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The spontaneous emergence of collective flows is a generic property of active fluids and often

leads to chaotic flow patterns characterised by swirls, jets, and topological disclinations in their

orientation field. However, the ability to achieve structured flows and ordered disclinations is of

particular importance in the design and control of active systems. By confining an active nematic

fluid within a channel, we find a regular motion of disclinations, in conjunction with a well defined

and dynamic vortex lattice. As pairs of moving disclinations travel through the channel, they con-

tinually exchange partners producing a dynamic ordered state, reminiscent of Ceilidh dancing. We

anticipate that this biomimetic ability to self-assemble organised topological disclinations and dy-

namically structured flow fields in engineered geometries will pave the road towards establishing

new active topological microfluidic devices.

Introduction

Bacterial suspensions1, cellular monolayers2 and sub-cellular

filament/motor-protein mixtures3,4 are continuously driven far

from equilibrium through intrinsic energy injection by their bi-

ological constituent elements. This microscopic energy input

can result in the spontaneous emergence of large-scale collective

behaviour, including flocking5–7, unidirectional flows8, meso-

scale turbulence1,9,10, topological defect pair production11–13,

and phase separation14. Moreover there is a rapidly growing list

of biological systems, including anterior-posterior establishment

by active cytoplasmic streaming in oocytes15, pupal wing mor-

phogenesis16, wound healing17,18, and cancer invasion19,20, that

has been identified as leveraging collective flows for active self-

organisation. Recent works have shown that nematic disclina-

tions in growing bacterial colonies can determine morphological

changes21 and play a crucial role in the dynamic structure of cell

groups such as in ameoboid cells22,23 and spindle-shaped cells24,

and the emergence of 3D mounds in layers of stem cells25.

These examples suggest the possibility of harnessing active

driving by manufacturing active microfluidic devices. In a few en-

gineered instances, spontaneous collective motion has been con-

trolled through geometrical constraints. Ratchet systems have

a The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP,

United Kingdom. ∗E-mail: julia.yeomans@physics.ox.ac.uk
b Center for Studies in Physics and Biology, The Rockefeller University, 1230 York Av-

enue, New York, 10065, USA.
c Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eind-

hoven, Netherlands.

† Electronic Supplementary Information (ESI) available: [details of any supplemen-

tary information available should be included here]. See DOI: 10.1039/b000000x/

‡ These authors contributed equally to this work.

been constructed to sort cells against entropy26–28, while indi-

vidual asymmetric gears29–32 and arrays of smooth rotors33 have

been designed to have persistent rotation when submersed in

bacterial baths. Long-range static orientational ordering of ne-

matic disclinations has recently been probed in experiments on

filament/motor protein mixtures34 and theoretical works have

predicted positional disclination ordering in crystal-like config-

urations due to hydrodynamic screening in over-damped active

nematics35–38. Nevertheless, the ability to control disclination

dynamics in active matter is currently lacking and is a necessary

prerequisite to the control of active topological microfluidics.

Many dense active systems are well modelled as active nemat-

ics, and confining such an active nematic is known to result in

spontaneous symmetry breaking leading to self-sustained, unidi-

rectional laminar flows at moderate activities8,39–41. It is fur-

ther known that such unidirectional active flows transition to

oscillatory flows at sufficiently high activity42,43 and to meso-

scale turbulence at higher activities yet1,12,44–46. Linear stability

analysis has been performed on the formation of oscillations in

the laminar flow with moderate activity42 but increased activity

causes non-linear effects to quickly dominate. It has recently been

shown47 that moderate activities in confining (quasi-1D) geome-

tries can produce a system-spanning lattice of flow vortices in-

termediate to oscillating flows and meso-scale turbulence. The

vortex lattice has been observed in simulations of sheared ac-

tive fluids48, as well as experimentally in quasi-1D suspensions

of bacteria49 and associated simulations49,50. Similarly, spatially

ordered textures and disclination lattices have previously been

noted in confined and flowing passive liquid crystals51–53.

Here, we confine an active nematic within a two dimensional

micro-channel. The results of our simulations show that the in-
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Fig. 1 Dancing disclinations: Topological dynamics (see Movie 1). (a) Simulation snapshot of the instantaneous vorticity field, which forms a highly

ordered vortex lattice and a dynamically ordered state of disclinations within the channel. Negative (−1/2) topological disclinations settle in the vicinity

of the channel walls (magenta diamonds), while positive (+1/2) disclinations (green dots) transverse the mid-region as they move along the vortex

lattice. (b) Zoom showing streamlines and director field. (c) Schematic of ideal Ceilidh dynamics. In a channel of height h, −1/2 topological

disclinations (magenta diamonds) reside in the near-wall regions where they oscillate weakly about their average position. Within the mid-channel

region is the vortex lattice of counter-rotating neighbouring vortices. Moving along the edge of the vortices are the +1/2 disclinations (green dots).

