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Sepsis is a deadly inflammatory syndrome caused by an exaggerated immune response

to infection. Much has been focused on host response to pathogens mediated

through the interaction of pathogen-associated molecular patterns (PAMPs) and pattern

recognition receptors (PRRs). PRRs are also activated by host nuclear, mitochondrial,

and cytosolic proteins, known as damage-associated molecular patterns (DAMPs) that

are released from cells during sepsis. Some well described members of the DAMP family

are extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1

(HMGB1), histones, and adenosine triphosphate (ATP). DAMPs are released from the cell

through inflammasome activation or passively following cell death. Similarly, neutrophil

extracellular traps (NETs) are released from neutrophils during inflammation. NETs are

webs of extracellular DNA decorated with histones, myeloperoxidase, and elastase.

Although NETs contribute to pathogen clearance, excessive NET formation promotes

inflammation and tissue damage in sepsis. Here, we review DAMPs and NETs and their

crosstalk in sepsis with respect to their sources, activation, release, and function. A

clear grasp of DAMPs, NETs and their interaction is crucial for the understanding of the

pathophysiology of sepsis and for the development of novel sepsis therapeutics.

Keywords: DAMPs (damage-associated molecular patterns), NETs (neutrophil extracellular traps), sepsis, HMGB1

(high-mobility group box 1), CIRP, cold-inducible RNA-binding protein, histone, neutrophils

INTRODUCTION

Sepsis is common and deadly; 30–50% of patients suffering an in-hospital mortality have sepsis.
In the United States, sepsis affects 1.7 million adults annually resulting in more than 250,000
deaths (1, 2). It is estimated that, worldwide, sepsis impacts 30 million people per year and
leads to 6 million deaths (3). Until recently, sepsis was defined as the systemic inflammatory
response syndrome (SIRS)—hypo or hyperthermia (>38◦C or <36◦C), increased heart rate and
respiratory rate and increased or decreased white blood cell count- in the presence of an infection.
Sepsis with organ dysfunction was severe sepsis and fluid-refractory hypotension was septic
shock (2). New guidelines, called Sepsis-3, established new definitions of sepsis, defining sepsis
as “life threatening organ dysfunction caused by dysregulated host response to infection” (2).
Organ dysfunction, as recommended by Sepsis-3, is defined clinically as changes of 2 points
or more on the Sequential [Sepsis-related] Organ Failure Assessment (SOFA). The most severe
subset of sepsis—septic shock- is defined as “sepsis in which underlying circulatory and cellular
metabolism abnormalities are profound enough to substantially increase mortality” (2).

Sepsis arises from the body’s exaggerated immune response to infection (4). Based on the
“germ theory” of disease (5), it was initially thought that the inflammation, organ injury, and
death that follows an infection were solely due to the body’s response to microbial products,
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such as pathogen-associated molecular patterns (PAMPs) (6).
PAMPs are recognized by pattern recognizing receptors (PRRs)
expressed on immune-reactive cells (7). Numerous studies have
been published to demonstrate the role of PAMPs and PRRs
in activating the immune system in sepsis (4, 6). During
the last several decades, subsequent studies have identified
damage-associated molecular patterns (DAMPs). DAMPs are
host nuclear or cytoplasmic non-microbial molecules which,
when released from the cell following tissue injury, serve
as potent activators of the immune system initiating and
perpetuating a non-infectious inflammatory response to cause
systemic inflammation, organ injury, and death (8–10). Like
PAMPs, DAMPs are also recognized by PRRs and utilize the
same signal transduction machinery to activate the immune
system (6, 11). Clinically, sepsis severity has been shown to
correlate with DAMPs; studies have shown that increased
serum levels of DAMPs including high mobility group box
1 (HMGB1), extracellular cold-inducible RNA-binding protein
(eCIRP), and H3 correspond with increased with disease severity
(12–14). This review describes several well-known DAMPs,
details the mechanisms of their release and actions, and describes
therapeutic strategies that target DAMPs in sepsis.

Neutrophils are the most abundant leukocytes in the body and
serve as the first line of defense against infection (15). The effector
function of neutrophils is mediated through phagocytosis,
reactive oxygen species (ROS), and protease dependent killing
of ingested pathogens. In addition, activated neutrophils release
neutrophil extracellular traps (NETs)—webs of DNA and anti-
microbial proteins designed to kill pathogens (16, 17). The
discovery of NETs provided new insights into neutrophil effector
function. However, numerous studies have also revealed the
detrimental role of NETs in sepsis (18). Homeostasis in regards to
NETs requires the interplay between their beneficial bactericidal
properties and the hyperstimulation of immune cells by the DNA
and proteins contained within NETs that results in inflammation
and tissue injury in sepsis.

A number of review articles have been published
demonstrating the individual role of DAMPs or NETs in
sepsis (6, 19, 20). In sepsis, DAMP mediated signaling fuels
pro-inflammatory cytokine and chemokine production by
macrophages and other immune cells. This, in turn, leads
to excessive neutrophil infiltration into the tissue. Activated
neutrophils produce reactive oxygen species (ROS), inducible
nitric oxide synthase (iNOS), and NETs which contain noxious
molecules, leading to tissue inflammation and injury in sepsis.
In this review, we focus on DAMPs, NETs, and explore their
interplay during sepsis (Figure 1). We also discuss some of the
therapeutic interventions targeting both DAMPs and NETs in
experimental sepsis (Table 1).

