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Abstract. Friction in joints significantly contributes to the observed overall damping of mechanical structures. Especially if the

material damping is low, the frictional effects in joints and clamping boundary conditions dominate the structural damping. The

damping and the stiffness of the structure are nonlinear functions of the system states and consequently of the excitation signal

and amplitude. If these nonlinear effects should be incorporated in the design process, transient simulations must be employed

in order to predict and analyze the damping for a given excitation, though they need excessive computation power due to the

nonlinear constitutive laws and the high contact stiffnesses.

As one approach to alleviate transient simulations, the application of component mode synthesis (CMS) methods to structures

with friction is investigated exploiting the linearity of the jointed substructures. The friction and the nonlinear normal contact is

modeled by constitutive laws that are implemented in node-to-node finite elements. The necessary considerations for accurate

damping prediction by the reduced models, the accuracy and the computational times for transient simulations are discussed.

The developed model reduction techniques allow a strong reduction of the computation time which in turn makes it a promising

tool for model updating and predictive parameter studies. As an application example, a beam-like structure with attached friction

damper is investigated in simulations and the obtained numerical results after model updating are compared to experiments.

1. Introduction

Most real-world engineering mechanical structures contain nonlinear elements, e.g. play, nonlinear springs and

stiffnesses, or joints with nonlinear contact and friction effects. It is known from experiments that friction, mostly

microslip effects, in joints contribute significantly to the overall structural damping in metal structures [6,7,13,

14]. Due to the nonlinearities, analysis must be conducted costly in time domain or with special methods such

as harmonic balance methods [12,14,17]. This is often avoided by using linear stiffness and damping models

for harmonic analysis in frequency domain [1]. By this, it is exploited that most nonlinearities are located on

interfaces connecting substructures for model order reduction therewith enabling transient analysis with fair cost for

engineering mechanical structures. For example, this makes closed-loop simulations of semi-active controllers for

friction dampers with controlled normal forces feasible [2].

Although many publications cover model reduction techniques for mechanical structures with isolated nonlinear-

ities, e.g. using Krylov-mode based reduction [8] or using proper orthogonal decomposition (POD) methods [16],

only few consider distributed nonlinearities. For the investigated beam-like structure with attached friction damper

element for vibration damping, friction and contact nonlinearities act on the contact area between base structure and

friction damper. Though the contact area is small compared to the overall structure dimensions, it can not assumed

to be point-like.

∗Corresponding author. E-mail: gaul@iam.uni-stuttgart.de.

ISSN 1070-9622/10/$27.50  2010 – IOS Press and the authors. All rights reserved



360 L. Gaul and J. Becker / Damping prediction of structures with bolted joints

1.1. Literature review

In Gaul et al. [8], Krylov reduction methods are employed to efficiently simulate the dynamics of a truss structure

as a typical lightweight construction. The truss is equipped with adaptive friction joints that can be semi-actively

controlled to damp out vibrations excited by a snap-back of the truss tip. Model reduction is applied for the simulation

of the closed-loop behavior and for the design of appropriate observers. In the first step of the model reduction, the

dominant modes of the structure are determined, all others are truncated. Then, Krylov modes are determined for

the linear transfer functions between every discrete adaptive joint model and the controlled variables and added to

the reduction base. By this technique, a strong reduction of the computation time is achieved as long as not too many

nonlinear joints have to be considered which would strongly increase the number of transfer functions that must

be separately treated. A strong disadvantage of this approach is that the dynamics of the whole structure can not

be recovered from the reduced solution, i.e. the interesting output variables must be already determined before the

reduction step is conducted. Qu [15] investigates model reduction techniques for finite-element (FE) models with

local nonlinearities. He proposes an iterative procedure to calculate reduced mass matrices from Guyan reduction

that improves the accuracy at higher frequencies without adding additional DOFs. Witteven and Irschik [18] propose

model reduction techniques specifically for structures with bolted joints. They model only the nonlinear normal

contact in the bolted joints without consideration of frictional effects. Jalali et al. [9] considered two beams connected

by a rotational joint with friction that is modeled by a discrete nonlinear joint model. Their dynamic model is based

on the first bending mode obtained from a linear case. For vibrations close to the one considered mode, the joint

model parameters are identified from experimental data. However, it is not tested if the chosen joint model and

the identified parameters are able to capture the dynamical behavior at other resonance frequencies as well and the

question how to replace the nonlinear elements by linear ones for the modal reduction is not discussed.

