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Abstract: Offshore wind energy capitalizes on the higher and less turbulent wind speeds
at sea. To enable deployment of wind turbines in deep-water locations, structures are being
explored, where wind turbines are placed on a floating platform. This combined structure
presents a new control problem, due to the partly unconstrained movement of the platform
and ocean wave excitation. If this additional complexity is not dealt with properly, this
may lead to a significant increase in the structural loads and, potentially, instability of the
controlled system. In this paper, the wave excitation is investigated, and we show the
influence that both wind speed, wave frequencies and misalignment between wind and waves
have on the system dynamics. A new control model is derived that extends standard turbine
models to include the hydrodynamics, additional platform degrees of freedom, the platform
mooring system and tower side-side motion, including gyroscopic effects. The models
support a model-based design that includes estimators for wind speed and wave frequency.
The design is applied to a number of examples representing different wind and wave
conditions and successfully demonstrates a reduction in the structural oscillations, while
improving power performance.
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1. Introduction

In the field of wind energy, new and promising wind turbine concepts are being developed. More
reliable wind turbines make it possible to install them in harsher environments, such as offshore, where
the winds are stronger and the visual impact is less. In shallow waters, it is possible to install monopiles,
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but in places where water depths are greater than 60 m, floating wind turbines are being investigated,
although their financial competitiveness remains to be demonstrated in commercial plants.

The main objective is to produce energy reliably at a competitive cost. To achieve that, maximizing
the power and minimizing the fatigue is necessary. Fatigue is basically the wear accumulated over time
on key components, such as the tower, gearbox, blades and bearings. If a wind turbine is operated to
maximize power production regardless of fatigue loads, the lifetime of key components will significantly
decrease, and the cost of energy will go up. This is especially important for a floating wind turbine,
which, by nature, is influenced by a constant contribution of oscillations from wind and ocean waves.
Therefore, a trade-off between maximization of the power production and minimization of the fatigue
loads is required for optimal performance.

Applying conventional onshore control strategies to floating wind turbines has been shown to impose
negative damped oscillations on the platform motion. The onshore controller causes the blade pitching
to increase the rotor thrust as the wind speed decreases and vice versa, which couples with the platform
dynamics in a way that produces large oscillations in platform pitch and, possibly, instability. Reducing
the bandwidth of the pitch controller ensure stability, but performance deteriorates. The bandwidth
problem is related to right half-plane zeros in the transfer function from pitch angle to generator speed;
see, also, [1,2] for onshore and [3] for offshore wind turbines.

A tower damping control strategy was introduced in [4] using a wind estimator applied to a
ballast-stabilized wind turbine, and it showed reduced tower oscillation at the cost of reduced power
output. In [5], a gain scheduled proportional integrating (GSPI) controller showed good performance
regarding tower oscillations, but overshoots rated power and generator speed, which may reduce the
generator lifetime. The task of damping tower oscillations was addressed by [6], suggesting an influence
of tower acceleration on blade pitch control. A linear quadratic regulator (LQR) was applied to a
floating wind turbine in [7,8], which showed improved results in power stability and tower oscillations
compared to [5]. Other, similar studies have been published in [9,10], e.g., [9] also used LQR on a
floating wind turbine and presented error and platform motion reduction at the same time. In [11],
individual blade pitch and constant generator torque was combined with speed reference feedback from
the platform pitch.

In the references above, misalignment between wind and waves is not considered, due to the
assumption that the waves over time align with the wind.

Data from the floating wind turbine, Hywind Demo (delivered by Statoil), is presented in Figure 1.
It shows that misalignments do occur, and it is hence relevant to address this in control design.

Furthermore, the literature on the control strategies of floating wind turbines does not account for the
frequency dependence of the hydrodynamic damping. In this paper, we show that both wind speed and
wave frequencies have a substantial influence on the total system damping.

In the context of model-based control, this paper contributes with a new control model of a floating
wind turbine, which accounts for hydrodynamics, additional platform degrees of freedom, the platform
mooring system, tower side-side motion and gyroscopic effects. This model allows us to address the
topics above in the control design.
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Figure 1. Probability density function of wave misalignment at the Hywind location,
sampled primary during the first five months of 2010.
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Based on the model, a new control structure is presented, which includes estimates of wind speed and
wave frequency in the controller. The result is a control strategy capable of actively damping structural
oscillations, while fulfilling the objective of maximizing power. The control strategy allows us to operate
at the designed bandwidth of the wind turbine pitch system, while avoiding stability problems.