DAMPs

DAMPs were first proposed as part of the “Danger Theory”
by Polly Matzinger in the mid 1990’s as an initial explanation
for the robust inflammatory response elicited in response to
sterile inflammation, which could not be explained solely by

the self vs. non-self-hypothesis of the time (8). Intracellularly,
DAMPs are hidden from view of the innate immune system. After
tissue injury, caused by either sterile or infectious insults, they
are released extracellularly to activate the immune system and
resultant pro-inflammatory cascades (34). As discussed above,
DAMPs are thus defined as endogenous molecules that can
initiate and potentiate a non-infectious inflammatory response
(8). In addition to their role in sepsis, as is discussed in the
rest of this article, the release of DAMPs is critical to the
development of sterile inflammation including inflammation that
occurs secondary to organ ischemia and reperfusion injuries
(35–37), non-infectious inflammatory liver diseases such as non-
alcoholic fatty liver disease (38), or the sterile inflammation
associated with aging (39).

Allowing the evolution of the Danger Theory from an abstract
concept to a concrete entity, probably the first DAMP identified
was HMGB1 (40, 41). Other DAMPs include histones, ATP,
uric acid, DNA, mitochondrial DNA, and IL-33 (42). Recently,
eCIRP has been identified as a newly discovered DAMP (43, 44).
Although numerous endogenous molecules have been identified
as inflammation-causing DAMPs, here we briefly review a
selective group of DAMPs which have been strongly implicated
in sepsis.

HMGB1

HMGB1 is a highly conserved protein expressed in all
mammalian cells (21). HMGB1 as a DAMP causing sterile
inflammation was discovered in 1999 (41). HMGB1 can be
released actively via cytoplasmic vesicles or passively from
necrotic cells. Active release is mediated by several pathways;
JAK/STAT-1 mediated acetylation is responsible for the initial
HMGB1 translocation from the nucleus to the cytoplasm, while
extracellular release is partially mediated by double-stranded
RNA-activated protein kinase R (PKR)/inflammasome-mediated
pyroptosis (45). While passive release after necrotic cell death
is rapid, active HMGB1 release is much slower. HMGB1
levels reach a plateau approximately 16–32 h after the onset of
endotoxemia (46). HMGB1 related signaling is modulated by the
redox state of its three cysteines (numbers 23, 45, and 106) (47,
48). Once released into the extracellular space, HMGB1 activates
innate immune cells to propagate pro-inflammatory signaling
cascades (49). HMGB1 induces recruitment of neutrophils to
the site of tissue injury (50). HMGB1 binds to other PAMPs,
including DNA (51), LPS (52), and lipoteichoic acid (53),
potentiating their inflammatory responses. HMGB1 has been
shown to bind to numerous cell surface receptors, including
but not limited to receptor for advanced glycation end products
(RAGE), TLR2, TLR4, TLR9, and triggering receptor expressed
in myeloid cells 1 (TREM-1) (49, 54). After binding to
these receptors, it activates macrophages and endothelial cells,
stimulating the production of proinflammatory chemokines,
cytokines, and endothelial adhesion molecules (49). HMGB1 is
elevated in patients with sepsis (12, 55), and dozens of studies
have demonstrated that targeting HMBG1 improves outcomes in
sepsis (24, 25, 56, 57).

Frontiers in Immunology | www.frontiersin.org 2 October 2019 | Volume 10 | Article 2536

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Denning et al. DAMPs, NETs, and Sepsis

FIGURE 1 | Cross talks between DAMPs and NETs in sepsis. Sepsis or hypoxia activates immune reactive cells, including macrophages, and neutrophils. In bacterial

sepsis, PAMPs interact with PRR on macrophages to activate NF-κB, leading to increased expression of DAMPs (HMGB1, CIRP, H3) at transcriptional and

translational levels. These intracellular DAMPs are then released extracellularly through different mechanisms, such as inflammasome-mediated GSDMD activation,

which causes increased membrane pore formation to release intracellular DAMPs, or pyroptosis-, necroptosis-, or exosome-mediated pathways. These DAMPs can

in turn recognize PRR on surrounding neutrophils and activate PAD4, GSDMD to promote NET formation. NETs components such as H3, MPO, or DNA can further

activate immune cells and endothelial cells to release increased levels of DAMPs to augment the inflammatory cascade. In epithelial cells, extracellular histones derived

from NETs promote cell/tissue injury, resulting in increased severity of ALI. DAMPs, damage-associated molecular patterns (DAMPs); NETs, neutrophil extracellular

traps; PAMPs, pathogen-associated molecular patterns; PRR, pattern recognizing receptors; GSDMD, gasdermin D; HMGB1, high mobility group box 1; CIRP,

cold-inducible RNA-binding protein; PAD4, peptidoglycan arginine deiminase 4; ALI, acute lung injury.

eCIRP

Extracellular CIRP is an 172-amino acid RNA chaperone
protein (26, 58–60) that was previously identified as a
DAMP in 2013 (43). It is a cold shock protein, originally
recognized as a protein that suppresses mitosis and promotes
cell differentiation in the setting of hypothermia (61). It is
upregulated by hypothermia, hypoxia, and oxidative stress,
such as UV irradiation. In addition to passive release during
necrotic cell death, in times of cellular stress (like the
aforementioned hypothermia, hypoxia, or oxidative stress),
CIRP can translocate from the nucleus to cytoplasmic stress
granules; from these, it is released to the extracellular space
(62). After eCIRP binding to its receptor, the TLR4-myeloid
differentiation factor 2 (MD2) receptor complex (43), activation
proceeds through the TLR4/MyD88/NF-κB pathway (63) to
stimulate the release of pro-inflammatory cytokines TNF-α
and HMGB1 from macrophages (43). Furthermore, during
sepsis, hemorrhage or ischemia-reperfusion (I/R) injury, CIRP
is released extracellularly and leads to organ injury (36, 43).
Elevated plasma levels of eCIRP have been independently
correlated with a poor prognosis in patients with sepsis (13).