Segalman [16] proposed the use of eigenmodes in addition to special discontinuous global vectors (either eigenvec-

tor sensitivities or so-called Milman-Chu vectors) in order to strongly accelerate convergence of a Galerkin reduction

method for model reduction of medium-scale mechanical systems with localized nonlinearities. The method is

demonstrated for a 11 degrees of freedom (DOF) system with 1-D friction nonlinearities with the system energy time

evolution as performance criteria, for which superior convergence is shown if the proposed discontinuous vectors are

used. Kappagantu and Feeny [10,11] apply proper orthogonal decomposition (POD) methods to determine reduction

bases from arbitrary time signals that are obtained from either measurements or simulations. However, such POD

methods generally yield black-box models that give no insight into the internal physics and the reduction quality

strongly depends on a representative selection of the excitation signals. Only the selected outputs can be recovered

from the reduced model solution, which strongly restricts the range of applications of these methods.

In summary – to the opinion of the authors – there is a lack of research of model-driven reduction strategies for

mechanical structures with friction that systematically exploits the separation of the overall structure into jointed

substructures. Such strategies are investigated in the following and applied to efficiently predict the damping

contribution of bolted joints and friction interfaces to the observed overall structural damping.

1.2. Basic concepts of component mode synthesis

Component Mode Synthesis (CMS) methods reduce the complexity of structural dynamic models leading to

reduced simulation time and reduced memory requirements. The linear subsystem models – in most cases obtained

from FE discretization – are reduced with special consideration of the interface degrees of freedom (DOFs) and for a

given frequency range of interest in a first step. Then, the reduced substructure models are assembled to the overall

structural dynamics that has significantly less degrees of freedom. After analysis of this reduced model, the solution

is expanded and the original vector of the physical DOFs is recovered.

In the following, displacement-based CMS is performed, i.e. approximate solutions in a reduced subspace (the

range of the rectangular matrix Θ) are sought in a Rayleigh-Ritz sense,

x ≈ Θ q, (1)

where the vector x contains the N unknown physical displacements and rotations and the vector q the m << N
reduced modal coordinates. The matrix Θ is denoted as the reduction base, Ritz vector base or modal base.
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Fig. 1. Sketch of two substructures with marked interface degrees of freedom (DOF).

Typical methods combine normal modes of components obtained by different imposed boundary conditions at the

interfaces (free, fixed or mass-loaded) and static modes from the static solution for applied interface loads (attachment

modes) or imposed boundary displacements (constraint modes). Generally, the selection of the appropriate reduction

base is performed in view of linear independence and completeness, low computational expense in their generation,

automatic selection of their number and good convergence of the obtained solution to the exact (full) solution [3]. In

the following, model reduction techniques are derived using substructure techniques as depicted in Fig. 1. Thereby,

linear substructures are assumed, i.e. small deformations and linear elasticity.

2. CMS methods for structures with friction

In the following, two connected substructures with friction and nonlinear normal contact are considered, e.g.

structures that arise from bolted members or jointed parts.
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The dynamics of the linear substructures 1 and 2 are coupled by the nodal tangential forces F c
T and nodal normal

forces F c
N. The matrices B

(i)
T and B

(i)
N capture on which physical DOFs the forces in the joint interface act. They

are coincidence matrices for the full-order model if no reduction is applied. The tangential forces are obtained by

appropriate discretization of the friction laws including the vector of the relative displacements x rel, whereas the

normal forces are obtained from a nonlinear contact law including the relative gap g in normal direction. For the

friction, the chosen model can be thought of an elastic-plastic model is chosen (similar to a Jenkins element in 1-D)

which can be written as an evolution equation for the coupled friction forces in the local x and y directions. For

the contact law, a nonlinear pressure-gap relationship models separation (no tension) and an increase in stiffness for

increased penetration, see Fig. 2. Please note that Eq. 2 is a general representation, valid for a broad class of friction

and contact models, although the special properties of the applied friction model are later exploited in the numerical

implementation.