2. Methods

2.1. A Coupled Aero- and Hydro-Dynamic Control Model

A simulation tool such as the Fatigue, Aerodynamics, Structures, and Turbulence code (FAST) [12],
is able to simulate a floating wind turbine and linearize the system at some operating point. FAST can
generate a set of linearized models for a given set-point, but they are not parameterized in wind speed
and wave frequency, which will prove valuable in the control design here. The model presented here is
parameterized in wind speed and wave frequency.

The forces acting on the system can be described by:

Mq̈ + Fhydro + Fmooring + Fgravity + Fgyro + Ftower = Fwind + Fwave + Fref (1)

The forces are both linear and nonlinear, where M are the structural masses; q represents degrees
of freedom (DOF) and Fhydro are the hydrodynamic added masses and damping. Fmooring are forces
from mooring lines; Fgravity are gravitational forces; Fgyro are gyroscopic effects and Ftower are tower
defection forces. The external forces are thrust force from the wind, denoted Fwind, and wave induced
loads, denoted Fwave. The forces induced by the actuators are denoted Fref .
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The degrees of freedom of the system can be described by:

q =




x

y

z

θr

θp

θy

xt

yt

ψ

φ

τ

β




=




Platform surge
Platform sway
Platform heave
Platform roll
Platform pitch
Platform yaw
Tower fore–aft
Tower side–side
Rotor azimuth
Drivetrain torsion
Generator torque
Blade pitch angle




(2)

which describes platform translation (x, y, z) and rotation (θr, θp, θy); tower deflection (xt, yt) and
actuator dynamics (τ , β). Figure 2 illustrates the six platform degrees of freedom and the two tower
degrees of freedom.

Figure 2. Floating wind turbine comprising a wind turbine mounted on a floating spar buoy
platform (note: the mooring system is not shown). Drivetrain torsion, torque actuator and
pitch actuator are not described. COM is the total center of mass and COB is the total center
of buoyancy.
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which describes platform translation (x, y, z) and rotation (θr, θp, θy), tower deflection (xt, yt), and79

actuator dynamics (τ , β). Figure 2 illustrate the six platform degrees of freedom and the two tower80

degrees of freedom.81

Figure 2. Floating wind turbine comprising a wind turbine mounted on a floating spar buoy
platform (note mooring system is not shown). Drivetrain torsion, torque actuator and pitch
actuator are not described. COM is the total centre of mass and COB is the total centre of
buoyancy. Methodology
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Figure 2.1: Floating wind turbine comprising a wind turbinemounted on a floating spar
buoy platform (note mooring system is not shown).

Figure 2.1 presents three coordinate systems. An earth–fixed (EF) coordinate system
is presented by (xi, yi, zi) where the xy–plane is defined at the initial SWL–plane. The
EF coordinate system is used to describe the relative position of the platform–fixed (PF)
coordinate system. The PF coordinate system is described by(x, y, z) and presented by
(surge, sway, heave, roll, pitch, yaw) in the figure, where translation is black and rotation
is red. The origin of the PF coordinate system is located at the intersection between
the tower centre line and the initial SWL–plane on the platform. A nacelle–fixed (NF)
coordinate system (xt, yt, zt) presents the tower deflection relative to the PF coordinate
system. The origin of the NF coordinate system is located at the intersection between the
tower centre line and the the rotor shaft.

The combined structure rotates about the meta centre which is located directly above
the COB at a distance ofMC = I/V , whereI is the second moment of area of the water
plane andV is the volume of the displaced water. The structure is subject to gravitational
forces and buoyancy forces, which for a floating vessel are inbalance at rest. To prevent
the floating wind turbine from drift in translation and rotation, the platform is constrained
by three mooring lines (not presented in the figure), which adds stiffness to the system.