The system has zero net-topological charge and ideally equal numbers of +1/2 disclinations travel to the left as to the right (light and dark green,

respectively).

termediate activity state is characterized by dancing disclination

dynamics, where the stationary vortex lattice is accompanied by

a dynamically ordered state of disclinations (Fig. 1(a); Movie 1).

The disclination dynamics accompanying the vortex lattice have

not hitherto been reported. These dancing disclinations are pos-

itively charged, long lived, and continually navigate through the

channel. As they move past each other on the vortex lattice, the

positive disclinations form short-lived pairs, leading us to dub this

state topological Ceilidh dynamics, in rough analogy to the tradi-

tional Gaelic dance in which participants form two inward-facing

parallel lines and pairs of dancers continually exchange partners

as they circulate between the lines. Our results for quasi-1D active

nematics show that, in this simple geometry, ordered dancing-

disclination dynamics emerge as a system-spanning intermediate

regime between unidirectional flow and meso-scale turbulence.

We next treat the Ceilidh dynamics state as a spatially ordered

configuration between the unidirectional flow state and meso-

scale turbulence. As a system-spanning ordered state, the Ceilidh

dynamics pattern can itself possess irregularities, which we term

lattice defects. A subset of these lattice defects are found to drive a

well-defined net flux that increases incrementally with the quan-

tized number of drift-lattice defects. The dynamically ordered

topological and steady-flow structures of Ceilidh dynamics within

a channel represent an ideal system for studying the emergence

of ordered dynamical structures in active matter.

Methods

Many living fluids can be modelled as continuous active ne-

matic liquid crystals because they generally consist of a dense

suspension of many (continuum) shape-anisotropic (nematic)

self-propelled (active) particles moving through a fluid medium

(force-free)54. We utilize numerical simulations of active nema-

tohydrodynamics to solve for the density, velocity (with its associ-

ated vorticity ω (r, t)), and orientation tensor Q(r, t) (with associ-

ated director n(r, t) and scalar order q(r, t)) fields55. We assume

that the nematic fluid has a single nematic elastic constant K and

that the activity coefficient ζ > 0, representing extensile active

systems such as pusher-type bacteria56. The 2D active nematic

is confined between two parallel no-slip channel walls separated

by a distance h, producing a quasi-1D system. Strong anchoring

at the boundaries sets the director perpendicular to the confining

walls.

Governing equations

Active nematohydrodynamics have been extensively applied

to intrinsically out-of-equilibrium biological systems composed

of rod-like constituents, including bacterial suspensions57, fil-

ament/motor protein mixtures4,11,58, and cellular monolay-

ers23,59,60. The continuum fields that must be solved are the

total density ρ, the velocity u, and the orientation Q fields. The

orientational order of the fluid is described by the nematic tensor

Q = 3q
2
(nn− I/3), where q denotes the magnitude of the orienta-

tional order, n is the director, and I the identity tensor61.

The transport equation for the nematic tensor field is62

(∂t +u ·∇)Q−S = ΓH, (1)

where Γ is a rotational diffusivity and S is the co-rotational

advection term that accounts for the impact of the strain rate

E = (∇uT +∇u)/2 and vorticity Ω = (∇uT −∇u)/2 on the direc-
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tor field. The co-rotational advection has the form

S = (λE +Ω) ·Q+Q · (λE −Ω)−2λQ (Q : ∇u) , (2)

where Q ≡ Q+ I/3 and the alignment parameter λ controls the

degree of coupling between the orientation field and velocity gra-

dients and determines the objective time derivative of orienta-

tion, with λ = ±1 corresponding to an upper and lower con-

vected derivative respectively. The alignment parameter deter-

mines whether the nematogens align or tumble in a shear flow45.

The relaxation of the orientational order is controlled by the free

energy F=
∫

f dV through the molecular field,

H =−(
δ f

δQ
−

1

3
I Tr

δ f

δQ
). (3)

The free energy density has two components, which are the

Landau-de Gennes bulk free energy density and the elastic free

energy density due to spatial inhomogeneities in the order pa-

rameter61:

f =
A

2
Q2 +

B

3
Q3 +

C

4
Q4 +

K

2
(∇Q)2 , (4)

assuming a single elastic Frank coefficient K.

