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Abstract
Content distribution via the Internet is becoming increas-
ingly popular. To be cost-effective, commercial content
providers are considering the use of peer-to-peer (P2P)
protocols such as BitTorrent to save on bandwidth costs
and to handle peak demands. However, when an online
content provider uses a P2P protocol, it faces a crucial is-
sue: how to incentivize its clients to upload to their peers.

This paper presents Dandelion, a system designed to
address this issue in the case of paid content distribu-
tion. Unlike previous solutions, most notably BitTorrent,
Dandelion provides robust (provably non-manipulable)
incentives for clients to upload to others. In addition, un-
like systems with tit-for-tat-based incentives, a client is
motivated to upload to its peers even if the peers do not
have content that interests the client. A client that hon-
estly uploads to its peers is rewarded with credit, which
can be redeemed for various types of rewards, such as
discounts on paid content.

In designing Dandelion, we trade scalability for the
ability to provide robust incentives. The evaluation of
our prototype system on PlanetLab demonstrates the
viability of our approach. A Dandelion server that runs
on commodity hardware with a moderate access link
is capable of supporting up to a few thousand clients.
These clients can download content at rates comparable
to those of BitTorrent clients.

1 Introduction
Content distribution via the Internet is becoming in-

creasingly popular among the entertainment industry and
the consumers alike. A survey showed that Apple’s
iTunes music store sold more music than Tower Records
and Borders in the US in the summer of 2005 [10]. A
number of key content producers, such as Universal, are
now launching download to own services [15]. However,
the increasing demand for digital content is overwhelm-
ing the infrastructure of online content providers [13].

An attractive approach for commercial online content
distribution is the use of peer-to-peer (P2P) protocols.
This approach does not require a content provider to
overprovision its bandwidth to handle peak demands, nor
does it require the provider to purchase service from a
third-party such as Akamai. Instead, a P2P protocol such
as BitTorrent [26] harnesses its clients’ bandwidth for file
distribution, and saves the bandwidth and computing re-
sources of a content provider. Leading content providers
such as Warner Bros [16] and 20th Century Fox [11] have
now partnered with BitTorrent, Inc. EMI [12] has an-
nounced a plan to launch a P2P music distribution ser-
vice. This recent trend indicates that P2P protocols en-
able a site to cost-effectively distribute content.

When an online content provider uses a peer-to-peer
protocol, it faces a crucial issue: how to motivate clients
that possess content to upload to others. This issue is of
paramount importance because the performance of a P2P
network is highly dependent on the users’ willingness to
contribute their uplink bandwidth. However, selfish (ra-
tional) users tend not to share their bandwidth without
external incentives [36]. Although the popular BitTor-
rent protocol has incorporated the rate-based tit-for-tat
incentive mechanism for users to upload static content,
this mechanism bears two weaknesses. First, it does not
encourage clients to seed, i.e. to upload to other peers
after completing the file download. Second, it is vulner-
able to manipulation [37, 44, 45, 49, 50], allowing modi-
fied clients to free-ride and still achieve a better down-
loading rate than compliant clients (Section 2.2).

The purpose of this work is to explore the design space
of a P2P content distribution protocol that addresses this
issue. We present the design and implementation of Dan-
delion, a cooperative paid content distribution protocol
that uses non-manipulable virtual-currency-based incen-
tives to encourage uploading and to address free-riding.

Our protocol guarantees strict fair exchange of con-
tent uploads for virtual currency (credit). A client cannot
download content from selfish peers (i.e. peers that do
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not upload unless they expect to be rewarded) without
paying credit, neither it can obtain credit for uploads it
did not perform. This protocol property provides robust
incentives for selfish peers to contribute their bandwidth
in the following two ways. First, credit can be redeemed
at a content provider for a discount on the content, or for
other types of monetary awards. Given appropriate pric-
ing schemes, a selfish client is motivated to serve content
to its peers regardless of whether its peers possess con-
tent that interests it. Second, the protocol prevents free-
riding, because, provably, the only way a client can ob-
tain valid content from selfish peers or can earn credit is
by paying credit or uploading valid content, respectively.
Hence, we believe that our protocol can increase the ag-
gregate upload bandwidth of a P2P content distribution
system and improve downloading times.

The use of virtual currency for incentives has been
proposed in several P2P content distribution systems [3,
7, 8, 17, 29, 52, 53], but a key challenge, how to make
the virtual-currency-based system efficient and practical
while robust to manipulation, is left unaddressed (Sec-
tions 2.1 and 2.4). We address this challenge based on
the insight that in the problem domain of online content
distribution, the content provider itself is a trusted third
party and can mediate the content exchange between its
clients. Based on this observation, we design a protocol
in which clients exchange data for credit and the server
mediates this exchange. The server uses only efficient
symmetric cryptography on critical data paths and sends
only short messages to its clients.

Our work makes the following contributions:
1) An efficient cryptographic fair exchange scheme for
trading data uploads for virtual currency, which is suit-
able for P2P content distribution. Our scheme is based
on symmetric key cryptography, and is provably robust
to client cheating. A client that does not upload or up-
loads garbage to its peers cannot claim credit. A client
cannot download correct content from selfish peers with-
out the client being charged and the peers rewarded.
2) The design and implementation of Dandelion. To
the best of our knowledge, Dandelion is the first imple-
mented P2P static content distribution protocol that uses
symmetric cryptography in order to provide robust in-
centives for clients to upload paid content to their peers.
Our system’s evaluation on PlanetLab [24] identifies the
scalability limits of our incentive mechanism and demon-
strates the plausibility of our approach.