eCIRP as a DAMP has been demonstrated in several cell
types including macrophages, lymphocytes, and neutrophils

in the context of cellular activation, cytokine and chemokine
production and neutrophil extracellular trap (NET) formation
(44). eCIRP has also been shown to stimulate the Nlrp3
inflammasome, cause endoplasmic reticulum (ER) stress, and
induce pyroptosis in lung endothelial cells (EC) (64, 65).
eCIRP is associated with acute lung injury (ALI). Healthy mice
injected with recombinant murine (rm) CIRP develop ALI
via macrophage, neutrophil, and EC activation, and cytokine
production in the lungs (65). Beneficial outcomes have been seen
in CIRP−/− mice or CIRP inhibition in murine models of renal,
intestinal, and hepatic I/R injury (36, 66, 67). CIRP−/− mice are
protected from sepsis and ALI (64, 65). In an animal models
of adult or neonatal sepsis, treatment with a polyclonal anti-
CIRP antibody or a CIRP-derived inhibitory peptide prolonged
survival and attenuated organ injury (43, 68, 69).

HISTONES

Histones are highly basic proteins that are located mainly
in the nucleus. In humans, histone H2A, H2B, H3, and
H4 form a complex with DNA, called a nucleosome. The
nucleosome regulates gene transcription and facilitates efficient
higher-order chromatin compaction (22). However, histones
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TABLE 1 | Therapeutic outcomes by targeting DAMPs and NETs in sepsis.

DAMPs/NETs Strategies Outcomes References

eCIRP CIRP−/− mice; Anti-CIRP Ab; C23 Decreased organ injury markers (AST, ALT, LDH),

decreased cytokines and chemokines, protected from

lung injury including decreased MPO levels, neutrophil

infiltration, and cellular apoptosis in lungs.

(4)ab, (43)a,b, (68)a, (69)a

HMGB1 Anti-HMGB1 Ab; Zingerone; HMGB1-antagonsits

interacting with RAGE; small molecule inhibitors of

HMGB1; sodium sulfonate derivative of tanshinone IIA

(TSNIIA-SS); synthetic molecules including nafamostat

mesylate and gabexate mesylate; peptide inhibitors

including vasoactive intestinal peptide, pituitary adenylate

cyclase-activating polypeptide (PACAP), and urocortin

Increased survival after endotoxemia and CLP, improved

cytokine profile after CLP sepsis, inhibited LPS-induced

HMGB1 secretion, reduced vascular permeability,

reduced expression of cellular adhesion molecules,

reduced sepsis-mediated liver injury, reduced

LPS-mediated cytokine release and lung injury.

(56)a,b, (57)a, (25)ab

Histone Anti-histone ab; Activated Protein C Increased survival in LPS, TNF-α, and CLP sepsis,

rescued from lethality in E. coli infusion, attenuated

cardiac injury and dysfunction in sepsis.

(71)c, (73)b

ATP P2X7 receptor blockade +/− adenosine A2A receptor

stimulation; ATP hydrolase (apyrase)

Prevented tissue damage, apoptosis, and cytokine

production in the liver of mice after CLP, reduced

cytokines, prevented mitochondrial damage, reduced

apoptosis, reduced intestinal barrier disruption,

increased survival.

(89)a, (90)a

NETs DNAse I; PAD4+/− mice; CL-Amidine; Anti-citrullinated

histone 3 Ab

Reduced lung injury and increased survival in a

pneumonia model, reduced NETs and improved survival

in CLP sepsis.

(135)ab, (180)a, (185)a

aRodent, bHuman, cNon-human primates.

play proinflammatory functions upon their release from the
nucleus into the extracellular environment (23). Histone release
from cells can occur passively after cellular necrosis or as
part of an active process such via NETosis (70). In 2009, Xu
et al. demonstrated that histones were cytotoxic when added to
cultured endothelial cells (71). In vivo, intravenous injection of
histones in mice was lethal, whilst anti-histone antibodies were
found to reduce mortality in murine models of LPS endotoxemia,
TNF-α, or cecal ligation, and puncture experimental models
of murine sepsis (71). Xu subsequently demonstrated that the
injection of sublethal doses of histones resulted in high levels of
the cytokines TNF-α, IL-6, and IL-10, a phenomenon which did
not occur when TLR4−/− mice were used. Conversely, TLR2−/−

mice maintained their hyperinflammatory profiles after histone
injection (72). However, using specific TLR-transfected HEK
cells, histones signaling was transduced via both TLR4 and
TLR2 (72). Histones have also been shown to bind to TLRs in
cardiomyocytes where they alter levels of regulatory proteins
and potentiate sepsis-induced cardiomyopathy (27). The impact
of histones has also been investigated in human sepsis. Ex-vivo
administration of serum from septic patients directly induced
cardiomyocyte death; this effect was abolished by anti-histone
antibody (73). Histone levels in septic patients are significantly
increased and, like in murine models, appear to cause cellular
injury in a TLR4 dependent method (14).

CELL FREE DNA

In the extracellular space, deoxyribonucleic acid (DNA) can serve
as a DAMP. Apoptosis, necroptosis, NETosis, and pyroptosis
can all contribute to the release of nuclear contents into the

extracellular space (74). Cell free DNA in plasma is elevated in
patients with severe sepsis or septic shock when compared to
patients without these diagnoses (28), and increased levels of cell
free DNA in the plasma of septic patients has been linked to
increased mortality during sepsis (75).

Viral, bacterial, and even host cell free DNA can all
function as a DAMP and initiate pro-inflammatory cascades
(74, 76). Additionally, mitochondrial DNA (mtDNA) has
been proven to be a DAMP; it is released into the circulation
during trauma or sepsis (77, 78). mtDNA has been shown
to cause TNF-α secretion by mouse splenocytes and IL-
1β release from bone marrow-derived macrophages (79).
In addition to promoting the release of proinflammatory
cytokines, DNA has been shown to prolong the lifespan
of neutrophils. Neutrophils stimulated with either purified
bacterial or mitochondrial DNA demonstrated increased
viability compared to controls (78). Excessive neutrophil
accumulation in tissues has been associated with poor outcomes
in sepsis (80).