2.1. Craig-Bampton method

The Craig-Bampton method [4] is shortly presented starting from the structural dynamics of a linear substructure

k,

M ẍ + Kx = F , (5)
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Fig. 2. Left: Elasto-plastic friction model (shown for 1-D case); Right: Nonlinear contact law in normal direction.

which is partitioned into free (inner) and interface DOFs. Since all quantities are related to a substructure k, the index

is omitted for brevity. The DOFs are transformed to interface coordinates x i and additional relative coordinates xr,
[
xf

xi

]

=

[
I −K

−1
ff Kfi

0 I

] [
xr

xi

]

. (6)

The interface DOFs are kept as physical coordinates, whereas the coordinates x r are reduced according to the

Craig-Bampton method [4] as described in the following. The eigenvalue problem of

Mff ẍr + Kffxr = 0 (7)

gives the first mr fixed interface modes stacked in the modal base Θ r. Thereby, the choice of the number m r of

retained modes depends on the desired dynamic bandwidth for which accuracy is demanded. Finally, with the

approximation of the relative coordinates, x r ≈ Θrxm, it follows
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The modal base consists of two parts, the fixed-interface modes Θ IM and the constraint modes ΘCM, which are the

static solution for unit displacement of each individual interface DOF when the other interface DOFs are fixed. The

reduced matrices are found by projection of the system matrices on the reduction base,

K̂ = ΘT
KΘ, M̂ = ΘT

MΘ. (9)

Note that the obtained reduced mass and stiffness matrices are dense matrices whereas the original matrices are

sparse. The reduction is performed for each substructure k = {1, 2} individually, where the interface DOFs are the

DOFs of the joint interface of the substructure. Because of the similarity of the assembly step to the FE method, the

reduced substructures can also be seen as superelements.

2.2. Craig-Bampton reduction approach with common interface reduction (Method A)

For further order reduction, the found constraint mode bases can be reduced (so-called interface reduction). As

a novel way, both interface DOFs are reduced for the overall structure in one step. This allows to first reduce

all substructures by the Craig-Bampton method and the interface DOFs later when the overall structure model

is assembled. As an advantage, the number of retained interface DOFs can be distributed between the separate

substructures in an optimal sense.

Each reduction base Θ(k) consists of a normal mode base Θ
(k)
NM and a constraint mode base Θ

(k)
CM, i.e.

Θ(k) = [Θ
(k)
NM, Θ

(k)
CM]. (10)

Fixed-interface modes are used following the Craig-Bampton approach, i.e. Θ NM = ΘIM. A static condensation on

the joint interface DOFs is performed for both interfaces by using
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which gives the reduced system matrices
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Now, a reduced eigenvalue problem on the interface is formulated,
(
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)

ψ = , (13)

and solved for the desired number m i of eigenvectors for the overall structure. Expansion to the substructure

DOF vectors yields the reduced constraint-mode base Θ∗

CM that is combined with normal mode base of the overall

structure,
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Then, the common reduction base Θ is applied to the mass and stiffness matrices, i.e.
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For completeness, ΘT is multiplied with the nonlinear forces as well as with the external forces of Eq. (2).

2.3. Free-interface reduction approach with reduced set of joint constrained interface modes (Method B)

The following reduction methodology is motivated by a publication of [18] where the law of action and reaction

at the joint interface is exploited in order to introduce Joint Interface Modes. This is now applied to systems with

friction.

Starting again from the structural dynamics of the linear substructure k, free interface modes are calculated by the

eigenvalue problem
(
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Then, a modal base is constructed by the combination of the m free interface normal modes with the lowest

eigenfrequencies to capture the system dynamics, Θ
(k)
NM, and the constraint modes Θ

(k)
CM from Eq. (8). After static

condensation on the interface DOFs similar to Eq. (12), the obtained system is additionally partitioned with respect

to the substructures of the joint DOFs. This gives the reduced local system
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If the friction interface is located between two completely separated substructures in this work, the coupling matrices

evaluate to zero (this important property is not mentioned in [18]), i.e.
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which is plugged back into Eq. (17). The obtained modified reduced local system dynamics leads again to an

eigenvalue problem,
(

K̂ − ω2
M̂

)

ψ = , (20)
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Table 1

Material and geometric properties of the investigated struc-

ture

Parameter Beam structure Friction damper

length 775 mm 160 mm

width 40 mm 40 mm

Thickness 3 mm 3 mm

material steel steel

Young’s modulus 205 GPa 205 GPa

Poisson’s ratio 0.3 0.3

density 8000 kg/m3 8000 kg/m3

which is solved for the desired number m j of lowest eigenvectors for the overall structure. Expansion of this vectors

to the substructure DOF vector gives the reduced constraint-mode bases for m j joint interface modes,
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Finally, the derived base ΘIM is added to the reduction base according to Eq. (10),
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2.4. Static attachment mode