In this paper, we use a BitTorrent-like terminology. A
seeder refers to a client that uploads to its peers despite
not being interested in the content being distributed (e.g.
a client that uploads although it has completed its file
download). A leecher refers to a client that is interested
in the content being distributed (e.g. a client that has
not completed its file download). A free-rider refers to
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Figure 1: Mean download completion times of ∼200 CTorrent

1.3.4 leechers as a function of file size, for 1 initial seeder and 10

initial seeders. The mean file download completion times are ex-

tracted over 10 runs. Error bars correspond to 95% confidence

intervals.

a client that only downloads from others but does not
upload. A swarm refers to all clients that actively partic-
ipate in the protocol for a given content item.

The rest of this paper is organized as follows. Sec-
tion 2 describes existing incentive mechanisms in P2P
protocols, and cryptographic fair exchange schemes.
Section 3 describes the design of Dandelion. Section 4
analyzes the security of our design. Sections 5 and 6
present our system’s implementation and experimental
evaluation, respectively. We conclude in Section 7.

2 Background and Related Work
In this section we motivate the design of Dandelion

by describing existing P2P content distribution incentive
mechanisms and their weaknesses. In addition, we dis-
cuss previous work on cryptographic fair exchange.

2.1 Impact of Seeding

The popular BitTorrent protocol employs the rate-
based tit-for-tat incentive mechanism [26]. A client un-
chokes (i.e. uploads to) at most four to ten clients for a
given file, in parallel. Most of the unchoked peers are
the peers that upload useful parts of the file to the client
at the fastest rates and are interested in the client’s con-
tent. The client also optimistically unchokes one or two
peers that are not among the fastest uploaders, in expec-
tation of future reciprocation. The list of unchoked peers
is typically revised every 10 seconds.

This mechanism mitigates free-riding but does not
provide explicit incentives for seeding. Although several
BitTorrent deployments rely on clients to honestly report
their uploading history [17], and use this history to de-
cide which clients can join a swarm, practice has shown
that clients can fake their upload history reports [4].
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In contrast, Dandelion’s non-manipulable and cen-
trally maintained virtual currency enables a content dis-
tributor to reliably keep record of the amount of content
a selfish client has uploaded to its peers. The distributor
can use this record to provide robust incentives for a self-
ish client to upload to its peers regardless of whether the
peers have content that interests the client.

Seeders can substantially improve download comple-
tion times, because they increase the file availability and
the aggregate upload bandwidth. Figure 1 shows the im-
pact of seeders. We run two BitTorrent experiments on
PlanetLab, with one and ten initial seeders, respectively.
Initial seeders are clients that have the complete file prior
to the start of the distribution. In each experiment, we run
∼200 CTorrent 1.3.4 [2] leechers on distinct PlanetLab
nodes to simultaneously download a file. Upon comple-
tion of their download, leechers remain online seeding
the file. As can be seen, the mean file download com-
pletion time decreases considerably when there are ten
initial seeders, especially for small files of a few MB.

2.2 Free-riding in BitTorrent
A general observation is that since BitTorrent’s tit-for-

tat incentives reward cooperative clients with improved
download times, clients are always incented to upload.
Therefore, free-riding should not be an issue in BitTor-
rent networks. This observation relies on the assumption
that users aim only at maximizing their download rates.
However, in practice, several BitTorrent users can be re-
luctant to upload even if uploading improves their down-
load times. For example, users with access providers that
impose quotas on outgoing traffic or users with limited
uplink bandwidth (e.g. 1.5Mbps/128Kbps ADSL) may
wish to save their uplink for other critical tasks.

Considering the tradeoff between performance and
susceptibility to free-riding [31], BitTorrent purposely
does not implement a strict tit-for-tat (TFT) strategy. In
particular, it employs rate-based instead of chunk-level
TFT, and BitTorrent clients optimistically unchoke peers
for relatively long periods of time (10 to 30 seconds).
Furthemore, BitTorrent seeders select peers to upload to
regardless of whether those peers upload to others.

Based on the above observations and previous work on
BitTorrent exploitation [37, 44, 49], in [50], we modify
a CTorrent-1.3.4 client to employ the “large view” ex-
ploit to free-ride. The client obtains a larger than normal
view of the swarm, either by repeatedly requesting par-
tial views from the BitTorrent tracker or by exchanging
views with its peers [6, 9]. Subsequently, it connects to
all peers in its view, while it does not upload any content.
Using this exploit in a sufficiently large swarm, a modi-
fied client can substantially increase the frequency with
which it becomes optimistically unchoked, comparing to
a compliant client, which typically connects to 50-100

peers. It can also find more seeders, which do not em-
ploy tit-for-tat.

In particular, we show that our modified free-rider
client is able to download faster than its tit-for-tat com-
pliant counterpart in 12 out of 15 randomly selected
public torrents, for file sizes between 500MB to 2 GB
and swarm sizes of 50 to 1000 peers. We also ex-
periment with PlanetLab residing swarms that comprise
of ∼300 leechers that are rate-limited at 30KB/sec
and one initial seeder that is rate-limited at 120KB/sec.
When compliant clients comprise 90% of the PlanetLab-
residing swarm, free-riders download faster than compli-
ant clients in their swarm and slightly worse than com-
pliant clients in a swarm with no free-riders.

The same weakness of BitTorrent’s incentives is ex-
perimentally demonstrated in a recent work by Locher et
al. [45], which was almost concurrent with ours.

Drawing from the above observations, we believe
that the “large view” exploit has the potential to be
widely adopted and could lead to system-wide perfor-
mance degradation in BitTorrent swarms. Dandelion ex-
plicitly addresses this issue, because its provably non-
manipulable incentives enable a content distributor to
reliably track the amount of content a client has down-
loaded from selfish peers, and charge the client accord-
ingly.

