are friction co-
efficients (whose expressions can be found in the literature, e.g.
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Braginskii 1965; Khodachenko et al. 2004; Leake et al. 2005)
and G is the pressure function (Braginskii 1965),

G = ξn∇(pe + pi) − ξi∇pn. (9)

Taking into account that the partial pressures of the different
species are

pe = pi =
ξi

1 + ξi
p, pn =

ξn
1 + ξi

p, (10)

the pressure function can be cast as

G = 2ξn∇
(
ξi

1 + ξi
p

)
− ξi∇

(
ξn

1 + ξi
p

)
. (11)

The next step in the derivation of Ohm’s law is to use j =
−eni(Ve − Vi) to write Ve = V + ξnw − j/(eni). Now the term
E + Ve × B/c is isolated from the momentum equation for the
electrons and Ve is eliminated using the previous expression
with w given by Eq. (8), where the term in this formula con-
taining derivatives of Vi and Vn can be neglected. This results in

E∗ ≡ E +
V × B

c
=
εG − ∇pe

eni
+

j
σ
+

1 − 2εξn
enic

j × B

+
ξn

cαn

[
G × B − ξn

c
( j × B) × B

]
, (12)

where σ is the conductivity and ε = αen/αn.
6. To write the induction equation we take the curl of Eq. (12)

and insert it into Maxwell’s equation

∇ × E = −1
c
∂B
∂t
, (13)

so one can obtain the general form of the induction equation,

∂B
∂t
= ∇ × (V × B) − c

e
∇ ×

(
εG − ∇pe

ni

)
− ∇ × (η∇ × B)

− c
4πe
∇ ×

[
1 − 2εξn

ni
(∇ × B) × B

]
− ∇ ×

(
ξn

αn
G × B

)

+∇ ×
{
ξ2n

4παn
[(∇ × B) × B] × B

}
. (14)

Here η = c2/(4πσ) is the coefficient of magnetic diffu-
sion. Moreover, the quantity ξ2n/(4παn) is sometimes written as
(Khodachenko et al. 2004; Leake et al. 2005; Khodachenko et al.
2006)

ξ2n
4παn

=
ηC − η
|B|2 , (15)

where ηC is Cowling’s coefficient of magnetic diffusion defined
in a similar way as η, but with the Cowling electroconductivity
σC = σ/(1 + ξ2n B2

0σ/αnc2) instead of σ.
7. Using Eq. (12), the Joule heating term in Eq. (6) can be

cast as follows

qJoule ≡ E∗ · j =
εG − ∇pe

eni
· j +

j2

σ
− ξn

cαn
( j × B) · G

+
ξ2n

c2αn
( j × B)2. (16)

Thus, to describe the behaviour of a partially ionised plasma one
must consider the set of one-fluid Eqs. (4)−(6) and (14), where

the last term in Eq. (5) can be neglected and qJoule is given by
Eq. (16). Where necessary, pe must be eliminated in favour of p
by means of Eq. (10) and ni in favour of n with the help of ni =
ξi/(1 + ξi)n. Therefore, the plasma variables in these formulae
are ρ, p, V and B and so the set of eight scalar equations contains
eight scalar dependent variables. The one-fluid MHD equations
reduce to their fully ionised, non-ideal counterparts by taking
ξn = 0, ξi = 1. The ideal MHD expressions for an ideal plasma
can then be recovered by taking η = 0.

Before proceeding further a careful check of the relative role
of all terms in Eq. (14) can be performed. In principle one can
neglect the Hall term in the generalised Ohm’s law, so the cor-
responding term (fourth one on the right-hand side of Eq. (14))
vanishes (for details see Leake et al. 2005). In addition, if the
temperature and density are relatively smooth spatial functions,
so that ε, ξi and ξn are constants, the second term on the right-
hand side of Eq. (14) also disappears.