Viral, bacteria, host cell free DNA, and mtDNA can all act
via the TLR9 receptor (74), which is located intracellularly
in endosomes (81). It is important to recognize the spatial
relationship of DNA that acts as an immunomodulatorymolecule
and the TLR9 receptor. TLR9’s intracellular location requires that
nuclear DNA molecules that are released into the extracellular
space by NETosis, apoptosis and other forms of cell death need
to be translocated intracellularly in recipient cells in order to
activate the TLR9 receptor (74). Besides TLR9, intracellular
DNA can trigger other alarmin sensors such as cyclic guanosine
monophosphate-adenosine monophosphate synthase (cGAS),
absent in melanoma 2 (AIM2), interferon-inducible protein 16
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(IFI16), and stimulator of interferon genes (STING), all of which
lead to the initiation of immune responses (74).

ATP

ATP is a nucleotide that, in times of homeostasis, is generated
mainly within mitochondria during the tricarboxylic acid cycle
and from the respiratory chain. ATP is also produced in the
cytoplasm during glycolysis (82). ATP is released actively from
dying cells during apoptosis, and passively during necroptosis
and cellular necrosis (38, 83). Although some extracellular ATP
is beneficial, as it functions as a chemoattractant recruiting
phagocytic cells to the site of tissue damage, extracellular ATP
is also detrimental, binding to ionotropic P2X receptors (P2XR)
(84). P2XR channel opening results in increases in intracellular
calcium, which activates the p38 MAPK pathway, activating
the inflammasome with the associated caspase-1 activation and
release of pro-inflammatory cytokines IL-1β and IL-18 (84–86).
Elevated ATP levels in the plasma of septic patients interfere with
neutrophil function and signaling, resulting in an excessive and
uncoordinated neutrophil activation (87). Excessive extracellular
ATP has also been associated with T cell suppression in sepsis
(88). Reduction in the extracellular levels of ATP has proven
to be an effective method of attenuating sepsis severity in
some murine models of sepsis. Removal of extracellular ATP
to decrease activation of the P2X7 receptor by CD39 has been
shown to attenuate sepsis-induced liver injury (89). Treatment
with apyrase, an ATP hydrolase that removed extracellular ATP,
protected mice against a lethal LPS challenge and resulted in a
reduction of serum cytokines (90).

MOLECULES THAT MAY OR MAY NOT BE
DAMPs

Several endogenous molecules located intracellularly or on the
cell surface are released into the circulation and serve as
diagnostic and prognostic markers in various inflammatory
diseases (4, 29). These molecules include components of the
extracellular matrix (ECM) like collagen, fibrinogen, and laminin
and shredded cell surface receptors, such as soluble ST-2(30),
a member of the interleukin 1 receptor family, sMD2(91),
sTREM-1(92), microRNAs (93), exosomes (94), and vesicles (95).
However, it is not clear whether these and similar molecules
should be classified as DAMPs (Figure 2). DAMPs are frequently
released from cells following necrosis, pyroptosis or apoptosis,
however the ECM, shredded receptors, exosomes, micro-vesicles
are released into the extracellular environment without cell lysis.
Conversely, mtDNA and cell-free DNA are classified as DAMPs
and are released in both suicidal and vital NETosis, meaning
a molecule can be classified as a DAMP without cell lysis
first occurring. Many DAMPs undergo structural modification
(96, 97) e.g., oxidation, reduction, acetylation, phosphorylation,
or cleavage after release into the circulation. Conversely, it
is not known whether the shredded receptors or exosomal
molecules undergo post release modification in the extracellular
milieu. Extracellularly, DAMPs play largely pro-inflammatory

roles, while the secreted proteins, cleaved receptors, exosomes
and vesicles are not always pro-inflammatory and are not
necessarily responsible for excessive inflammation (98). Cell
surface proteins that are shed have diverse functions and include
chemokines, cytokines, adhesion molecules, growth factors, and
their receptors (99).

The shedding process of these proteins regulates the density
of cell surface receptors, the release of factors that serve as
agonists, and the release of soluble receptors that can function
as antagonists (100). Cleaved receptors such as sTREM-1
acts as a decoy receptor, sequestering TREM-1-ligands and
dampening TREM-1 activation (101, 102). Soluble ST-2 serves
as an antagonist for IL-33 to control excessive innate immune
response (103). Exosomes, macrovesicles, and microparticles are
enriched in pro- and anti-inflammatory molecules, therefore
they may play dual roles in sepsis. LPS-challenged macrophages
have been shown to release histone-coated microvesicles to
cause inflammation (104). Exosomes released from alveolar
macrophages during hemorrhagic shock have been shown
to promote necroptosis (105). By contrast, exosomes filled
with anti-inflammatory molecule milk fat globule-EGF-factor-8
(MFG-E8) were shown to be beneficial in reducing markers of
inflammation in sepsis and improving survival (106). Cleaved
receptors or exosomes often directly serve as chemoattractants
(107), but the ability of DAMPs to directly serve as a chemokine
are not as well studied.