2.3 Pairwise Currency as Incentives
In P2P content distribution protocols that employ

pairwise virtual currency (credit) for incentives, clients
maintain distinct credit balances for each of their peers.
In this context, credit refers to any metric of a peer’s co-
operativeness.

An eMule [7] client rewards cooperative peers by re-
ducing the time the peers have to wait until they are
served by the client. Swift [52] introduces a pair-
wise credit-based trading mechanism for peer-to-peer file
sharing networks and examines the available peer strate-
gies. In [37], the authors suggest tackling free-riding in
BitTorrent by employing chunk-level tit-for-tat, which
is similar to pairwise credit incentives. These pairwise
credit-based incentive mechanisms bear weaknesses that
are similar to the ones of rate-based tit-for-tat: a) they
provide no explicit incentives for seeding; and b) they
can be manipulated by free-riders that obtain a “large
view” of the network, and initiate short-lived sessions
with numerous peers to exploit the initial offers in pair-
wise transactions.

Scrivener [29] combines pairwise credit balances with
a transitive trading mechanism, which is based on a fla-
vor of distributed reputation. MNet [8] uses a combina-
tion of pairwise balances and tokens that can be cashed
in a central broker. When the debt during pairwise trans-
actions exceeds a specified threshold, the side with the
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negative balance transfers a credit token to the other by
contacting a broker. Since both Scrivener and MNet do
not provide strong fair exchange guarantees of content
uploads for credit, they can be manipulated in a way sim-
ilar to the “large view” exploit.

Keidar et al. [38] present the design of a P2P mul-
ticast protocol, which is formally proven to enforce co-
operation among selfish leechers. To prove cooperation,
the authors assumed that selfish leechers abide by a pre-
determined strategy, which specifies how many peers a
leecher can have. However, the recent work on BitTor-
rent exploitation [45, 50], which has partly motivated our
system’s design, has demonstrated that this assumption
may be too restrictive.

BAR Gossip [42] is suitable for P2P streaming of live
content. Owing to its cryptographic fair exchange mech-
anism and its verifiable peer selection, the system is ro-
bust to clients that attempt to free-ride by obtaining a
“large view.” However, its verifiable peer selection tech-
nique assumes that no client can join the network after
the streaming session starts. Since BAR Gossip is de-
signed for P2P streaming, it does not need to provide
incentives for seeding. Therefore, it ensures the fair ex-
change of content uploads between clients that are in-
terested in the same live broadcast. On the other hand,
Dandelion, which needs to incent seeding for static con-
tent distribution or video on demand, guarantees fair ex-
change of content uploads for virtual currency.

2.4 Global Currency as Incentives
It has been widely proposed to use global virtual

currency to provide incentives in P2P content distribu-
tion systems. This is the basis of the incentive mecha-
nism employed by Dandelion: for each client, the sys-
tem maintains a credit balance, which is used to track the
bandwidth that the client has contributed to the network.

Karma [53] employs a global credit bank and certified-
mail-based [48] fair exchange of content for reception
proofs. It distributes credit management among multiple
nodes. Karma’s distributed credit management improves
scalability. However, it does not guarantee the integrity
of the global currency when the majority of the nodes
that comprise the distributed credit bank are malicious or
in a highly dynamic network. In contrast, Dandelion’s
centrally maintained global currency is non-manipulable
by clients. Thus, it enables a server to offer monetary
rewards based on client credit balances, providing strong
incentives for clients to cooperate.

Horne et al. [35] proposed an encryption- and erasure-
code-based fair exchange scheme for exchange of con-
tent for proofs of service, but did not provide an exper-
imental evaluation. Their scheme detects cheating with
probabilistic guarantees, whereas Dandelion determinis-
tically detects and punishes cheaters.

Li et al. [43] proposed a scheme for incentives in P2P
environments that uses fair exchange of proof of service
with chunks of content. The selfish client encrypts a
chunk and sends it to its peer, the peer responds with a
public-key cryptographic proof of service, and the client
completes the transaction by sending the decryption key.
A trusted third party (TTP) is involved only in the follow-
ing cases: a) the selfish client presents the proofs of ser-
vice to obtain credit; b) the peer complains for receiving
an invalid chunk; and c) the peer complains for not re-
ceiving the decryption key from the selfish client. How-
ever, unless the server incurs the high cost of frequently
renewing the public key certificates of each client, the
credit system is vulnerable to clients that obtain content
from selfish peers, despite those clients not having suf-
ficient credit. In contrast, in Dandelion, the TTP me-
diates every chunk exchange, effectively preventing a
client from obtaining any chunks from selfish peers with-
out having sufficient credit.

PPay [55] and WhoPay [54] are recent micropayments
proposals that employ public key cryptography and are
designed for the P2P content distribution case. These
systems do not guarantee fair exchange of content for
payment. Free-riders may establish short-lived sessions
to many peers, download portions of content from them
or obtain payments, and thereby obtain a substantial
amount of content or credit without paying or uploading.

2.5 Cryptographic Fair Exchange
There are two main classes of solutions for the classic

cryptographic fair exchange problem. One uses simulta-
neous exchange by interleaving the sending of the mes-
sage with the sending of the receipt [22, 25, 27, 30, 47].
These protocols rely on the assumption of equal compu-
tational and bandwidth capacity, which does not suit the
heterogeneous P2P setting.