14

The model is based on well known wind turbine models from the literature on onshore wind turbines82

comprising aerodynamics, tower dynamics, drivetrain dynamics, and actuator dynamics [12]. However,83
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The model is based on well known wind turbine models from the literature on onshore wind
turbines comprising aerodynamics, tower dynamics, drivetrain dynamics and actuator dynamics [13].
However, the hydrodynamic effects on the masses and friction of the platform have been included in
the model [14–16]. Wind and wave loads can influence both the tower fore-aft and side-side dynamics;
thus, these dynamics are also included in the model. The ability of the platform to move in translational
directions is closely related to the dynamics of the mooring system. This system is designed to prevent
the platform for drifting away and to ensure yaw stiffness. This stiffness is important to keep the wind
turbine upwind. However, an uneven wind distribution on the rotor plane can induce yaw moment on
the platform. Another effect, which can induce yaw moments, is the gyroscopic effect of the rotor
caused by fore-aft motions. Therefore, both the mooring system and the gyroscopic effect are included
in the model.

The combined system can be described as a nonlinear system, which depends on the wind speed and
the wave frequency:

A(wω)q̈ + B(wω)q̇ + Cq = Fwind + Fwave + Fref (3)

where wω is the frequency of the propagating ocean wave. The notation of [A(wω), B(wω)] is relaxed
to (A, B), thus:

A =




PA PTA 06×2 06×2

TPA TA 02×2 02×2

02×6 02×2 DA 02×2

02×6 02×2 02×2 NA




(4)

B =




PB PTB 06×2 06×2

TPB TB 02×2 02×2

02×6 02×2 DB 02×2

02×6 02×2 02×2 NB




(5)

C =




PC PTC 06×2 PNC

TPC TC 02×2 TNC

02×6 02×2 DC DNC

02×6 02×2 02×2 NC




(6)

Here, A represents the inertia; B is the damping and C is the stiffness. These matrices include
terms, where P represents the platform; T is the tower; D is the drivetrain and N is the actuator.
The system properties are defined at the sea water level (SWL) about the vertical centerline of the
platform. The mass matrix, A, is not diagonal in general, but has non-zero cross terms from, i.e.,
pitch and surge. The version used here is simplified to represent the dominating diagonal elements only;
a fact that has been supported by simulations that show a limited impact of the cross terms (simulation
not included here).

In the following, all parameters going into A, B and C are referred to as inertia, damping and stiffness,
even though some are not in a physical sense. Note that the models of wind and wave loads are simplified
and only valid for moderate wave heights and wind.
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2.2. Modeling of Mass and Inertia

To keep the text compact, the matrix notation is simplified using, e.g., the notation, diag and
[1 0; 0 1], as representations of diagonal matrices. To model how a structure moves or rotates in water,
the mass and inertia of the displaced water must be included. This mass and inertia are referred to
as the added mass and must be summed with the mass and inertia of the platform and the turbine,
PA = diag([mmm Ar Ap Ay]) + Ahydro(wω), where the total system has a mass of m, pitch inertia of
Ap, roll inertia of Ar and yaw inertia of Ay. The turbine mass and inertias are insignificant compared to
the mass and inertia of the platform and the added mass. The frequency of the ocean waves is denoted
by ωw, which determines the quantity of added mass from the water, Ahydro(wω). However, note that the
significant quantity of added mass for the given spar (Hywind Demo) platform only varies a few percent
over frequency. The added mass matrix can be generated using a wave interaction analysis tool, such as
WAMIT, for the platform [14,17].

The wind turbine is mounted on top of the platform and has a mass of TA = I2×2mt, where I

is the identity matrix and mt comprises the mass of the tower, nacelle hub and blades. Of course,
the wind turbine has an impact on the platform and vice versa in both rotation and translation,
TPA = PTT

A = [mtĪ2×2 02×1 htmtÎ2×2 02×1], where Ī2×2 = [1 0; 0 -1], Î2×2 = [0 -1; 1 0] and ht

is the distance from SWLto the center of mass of the turbine.
The inertias of the drivetrain are defined by DA = [Ad At;At At]), where Ad is the rotating inertia

and At is the inertia of the rotor low speed shaft. The possibility of altering the operation of the
generator and rotor effectiveness is achieved using actuators. The inertias of the actuators are defined by
NA = diag([mb mg]), where mb is the inertia of the blade pitch actuator and mg is the inertia of the
generator torque actuator.