Excess production and release of ECMs may cause tissue
fibrosis, abnormal cell proliferation, migration and inflammation
(108). Receptor protein cleavage occurs due to the actions
of matrix metalloproteinases (MMPs), disintegrins, and
metalloproteinases (ADAMs) which are upregulated during
inflammation (109). The exosomes and microvesicles are
released from the cells through pore formation in the plasma
membrane by caspase-mediated GSDMD or by a budding out
process (110). The release of excess amount of exosomes and
microvesicles are correlated with an increased release of DAMPs,
allowing the possibility that exosomes and microvesicles may
be a mechanism of DAMP release in sepsis (111). Exosomes
and microvesicles may also serve as a means to maintain cell to
cell communication; they have the ability to enter into adjacent
cells and modulate function. Extracellular microRNAs levels
are increased in various inflammatory conditions and may
serve as diagnostic markers (112). Studies have shown that
extracellular microRNA plays a pro-inflammatory role following
its re-entry into macrophages and activation of the endosomal
TLR7 receptor to produce TNF-α and IL-6 (113).

More studies on these molecules will help elucidate their
pathophysiological role in sepsis and other inflammatory
conditions. This information will aid in clarification of these
molecules as DAMPs or non-DAMPs.

NETs

Neutrophils are phagocytic cells; they predominantly defend
against pathogens either by engulfing the offending cell and
destroying it via oxidant- or protease-dependent mechanisms
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FIGURE 2 | DAMPs or not DAMPs? In sepsis, extracellular motifs of several receptors like TREM-1, ST2 are cleaved by matrix metalloproteinases, leading to

increased accumulation of truncated receptors in the blood. These soluble receptors serve as decoy molecules to recognize their ligands, thereby modulating

respective intracellular signal transduction. During sepsis, cells release miRNA or cfDNA through exosomes or passively. Extracellular miRNAs can enter into adjacent

cells and recognize endosomal TLR7 to induce inflammation. cfDNA can recognize HMGB1, and this protein-DNA complex is then recognized by the RAGE receptor

and become internalized. Intracellular cfDNA then can activates endosomal TLR9 or STING to activate the production of pro-inflammatory mediators. DAMPs,

damage-associated molecular patterns (DAMPs); TREM-1, triggering receptor expressed on myeloid cells-1; HMGB1, high mobility group box 1; cfDNA, cell-free

DNA; STING, stimulator of interferon genes.

or by the secretion of anti-microbial peptides (114). This
classical understanding of neutrophil function was found to
be incomplete after the discovery of a third effector function
of neutrophils in 2004, the release of NETs (17). NETs are
web-like chromatin based structures that are released into
the extracellular environment to aid in pathogen clearance,
but they have also been implicated in excessive inflammation
with resultant tissue damage, potentiation of autoimmunity,
and promotion of vascular thrombosis (16). NETosis is a
form of cellular death in which neutrophils decondense their
nuclear chromatin and DNA into the cytoplasm. Chromatin
and DNA mix with granule-derived antimicrobial peptides and
are extruded into the extracellular space (115). NETosis can
be induced in many ways; one of the most well-described is
phorbol myristate acetate (PMA), a protein kinase C (PKC)
activator (116).

NETs contain proteins from azurophilic granules e.g.,
neutrophil elastase (NE), myeloperoxidase (MPO) and cathepsin
G; proteins from secondary and tertiary granules e.g., lactoferrin,
and gelatinase; and nuclear proteins e.g., histones H1, H2A, H2B,
H3, and H4 (117). Detection of NETs has proved challenging due
their fragile structure, timing of NET formation and turnover,
and ubiquitous presence of DNase I. Several tools to assay
NETosis have been reported: these include microscopy (118),
flow cytometry (119, 120), ImageStream R© (121), and ELISA
(122). The ability to detect NETs precisely is paramount to
studying the disease pathophysiology associated with NETosis.

MECHANISM OF NET FORMATION

The first reported descriptions of NETs demonstrated that
neutrophils stimulated with PMA, IL-8 or LPS released NETs
(17). Subsequent studies have revealed a wide range of stimuli
including bacteria, virus, fungi, yeast, parasites, and concanavalin
A are capable of inducing NET formation (20). In addition, NETs
are upregulated in various cancers, including pancreatic cancer,
through receptor for advanced glycation end products (RAGE)-
dependent and neutrophil autophagy mediated pathways (123).
The induction of NETosis by various DAMPs will be discussed in
the later part of this article.

Two forms of NETosis have been described: suicidal
NETosis, in which NET formation only occurs via neutrophil
cell death and was described above, and vital NETosis
where NETs are released without cell death (124). In
suicidal NETosis, NADPH-dependent ROS production is
a prerequisite. This leads to increased calcium influx and
peptidyl arginine deaminase 4 (PAD4) activation, leading
to chromatin decondensation. Elastase and MPO are also
transported from the granules to the nucleus to cleave
linker histone H1 and modify the core histones. MPO
also intensifies chromatin decondensation, through the
synthesis of hypochlorous acid. Finally, chromatin is released
outside the cell through membrane pores and cellular lysis
through the activation of a pore forming protein GSDMD
(125, 126).
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First described in 2012, vital NETosis results in the release
of NETs without a loss in the integrity of the nuclear
or plasma membrane (127). As such, neutrophils are able
to survive the process and are still capable of normal
neutrophil functions including phagocytosis. Unlike suicidal
NETosis, vital NETosis does not require generation of ROS or
activation of the Raf/MERK/ERK pathway (126). In contrast
to the several hour time frame required for stimulation of
suicidal NETosis, vital NETosis occurs quickly, usually within
5 to 60min after neutrophil are stimulated (128). In vital
NETosis, after neutrophil stimulation, typically via TLR or
complement receptor for C3 protein ligand binding, the nuclear
membrane morphology changes to allow vesicle budding. These
vesicles, containing nuclear DNA, move through the cytoplasm
to coalesce with the plasma membrane and are released
extracellularly (118, 124, 126).

Besides the aforementioned types of NETosis, in 2009 it was
reported that neutrophils are able to undergo vital NETosis
using mitochondrial DNA (129). GM-CSF primed neutrophils,
when activated via TLR-4 or complement factor 5a receptor
stimulation, generated NETs containing solely mitochondrial
DNA. NETosis facilitated release of mitochondrial DNA seems to
be ROS-mediated (129). In vivo, NETs containing mitochondrial
DNA have been found in the serum of individuals after trauma
(130) and associated orthopedic surgery (131).