The local density and velocity field obey the incompressible

Navier-Stokes equations

∇ ·u = 0, (5)

(∂t +u ·∇)u = ∇ ·Π/ρ, (6)

where Π is the generalized stress tensor that includes both ne-

matic and active contributions, in addition to the viscous stress

Π
visc = 2ηE. The stress due to elastic contributions arising from

nematic ordering within the liquid crystal is

Π
elastic =−PI +2λQ(Q : H)−λH ·Q−λQ ·H

−∇Q :
δ f

δ∇Q
+Q ·H −H ·Q, (7)

which includes the isotropic pressure P62. The active stress ac-

counts for changes in the flow field caused by continual energy

injection at the microscopic scale. Activity generates flows for

nonzero gradients of Q and takes the form63

Π
act =−ζ Q. (8)

The activity parameter ζ determines the strength of the active

flows with positive and negative values denoting extensile and

contractile fluids, respectively.

Numerical implementation

The equations of active nematohydrodynamics (Eq. 1-5) are

solved using a hybrid lattice Boltzmann and finite difference

method45,55,64, with the discrete space and time steps defining

the simulation units. Parameters can be mapped to physical units

that correspond to microtubule-kinesin bundles4, dense bacterial

suspensions1, or other active nematics of interest when the mate-
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Fig. 2 Average +1/2 disclination speeds. The average speed v+1/2

increases linearly with activity and with height, v+1/2 ∼ hζ . The dashed

green line shows the scaling predicted by Giomi et al. 46.

rial properties are well known58,65. Simulations presented here

use the parameters Γ = 0.34, K = 0.04, η = 2/3, and ρ = 1, ex-

cept where explicitly stated otherwise. The alignment parame-

ter is taken to be λ = 0.3, which is in the flow tumbling regime.

The active fluid is extensile with ζ > 0, though Ceilidh dynamics

were also observed for ζ < 0 and λ < 0. Unless otherwise stated,

ζ = 0.04. The Landau-de Gennes bulk free energy parameters are

chosen to be A = 0, B = −0.3 and C = 0.3 in lattice Boltzmann

units. The bulk energy density scale is therefore identified from

these choices55 to be EG ≃ 0.1.

All simulations are performed in a 2D channel of height h = 25,

unless otherwise stated. The walls enforce a no-slip condition on

the velocity field through bounce-back boundary conditions and

strong homeotropic anchoring of the orientation field. The chan-

nel runs in the x̂-direction with periodic boundary conditions.

The channel length is L = 250 (Fig. 2-4 and Movie 1-2), L = 300

(Movie 3), L = 750 (Movie 4), or L = 1000 (Fig. 5-9). Multiple

channel lengths (L = {100,250,300,500,750,1000}) are utilized in

Fig. 9(a). The fluid is initialized with a zero velocity and with

the director everywhere perpendicular to the walls. Initial simu-

lations showed steady state dynamics are reached in ∼ 10000 time

steps so an initial warmup of 50000 is utilized throughout.

Results

For activities where a lattice of flow vortices is stable, the disclina-

tions exist as permanent pairs of oppositely charged ±1/2 topo-

logical defects61 (Fig. 1(a); Movie 1). Each −1/2 disclination

lingers at a point in the vicinity of the channel wall, while pos-

itive +1/2 disclinations continually dance; navigating through

the channel and following approximately sinusoidal trajectories

(Fig. 1(b)). Half of the positive disclinations travel in one direc-

tion along the channel and the other half travel along the mir-

rored trajectory, in the ideal case (Fig. 1(c)). As they move past

each other on the vortex lattice, the positive disclinations form

ephemeral pairs of dancers that continually exchange partners

and periodically skew the vortices as they circulate between the

−1/2 disclinations (Fig. 1(b); Movie 1).
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Fig. 3 Trajectories of ±1/2 disclinations about their central position

normalized by their amplitude as a function of time in channels of

height h = 35. (a) Red line denotes lateral +1/2 disclination trajectory

about the centre of the channel and blue line denotes axial component

of the −1/2 disclination trajectory about the mean position. Simulation

data (thin lines) are well described as sinusoidal (thick lines). (b) Phase

difference between +1/2 and −1/2 trajectories as a function of nematic

elasticity K.

Mid-channel vortex lattice and +1/2 disclinations

Plus half disclinations in extensile active nematics self-propel

themselves along their comet-like tail13 and move along the bor-

ders of counter-rotating vortices (Fig. 1(b); Movie 1). Although

elastic interactions with the near-wall −1/2 disclinations attract

the +1/2 disclinations towards the bounding planes, the vorticity

field and the motility of the +1/2 disclinations keep them from

leaving the mid-region. A disclination cannot switch paths, since

this would require overcoming both the deformation free energy

barrier of crossing the region between the two paths and also of

reorientation.