3. Linear waves in an unbounded medium

We consider a uniform plasma with density ρ0 and pressure p0
permeated by a magnetic field B0 = B0 x̂ = const. Next, small
perturbations about this equilibrium are considered (this is justi-
fied by our interest in small-amplitude oscillations),

B = B0 + B̃, p = p0 + p̃, ρ = ρ0 + ρ̃, V = Ṽ. (17)

Now, Eqs. (4)−(6) and (14) are linearised by neglecting the prod-
ucts of perturbed quantities. The Joule heating term does not give
any contribution because the electric current in the equilibrium is
zero ( j0 = 0) since the magnetic field is uniform. Therefore, the
resulting changes of state are adiabatic. The set of linear equa-
tions obtained is

∂ρ̃

∂t
+ ρ0∇ · Ṽ = 0, (18)

ρ0
∂Ṽ
∂t
= −∇p̃ +

1
4π

[(∇ × B̃) × B0], (19)

∂ p̃
∂t
+ γp0∇ · Ṽ = 0 (20)

and

∂B̃
∂t
= ∇ × (Ṽ × B0) + η∇2B̃ − Ξ∇ × (∇p̃ × B0)

+
ηC − η
|B0|2 ∇ ×

{[
(∇ × B̃) × B0

]
× B0

}
, (21)

with

Ξ =
ξ2nξi

(1 + ξi)αn
· (22)

We now derive the equations governing the propagation of linear
waves in an unbounded medium.

3.1. Dispersion relation and analytical limit

We Fourier-analyse the variables as follows,

f̃ (x, y, z, t) = f ei(ωt+kx x+kzz), (23)

and take motions and propagation in the xz-plane (i.e., Vy = 0
and ky = 0). In this way we remove Alfvén waves and study
the temporal damping of fast and slow magnetoacoustic waves.
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Upon inserting Eq. (23) into Eqs. (18)−(21) and performing the
usual algebraic operations we get the dispersion relation for fast
and slow waves,

k2v2a
[
c2

s

(
k2

x − ik2
zΞρ0ω

)
− ω2

]
+iω

(
k2ηC + iω

) (
k2c2

s − ω2
)
= 0, (24)

where k2 = k2
x + k2

z and the sound and Alfvén speed squared are
defined as

c2
s =
γp0

ρ0
=
γRT0

µ̃
, v2a =

B2
0

4πρ0
, (25)

where R is the gas constant.
In a fully ionised plasma ξn = 0 and ηC = η, so that the

terms introduced by the ion-neutral collision mechanism disap-
pear. Furthermore, if the plasma is ideal (σ→ ∞) then we obtain
the dispersion relation for magnetoacoustic waves

ω4 − k2
(
c2

s + v
2
a

)
ω2 + k2k2

xc2
s v

2
a = 0, (26)

with solutions given by the usual expressions (in the limit cs �
va),

ω ≈ kva, ω ≈ kxcs, (27)

for the fast and slow wave, respectively.
We next write ω = ωR + iωI and calculate approximate

expressions for the real and imaginary parts of the frequency.
Equation (24) is split into its real and imaginary parts and, con-
sidering the case of weak damping (ωI � ωR), its real part leads
to the dispersion relation for magnetoacoustic waves in an ideal,
fully ionised plasma (Eq. (26)). This means that the real part of
the frequency can be calculated from Eqs. (27). From the imagi-
nary part of the dispersion relation one can obtain an expression
for the imaginary part of the frequency, namely

ωI ≈
k2k2

z c2
s v

2
aΞρ0 + ηCk2

(
ω2

R − k2c2
s

)
4ω2

R − 2k2(c2
s + v

2
a)

· (28)

Substituting ωR from the ideal case into this formula yields

2ωfast
I =

c2k2

4πσ
+
ξ2n B2

0

4παn

(
k2 +

c2
s

v2a
k2

z
ξi

1 + ξi

)

≈ c2k2

4πσ
+
ξ2n B2

0

4παn
k2, (29)

for fast waves (where the last approximation is valid in the limit
cs � va), and

2ωslow
I =

c2

4πσ
c2

s

v2a
k2

z +
ρ0c2

s

αn

ξ2n
1 + ξi

k2
z , (30)

for slow waves. The factor 2 on the left-hand side of these ex-
pressions is included for consistency with Eqs. (8.38), (8.41),
(8.44), (8.47b) and (8.49) of Braginskii (1965).