For the interface reduction shown up to now, the nodes where the applied clamping forces act are not taken into

consideration in the model reduction. This leads to the 10% remaining error visible in Fig. 4. In a second step,

an attachment mode for the applied clamping load is added to the reduction base, which guarantees zero model

reduction error for the static case,

Θ = [Θ∗, xstatic] . (23)

3. Application: Prediction of friction damping by transient simulations

For linear structures, the main criteria in the application of model reduction and substructuring methods is the

accurate prediction of eigenfrequencies and eigenvectors, whereas the prediction of damping in joints additionally

demands accurate prediction of the normal pressure. Hence, the error of the contact pressure should be specifically

evaluated in order to make sure that correct damping prediction is possible.

3.1. Investigated test structure

A beam with attached friction damper (see Table 1 for dimensions and Fig. 3 for FE mesh) is used to investigate

the proposed reduction methods. The bolts are modeled as discrete masses connected by shaft stiffnesses. The

imposed pretension by the tightened screws is captured by special pretension elements.

3.2. Convergence of the static solution

For all considered reduction methods, the static convergence behavior is investigated as a preliminary for accurate

damping prediction. Specifically, the convergence of the reduced model solution to the exact full order solution with
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fixed clamping
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bolt 2

Fig. 3. FE mesh of test structure used for model reduction.
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Fig. 4. Comparison of the static strain energy norm error estrai n Eq. (24) for increasing number of (generalized) interface DOFs for method A

(–) and method B (- - -).

increasing number of retained generalized interface DOFs is evaluated. For that, all static loads are applied, i.e. the

bolt pretension is modeled by prescribed normal forces FN,1 and FN,2.

If the strain energy norm is applied, the relative error is defined for the reduced model static solution u with

respect to the strain energy E composed of the linear parts and the contact and friction contributions

estrain =
E − Eref

Eref
. (24)

It is calculated for each reduction method and a fixed number of normal modes for an increasing number of

retained generalized interface DOFs, i.e. decreasing reduction level of the constraint modes. For this comparison, no

additional static attachment modes are used. As seen in Fig. 4, strictly monotonic behavior is observed as expected

and both methods show good convergence, although method B yields superior convergence for this specific problem

for small DOF numbers in terms of all investigated error norms. For accurate damping prediction, the relative

normal displacement error in the contact area is very important. Hence, the contact gap error is visualized for two

example reduction degrees in Fig. 5 for method B. For higher accuracy of the reduced solution, the error is more

equally distributed on the contact interface. Furthermore, due to the symmetry of the problem, the error profile is

also symmetric.

3.3. Frequency Response Functions (FRF)

A set of accelerance frequency response functions (FRF) obtained from simulations of the exact full order model

and of the reduced models are compared in Figs 6 and 7. The reduction method A is the Craig-Bampton method with
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(a) 147% relative gap error (42 interface DOFs) (b) 2.9% relative gap error (102 interface DOFs)

Fig. 5. Absolute gap error g − gref (individually normalized) visualized as vertical displacements on the contact area of the FE model of the

beam substructure (damper not shown, displacements outside of contact surface are set to 0).
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Fig. 6. FRFs for impulse excitation with method A for different normal forces (note the linear scale).
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Fig. 7. FRFs for impulse excitation with method B for different normal forces (note the linear scale).

interface reduction for the whole structure with the exact nonlinear static solution added as additional attachment
mode to the modal base. Method B is based on the free interface reduction approach with joint interface mode

reduction. As in method A, the exact nonlinear solution is added as an attachment mode. The FRFs are calculated
from simulated transient responses of 2 s for experimentally measured impulse force excitation signals. In order to
avoid leakage effects, an exponential window of 1 s time constant is applied. Normal forces F N,1 of 333 N, 667 N

and 1000 N are applied to the variable screw at bolted joint 1 whereas the other screw is fixed by a normal force
FN,2 = 4000 N. Example results for the two methods compared to the exact solution are presented in Figs 6 and 7.
For comparable results, the method A needs 71 DOFs whereas the method B only needs 56 DOFs for the same or

even better prediction accuracy, which is contributed to the faster convergence of the constraint mode reduction –
see Fig. 4.