Increasing the active energy input in the system, increases the

speed of the +1/2 disclinations, which is seen to increase with

the activity as v+1/2 ∼ ζ (Fig. 2). The no-slip boundary condi-

tions viscously dissipate this energy and we see that increasing

the wall separation h also increases the disclination velocity lin-

early (Fig. 2). These dependencies are in agreement with the

theoretically predicted characteristic self-motility of +1/2 discli-

nations13 of v+1/2 ∼ hζ/η where the channel height h is taken to

be the characteristic system size. This agreement indicates that

nematic elasticity does not dominate the dynamics. In fact, in-

creasing the Frank coefficient from K = 0.035 to 0.07 produces no

observable effect (Fig. 2). For K outside of this region, we do not

see topological Ceilidh dynamics for the simulated channel height

and activity. For K < 0.035 values we instead observe meso-scale

turbulence, while for K > 0.07 we find oscillating flows — the dy-

Fig. 4 The vortex lattice fills the channel. Increasing channel height

decreases the number of vortices per unit length. The number of

vortices decreases stepwise in increments of two since counter-rotating

vortices must occur in pairs. Non-integer intermediate values represent

averages of the even numbers of vortices and the error bars represent

the variance. (inset) Schematic representation showing the number of

vortices per unit length decrease as the channel height is increased

since pairs of counter-rotating vortices occupy a larger area.

namical transitions to and from Ceilidh dynamics, and the phase

diagram of dynamical steady flow regimes will be discussed in

more detail in § 3.1 and § 3.2.

Near-wall region and −1/2 disclinations

Unlike +1/2 disclinations, −1/2 disclinations in active nematics

are not self-motile13 and their dynamics are primarily set by elas-

tic and hydrodynamic interactions. Line tension pins the −1/2

disclinations to the confining walls66; however, the −1/2 disclina-

tions can never reside exactly on the surfaces because the director

field is imposed by strong homeotropic anchoring boundary con-

ditions, which ensure that the field cannot vary substantially in

the near-wall region. It is noteworthy that the dancing dynamics

in the mid-channel is independent of the anchoring conditions on

the walls.

Although the −1/2 disclinations do not transverse the chan-

nel, they move in-plane slightly about their pinning point and in

a way that is directly correlated to the oscillatory trajectories of

the +1/2 disclinations (Movie 1). The in-plane oscillations of the

−1/2 disclinations parallel to the channel walls have the same

constant period as the lateral component of the +1/2 disclina-

tions (Fig. 3(a)), although the amplitude is much smaller. In-

terestingly, the oscillations of the non-motile −1/2 disclinations

are generally slightly out-of-phase with the self-propelled +1/2

disclinations. This phase difference results from the nematic elas-

ticity K (Fig. 3(b)) but the fact that it is small again suggests that,

although present, nematic elasticity is not a significant factor in

these simulations of topological Ceilidh dynamics.

Dynamical transitions to and from Ceilidh dynamics

We treat the flows (unidirectional, oscillating, Ceilidh dynam-

ics and meso-scale turbulence) as ordered states that arise from

a series of dynamical transitions as a function of dimension-

less activity (Movie 2). The marked difference between lami-

nar flows (Movie 2(a)) and the intermediate Ceilidh dance state
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(Movie 2(c)) is the formation and structure of the vortex lattice.

As the activity is increased, we first observe oscillating but unidi-

rectional laminar flow, with temporary traveling vorticity patterns

that intermittently dissipate then re-form (Movie 2(a)). For the

vortex lattice to form, the size of the vortices must be commen-

surate with the channel height (Fig. 4(inset)). When the height

of the channel is increased then the number of vortices per unit

length decreases (Fig. 4). Because vortices must occur in counter-

rotating pairs, we find that increasing the channel height (for con-

stant channel length) eventually results in a decrease of two in the

number of vortices (Fig. 4).

We characterize the transition between the oscillating state

and the Ceilidh dance (vortex lattice) regimes via the enstrophy

ω (r, t) ·ω (r, t), and measure activity in terms of the dimension-

less activity number A =
√

ζ h2/K, which is motivated in more

detail in the next section. At low activities, (in the unidirec-

tional flow state; Movie 2(a)), the distribution of the enstrophy

averaged across the channel ǫ (x) = 〈ω (r, t) ·ω (r, t)〉y is sharply

peaked around small values (not shown). At moderate activi-

ties, the system enters the oscillating-flow state and the channel

height-averaged enstrophy distribution spreads to higher values

(Fig. 5(a); blue line). In this oscillating-flow state, the distribu-

tion is seen to decay monotonically from a maximum likelihood at

its smallest non-zero value. At higher activity, however, the peak

value ǫpeak shifts from the distributions smallest non-zero value

to larger values (Fig. 5(a); red line). This peak-shift is due to

the appearance of the vortex lattice and is a good indicator of the

state of the flow structure (Fig. 5(b)).