3.2. Perturbations

Since we are in the linear regime, to determine the perturbed
variables once the frequency has been computed one can impose
an arbitrary value to one of them (Vz, say). Then, all other per-
turbations can be computed from

Vx =
c2

s kxkz

ω2 − c2
s k2

x

Vz, (31)

Fig. 1. Period, damping time and τD/P versus the ionisation fraction
for the fast wave (left) and the slow wave (right). The parameter val-
ues used are T0 = 8000 K, ρ0 = 5 × 10−14 g/cm3 and B0 = 10 G, for
which the Alfvén speed is 126 km s−1, the sound speed ranges from 10.5
to 14.9 km s−1 and the plasma β varies between 0.008 and 0.017. In
addition, kx x0 = π/2 and kzx0 = 0.1. The solid lines represent the nu-
merical solutions of Eq. (24) while the triangles represent the results
obtained with the aproximate Eqs. (27), (29) and (30).

p = −ρ0ω

kx
Vx, (32)

Bz =
kx

[
B2

0(iVz + kzΞp) + 4π(η − ηC)(kz p + ρ0ωVz)
]

B0(k2η + iω)
, (33)

Bx =
B0kxBz − 4π(kz p + ρ0ωVz)

B0kz
· (34)

4. Results for a prominence plasma

In this work we concentrate on the features of magnetoacous-
tic waves in a partially ionised prominence plasma. Physical
quantities with their units are used, except for the components
of the wavenumber, which are given as kxx0 and kzx0 (with x0
a typical prominence scale-length, for example the prominence
width; here x0 = 3000 km). We first solve Eq. (24) and rep-
resent the results in Fig. 1, where the values of T0, ρ0, B0, kx

and kz have been fixed in order to study the variation of the pe-
riod (P = 2π/ωR), the damping time (τD = 1/ωI) and the ratio
of the damping time to the period (τD/P) of magnetoacoustic
waves with the ionisation fraction. The values of the damping
time reveal that ion-neutral collisions, which are the main cause
for the damping of magnetoacoustic waves in the present sce-
nario, are more important for fast waves (for which τD/P is be-
tween 1 and 105) than for slow waves (for which τD/P varies be-
tween 104 and 108). Therefore, one can conclude that the effects
arising from the partial ionisation of the plasma are irrelevant
regarding the slow wave and that fast waves can be damped effi-
ciently for moderate values of the ionisation fraction (i.e. µ̃ close
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Fig. 2. Fast wave damping time and τD/P versus the ionisation fraction
for different values of the magnetic field: B0 = 5 G (dashed), B0 = 10 G
(solid) and B0 = 15 G (dash-dotted). The other parameters are T0 =
8000 K and ρ0 = 5 × 10−14 g/cm3, so that the Alfvén and sound speed
vary in the ranges 63−189 km s−1 and 10.5−14.9 km s−1, respectively.
Moreover, kx x0 = π/2 and kz x0 = 0.1.

to 1). The tiny damping rate found when the plasma is nearly
fully ionised (µ̃ ∼ 0.5) is a consequence of the small amount of
neutrals present in the plasma, which are insufficient to damp the
perturbations.

The triangles in Fig. 1 correspond to the solutions obtained
using the approximate expresions (27), (29) and (30), which
have been derived in the low β limit. The perfect agreement be-
tween the two results implies that the assumptions made to ob-
tain these approximations are valid and that Eqs. (29) and (30)
can be used to obtain some insight into the magnetoacoustic
wave features. For example, the fast wave decrement ωI can be
well approximated by Eq. (29), in which the second term on the
right-hand side is dominant so that

ωI ∝ ξ2n
1 − ξn ρ

−1
0 B2

0k2, (35)

where the factor [(1 − ξn)ρ0]−1 comes from αn. Combining this
formula with Eq. (27) results in

τD

P
∝ 1 − ξn
ξ2n
ρ1/2

0 B−1
0 k−1, (36)

where one must bear in mind that ξn = 2−1/µ̃. These expressions
reproduce the behaviour of τD and τD/P with respect to µ̃ found
in Fig. 1.

We now concentrate on the fast wave and study the influ-
ence of the magnetic field strength, density and wavenumber on
its damping properties, where the frequency is computed from
Eq. (24). Given that the fast wave period is independent from the
ionisation degree, attention is paid exclusively to τD and τD/P.
We start with B0 (Fig. 2) and see that the fast wave damping
time decreases with B0, as predicted by Eq. (35). In addition,
the most efficient damping, i.e. the smallest τD/P, corresponds
to the strongest B0, also in agreement with Eq. (36).

Fig. 3. Fast wave damping time and τD/P versus the ionisation fraction
for different values of the density: ρ0 = 1 × 10−14 g/cm3 (dashed), ρ0 =
5 × 10−14 g/cm3 (solid) and ρ0 = 1 × 10−13 g/cm3 (dash-dotted). The
other parameters are T0 = 8000 K and B0 = 10 G, so that the Alfvén and
sound speed vary in the ranges 89−282 km s−1 and 10.5−14.9 km s−1,
respectively. Moreover, kx x0 = π/2 and kzx0 = 0.1.