The other class relies on the use of a trusted [18, 19,
56, 57] or semi-trusted [32, 33] third party (TTP). The
main differences of our scheme are as follows: 1) In
[18, 19, 57] the TTP cannot decide whether a party has
misbehaved, but can only complete the transaction it-
self if presented with proof that the parties initially in-
tended to perform the transaction. They assume that the
cost of sending the data is small and can be repeated by
the TTP. However in Dandelion, transmission of data is
the most expensive resource and our scheme aims at the
fair exchange of this resource; 2) Unlike [32] and [33],
our scheme does not rely on untrusted clients to become
semi-TTP; 3) Unlike [56], our scheme does not use pub-
lic key cryptography for encryption and for committing
to messages, and only requires one client rather than two
to contact the TTP for each transaction. The technique
they use to determine whether a message originates from
a party is similar to the one used by our complaint mech-
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anism, but our work also addresses the specifics of deter-
mining the validity of the message.

3 Design
In this section we describe the system model and the

design of Dandelion.

3.1 Overview
Our design is based on the premise that a low cost

server does not have sufficient network I/O resources to
directly serve content to its clients under a flash crowd
event [14]. It may however, have sufficient CPU, mem-
ory, and memory/disk/network I/O resources to execute
many symmetric cryptography operations, to maintain
TCP connection and protocol state for many clients, to
access its client’s protocol state, and to receive and send
short messages [34]. However, CPU, memory and I/O
are still limited resources. Therefore we aim at making
the design as efficient as possible.

Under normal workload, A Dandelion server behaves
similar to a web/ftp, streaming or video on demand
server, i.e. it directly serves content to its clients. When a
server is overloaded, it enters a peer-serving mode. Upon
receiving a request, the server redirects the client to other
clients that are able to serve the requests for content. In
the peer-serving mode, a Dandelion system is reminis-
cent of BitTorrent, in the sense that a server splits content
into verifiable chunks, and clients exchange carefully se-
lected chunks. As is the case with BitTorrent, the content
is split into multiple chunks in order to enable clients to
upload as soon as they receive and verify a small por-
tion of the content. It is also split in order to increase the
entropy of content in the network, facilitating chunk ex-
changes among peers. We discuss the tradeoffs in select-
ing a chunk size in the case of static content distribution
in Section 6.3.1.

However, our protocol uses a different incentive mech-
anism. The server maintains a virtual economy and asso-
ciates each client with its credit balance. It entices selfish
clients to upload to others by explicitly rewarding them
with virtual credit, while it charges clients that download
content from selfish peers.

3.2 System Model
We describe the system model under which Dandelion

is designed to operate. We assume three types of clients,
which we define as follows:
• Malicious clients aim at harming the system. They
misbehave as follows: a) they may attempt to cause other
clients to be blacklisted or charged for chunks they did
not obtain; b) they may attempt to perform a Denial of
Service (DoS) attack against the server or selected clients
(this attack would involve only protocol messages, as we

consider bandwidth or connection flooding attacks out-
side the scope of this work); and c) they may upload in-
valid chunks aiming at disrupting the distribution of con-
tent.
• Selfish (rational) clients share a utility function. This
function describes the cost they incur when they upload a
chunk to their peers and when they pay virtual currency
to download a chunk. It also describes the benefit they
gain when they are rewarded in virtual currency for cor-
rect chunks they upload and when they obtain chunks
they wish to download. A selfish client aims at maximiz-
ing its utility. We assume that the content provider prices
a peer’s accumulated virtual currency appropriately: the
benefit that a selfish client gains from acquiring virtual
currency for content it uploads exceeds the cost of utiliz-
ing its uplink to upload it.

A selfish client may consider manipulating the credit
system in order to maximize its utility by misbehaving as
follows: a) it may not upload chunks to a peer, and yet
claim credit for them; b) it may upload garbage either on
purpose or due to communication failure, and yet claim
credit; c) it may obtain chunks from selfish clients, and
yet attempt to avoid being charged; d) it may attempt
to download content from selfish peers without having
sufficient credit; and e) it may attempt to boost its credit
by colluding with other clients or by opening multiple
Dandelion accounts.
• Altruistic clients upload correct content to their peers
regardless of the cost they incur and they do not expect
to be rewarded.

We assume weak security of the IP network, meaning
that a malicious or a selfish client cannot interfere with
the routing and forwarding function, and cannot corrupt
messages, but it can eavesdrop messages. In addition,
we assume that communication errors may occur during
message transmissions.

In the rest of this section we describe the design
of Dandelion, which explicitly addresses the challenges
posed by selfish and malicious clients, as well as the
challenges posed by the communication channel.

3.3 Credit Management
Dandelion’s incentive mechanism creates a virtual

economy, which enables a variety of application scenar-
ios. A client spends ∆c > 0 credit units for each chunk it
downloads from a selfish client and a selfish client earns
∆r > 0 credit units for each chunk it uploads to a client. A
client can acquire a chunk only if its credit is greater than
∆c. We set ∆c = ∆r, so that two colluding clients cannot
increase the sum of their credit, by falsely claiming that
they upload to each other.

Our protocol is intended for the case in which users
maintain paid accounts with the content provider, such as
in iTunes. A client is awarded sufficient initial credit to
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download the complete paid content from the server. The
content provider may redeem a client’s credit for mone-
tary rewards, such as discounts on content prices or ser-
vice membership fees, similar to the mileage programs
of airline companies. This incents a client to upload to
others and earn credit. A user cannot boost its credit by
presenting multiple IDs (Sybil attack [28]) and claiming
to have uploaded to some of its registered IDs. This is
because each user maintains an authenticated paid ac-
count with the provider. The user essentially purchases
its initial credit, and the net sum in an upload-download
transaction between any two IDs is zero.