2.3. Modeling of Damping

The damping of the platform is affected by gyroscopic effects, hydrodynamics and linear damping:
PB = Bgyro + Bhydro(wω) + Bviscous. The rotor causes a damping force on the platform, due to the
gyroscopic effect between the platform yaw and the pitch, Bgyro = [04×4 04×2; 02×4 3IB Îψ̇], where
IB is the inertia of one blade about the rotor axis and ψ̇ is speed of the rotor. The hydrodynamic
damping, Bhydro(wω), is caused by platform movement or rotation in the water. In contrast to the
added mass, hydrodynamic damping is highly frequency-dependent. Hydrodynamic damping can also
be generated using a wave interaction analysis tool, such as WAMIT [14,17]. The linear damping,
Bviscous, is an empirical damping verified in [14] to resemble the Hywind Demo in the OC3 Hywind
FAST simulator [12].

The tower deflection has a damping of TB = I2×2Bt, where Bt is the tower
damping. However, the tower deflection has a damping effect on the platform rotation, hence
PTB = TPT

B = [02×3 htBtÎ2×2 02×1].
The drivetrain has a friction defined by DB = diag([0 Bd]), where Bd resembles the viscous friction

of the torsion in the flexible shaft of the drivetrain.
The damping of the actuators are defined by NB = diag([Bg Bp]), where Bg resembles the electrical

damping of the generator, while Bp resembles the mechanical damping in the pitch actuator.
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2.4. Modeling of Stiffness

The stiffness of the platform is defined by PC = Khydro + Kmooring + Kgravity, where Khydro is the
hydrostatic restoring stiffness, Kmooring is the stiffness caused by the mooring lines and Kgravity is the
stiffness due to gravity.

The stiffness of the flexible tower is defined by TC = diag([Kt Kt]), where Kt is the
tower stiffness. However, the flexible tower also has an impact on the platform stiffness,
TPC = PTT

C = [02×3 -mtgǏ 02×1], where g is the gravitational acceleration and Ǐ = [0 1; 1 0].
The stiffness related to the drivetrain is defined by DC = diag([0 Kd]), where Kd is the stiffness in

the torsion of the drivetrain. There is also a stiffness related to the actuator, defined by NC = [Kg Kp],
where Kg is the stiffness related to the electrical torque generation and Kp is the mechanical stiffness
in the blade pitch system. However, the generator torque also has an impact on the drivetrain,
DNC = [N 0; 0 0]T , where N is the gear ratio, and also an impact on the tower’s side-side
deflection, TNC = [0 -N/hh; 0 0]T , and since the tower deflection is only relative to the platform,
PNC = [02×1 -N/hhĬ2×1 02×1 -N/hhĬ2×1 02×2]T , where Ĭ2×1 = [1 0]T and hh is the height from the
SWL to the hub.

2.5. Aerodynamic Forces

The aerodynamic force of the wind is defined by Fwind = [Ft 01×3 hhFt 0 Ft 0 Ma Ma 01×2]T ,
where the aerodynamic rotor thrust; Ft, and torque, Ma, have a nonlinear effect on the system, given by
Ft = 1

2
AρCt(λ, β)v2

r andMa = 1
Ω

1
2
AρCp(λ, β)v3

r , where λ = RΩ
vr

is the ratio between the blade tip speed
and the relative wind speed. The relative wind speed, vr, is defined by vr = v − ẋ− hhθ̇p − ẋt; where v
is the ambient wind speed; ẋ is the platform surge velocity; hh is the height from SWL to hub; θp is the
platform pitch and ẋt is relative tower displacement. Since this expression includes some of the system
states, an impact on the system damping is expected. The partial derivatives of the aerodynamic thrust
force, ∂Ft/∂Ω, ∂Ft/∂ẋ and ∂Ft/∂θ̇p, ∂Ft/∂β, and the aerodynamic moments, ∂Ma/∂Ω, ∂Ma/∂ẋ,
∂Ma/∂θ̇p and ∂Ma/∂β, are thus included in the damping matrix, B, and the stiffness matrix, C.