Fig. 4. Fast wave damping time and τD/P versus the ionisation fraction
for different values of kz x0: kz x0 = 0.1 (solid), kz x0 = π/2 (dashed)
and kz x0 = π (dash-dotted). The other parameters are T0 = 8000 K,
ρ0 = 5 × 10−14 g/cm3, B0 = 10 G and kx x0 = π/2.

We next study the influence of the density (Fig. 3) and
the wavenumber (Fig. 4) in a similar manner. As predicted
by Eq. (36), the presence of neutrals in the plasma leads to
small τD/P both for small density and/or large wavenumber.
Such as happens with the ionisation degree of prominences,
these two parameters are not very well known and so there is
a large uncertainty about the precise values of τD and τD/P that
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Fig. 5. Perturbations of the velocity, the pressure and
the x- and z-components of the magnetic field for the
fast wave (left) and the slow wave (right). The solid line
corresponds to a partially ionised plasma, while squares
correspond to a fully ionised, ideal plasma. The per-
turbed Bx and Bz for the slow wave in the fully ionised,
ideal plasma are several orders of magnitude smaller
than the values computed for ξn � 0, η � 0; for this
reason they seem to be zero in the two plots on the
right. The parameter values used are T0 = 8000 K,
B0 = 10 G, ρ0 = 5 × 10−14 g/cm3, kx x0 = π/2 and
kz x0 = 0.1. In addition, for fast waves the arbitrary am-
plitude Vz = 1 km s−1 has been taken (Vx = 1 km s−1

for slow waves).

can be obtained and, ultimately, about the relevance of the con-
sidered mechanism as the cause for the observed damping of
prominence oscillations.

Equation (36) predicts that the ratio τD/P of the fast wave
is independent of the propagation direction and that only the
magnitude of k has some influence on it. To test this prediction
we have interchanged the values of kx and kz used in generating
Fig. 4. The obtained results are identical to those in Fig. 4, which
is the expected behaviour since k remains the same.

4.1. Perturbations

The perturbed variables have been computed from
Eqs. (31)−(34), with the frequency obtained from Eq. (24), and
their moduli have been plotted in Fig. 5. The results include both
the solutions for the non-ideal, partially ionised plasma (solid
line) and the ideal, fully-ionised plasma (squares). Regarding
the fast wave, we find that perturbations coincide for the two
cases. Although this may seem a surprising behaviour for
values of µ̃ close to 1, for which the interactions with neutrals
result in the largest modification to the fast wave properties,
an explanation can be found from Eq. (33). All the non-ideal
terms and the influence of the neutral component of the plasma
are concentrated in this formula, but they are absent in the

expressions for the other perturbed variables. In addition, the
largest contribution in this expression comes from the term
with kzΞp and, since the pressure perturbation is quite small
for fast waves, Eq. (33) results in a Bz that is similar for the
two cases represented in Fig. 5. Then, since Bz does not change
much, all other perturbed quantities are similar for the fully
ionised ideal case and the partially ionised, non-ideal case. This
conclusion remains the same for other propagation angles.

As for the slow wave, the two sets of perturbations are rather
different and, again, the pressure perturbation is crucial to un-
derstand this behaviour. To plot the slow wave perturbations we
have fixed Vx, so by virtue of Eq. (32) p is fixed to its ideal value
(such as found in Fig. 5). Now, the slow wave is characterised by
a large pressure perturbation compared to that of the fast wave,
so p has an amplification effect on the value of Bz, and there-
fore of Bx, compared to the value represented by squares. This
effect is more noticeable for propagation with a large angle with
respect to B0 because of the presence of kz in the term kzΞp in
Eq. (33).

Another conclusion one can extract from Fig. 5 is that the in-
clusion of partial ionisation and non-ideal effects does not influ-
ence the predominant polarisation of the magnetoacoustic wave
motions since Vx � Vz for slow waves and Vz � Vx for fast
waves.
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Fig. 6. Importance of the different terms of the in-
duction equation for the fast wave (left) and the slow
wave (right). Dotted, dashed, dash-dotted and dash-
three-dotted lines correspond to the first, second, third
and fourth terms on the right-hand side of Eq. (21).
The top and bottom panels correspond to the x- and
z-components. The parameters used are T0 = 8000 K,
ρ0 = 5 × 10−14 g/cm3, B0 = 10 G, kx x0 = π/2 and
kz x0 = 0.1.