A further sharp rise in the position of the enstrophy maximum

in Fig. 5(b) marks the onset to the transition between the Ceilidh

dynamics and meso-scale turbulence (Movie 2(d)). At this point

the first signals of localized turbulent patches are identified with

short mean lifetimes. Simulations of the following transition to

system-spanning, steady-state meso-scale turbulence show that

the transition belongs to the directed percolation universality

class47. Experiments in microfluidic circuits suggest that the tran-

sition may be accompanied by a preferential direction depending

on bacteria orientation at the walls49.

To further investigate the nature of the dynamical transitions

between steady states, we consider the transformation from lam-

inar flow to Ceilidh dynamics as a function of activity number

by measuring the system-averaged enstrophy 〈ǫ〉x. As the ac-

tivity is increased incrementally from zero, the system moves

slowly through the dynamical steady states. When the activity

is then lowered from the vortex-lattice state the Ceilidh dance

state remains stable to lower activities, indicating hysteresis in

this dynamic and intrinsically far-from-equilibrium flowing sys-

tem (Fig. 5(c)).

Dynamical phase diagram

By mapping out the parameter space for which topological Ceilidh

dynamics arise, we construct a phase diagram of dynamical

steady flow regimes (Fig. 6). The competition between the ac-

tivity driving a flow field and nematic elasticity resisting the as-

sociated deformation leads to the characteristic activity-induced

b

c

a

Fig. 5 Enstrophy (a) Square root of the channel height-averaged

enstrophy ǫ= 〈ω (r, t) ·ω (r, t)〉y distribution for different values of the

dimensionless activity number A =
√

ζ h2/K. (b) Channel

height-averaged enstrophy distribution peak position ǫpeak as a function

of A. Coloured markers correspond to the distributions shown in (a). (c)

Activity is increased in incremental steps of ∆ζ = 2×10−4, from

non-flowing to oscillating flow to Ceilidh dynamics. The linear rise of the

system-averaged enstrophy 〈ǫ〉x within the unidirectional laminar flow

state is subtracted off and the dynamical transitions to Ceilidh dynamics

are seen to have measurable hysteresis. Red symbols denote

increasing activity, whereas blue symbols denote decreasing activity.
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length scale ℓζ ∼
√

K/ζ , which corresponds to the length scale

over which the active stresses are accommodated by orientational

elasticity58,67. However, confinement truncates the allowable

range of ℓζ and screens interactions on separations > h. Thus,

there is a competition between the activity-induced length scale

ℓζ and the screening length h, as described by the dimension-

less activity number A = h/ℓζ =
√

ζ h2/K. For suspensions of

microtubule-kinesin bundles with ℓζ ∼ 100µm4 confined within

channels of height 100µm . h . 1cm34, we expect a correspond-

ingly broad range of activity numbers A ∼ 1−102.

However, the activity number is not the only control param-

eter that affects the order parameter 〈ǫ〉x since the +1/2 discli-

nation speed increases linearly with both activity and channel

height (Fig. 2) and, therefore, does not depend directly on A.

In addition to the dimensionless activity number A, we must

account for the self-motility speed of the +1/2 disclinations13

v+1/2 ∼ hζ/η . The magnitude of the self motility must be judged

against the characteristic velocity scale of the nematic liquid crys-

tal68 νQ = ℓQEQ/η , where EQ is the characteristic nematic energy

density scale (EQ =0.1) and ℓQ =
√

K/EQ is the equilibrium ne-

matic persistence length, which is comparable to the defect core

radius. The competition between these two velocity scales de-

fines a characteristic self-motility number V = v+1/2/νQ ∼ℓQhζ/K.

Considering microtubule-kinesin bundle suspensions, +1/2 discli-

nations move with a self-motility34 of v+1/2 ≈ 8µm · s−1. An or-

der of magnitude estimate of νQ ∼ 10µm · s−1 is found by es-

timating that the nematic elastic constant is K ∼ 1pN, that the

dense suspension at an oil/water interface has a viscosity roughly

an order of magnitude larger than water, and that the nematic

persistence length is approximately the observed defect core size

ℓQ ∼ 10µm34. Consequently, V ∼ 1 is expected in such systems.