2.6. Wave Excitation Force

The wave excitation force describes the impact of a single incident wave on the platform by
Fwaves = Re {AwX(wω, wβ)ejwωt}, where Aw is the wave height; X is a normalized wave excitation
force vector; wω is the wave frequency and wβ is the wave’s direction. As wave excitation force does
not depend on any DOF’s of the control model, the wave excitation force has no impact on the natural
damping of the system.

2.7. Inputs Reference

The system has two controllable inputs, which are defined by Fref = [01×10 ug up]
T , where ug is the

reference for the generator torque and up is the reference for blade pitch angle.
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2.8. Model Validation of Control Model

To validate the presented model, a time series comparison is presented in Figure 3 between the OC3
Hywind model of a floating wind turbine (FWT) and the presented control model. The figure shows the
response of the FWT when released from a horizontal orientation at time zero.

Figure 3. Model validation of selected states, where red is the FAST code simulation and
blue is the presented control model. At time zero, the floating wind turbine (FWT) is released
from the horizontal in still waters at a wind speed of 14 m/s.
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The presented states are generator speed, tower deflection in fore-aft and side-side and platform
rotation in fore-aft and side-side.

The rotor is spinning at rated speed, with constant generator torque and blade pitch angle. The wind
speed and the wave frequency are the parameters in the presented model; thus, the model is validated at
a wind speed of 14 m/s in still waters. Disturbances from the turbulence of the wind and incident waves
are not included in the comparison study.

The figure shows comparable behavior between the two models, in terms of the amplitude and
frequency. The presentation of the design model validation is limited, but the final validation of the
controller later in the chapter using data from FAST is an indirect indication of the validity of the
design model.

2.9. Combined Aero- and Hydro-Dynamic Damping

To determine the combined damping of the open-loop system, it is necessary to understand the
aerodynamic damping. The aerodynamic damping depends on the control objectives of the wind turbine.
At low wind speeds, the objective is to optimize power; however, at a defined rated wind speed,
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the objective changes to limit the electrical power output. In Figure 4, these objectives are presented
as trajectories for generator speed, blade pitch angle and generator torque.

Figure 4. Ideal closed-loop operating strategy to maximize power below rated wind speed
and to reduce loads and keep rated power above rated wind speed.
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Based on these trajectories, the damping of the open loop system is presented in Figures 5 and 6,
which illustrate the open loop linearized damping of the platform rotation and the relation to the wind
speed and wave frequency. Due to nonlinearities (and variance in the aero- and hydro-dynamics) the
presented model is linearized at an interval of 0.5 m/s from 3 m/s to 25 m/s. The state space model is
linearized, using standard Taylor approximation. Eigenvalues and associated physical modes associate.
The damping of the eigenvalues in the complex plane is then used. The figure shows that the maximum
damping of the platform rotation is achieved at a wind speed of 10.4 m/s and a wave frequency of
0.09 Hz. Figures 5 and 6 demonstrate that the variation in damping is considerable, indicating that there
could be benefits from a control design that incorporates wind speed and wave frequency.

In platform roll, the wind speed has no dynamical impact. The third rotational degree of freedom is
platform yaw. It is assumed that the impact of the wind and wave dynamics are insignificant on a spar
buoy platform compared to other dynamics acting on the yaw, such as gyroscopic effects and the rotor
yaw moments induced by the wind.
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Figure 5. Open loop damping in platform pitch as a function of wave frequency and
wind speed.
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Figure 6. Open loop damping in platform roll as a function of wave frequency and
wind speed.
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The hydrodynamic damping of the system can be explained by hydrodynamic drag, which varies
over the relative wave velocity and due to the geometric and surface smoothness of the platform [18].
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For deep waters, the wave velocity can be defined by uω = awω at the free surface, where a is the wave
amplitude and wω is the wave frequency. The wave amplitude is closely related to the wave spectrum,
which, again, depends on the wave frequency. Thus, the hydrodynamics damping is presented in
Figures 5 and 6 as a function of wave frequency [19].

“Proportional to” has been replaced by “increasing with”. The next sentence is reformulated to
“The trust force and hence the damping. . . ”

The aerodynamic damping increases with the aerodynamic trust force. The thrust force and, hence,
the damping increase below the rated wind speed and decrease above the rated wind speed, due to thrust
reduction. In Figure 5, the damping seems to have a different behavior at about 10–12 m/s, which may
be explained by the change in operation strategy in Figure 4, where constant generator speed is reached.
At this point, the tip-speed-ratio goes from constant to decreasing as the wind speed increases.