Figure 2: The Dandelion protocol. The numbers on the arrows

correspond to the listed protocol messages and the steps listed in

Section 3.4.2. The messages are sent in the order they are num-

bered.

3.4 Robust Incentives
This section describes Dandelion’s cryptographic fair-

exchange-based protocol.

3.4.1 Setting

By 〈X〉 we denote the description of an entity or ob-
ject, e.g. 〈X〉 denotes a client X’s Dandelion ID. KS is
S’s master secret key, H is a cryptographic hash function
such as SHA-1, MAC is a Message Authentication Code
such as HMAC [20], and p refers to a time period. By
pX we denote p at client or server X .

Due to host mobility and NATs, we do not use Inter-
net address (IP or IP/source-port) to associate credit and
other persistent protocol information with clients. In-
stead, each user applies for a Dandelion account and is
associated with a persistent ID. The server S associates
each client with its authentication information (client ID
and password), the content (e.g. a file) 〈F〉 it currently
downloads or seeds, its credit balance, and the content it
can access. The clients and the server maintain loosely
synchronized clocks.

Every client A that wishes to join the network must es-
tablish a transport layer secure session with the server S,
e.g. using TLS [1]. A client sends its ID and password
over the secure channel. The server S generates a secret
key and symmetric encryption initialization vector pair,

denoted KSA, which is shared with A. KSA is efficiently
computed as KSA = (H(KS,〈A〉, p,0),H(KS,〈A〉, p,1)).
KSA is also sent over the secure channel. This key is
used both for symmetric encryption and for computing
a MAC. For MAC computation, we use only the secret
key portion of KSA. The rest of the messages that are ex-
changed between the server and the clients are sent over
an insecure communication channel (e.g. plain TCP),
which must originate from the same IP as the secure ses-
sion. Similarly, all messages between clients are sent
over an insecure communication channel.

Each client B exchanges only short messages with the
server. To prevent forgery of the message source and re-
play attacks, and to ensure the integrity of the message,
each message includes a sequence number and a digital
signature. The signature is computed as the MAC of the
message, keyed with the secret key KSB that B shares with
the server. Each time a client or the server receive a mes-
sage from each other, they check whether the sequence
number succeeds the sequence number of the previously
received message and whether the MAC-generated sig-
nature verifies. If either of the two conditions is not sat-
isfied, the message is discarded. The sequence number is
reset when time period p changes.

The server initiates re-establishment of shared keys
KSA with the clients upon p change in order to: a) pre-
vent attackers from inferring KSA by examining the en-
crypted content and the MACs used by the protocol; and
b) allow the reuse of message sequence numbers once the
numbers reach a high threshold, while preventing attack-
ers from replaying previously signed and sent messages.
S tolerates some lag in the p assumed by a client.

3.4.2 Protocol Description

To provide robust incentives for cooperation under
the model described in Section 3.2, Dandelion em-
ploys a cryptographic fair-exchange mechanism. Our
fair-exchange protocol involves only efficient symmetric
cryptographic operations. The server acts as the trusted
third party (TTP) mediating the exchanges of content for
credit among its clients. When a client A uploads to a
client B, it sends encrypted content to client B. To de-
crypt, B must request the decryption key from the server.
The requests for keys serve as the proof that A has up-
loaded some content to B. Thus, when the server receives
a key request, it credits A for uploading content to B, and
charges B for downloading content.

When a client A sends invalid content to B, B can de-
termine that the content is invalid only after receiving
the decryption key and being charged. To address this
problem, our design includes a non-repudiable complaint
mechanism. If A intentionally sends garbage to B, A can-
not deny that it did. In addition, B is prevented from
falsely claiming that A has sent it garbage.
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The following description omits the sequence number
and the signature in the messages between clients and the
server. Figure 2 depicts the message flow in our protocol.

Step 1: The protocol starts with the client B sending a
request for the content item 〈F〉 to S.

B −→ S: [content request] 〈F〉

Step 2: If B has access to 〈F〉, S chooses a short list of
clients 〈A〉list, which are currently in the swarm for 〈F〉.
The policy with which the server selects the list 〈A〉list de-
pends on the specifics of the content distribution system.
Each list entry, besides the ID of the client, also contains
the client’s inbound Internet address. For every client in
〈A〉list, S sends a ticket TSA = MACKSA [〈A〉,〈B〉,〈F〉,t] to
B. t is a timestamp, and 〈A〉 is a client in 〈A〉list. The
tickets TSA are only valid for a certain amount of time T
(considering clock skew between A and S) and allow B to
request chunks of the content 〈F〉 from client A. When
TSA expires and B still wishes to download from A, it re-
quests a new TSA from S.

To ensure integrity in the case of static content or
video on demand, S also sends to B the SHA-1 hash H(c)
for all chunks c of 〈F〉. For the case of live streaming
content, the content provider augments the chunks it
generates with his public key signature on their hash and
ID, as sign(H(c),〈c〉). Clients append this signature to
all the chunks they upload.

S−→B:[content response] TSA,〈A〉list,H(c)list,〈F〉,t, pS

Step 3: The client B forwards this request to each
A ∈ 〈A〉list.

B −→ A:[content request] TSA,〈F〉,t, pS

Step 4: If current-time ≤ ts + T and TSA is not in A’s
cache, A verifies if TSA = MACKSA [〈A〉,〈B〉,〈F〉,t]. The
purpose of this check is to mitigate DoS attacks against
A; it allows A to filter out requests from clients that are
not authorized to retrieve the content or from clients that
became blacklisted. As long as B remains connected to
A, it periodically renews its TSA tickets by requesting
them from S. If the verification fails, A drops this
request. Also, if pS is greater than A’s current epoch
pA, A learns that it should renew its key with S soon.
Otherwise, A caches TSA and periodically sends the
chunk announcement message described below, for as
long as the timestamp t is fresh. This message contains
a list of chunks that A owns, 〈c〉list. B also does so in
separate chunk announcement messages. The specifics
of which chunks are announced and how frequently
depend on the type of content distribution. For example,

in the case of static content distribution, the initial chunk
announcement would contain the IDs of all the chunks A
owns, while the periodically sent announcement would
contain the IDs of newly acquired chunks.