Several other mechanisms of NET formation have been
reported. Carestia et al. demonstrated that activated platelets are
able to amplify the amount of NETs released from neutrophils
(132). This process seemed to depend on interaction between
glycoprotein Ib (CD42) in platelets with β2 integrin (CD18) in
neutrophils, as well as the release of von Willebrand Factor.
Platelet triggered NETosis did not rely on NADPH oxidase
or ROS generation, but was reduced when inhibitors of ERK,
PI3K, or Src kinases were used (132). NET formation has
been shown to depend on the activation of cell-cycle proteins
CDK4/6; Cdk6−/− neutrophils and mice showed impaired NET
formation to several stimuli including PMA and C. albicans
(133). The lipoxin pathway has been shown to reduce lung
inflammation and acute lung injury after both infectious and
sterile inflammation (134). Lefrancais et al. demonstrated that
this pathway, through Fpr2 receptor signaling, is a potent
modulator of NET formation. After intratracheal injection of
methicillin-resistant Staphylococcus aureus (MRSA), Fpr2−/−

mice produced excessive NETs compared to wild type mice (135).
Additional studies are needed focusing on the pathways behind
these types of NET formation to determine the type of NETosis-
suicidal or vital.

PHENOTYPIC AND FUNCTION
DIVERSITIES OF NEUTROPHILS AND NET
FORMATION

Neutrophils exhibit phenotypic and functional heterogeneity
(136). Neutrophil heterogeneity has tremendous impact on NET
formation. Neutrophils from diabetic patients are more likely
to undergo NETosis than neutrophils from euglycemic patients

(31). Neutrophils from pediatric patients with systemic lupus
erythematosus also undergo increased NETosis as compared
to their healthy counterparts (137). ICAM-1 (CD54) is mainly
expressed on the endothelial cell surface (138). Following
simulation of neutrophils with PAMPs or DAMPs, ICAM-1
expression in the neutrophils is dramatically increased (139–
141). The ICAM-1+ neutrophils produce higher levels of
NETs, probably because of increased ROS (140). However, the
involvement of ICAM-1 or its ligand Mac-1 in the increased
levels of NETs in these cells has not been elucidated. The
relationship seems to be circular, with NETs inducing ICAM-1
in neutrophils and ICAM-1+ neutrophils producing increased
quantities of NETs (142). ICAM-1+ neutrophils are found in
increased concentrations in blood and lungs of humans and mice
under inflammatory conditions (143–146).

It is still not clearly known which type of neutrophils-
circulating or tissue resident-produce increased levels of NETs.
Using density gradient centrifugation, circulating neutrophils can
be separated into two layers- high density neutrophils (HDN) and
low-density neutrophils (LDN) which co-localize with peripheral
blood mononuclear cells (147). LDN are a heterogeneous
population containing both immature and mature neutrophils
and their functions differ depending on the inflammatory
stimulus (148, 149). Interestingly, it has been demonstrated that
LDNs have an increased proinflammatory profile as compared to
other neutrophils with increased secretion of proinflammatory
cytokines (150, 151) and an increased capacity to generate NETs
(149, 152, 153).

Since the ROS pathway is essential for suicidal NETosis (125),
it is logical that neutrophils that produce increased levels of ROS
may produce excessive NETs. Although evidence is conflicting
(154), Zhang et al. found that aged neutrophils (CXCR4+)
produced both increased levels of ROS and increased amounts
of NETs (155). It is also evident that human neutrophils are
more prone to produce NETs compared to murine neutrophils
(156, 157), indicating the role of specific surface markers in
NETs production between these species. Overall, neutrophil
heterogeneity may play a pivotal role in NET formation.

INCREASED NET FORMATION IN SEPSIS

NETs are vital to pathogen clearance, but simultaneously NETs
induce collateral damage to host tissues in sepsis (16). In 2007,
Clark et al. described an interaction between platelets and
neutrophils in sepsis, resulting in NET formation and enhanced
bacterial trapping in blood vessels (158). Activation of TLR4
receptors on platelets lead to the binding of the platelets to
neutrophils in the blood. These neutrophils were then activated
and produced NETs. These results were recapitulated using the
plasma from severely septic patients (158).

Sepsis often results in acute lung injury (ALI) (159).
Lefrancais et al. demonstrated abundant NET formation in
both murine models of severe bacterial pneumonia and ALI
(135). Furthermore, when comparing NET levels in samples
from critically ill human subjects they found higher levels of
NETs in subjects with infectious etiology of acute respiratory
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distress syndrome (ARDS) as opposed to patients with cardiac-
induced respiratory dysfunction. In addition, among patients
with microbiologically confirmed pneumonia, plasma NET levels
were higher in patients with ARDS than in patients without.
Finally, there was a correlation between the severity of ARDS,
mortality, and the serum level of NETs (135).

In a clinical study, the levels of neutrophil-derived circulating
free DNA (cf-DNA/NETs) have been shown to directly correlate
with multiple organ dysfunction score, sepsis-related organ
failure assessment, leukocyte counts, and MPO levels (160).
A 2018 study of 55 critically ill patients demonstrated rapid
and sustained increases in the circulating levels of MPO-DNA
complex in the serum, indicating NET formation in the early
stages of sepsis. In this study, MPO-DNA complex levels were
also correlated with the severity of organ dysfunction and 28-day
mortality rates (161).