4.2. Induction equation

We now consider the relative importance of the terms in the
induction equation and thus plot separately the terms on the
right-hand side of the x- and z-components of Eq. (21), where the
frequency is computed from Eq. (24). These quantities have been
normalized by dividing them by the corresponding left-hand side
of the equation (i.e. iωBx and iωBz, respectively). The results
(Fig. 6) show that the second and third terms are negligible in
comparison with the other two, that is, in a partially ionised, uni-
form prominence plasma the induction equation is dominated by
the advective and Cowling’s diffusion terms. Moreover, advec-
tion plays a predominant role for almost the whole range of val-
ues of µ̃ and only when the fraction of neutrals is rather large
(µ̃ close to 1) Cowling’s conductivity has an effect compara-
ble to that of advection. These results are almost independent
of the propagation direction, although we must emphasise that
the present conclusions correspond to prominence conditions.

5. Comparison with Braginskii (1965)

Braginskii (1965) gives approximate expressions for the loga-
rithmic damping decrement, δ ≡ ωI/ωR, of the magnetoacous-
tic and Alfvén modes in an unbounded medium and in the low
β limit. The path followed by this author in the derivation of δ
is different from the way that led us to Eq. (24) or Eqs. (29)
and (30), so a comparison between both results is necessary.
Since we have neglected the viscous and conductive contribu-
tions, they are removed from Braginskii’s expressions before
performing the comparison.

For the fast wave, using Braginskii’s Eqs. (8.38), (8.41)
and (8.47b) we get

2ωfast
I =

c2

4πσ
k2 +

c2k2

4π

ξ2n B2
0

αnc2
, (37)

whereas for the slow waves Eqs. (8.38), (8.44) and (8.49) yield

2ωslow
I =

c2

4πσ
k2
⊥

c2
s

v2a
+
ρ0c2

sξ
2
n

αn

⎡⎢⎢⎢⎢⎣k2
‖

n2
i

n2
+ k2
⊥

(ni + nn)2

n2

⎤⎥⎥⎥⎥⎦ · (38)

We rewrite these expressions in our own variables by making
the substitutions k‖ = kx and k⊥ = kz and by also taking into

account the definitions in Eq. (2). Then, the former formulae can
be written as

2ωfast
I =

c2

4πσ
k2 +

ξ2n B2
0

4παn
k2, (39)

2ωslow
I =

c2

4πσ

c2
s

v2a
k2

z +
ρ0c2

s

αn

ξ2n
(1 + ξi)2

(
ξ2i k2

x + k2
z

)
. (40)

Now Braginskii’s formulae can be easily compared with our an-
alytical approximations for the imaginary part of the frequency
(Eqs. (29) and (30)). It can be appreciated that Eqs. (29) and (39)
are identical, although, quite surprisingly, Eqs. (30) and (40)
disagree. The difference between these two expressions appears
in the second term on the right-hand side, i.e. the one coming
from the collisions of electrons and ions with neutrals. To as-
sess the importance of this discrepancy we plot the damping
time obtained from the numerical solution of Eq. (24) and from
Braginskii’s expressions (see Fig. 7). In the case of the fast wave
there is a perfect agreement between the two results, as expected.
Nevertheless, for the slow wave there is a divergence of τD as
we move towards parallel propagation (kz = 0). Braginskii’s so-
lution is such that for purely parallel propagation the slow wave
has a finite damping time, whereas our development leads to no
damping of the slow wave for kz = 0; the cause for this differ-
ence is the term proportional to k2

x in Eq. (40). Our results make
much more sense than Braginskii’s since in the limit kz = 0 the
slow wave has Vz = Bz = 0 and thus the terms responsible for
the damping vanish (see Eqs. (31)−(34)). Hence, it is clear that
the slow wave cannot be damped in this limit, such as displayed
by our results in Fig. 7.

We finally note the smaller but noticeable difference in τD
for the slow wave and kz ≥ 1 in Fig. 7, whose origin lies in the
factor 1/(1 + ξi) on the right-hand side of Eq. (30) and which
incorrectly appears as 1/(1 + ξi)2 in Eq. (40).