By plotting flow structures as a function of activity number A

and self-motility number V , the flow regimes are well separated

into distinct dynamical steady states (Fig. 6). The non-flowing

quiescent state is shown at the lower left and meso-scale tur-

bulence at the upper right, with unidirectional flow, oscillating

flow and Ceilidh dynamics found in between. The oscillating-

flow state forms one boundary with the Ceilidh dynamics and the

transition does not depend strongly on activity number A at mod-

erate V (Fig. 6). Likewise, the first measurable occurances of

active puffs denoting the early onset of meso-scale from Ceilidh

dynamics is seen to occur at an activity number A that depends

only weakly on V .

The region of the dynamical phase diagram (Fig. 6) that we

can access in our simulations is limited by numerical stability and

it would be interesting to reach further into the low A/high V and

high A/low V regimes. In particular the form of the phase bound-

aries suggest that a direct transition from the oscillating flow state

might occur at higher self-motility. While we have simulations in

the low V/high A region of the diagram, it is difficult to clearly

identify Ceilidh dynamics prior to the transition to meso-scale tur-

bulence. While our previous work has shown that the transition

from the Ceilidh dance to meso-scale turbulence belongs to the

directed-percolation universality class47, this is suggestive of a

secondary route to turbulence that goes directly from oscillating

Fig. 6 Dynamical steady state diagram of flow structures. Flow

regimes as a function of the dimensionless activity number A = h/ℓζ and

self-motility number V = v+1/2/νQ. The transitions are determined by

increasing the activity in increments of ∆ζ = 2×10−4.

flows to chaotic flows. Furthermore, it will be interesting for fu-

ture studies to explore the large V and moderate A region of phase

space to see if there exists additional routes directly from oscillat-

ing to disordered active flow states.

Geometries that eliminate periodic boundary conditions

The simulations presented thus far are all for a channel geometry

with periodic boundary conditions. To test whether Ceilidh dy-

namics arise in experimentally realizable geometries, we consider

two bounded geometries: annuli (Fig. 7(a-b)) and closed chan-

nels (Fig. 7(c)). For consistency with the previous results using

periodic boundary conditions, we keep anchoring at the bound-

aries, initial conditions and physical parameters the same, and set

the gap between parallel confining walls to h = 25 in all cases.

3.3.0.1 Annuli As expected, annular geometries of two con-

centric bounding circles with small curvature (Fig. 7(a)) corre-

spond closely to the results for Ceilidh dynamics in a channel

with periodic boundary conditions: Non-motile −1/2 disclina-

tions are evenly spaced around the inner and outer circular walls,

while self-propelled +1/2 disclinations travel azimuthally around

the annular gap with half moving clockwise and half counter-

clockwise. The vortex lattice is preserved50 and remains rela-

tively unperturbed from the results of the channel geometry with

periodic boundary conditions. Further increasing the curvature

does not cause the Ceilidh dynamics to become unstable, though

the vortex lattice skews substantially (Fig. 7(b)) and becomes

comparable to the vortex fields observed in the vicinity of moder-

ately confined rotors33.

3.3.0.2 Closed channels We next remove the periodicity alto-

gether by considering a channel geometry that is closed by imper-

meable no-slip lateral walls (Fig. 7(c). We observe well-ordered

Ceilidh dynamics in the centre of the channel, far from the lateral

walls. Ceilidh dynamics emerge in the center of closed rectangu-

lar geometries with a sufficiently large aspect ratios (∼ 10). Near

the lateral walls (within ∼ 4 vortex sizes), a disorderly flow pat-
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Fig. 7 Ceilidh dynamics in systems that do not use periodic

boundary conditions. (a) Ceilidh dynamics in an annular geometry with

an outer radius of Ro = 56. The difference between the inner and outer

radii is h = 25. (b) The Ceilidh dynamics remain stable even for the large

curvature of Ro = 31 and h = 25. (c) Ceilidh dynamics in a closed box of

height h = 25 and length L = 500. Identical to the channel walls, the

lateral boundaries are impermeable, no-slip walls with strong

homeotropic anchoring.

tern occurs. In the immediate vicinity of the lateral walls disclina-

tion pairs are created, which feed +1/2 disclinations into the the

ordered Ceilidh dancing in the centre of the channel. The result-

ing −1/2 disclination that arises from such pair-creation events

drifts toward the adjacent lateral wall until it is annihilated by an

outgoing +1/2 disclination.

Lattice defects

As a system-spanning ordered flow state, the Ceilidh dynamics

state itself can possess various irregularities. We refer to these

imperfections in the long-range structure as lattice defects, which

should not be confused with the ±1/2 topological disclinations

that occur in the continuous director field. These lattice defects

arise when the system becomes trapped in a state in which a danc-

ing pair of +1/2 disclinations is separated by other dancing-pairs.