2.10. Control Strategy Above Rated Wind Speed

A model-based control strategy is chosen to control and damp the system. Despite that the control
model is presented for the full wind range, a controller is designed only for wind speed above the rated
wind speed to avoid transitions between objectives.

The proposed control strategy is shown in Figure 7, comprising a gain-scheduled LQR controller
combined with wind speed and wave period estimators. Full-state feedback is assumed, since the focus
of this paper concerns damping, based on estimates of wind speed and wave frequency.

Figure 7. Overview of control strategy.
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The LQR controller is a linear controller, which requires a linear model of the system, and several
controllers are, hence, for various operating points of wind speeds and wave frequencies. This is achieved
using the control law, u = ūOP(vm) − LQR(vm, wω)(x − x̄OP(vm)), where x = [q q̇]T , ūOP(vm)

and x̄OP(vm) represent the operating points as functions of the mean wind speed. The controller,
LQR(vm, wω), is a gain-scheduled LQR controller, which uses the slow varying mean wind speed and
wave frequency as scheduling variables.

Based on the control model, the controller is designed offline and implemented as a lookup table for
wind speed above the rated wind speed with an interval of 0.5 m/s and wave frequencies of 0 rad/s to
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5 rad/s at an interval of 0.1 rad/s. When running online, at each time step, the controller interpolates the
operating point and the controller gain.

2.11. Wave Period Estimator

To determine the hydrodynamic contribution, the wave frequency is required. The wave period of a
regular wave is straightforward to estimate. However, irregular waves are more difficult to handle. In this
paper, a simple auto-regressive algorithm is implemented to estimate a model of the waves based on
current wave height. The desired wave frequency is, thus, derived for the model as the natural frequency.
The wave height is modeled as A(q)y(t) = e(t), where A(q) is a second order system; y(t) is the
wave height and e(t) is white noise. The estimated wave height is defined by a second order model as
ŷ(t, θ) = [−y(t− 1),−y(t− 2)]θ, where θ is a vector of the parameters of the estimation model, Â(q).
The estimation error, ε(t) = y(t) − ŷ(t), is minimized using a least squares method by updating the
model properties in θ. The wave frequency is determined by the natural frequency of the system, Â(q).

2.12. Wind Speed Estimator

The wind speed can be estimated based on measurements of the rotor velocity, blade pitch angle and
the generator torque. In this study, an extended Kalman filter (EKF) is used to estimate the wind speed,
as suggested in [20].

The drivetrain is modeled as a first order system assuming a stiff drive train and neglecting losses:

IΩ̇dr = Ma −MgN (7)

where I is the inertia of the drivetrain; Ωdr is the rotor speed andN is the gear ratio. The wind is modeled
as a second order system:

v̇t = −a(vm)vt + n1 (8)

v̇m = n2 (9)

where vt and vm are the wind turbulence and mean, respectively; a(vm) is a wind speed dynamic
parameter related to the turbulence length scale and n1 and n2 are Gaussian white noise.

2.13. The Linear Quadratic Regulator

In order to apply linear quadratic control methods, the model is transformed from a system of second
order differential equations into a system of first order differential equations:

ẋ =


 0 I

−A-1C −A-1B


x+


 0

A-1F


u (10)

where x = [qT q̇T ]T ; u = [Mg β]T and F is a reformulation of Fref ; such that F = [F1 F2], where
F1 = [01×10 1 0]T and F2 = [01×10 0 1]T .

A controller is designed that minimizes the performance function: J =
∫∞

0 (xTQx + uTRu)dt.
The controller weighting matrices, Q and R, were designed based on an initial guess of proper state
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weighting using Bryson’s rule, followed by an iterative trial and error process. Constant Q and R were
used at all wind speeds above rated.

Using Bryson’s rule, the LQR input weighting matrix, R, is handled by allowing the blade pitch angle
to vary 60 degrees. A constant torque approach is chosen for generator torque.