A −→ B:[chunk announcement] 〈c〉list

Step 5: B and A determine which chunks to download
from each other according to a chunk selection policy;
BitTorrent’s locally-rarest-first is suitable for static
content dissemination, while for streaming content or
video on demand other policies are appropriate [23, 42].
A can request chunks from B, after it requests and
retrieves TSB from S. B sends a request for the missing
chunk c to A.

B −→ A:[chunk request] TSA,〈F〉,〈c〉,t, pS

Step 6: B’s chunk requests are served by A as long as the
timestamp t is fresh, and TSA is cached or TSA verifies.
If A is altruistic, it sends the chunk c to B in plaintext
and the per-chunk transaction ends here. Otherwise,
A encrypts c using a symmetric encryption algorithm
Enc, as C = Enck〈c〉(c). k〈c〉 is a random secret key and
random symmetric encryption initialization vector pair.
This pair is distinct for each chunk. A encrypts the ran-
dom key with KSA, as e = EncKSA(k〈c〉). Next, A hashes
the ciphertext C as H(C). Subsequently, it computes its
commitment to the encrypted chunk and the encrypted
key as TAS = MACKSA [〈A〉,〈B〉,〈F〉,〈c〉,e,H(C),t] and
sends the following to B.

A −→ B: [chunk response]TAS,〈F〉,〈c〉,e,C,t, pA

Step 7: To retrieve k〈c〉, B needs to request it from the
server. As soon as B receives the encrypted chunk, B
computes its own hash over the received ciphertext C′

and forwards the following to S.

B−→ S:[decryption key request] 〈A〉,〈F〉,〈c〉,e,H(C′),
t,TAS, pA

Step 8: If timestamp t is fresh enough, and
pA is not too much off, S checks if TAS =
MACKSA [〈A〉,〈B〉,〈F〉,〈c〉,e,H(C′),t]. The time-
stamp t freshness requirement forces B to expedite
paying for decrypting the encrypted chunks. This fact
allows A to promply acquire credit for its service. The
ticket TAS verification may fail either because C′ 6= C due
to transmission error in step (6) or because A or B are
misbehaving. Since S is unable to determine which is
the case, it punishes neither AS or B and does not update
their credit. It does not send the decryption key to B but
it still notifies B of the discrepancy. In this case, B is
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expected to disconnect from A and blacklist it in case
A repeatedly sends invalid chunk response messages.
If B keeps sending invalid decryption key requests, S
penalizes him. If the verification succeeds, S checks
whether B has sufficient credit to purchase the chunk c.
It also checks again whether B has access to the content
〈F〉. If B is approved, it charges B and rewards A with ∆c

credit units. Subsequently, S decrypts k′〈c〉 = DecKSA(e),
and sends it to B.

S −→ B: [decryption key response] 〈A〉,〈F〉,〈c〉,k′〈c〉

B uses k′〈c〉 to decrypt the chunk as c′ = Deck′
〈c〉

(C′).

Next, we explain the complaint mechanism.

Step 9: If the decryption fails or if H(c′) 6= H(c) (step
2), B complains to S by sending the following message.

B −→ S:[complaint] 〈A〉,〈F〉,〈c〉,TAS,e,H(C′),t, pA

S ignores this message if current-time > ts+T ′, where
T ′

> T . T ′−T should be greater than the time needed for
B to receive a decryption key response, decrypt the chunk
and send a complaint to the server. With this condition,
a misbehaving client A cannot avoid having complaints
ruled against it, even if A ensures that the time elapsed
between the moment A commits to the encrypted chunk
and the moment the encrypted chunk is received by B is
slightly less than T .

S also ignores the complaint message if a complaint
for the same A and c is in a cache of recent com-
plaints that S maintains for each client B. Complaints
are evicted from this cache once current-time > ts + T ′.
If TAS 6=MACKSA [〈A〉,〈B〉,〈F〉,〈c〉,e,H(C′),t], S punishes
B. This is because S has already notified B in step (7)
that TAS is invalid. If TAS verifies, S caches this complaint,
recomputes KSA as before, decrypts k′〈c〉 = DecKSA(e)
once again, retrieves c from its storage, and encrypts
c himself using k′〈c〉, C′′ = Enck′

〈c〉
(c). If the hash of

the ciphertext H(C′′) is equal to the value H(C′) that
B sent to S, S decides that A has acted correctly and
B’s complaint is unjustified. Subsequently, S drops the
complaint request and blacklists B. It also notifies A,
which disconnects from B and blacklists it. Otherwise,
if H(C′′) 6= H(C′), S decides that B was cheated by A,
removes A from its set of active clients, blacklists A, and
revokes the corresponding credit charge on B. Similarly,
B disconnects from A and blacklists it.

The server disconnects from a blacklisted client E ,
marks it as blacklisted in the credit file and denies access
to E if it attempts to login. Future complaints concern-
ing a blacklisted client E and for which TES verifies, are
ruled against E without further processing.

Since a verdict on a complaint can adversely affect a
client, each client needs to ensure that the commitments
it generates are correct even in the rare case of a disk
read error. Therefore, a client always verifies the read
chunk against its hash before it encrypts the chunk and
generates its commitment.