While the majority of irregularities are resolved as the steady state

is approached, large elastic energy barriers can hinder rejoining

of separated pairs and results in long-lived lattice defects. In

channels with periodic boundary conditions, we do not observe

additional disclinations (the number of topological disclination

pairs is still equal to the number of vortices). Rather, there are

only integer numbers of irregularities in the dynamic dance of

the traveling +1/2 disclinations.

Broken-pair lattice defect

There is a finite probability that the distance between a pair of

topological +1/2 disclinations does not reduce to . h before an-

other dancing-pair forms between them. The pair is then sep-

arated by a large energy barrier and we term this situation a

broken-pair lattice defect (Fig. 8; Movie 3). In this broken-pair

lattice defect, the number of disclinations moving leftward re-

mains equal to the number moving rightward. Due to elastic re-

pulsion between the like-signed disclinations and the confinement

of the narrow channel, the separated disclinations cannot escape

this imperfect state. However, it is important to recognize that

no particular dancing-disclination pair permanently makes up the

broken-pair lattice defect. Rather the Ceilidh dance ensures dif-

ferent dancing disclinations pass through the broken-pair lattice

defect. In doing this, the disclinations shear the local vortex,

causing it to become momentarily skewed and stronger (Fig. 8;

Movie 3). Though the local vorticity field within the broken-pair

lattice defect region is perturbed, the globally ordered topological

dynamics of the rest of the system is not strongly affected.

Drift-lattice defect

In the broken-pair lattice defect, the number of disclinations on

the leftward moving path remains equal to the number moving

rightward. However, it is possible that upon the formation of the

vortex lattice more disclinations reach one path than the other

(Fig. 9(a); inset). As in the case of the broken-pair lattice defect,

the energy cost of escaping this state is high and no disclination

is observed to be able to change directions by switching dance-

paths. In this case, two more disclinations move in one (spon-

taneously chosen) direction, and their activity drives a net flow

v
(1)
drift

in that direction in addition to the zero-averaged vortex lat-

tice flow. For this reason, we term this configuration a drift-lattice

defect (Movie 4).

Although, increasing the activity is not seen to raise the prob-

ability of producing a drift-lattice defect in the Ceilidh state

(Fig. 9(b)), increasing the length of the channel makes lattice

defects more likely. For long enough channels, there is a non-zero

probability that the number of lattice defects is greater than one.

For each additional drift-lattice defect in the system there are two

more +1/2 disclinations moving in the spontaneously chosen di-

rection. In this way, the vortex lattice can be seen as a ground

state and drift-lattice defects as excited states with quantization

number n. The net flux of the system is seen to be cumulative,

such that v
(n)
drift

= nv
(1)
drift

. The maximum number of drift excitations

observed in our simulations is n = 3 (Fig. 9(a); Movie 4(b)). We

would expect that the probability of obtaining an ideally ordered

system will decrease, that n ≥ 1 will become more probable, and

that a well defined number density of localized lattice defects will

emerge as the length of the channel is increased.

The drift velocity v
(1)
drift

due to a single drift-lattice defect can be

determined by estimating the net active force and viscous drag.

The active force per unit volume −ζ ∇ ·Q is most significant near

the ±1/2 disclinations, whose local deformation can be approxi-

mated as a solitary defect in bulk, n±1/2 =
[

cos
(

± 1
2

φ
)

,sin
(

± 1
2

φ
)]

.

By assuming that the ideal +1/2 disclinations are located at and

oriented along the centerline of the channel and that the strong

anchoring of the walls screen director deformations beyond a dis-

tance of ∼ h, the net active force on the fluid due to a drift-lattice

defect is found to be F
(1)
act = caηv+1/2, where the numerical coeffi-

cient ca results from the precise integration area. For the case of

n drift lattice defects, the net force increases to F
(n)
act = n F

(1)
act . The

drag that balances this active force is approximated by realizing

that the train of vortices in the mid-channel region move en masse

(Movie 4), while the flow in the near-wall region must viscously
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Fig. 8 Broken-pair lattice defect (see Movie 3). (a) Simulation snapshot of the instantaneous vorticity field of the ordered vortex lattice, and

topological disclinations (−1/2 disclinations as magenta diamonds and +1/2 as green dots). A broken-pair lattice defect exists at the ends of the

channel (highlighted in magenta). (b) Schematic of the broken-pair lattice defect. The dynamically changing pair of separated +1/2 disclinations

(highlighted in magenta) are separated by other paired-dancers. The number of disclinations moving leftward (light green dots) remains equal to the

number moving rightward (dark green dots).

decrease from ≈ v
(n)
drift

to zero at the no-slip boundary. Approx-

imating the flow as simple shear and integrating over the near-

wall regions gives the drag force to be Fdrag = −(cdL/h)ηv
(n)
drift

,

where cd is a numerical drag coefficient whose details depend on

the zero-averaged rotating vortex size and structure within the

mid-channel region. These estimates predict a quantized drift ve-

locity v
(n)
drift

∼
(

h
L

)

nv+1/2 in agreement with Fig. 9(a).