The LQR state weighting matrix, Q, is defined in such a way that the rotor angle, ψ, is limited to
vary only 20 rad. The rotor angle can be interpreted as the integral action of the rotor speed, which can
be used to reduce oscillations in mean power. In wind turbine control systems, the integral action of
the rotor speed is often an interesting signal. By modeling the drivetrain as a second order system, the
integral action is conveniently represented as a state.

Using Bryson’s rule, the platform rotation is punished to vary only 1 degrees/s for both platform pitch
and roll in the weighting matrix.

Two LQR controllers are designed to demonstrate the advantage of the LQR controller. One
controller, LQR1, is a controller designed for similar performance as the detuned baseline controller,
OC3-Hywind [14], by punishing the blade pitch rate β̇ to vary only five degrees/s. The bandwidth of
the OC3-Hywind controller is reduced compared to conventional turbine control to avoid instability,
as discussed in the Introduction. Another controller, LQR2, is designed for a higher level of pitch
activity by punishing the blade pitch rate, β̇, to vary only eight degrees/s. This reflects the bandwidth
of conventional wind turbine controllers. In contrast to the OC3-Hywind baseline controller, this is
possible with a more advanced control strategy, as presented in this paper, without stability problems.
Increased bandwidth of the controller causes increased blade pitch actuation, which will reduced the
actuator lifetime. However, as an example, the Hywind Demo is a standard wind turbine. In the context
of actuator lifetime, the actuator is designed for conventional controller bandwidth and not detuned
bandwidth. Thus, we suggest to increase the bandwidth to eight degrees/s using LQR2.

2.14. Software

The controllers are simulated on a 5 MW wind turbine mounted on a ballast stabilized buoy to
resemble an upscaled version of the 2.3 MW Hywind Demo wind turbine. The floating wind turbine
has a flexible tower and drivetrain, a rotor radius of 63 m and a height of 90 m. The platform has a
draft of 120 m, with six degrees of freedom in translation and rotation. The platform is constrained by
three mooring lines. The wind turbine is a three bladed upwind 5 MW OC3-Hywind reference wind
turbine specified by the National Renewable Energy Laboratory (NREL)in [13] and implemented in
the wind turbine high fidelity aeroelastic simulation tool, FAST, which is well recognized in the OC3
code benchmark [21]. The simulations were performed in Simulink Matlab v7.9.0 (R2009b) linked with
FAST v7.00.00a-bjj and AeroDyn v13.00.00a-bjj compiled for the OC3-Hywind running Windows 7,
32 bit.

3. Environmental Setup

The wind profile used in the simulations has a mean wind speed of 18.0 m/s with a turbulence intensity
of 14.9%. The significant wave height is 6.0 m, simulated with a peak wave period of 2, 5 and 10 s.
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Figure 8 shows three difference sequences of wave elevations. The simulation does not include the
ocean current. The system is simulated at 80 Hz, while the control system operates at 10 Hz.

Figure 8. Wave height over time where yellow, light green and dark green represent peak
wave periods of 2, 5 and 10 s, respectively. The figure shows 100 s of the 600 s sequences.
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4. Results

The performance of the suggested controllers are compared to the performance of the OC3-Hywind
baseline controller [14]. The responses of the controllers are compared in a case, where the waves are
aligned with the wind, and in another case, where the waves are perpendicular to the wind.

In Figure 9, the performance of the baseline controller and the LQR1 controller are compared with
aligned wind-wave forces and with a peak wave period of 10 s.

Figure 9. Aligned wind-wave forces with a peak wave period of 10 s: statistical analysis of
relative controller performance with respect to the mean and standard deviation (std).
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Figures 10–12 show the results of aligned wind and waves with a peak wave frequency of 10 s.
Figures 13–15 make the same comparison for the case of perpendicular wind and waves.

Figure 10. Aligned wind-wave forces with a peak wave period of 10 s: blade pitch angle.
The green is the LQR2 controller, while the black is the baseline.
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Figure 11. Aligned wind-wave forces with a peak wave period of 10 s: platform pitch. The
green is the LQR2 controller, while the black is the baseline.
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Figure 12. Aligned wind-wave forces: statistical analysis of relative controller
performance, where yellow, light green and dark green represent peak wave periods of
2, 5 and 10 s, respectively.
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Figure 13. Perpendicular wind-wave forces with a peak wave period of 10 s: blade pitch
angle. The blue is the LQR2 controller, while the black is the baseline.
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Figure 14. Perpendicular wind-wave forces with a peak wave period of 10 s: platform pitch.
The blue is the LQR2 controller, while the black is the baseline.
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Figure 15. Perpendicular wind-wave forces: statistical analysis of relative controller
performance, where yellow, light green and dark green represent peak wave periods of 2,
5 and 10 s, respectively.
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The performances are compared in terms of blade pitch angle in Figures 10 and 13 and platform pitch
in Figures 11 and 14.