The plots and the calculated errors show that the eigenfrequencies, the peak heights and widths (which are

important for the damping prediction) as well as the transfer zeros are matched very well by the reduced models.
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Table 2

Evaluation of the computation times for the calculation of a transient

response for tsim = 0.2 s simulation time to an impulse force excita-

tion. Measured pure CPU times tcpu on a standard PC using a single

core (3 GHz Intel Xeon/Core 5160) are related to the simulation time.
The values that are obtained for the experimentally determined contact

parameters (Table 3) are marked with the asterisks

Model DOFs Ratio tcpu/tsim

MATLAB + C full model 5955 20510∗ . . . 73553

ANSYS (full model) 5955 37540 . . . 59880

reduced model, standard Craig-Bampton 533 73530∗

reduced model, with interface reduction 73 709∗

reduced model, with interface reduction 52 422∗

3.4. Reduction of computation time

In transient simulations of nonlinear systems, the number of DOFs has a strong impact on the computation time

because nonlinear equilibrium iterations with updated tangential matrices must be performed at every time step. The

nonlinear Newmark time integration scheme with Newton-Raphson iterations is applied using consistent tangential

matrices. These iterations lead to very high computational cost which makes – in contrast to other CMS applications –

the initial effort to calculate the reduction base and to reduce the matrices vanish in the overall necessary effort for

the analysis.

The found computation times for transient simulations of the full and differently reduced models are listed in

Table 2, where the standard Craig-Bampton method without interface reduction step, the improved Craig-Bampton

method A and the free-interface method B are compared to the original full model. In order to assess the required

computation time, the ratio of necessary CPU time to simulation time is determined. Additionally, the found ratios are

set in relation to the full order solution to obtain the improvement factors. For comparison reasons, the computation

time for the full model with the commercial FE code ANSYS is given (using Newmark scheme and a line search

algorithm). In view that its algorithms are implemented in a low-level programming language better optimized to

the computer platforms in contrast to the MATLAB implementation of the presented solutions, i.e. in a high-level

script programming language, the performance of the full order solution is considered as very good. Please note that

ANSYS does not give detailed insight and control over the implemented algorithms, i.e. it is a somewhat black-box

solution.

Both presented reduction methods yield excellent accuracy and hereby make a complete analysis on a standard

PC feasible in a reasonable time. The required computation time for the standard Craig-Bampton method is found to

be rather high because the reduction of the number of DOFs is compensated by the extra effort for the calculations

with the dense system matrices.

3.5. Simulation and analysis framework

A simulation and analysis framework shown in Fig. 8 has been developed that is capable to use linear substructure

models from commercial FE codes. The substructures may be additionally moved in space and are then assembled

with the zero-thickness elements implementing the contact and friction effects on the defined contact areas in an

assembly step [12]. Furthermore, reduction methods may be applied to built the overall structural dynamics or

individual parts of it. Static and transient solvers are implemented for both full-order and reduced models and the

results can be post-processed. One typical way of post-processing is to calculate frequency response function (FRF)

and to estimate the modal parameters or to export the FRFs to commercial post-processing tools for special analysis.

4. Experimental verification

The developed efficient simulation framework employing model reduction is a key tool in order to perform model

updating or parameter variations on a standard PC. In the sequel, results from such an updating procedure of a FE
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Fig. 8. Simulation framework for nonlinear structural analysis of mechanical structures with friction.

Fig. 9. Mesh of investigated structure with attached friction damper (example deformation and undeformed reference).
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Fig. 10. Comparison of measured and simulated FRFs for best match parameter case (cf. Table 3).
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Table 3

Determined contact parameters for best match of simulated with

experimental FRFs

Parameter Variable Value

friction coefficient µ 0.2

normal stiffnesses cN,0, cN,1 1.25 · 1011 N
m

, 2 · 1012 N
m

gap distances g0, g1 −1 · 10−6 m, 0 m

tangential stiffness cT 8 · 1011 N
m
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Fig. 11. Comparison of measured and simulated FRFs for with varied friction coefficient µ = 0.4.

model to experimental data are presented. For similar material parameters as given before in Table 1 for the model

in Fig. 3, a refined FE model is used as shown in Fig. 9. Compared to the reduction test model, the bolts and holes

are now modeled and the discretization is refined close to the bolts where high normal pressures appear. The FE

model has now 21564 DOFs (603 pairs of contact nodes) and is reduced to 57 DOFs.