In opposition to these findings, impaired NET formation in
neonates has been associated with relative immunodeficiency
of human newborns (162). Czaikoski et al. found increased
bacterial burden in the blood and decreased survival in a murine
model of CLP in mice treated with DNase to prevent NET
formation, however these effects were ameliorated by treatment
with DNase plus antibiotics (163). Given that there are both
hyper and hypodynamic phases of sepsis, the levels of NETosis
at various stages in sepsis may impact the outcomes. This idea
is supported by work done by Mai et al. (164). They found
that when given early after induction of sepsis by CLP, DNase
increased pro-inflammatory cytokines and worsened renal and
pulmonary damage. However, when given at a later timepoint
after CLP, DNase administration reduced IL-6 levels, increased
levels of anti-inflammatory IL-10, and reduced organ damage and
bacterial dissemination. It also increased survival after CLP (164).

Several studies have demonstrated that severe sepsis alters the
neutrophil phenotype and hinders NETosis ex vivo (165, 166).
However, it is not clear from these studies whether in vivo NET
formation is impaired during sepsis. Further investigation will
need to be done in this area.

DETRIMENTAL EFFECTS OF NETs IN
SEPSIS

During sepsis, neutrophil-endothelial interaction is increased to
promote neutrophil infiltration into tissues (167). Neutrophil-
endothelial cell (EC) interaction leads to increased NET
formation; this increased NET formation is partially dependent
on IL-8 released from activated EC (168). Prolonged co-culture
of neutrophils with EC resulted in EC damage; this damage is
attributed to NETs as co-incubation with either NAPDH oxidase
inhibitors or DNase ameliorated this damage (168).

Recent studies demonstrated the crucial role of NETs in
the pathogenesis of disseminated intravascular coagulation and
intravascular thrombosis, both of which increase morbidity
and mortality in sepsis (169–173). McDonald et al. found
profound platelet aggregation, thrombin activation, and fibrin
clot formation within NETs, implicating the NET–platelet–
thrombin axis in the promotion of intravascular coagulation

in sepsis. Inhibition of NETs during sepsis by DNase infusion
reduced intravascular coagulation, improved microvascular
perfusion, and reduced organ damage (172).

NETs have been detected in bronchoalveolar lavage samples
from septic humans or canines with ARDS, indicating that,
even after transmigration, neutrophils are capable of undergoing
NETosis (174, 175). A recent study utilizing samples from
different models of ALI in mice and from patients with ALI
revealed increased levels of NETs and histones H3 and H4 in the
bronchoalveolar lavage fluids (BALF) (176). Administration of
the extracellular histones contained in NETs resulted in damage
to alveolar epithelial cells and increased severity of ALI (176).

In addition to the damage inflicted by the DNA released
during NETosis, enzymes released during NETosis also have
a detrimental effect on the surrounding tissues. Neutrophil
elastase, a key component of chromatin degranulation, has been
show to increase permeability of alveolar epithelial cells by
altering the actin cytoskeleton (177) and its inhibition has been
demonstrated to be beneficial in animal models of inflammation
and associated ALI (178, 179). Serine proteases released during
NETosis have been shown to degrade surfactants which are vital
in the clearance of inflammatory cells and residual inflammation
after ALI (18). These findings clearly demonstrate that excessive
NETs play detrimental role in sepsis.

THERAPEUTIC STRATEGIES TARGETING
NETs IN SEPSIS

Therapeutic strategies aimed at NETs primarily target the DNA
component- DNase is the most frequent treatment modality.
DNase treatment reduced NETs, improving lung injury and
survival in a murine model of pneumonia (135). Cl-Amidine,
a PAD4 inhibitor, had no effect on the level of neutrophil-
DNA complexes or the degree of lung inflammation in a murine
pneumonia model (135) but Biron et al. found that Cl-Amidine
prevented H3 citrullination, NET formation, and improved
survival in a murine model of CLP-induced polymicrobial sepsis
(180). Similarly, PAD4−/− mice demonstrated decreased NETs
and lung injury in the pneumonia model (135). However, these
benefits were offset by an increased bacterial load and increased
systemic inflammation. Therefore, Lefrancais et al. developed
a mouse with a partial PAD4 deficiency (PAD4+/−) which
demonstrated an improved survival curve (135). These findings
support the notion that a there is a thin line for the amount
of NETosis required to both prevent lung injury and maintain
microbial control.

Chloroquine has also been effective as an early upstream
inhibitor of NETs, decreasing NETosis and the associated
hypercoagubility and improving survival in murine models of
pancreatic adenocarcinoma (181) and acute pancreatitis (32).
Activated protein C (APC) is a multifunctional protease with
anti-inflammatory, anticoagulant, and cytoprotective properties
(182). A recent study demonstrated that APC binds human
leukocytes and prevents activated platelet supernatant or
PMA from inducing NETosis. Additionally, they found that
pretreatment of neutrophils with APC prior to induction of
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NETosis inhibited platelet adhesion to NETs (182). It should
be noted however, that activated protein C has failed to have
any impact on survival in large scale human clinical trials of
patients with severe sepsis (183, 184). Li et al. demonstrated
that antibodies neutralizing serum citrullinated Histone 3 could
improve survival after a murine CLP model (185). These studies
demonstrate that abrogating excessive NET formation can lead to
beneficial outcomes in sepsis.

The early inhibitors of NETs such as chloroquine, PAD4
inhibitors, and APC are specifically targeted for controlling
NET formation. By contrast, late inhibitors of NETs, such
as DNase and anti-histone antibodies, can target extracellular
DNA or histones regardless of their source. These molecules
are also considered as DAMPs and can be released by a
number of immune cells, in addition to their release from
neutrophils. Therefore, the molecules/drugs that specifically
control intracellular NET formation could be used as a more
specific therapeutic regimen against NETs.