An overall performance analysis is presented in Figures 12 and 15, where, also, electrical power,
tower deflections and platform motions are compared. These key performance indicators are compared
in terms of absolute values (abs) and standard deviations (std). The absolute values are defined by
∫
|β̇(t)|dt, which describes the distance traveled by the blade pitch.
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Initially, the platform pitch angle is set to zero degrees, which is seen in Figure 14, and the platform
is then pushed in the aft direction by the wind. This is a translational effect and has not been excluded in
the performance assessment.

5. Discussion

In Figure 9, a comparison is presented between the detuned baseline controller and the LQR1
controller. Except from platform pitch, the comparison demonstrates similar behaviors between the
two controllers, with insignificant fluctuations. The purpose of this comparison is to demonstrate that
the presented LQR control strategy can perform just as the detuned baseline controller. However, the
bandwidth of these controller implementations is very slow and does not comply with conventional wind
turbine standards.

The performance of the detuned baseline controller also demonstrates the limit of this controller.
If the bandwidth of the detuned baseline controller was increased, the system would become unstable.
However, using a model-based control strategy, it is possible to operate at a conventional bandwidth,
while maintaining stability of the system.

In Figures 10–15, a comparison is presented between the detuned baseline controller and the LQR2
controller. The performance of the two controllers are compared at three different wave sequences with
turbulent wind. As the buoy has the same dynamic properties in all direction, we demonstrate the two
worst case scenarios: aligned forces and perpendicular forces.

The results show that it is possible to significantly improve the platform pitch oscillations by
approximately 50%, when forces are both aligned and perpendicular. The cost is an increase in blade
pitch activity by approximately 150%, when forces are aligned and approximately, 100%, when forces
are perpendicular.

Improvements in electrical power (7%–20%) and tower fore-aft deflection (5%–17%) are observed,
when forces are both aligned and perpendicular.

Insignificant improvement are observed in platform roll and tower side-side deflection. As both
control strategies uses a constant torque approach, there is only indirect actuation in both platform roll
and tower side-side deflection. In the perspectives of using the generator torque for damping oscillation
on the platform, the torque induced by the generator is less than 10% of the perpendicular torque induced
by the rotor thrust force. Furthermore, using generator torque to damp platform roll and tower side-side
dynamics will cause power oscillations and, thus, will change focus and require further research.

Comparing the results between aligned and perpendicular forces, it should be noted that misaligned
forces in the range of±45 degrees occur at much higher probability than perpendicular forces. Thus, the
results on aligned forces should be weighted more importantly.

6. Conclusions

In the context of model-based control, a new model of a floating wind turbine is presented that
captures the effect of the aerodynamics, hydrodynamics, structural dynamics and actuator dynamics.
To address the disturbance and misalignment of wind and waves, a control model is presented that
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requires estimates of the wind speed and the wave frequency, which offers an improved model for
model-based control.

A control strategy is taken based on a gain-scheduled LQR controller. The result is a wind and
wave control strategy capable of actively damping structural oscillations, while fulfilling the objective of
maximizing power.

Using the same bandwidth as a conventional wind turbine controller, the suggested model-based
control strategy shows convincing performance in reducing platform pitch oscillations, while improving
the electrical power and tower fore-aft deflections.

Misaligned wind and waves were also addressed. Worst-case wind and waves forces have successfully
been damped. While oscillations in platform pitch and tower fore-aft were actively reduced, oscillations
in platform roll and tower side-side were only damped passively, due to lack of sideways controllability
using the suggested strategy.

The complexity and the limitations of the proposed control strategy present an obstacle to commercial
use. To get one step further towards commercial use requires an effort with a commercial partner that by
analysis and reflection on the results and by finding less complex ways to capture central mechanisms.
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