3.5 Other Protocol Issues
A content provider may be more concerned with scal-

ability than it is with the free-riding problem presented
in Section 2. In such case, it can deploy clients that use
tit-for-tat incentives if their peers have content that inter-
ests them, i.e. the clients would upload plaintext content
to peers that reciprocate with plaintext content. These
clients would fall back to Dandelion’s cryptographic fair-
exchange mechanism when their peers do not have con-
tent that interests them. For example, selfish seeders
would always upload encrypted content to their peers.

In case a client is unable to timely retrieve a missing
chunk from its peers, it resorts to requesting the chunk
from the server. If the server is not busy, it replies with
the plaintext chunk. If it is moderately busy, it charges
an appropriately large amount of credit ∆s > ∆c, sends
the chunk and indicates that it is preferable for the client
not to download chunks from the server. If the server is
overloaded, it replies with an error message. Clients al-
ways download the content from the server in chunks, so
that the system can seamlessly switch to the peer-serving
mode when the server becomes busy.

Typically, a content distributor would deploy, in addi-
tion to the server, at least one client that possesses the
complete content (initial seeder). In this way, the distrib-
utor ensures that the complete content is made available,
even if the server is too busy to serve chunks.

4 Security Analysis
This section briefly lists the security properties of our

design. For simplicity of presentation, we omit proofs
on why these properties hold. They can be found in the
Appendix of [51].

Lemma 4.1 If the server S charges a client B ∆c credit
units for a chunk c received from a selfish client A,
B must have received the correct c, regardless of the
actions taken by A.

Lemma 4.2 If a selfish client A always encrypts chunk
c anew when servicing a request and if B gets correct c
from A, then A is awarded ∆c credit units from S, and B
is charged ∆c credit units from S.

Lemma 4.3 A selfish or a malicious client cannot
assume another authorized client’s A identity and issue
messages under A, aiming at obtaining service at the
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expense of A, charging A for service it did not obtain or
causing A to be blacklisted. In addition, it cannot issue a
valid TSA for an invalid chunk that it sends to a client B
and cause B to produce a complaint message that would
result in a verdict against A.

Lemma 4.4 A malicious client cannot replay previously
sent valid requests to the server or generate decryption
key requests or complaints under A’s ID, aiming at A
being charged for service it did not obtain or being
blacklisted because of invalid or duplicate complaints.

Observation 4.5 A client cannot download chunks from
a selfish peer if it does not have sufficient credit. Our
design choice to involve the server in every transaction,
instead of using the fair exchange technique proposed in
[43], enables the server to check a client’s credit balance
before the client retrieves the decryption key of a chunk.

Observation 4.6 To maintain an efficient content distri-
bution pipeline, a client needs to relay a received chunk
to its peers as soon as it receives it. However, the chunk
may be invalid due to communication error or due to
peer misbehavior. The performance of the system would
be severely degraded if peers wasted bandwidth to relay
invalid content. To address this issue, Dandelion clients
send a decryption key request to the server immediately
upon receiving the encrypted chunk. This design choice
enables clients to promptly retrieve the chunk in its
non-encrypted form. Thus, they can verify the chunk’s
integrity prior to uploading the chunk to their peers.

Observation 4.7 A malicious client cannot DoS attack
the server by sending invalid content to other clients or
repeatedly sending invalid complaints aiming at causing
the server to perform the relatively expensive complaint
validation. This is because it becomes blacklisted by
both the server and its peers the moment the invalid
complaint is ruled against it. In addition, a malicious
client cannot attack the server by sending valid signed
messages with redundant valid complaints. Our protocol
detects duplicate complaints through the use of time-
stamps and caching of recent complaints.

Observation 4.8 A malicious client B can always
abandon any instance of the protocol. In such case, A
does not receive any credit, as argued in Lemmas 4.1 to
4.3, even though B may have consumed A’s resources.
This is a denial of service attack against A. Note that this
attack would require that the malicious client B expends
resources proportional to the resources of the victim A,
therefore it is not particularly practical. Nevertheless, we
prevent blacklisted clients or clients that do not maintain
paid accounts with the content provider from launching

such attack by having S issue a short-lived ticket TSA to
authorized clients only. TSA is checked for validity by
A (steps 4 and 6 in Section 3.4.2). In addition, S may
charge an authorized B for the issuance of tickets TSA

effectively deterring B from maliciously expending both
A’s and the server’s resources.

Owing to properties 4.1, 4.2, 4.3 and 4.5, and given
that the content provider employs appropriate pricing
schemes, Dandelion ensures that selfish (rational) clients
increase their utility when they upload correct chunks
and obtain virtual currency, while misbehaving clients
cannot increase their utility. Consequently, Dandelion
entices selfish clients to upload to their peers, resulting
in a Nash equilibrium of cooperation.

5 Implementation
This section describes a prototype C implementation

of Dandelion that is suitable for cooperative content dis-
tribution of static content. It uses the openssl [5] library
for cryptographic operations and standard file I/O sys-
tem calls to efficiently manage credit information, which
is stored in a simple file.

5.1 Server Implementation

The server and the credit base are logical modules and
could be distributed over a cluster to improve scalability.
For simplicity, our current implementation combines the
content provider and the credit base at a single server.

The server implementation is single-threaded and
event-driven. The network operations are asynchronous,
and data are transmitted over TCP.

Each client is assigned an entry in a credit file, which
stores the credit as well as authentication and file access
control information. Each entry has the same size and the
client ID determines the offset of the entry of each client
in the file, thus each entry can be efficiently accessed for
both queries and updates.