CROSSTALK BETWEEN DAMPs AND NETs
IN SEPSIS AND INFLAMMATION

Although the extracellular release of DAMPs and NET formation
are both a byproduct of sepsis, there is increasing evidence
of linkage between the two. The major components of NETs,
i.e., DNA, histones, and granule proteins- are recognized as
DAMPs that can trigger inflammation, inducing cell death and
organ failure. Extracellular histones are elevated in patients with
coagulopathy and multiple organ failure (186) and are believed
to be a major mediator of death in sepsis (71). Cell free DNA
has been shown to be cytotoxic and results in coagulopathy and
disseminated intravascular coagulation (DIC) (33) Additionally,
inhibition of NETosis via PAD4 deficiency or inhibition results
in a reduction in the release of DNA and improves outcomes in
sepsis (187–189).

Concomitantly, various DAMPs have been shown to induce
NETosis. Tadie et al. demonstrated that HMGB-1 is able
to induce NETosis via TLR4 signaling (190). Incubation of
neutrophils with HMGB-1 resulted in increased extracellular
DNA, histone 3, and histone 3 citrullination. Exposure of
neutrophils isolated from wild type and RAGE KO mice
to HMGB1 resulted in significant NET formation, whereas
neutrophils from TLR4 KO mice demonstrated a diminished
ability to form NETs. Finally, HMGB1 acted synergistically with
LPS, as neutrophils from the bronchoalveolar lavage (BAL) of
mice exposed to both LPS and HMGB1 displayed greater ability
to produced NETs compared to neutrophils isolated from the
BALs of mice that received LPS alone. This increase was hindered
by a neutralizing antibody to HMGB1 (190).

eCIRP has also been shown to activate NETosis through a
TLR4/NF-κβ dependent mechanism (140). Mice subjected
to polymicrobial sepsis via cecal ligation and puncture
demonstrated increased levels of ICAM-1+ neutrophils in both
the blood and the lungs. In contrast, mice genetically deficient
in CIRP displayed diminished levels of ICAM-1+ neutrophils.

In vitro, treatment of neutrophils with recombinant murine
CIRP (rmCIRP) increased levels of ICAM-1+ neutrophils, and
this increase was inhibited by both a neutralizing antibody to
TLR4 or an NF-κβ inhibitor. ICAM-1+ neutrophils displayed
increased levels of NETosis (140).

Unlike eCIRP and HMGB1, mitochondrial DNA (mtDNA)
seems to generate NETosis through a TLR9 dependent pathway.
mtDNA induced NADPH oxidase-independent NET formation
in polymorphonuclear neutrophils of healthy volunteers.
NETosis was completely inhibited by treatment with a TLR9
inhibitor (130). Liu et al. further identified that mtDNA also
activates NETosis via the STING pathway (191). Neutrophils
treated with mtDNA demonstrated increased NETosis in a
manner which displayed significant increases of AKT and
ERK1/2 phosphorylation and increased expression of Rac2
and PAD4. They further confirmed that both TLR9 and
STING pathways are important in mtDA-induced NETosis via
examination of the lungs of mice intravenously injected with
mtDNA (191). Lungs displayed decreased NET formation in
TLR9 KO and STING KO mice compared to wild type mice.
Additionally, in vitro stimulation of BMDN from TLR9−/− and
STING−/− mice displayed decreased percentages of NETs after
treatment with mtDNA as compared to WT mice (191). Further
confirming that mtDNA-induced NETosis proceeds through
the Raf/MEK/ERK and p38 MAPK pathways, TLR9−/− and
STING−/− neutrophils exhibited decreased phosphorylation
of ERK 1/2 and p38 MAPK, as well as decreased levels of
PAD4 and Rac2 after stimulation with mtDNA than WT
neutrophils did. Inhibitors of these downstream mediators
resulted in decreased mtDNA-induced NET formation in WT
neutrophils (191).

Oxidized low-density lipoproteins (oxLDL) are upregulated
in sepsis and intestinal inflammation (192) and have been
recognized as a DAMP (193). In vitro treatment of PMNs
with oxLDL resulted in increased NET formation in a dose
dependent manner. oxLDL stimulation of NETosis seems
to depend on TLR2 and 6; blocking of neutrophils with
a TLR4 antibody had no effect on NET formation, while
blocking with anti-TLR2 or TLR6 antibodies modestly reduced
NETosis. However, the combination of anti-TRL2 and anti-
TLR6 antibody treatment of PMNs prior to oxLDL stimulation
resulted in a significant reduction in the formation of
NETs (194). Additionally, confirming the role of the PKC
pathway in oxLDL-induced NETOsis, inhibition of PKC
or IRAK was able to reduce NET formation in normal
neutrophils. Inhibition of downstreammediators in the pathway,
ERK1/2 and p38 MAPK, also reduced oxLDL-induced NET
formation (194).

FUTURE DIRECTIONS AND
CONCLUSIONS

In this review article, we discussed DAMPs and NETs in sepsis,
with a focus on their interaction and therapeutic strategies
for amelioration of sepsis-associated morbidity and mortality.
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Future studies on the interaction between the two entities
would add value to the study of innate immunology and could
be expanded to other inflammatory conditions in addition
to sepsis. Moreover, future emphasize should also be focused
on pinpointing the relationship between PAMPs and NETs
and developing new therapeutic tools to target their interplay.
DAMPs are released by several cell types, while NETs are
specific to neutrophils. Recently, extracellular traps (ETosis) has
been described in macrophages (195) and eosinophils (196).
Future studies on DAMPs and ETosis would be interesting.
Immune cells in sepsis are very plastic with several phenotypic
polarizations—more investigation is needed into the role of
immune cell plasticity on DAMP release. Similarly, future
studies on how DAMPs skew immune cell polarization and the
subsequent impact on sepsis would be revealing. In conclusion,
we have provided a literature review of the role of DAMPs,

NETs, and their interaction in sepsis to increase and update our
understanding in this area of research.
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