6. Conclusions

In this work we give a succint derivation of the one-fluid
MHD equations for a partially ionised plasma. We next study the
temporal damping of the magnetoacoustic waves in a partially
ionised prominence plasma considering an equilibrium model
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Fig. 7. Damping time obtained with our dispersion relation (Eq. (24))
(solid line) and with Braginskii’s formulae (symbols) for the fast and
slow waves (top and bottom panels, respectively). These results have
been obtained with the parameter values T0 = 8000 K, B0 = 10 G,
ρ0 = 5 × 10−14 g/cm3, µ̃ = 0.8 and kx x0 = π/2.

with uniform magnetic field (i.e. without electric current). Linear
perturbations have been assumed. The conclusions of this work
(which are only strictly applicable to prominence conditions) can
be summarised as follows:

– We have found that the damping of MHD waves by ion-
neutral interactions is much stronger for the fast wave than
for the slow wave, unlike what happens with other damp-
ing mechanisms, such as radiative cooling and conduction,
for which the slow wave is strongly attenuated while the
fast wave remains almost undamped (Terradas et al. 2002;
Carbonell et al. 2004; Terradas et al. 2005). A consequence
of the present and previous studies is that the observed
damped oscillations in prominences can be explained by
slow waves attenuated by radiative cooling and conduction
or by fast waves attenuated by ion-neutral collisions.

– We have studied the dependence of the fast wave damping
time with the different equilibrium parameters.
a) As expected, the importance of collisions between ions
and neutrals grows with the proportion of neutrals in the
plasma. This means that it is more relevant for small ioni-
sation fractions and that it can be neglected for nearly fully
ionised, or completely ionised, plasmas.
b) Equation (36) constitutes a good approximation for the
fast wave ratio of damping time to period, τD/P. This for-
mula indicates that the strongest damping (i.e. the small-
est τD/P) occurs for strong magnetic fields, small densities
and small ionisation fractions. Given the poor knowledge
about the values of the last two parameters in prominences,
it is hard to judge whether the physics of partial ionisation
are relevant in these solar objects and whether it can be the
cause for the damping of fast waves in solar prominences,
although it is not possible either to discard its importance. It

is worth stressing that although this mechanism has a notice-
able effect on the damping of fast MHD waves, it only yields
acceptable damping times for relatively large values of the
ionisation fraction.

– The fast wave perturbations are not influenced by the inclu-
sion of non-ideal mechanisms and partial ionisation. On the
other hand, the slow wave is characterised by having larger
magnetic field perturbations than in the ideal, fully ionised
case. Moreover, the characteristic velocity polarisation of
the two magnetoacoustic waves (along and across the mag-
netic field for slow and fast waves, respectively) is main-
tained when the effects of neutrals and collisions are taken
into account.

– Regarding the importance of the various terms in the induc-
tion equation, our results show that the advective term is
dominant over the whole range of values of µ̃ and that for
µ̃ ∼ 1 (i.e. small ionisation) Cowling’s diffusion also must
be taken into account.

– From the magnetoacoustic wave dispersion relation we have
obtained an analytical approximation for the real and imag-
inary parts of the frequency that perfectly matches the ex-
act results. This analytical approximation has been compared
with the formulae provided by Braginskii (1965) and a dis-
crepancy between them has been found. The most impor-
tant difference between the two sets of formulae is the term
proportional to k2

x in Braginskii’s formula for the slow wave
damping time, which (according to Braginskii) results in the
damping of this wave for propagation nearly parallel to the
unperturbed magnetic field. Since the slow wave cannot be
damped when kz = 0, we conclude that Braginskii’s ex-
pression for ωslow

I contains a physical inconsistency in this
limit. The origin of this disagreement must lie in the dif-
ferent procedure used to describe the perturbations: while
we have chosen to perturb all physical variables and to in-
sert them into the basic equations for the partially ionised
plasma (Eqs. (4)−(6) and (14)), Braginskii makes use of
the plasma entropy (see Eqs. (6.38), (6.39) and (8.37) in
Braginskii 1965). We then infer that Braginskii’s treatment
fails to describe the slow wave damping by collisions with
neutrals for nearly parallel propagation.

It has been noted that the equilibrium used in this work has no
electric currents, which, together with the linear assumption, has
the consequence of removing the effect of Joule dissipation from
the energy equation. In addition, in the absence of electric cur-
rents the support mechanism of the prominence material against
gravity cannot be properly incorporated. It can thus be interest-
ing to study the influence of equilibrium electric currents and
gravity on the damping of the magnetoacoustic waves. The limi-
tations imposed by the finite size of prominences and by the sur-
rounding coronal plasma will also be included in a future work.
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