4.1. Model updating

For model updating, so-called linearizing excitation signals are employed because they yield linearized FRFs,

i.e. FRFs resembling those obtained from linear systems [19]. Although random excitation is found to have best

linearizing properties in experiments, deterministic impulse excitation is chosen because the necessary simulation

time for random excitation would be very large. In the experimental setup, the excitation is applied by an impulse

hammer close to the tip and the responses are measured at several points on the structure. The shown driving point

FRFs are calculated from the measured acceleration on the opposite surface. The excitation is located on the mid-line

of the beam, hence, virtually no torsional modes are excited. Measurements are conducted for a set of different

normal forces FN,1, whereas the normal force at the other damper end is again constantly set to F N,2 = 4000 N. An

exponential window of 2 s time constant is applied before the FRFs are calculated from five individual measurements

averaged in the frequency domain.
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(d) FN,1 = 1000 N

Fig. 12. Modal damping ratios δk from simulation and experiment (artificial window damping shown for information).

For the simulations, experimentally measured impulses are averaged and applied as loads. As in the measurements,

FRFs are calculated from the 6 s responses using an exponential window of time constant τ = 2 s. Classical
Rayleigh damping is assumed with parameters determined from experimental modal analysis of the base structure.

In the model updating, the friction coefficient, the tangential contact stiffness and the normal contact stiffness are
varied to match the experimental data to find the best match parameter set given in Table 3. For these parameters,
the simulated and the measured FRFs are compared in Fig. 10. Obviously, the chosen excitation force with roughly

100 N peak force significantly excites higher harmonics of the system. Simulations have proven that they are mostly
due to the normal contact between damper and base structure. Due to internal resonances, the amplitudes of these

higher harmonics depend on their frequencies in relation to the resonance frequencies of the structure as well as
on the spatial location of the friction and contact interface which makes them not predictable by analytical means.

The qualitative shape of the resonance peaks, the width and height determining the damping and the locations of the
higher harmonics are very well predicted by the simulations. Obviously, a very good match quality is observed for

all measured normal force cases between FN,1 = 13 and FN,1 = 1000 N. Further results, presented in Fig. 11, show
the effects of a higher friction coefficient of µ = 0.4.

4.2. Evaluation of modal damping

Although friction is a nonlinear effect, there is a big interest in evaluating the damping effect in terms of modal
damping ratios known from linear structural dynamics. This is mainly because modal damping ratios can easily be

measured and compared in engineering practice. For nonlinear structures – in contrast to linear ones – the excitation
type and amplitude must be controlled for fair comparisons and correct analysis. The modal damping ratios are
determined by the 3dB-bandwidth method from the FRFs [5]. As mentioned before, an exponential window is

applied to the simulated or measured acceleration responses to prevent leakage. For the chosen exponential window
with time constant τ , the artificial damping δwin

k added to the apparent modal damping δ det
k of mode k can be

compensated for (under the assumption of linear dynamics) [5], i.e. δ k = δdet
k − δwin

k with δwin
k = 1/(2 τωk).



L. Gaul and J. Becker / Damping prediction of structures with bolted joints 371

The modal damping ratios δk from simulations and experiments in Fig. 12 show excellent agreement. The

numerically predicted ratios match the experimental ones quite well, especially if one keeps in mind that measurement

errors influence much more the damping identification than the eigenfrequency identification. The variations in the

damping of mode 1 is due to the high contribution of artificial window damping and violation of the linear dynamics

assumption for the physical damping recovery. As expected, the found eigenfrequencies and the damping ratios

strongly depend on the applied normal forces.

5. Conclusions

The usefulness of CMS methods applied to the simulation of mechanical structures with friction and joints has

been demonstrated, by which parameter updating has become feasible for a real-world structure on a standard PC.

Excellent agreement between the simulated and measured FRFs shows that the inclusion of friction in the design

process is feasible to predict its influence on damping and eigenfrequencies as well as the generation of higher

harmonics. As a strong advantage, the output variables of interest need not to be known before the reduction step,

because the full displacement vector is recovered from the reduced solution. The developed own codes for the static

and transient solvers offer the possibility to investigate various modifications of the contact model, to relatively

easily incorporate it into optimization procedures or to simulate feedback controllers, that in general can not be

implemented in commercial FE codes in a straight way [2].

Actual work focuses on applications to more complex structures of typical industrial applications. Furthermore,

the semi-analytical harmonic balance method is employed for efficient damping calculation directly in the frequency

domain for passively damped structures also exploiting the proposed model reduction techniques.
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