Conclusions

It has been widely recognized that activity can drive collective

motion in biological systems and the work presented here stresses

the fact that activity can also produce highly ordered, but simul-

taneously dynamic, flow and topological fields. The topological

Ceilidh dynamics that we report emerge as an intermediate state

between spontaneous unidirectional flow and meso-scale turbu-

lence for active nematics within a confining channel, when the

characteristic vorticity length scale of meso-scale turbulence is

comparable but smaller than the channel height.

While the time-varying topological disclination dynamics of the

Ceilidh dance state were unexpected, the emergence of vortex

lattices in active matter have been observed experimentally in

motility assays of microtubles3 and self-propelled particles69,70

with short range interactions and also numerically by hydrody-

namic screening of activity-induced flows due to frictional damp-

ing35. Indeed, repeating vortex patterns have recently been re-

ported in dense suspensions of bacteria confined within microflu-

idic channels49, although the possibility of dynamically ordered

disclination states was not discussed. In each of these examples,

flows are screened. As such, the Ceilidh dance can be interpreted

as arising due to the screening of the flow by the microfluidic

channel walls.

Previous works have reported the emergence of long-range ori-

entational (but not positional) order of active topological discli-

nations34; the current work advances this research direction to-

wards dynamically ordered states and the effect of structural de-

fects in the disclination patterning. Just as impurities, vacancies,

dislocations and other defects play an important part in tradi-

tional condensed matter systems, the active-fluidic lattice defects

discovered here may play critical but previously overlooked roles

in precisely controlling the collective dynamics of biological sys-

tems, such as cellular monolayers or embryonic epithelial layers

and will be relevant to the design of active microfluidic devices.
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Movie captions

Movie 1 Dancing of topological Ceilidh dynamics. (a) Vortic-

ity field ω (r, t) and streamlines of the highly ordered vortex

lattice. The dynamically ordered state of disclinations within

the channel is shown as −1/2 topological disclinations near

the channel walls (magenta diamonds) and +1/2 disclina-

tions transversing the mid-region (green dots). The system

has zero net-topological charge and equal numbers of +1/2

disclinations travel to the left as to the right. (b) The scalar

order field q(r, t) and director field n(r, t) for the same sim-

ulation as Movie 1(a).

Movie 2 Vorticity field ω (r, t) and and topological defects for

the four types of flow states observed in simulations of

active nematic fluids confined within two dimensional

micro-channels. Magenta diamonds denote −1/2 topo-

logical disclinations and self-motile +1/2 disclinations are

represented as green dots. (a) Unidirectional flow in a

spontaneously chosen direction along the channel occurs

at low activity. (b) Oscillating but unidirectional laminar

flow, with temporary traveling vorticity patterns that inter-

mittently dissipate then re-form. (c) Ceilidh dynamics with

a well-defined vortex lattice at intermediate activity. (d) The

chaotic flow state of meso-scale turbulence with the contin-

ual creation and annihilation of topological disclinations at

the highest activity numbers.

Movie 3 Broken-pair lattice defect. Vorticity field ω (r, t) and

topological disclinations (−1/2 magenta diamonds; +1/2

green dots) for topological Ceilidh dynamics with a single

broken-pair lattice defect, in which the number of disclina-

tions moving leftward remains equal to the number moving

rightward. The lattice defect locally skews the vorticity field

about the two separated +1/2 disclinations.

Movie 4 Drift-lattice defects for a single defect (top) and for

three defects. (a) Vorticity field ω (r, t) and topological

disclinations (−1/2 magenta diamonds; +1/2 green dots)

for Ceilidh dynamics with a single drift-lattice defect (n = 1),

in which two more disclinations are moving leftward than

rightward. A vertical dashed line is drawn across the chan-

nel to mark a static point against which the leftward drift

of the vortex lattice can be identified. Alternatively, an ar-

row points to a single −1/2 defect so that the distance trav-

elled can be assessed at all times. (b) The same system as

Movie 4(a) but for an example simulation with three drift-

lattice defects (n = 3). Comparison with Movie 4(a) shows

that the drift velocity is substantially faster than when only

a single drift-lattice defect is present.
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