The server queries and updates a client’s credit from
and to the credit file upon every transaction, Yet, it does
not force commitment of the update to persistent storage.
Instead, it relies on the OS to perform the commitment.
If the server application crashes, the update will still be
copied from the kernel buffer to persistent storage. Still,
the OS may crash or the server may lose power before the
updated data have been committed. However, in prac-
tice, a typical Dandelion deployment would run a stable
operating system and use backup power supply. In ad-
dition, the server could mirror the credit base on multi-
ple machines using high speed IP/Ethernet I/O. In addi-
tion, transactions would not involve very large amounts
of money per user. Hence, we believe it is preferable not
to incur the high cost of committing the credit updates
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to non-volatile memory after every transaction or after a
few transactions (operations 12 and 13 in Table 1).

5.2 Client Implementation
The client side is also single-threaded and event-

driven. A client may leech or seed multiple files at a
time. A client can be decomposed into two logical mod-
ules: a) the connection management module; and b) the
peer-serving module.

The connection management module performs peer-
ing and uploader discovery. With peering, each client
obtains a random partial swarm view from the server and
strives to connect to O(logn) peers, where n is the num-
ber of nodes in the Dandelion swarm, as communicated
to the node by the server. As a result, the swarm ap-
proximates a random graph with logarithmic out-degree,
which has been shown to have high connectivity[21].
With uploader discovery, a client attempts to remain con-
nected to a minimum number of uploading peers. If the
number of recent uploaders drops below a threshold, a
client requests from the server a new swarm view and
connects to the peers in the new view.

The peer-serving module performs content reconcil-
iation and downloader selection. Content reconcilia-
tion refers to the client functionality for announcing re-
cently received chunks, requesting missing chunks, re-
questing decryption keys for received encrypted chunks,
and replying to chunk requests. Our implementation em-
ploys locally-rarest-random [39] scheduling in request-
ing missing chunks from clients. To efficiently utilize
their downlink bandwidth using TCP, clients strive to at
all times keep a specified number of outstanding chunk
requests [26, 40], which have been sent to a peer and have
not been responded to.

With downloader selection, the system aims at making
chunks available to the network as soon as possible. In
the following description, n denotes the number of par-
allel downloaders. Dandelion’s downloader selection al-
gorithm is similar to the seeder choking algorithm used
in the “vanilla” BitTorrent 4.0.2, as documented in [41].
The algorithm is executed by each client every 10 sec-
onds. It is also executed when a when a peer that is
selected to be downloader disconnects. The algorithm
proceeds as follows: a) peers that are interested in the
client’s content are ranked based on the time they were
last selected to be downloaders (most recent first); b) the
client selects as downloaders the n−2 top ranked peers;
c) in case of a tie, the peer with the highest download
rate from the client is ranked higher; and d) the client
randomly selects an additional downloader from the non-
selected nodes that are interested in the client’s content.
Step (d) is performed in expectation of discovering a fast
downloader and to jumpstart peers that recently joined
the swarm.

This downloader selection algorithm aims at reducing
the amount of duplicate data a client needs to upload,
before it has uploaded a full copy of its content to the
swarm. Downloader selection improves the system’s per-
formance in the following additional ways. First, it lim-
its the number of peers a client concurrently uploads to,
such that complete chunks are made available to other
peers and relayed by them at faster rates. Second, given
that all clients are connected to roughly the same num-
ber of peers, it also limits the number of peers a client
concurrently downloads from to approximately n. As a
result, the rate with which the client downloads complete
chunks increases. Last, by limiting the number of con-
nections over which clients upload, it avoids the ineffi-
ciency and unfairness that is observed when many TCP
flows share a bottleneck link [46].

The number of peers that download from a client in
parallel depends on the client’s upload bandwidth. We
have empirically determined that a good value for this
parameter in the PlanetLab environment is 10.

6 Evaluation
The goal of our experimental evaluation is to demon-

strate the viability and to identify the scalability limits
of Dandelion’s centralized and non-manipulable virtual-
currency-based incentives.

6.1 Dandelion Profiling

We profile the cost of operations performed by the
server aiming at identifying the performance bottlenecks
of our design. The measurements are performed on a
dual Pentium D 2.8GHZ/1MB CPU with 1GB RAM and
250GB/7200RPM HDD running Linux 2.6.5-1.358smp.

Table 1 lists the cost of per chunk Dandelion opera-
tions. In a flash crowd event, the main task of a Dan-
delion server is to: a) receive the decryption key request
(operation 7); b) authenticate the request by computing
an HMAC (operation 1); c) verify the ticket by comput-
ing an HMAC (operation 2); d) decrypt the encrypted de-
cryption key (operation 3); e) query and update the credit
of the two clients involved (operations 10 and 11); f) sign
the decryption key response (operation 4); and g) send
the decryption key response (operation 8).

As can be seen in the table, the per chunk cryp-
tographic operations of the server (operations 1-4) are
highly efficient (total 109 usec), as only symmetric cryp-
tography is employed. The credit management opera-
tions (10 and 11) are also efficient (total 24 usec). On
the other hand, the communication costs clearly domi-
nate the processing costs, indicating that for 1Mb/s up-
link and downlink, the downlink is the bottleneck.

The cost of a complaint is higher because in addition to
verifying a ticket, it involves reading a chunk, encrypting
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Dandelion operation Size Time (ms)
CPU-centric Operation

1 Authenticate decryption key 98 bytes .018
request

2 Generate ticket for decryption key 78 bytes .018
key request or complaint
verification

3 Encrypt/decrypt decryption key 32 bytes .056
4 Sign decryption key response 46 bytes .017
5 Encrypt/decrypt chunk 128 KB .715
6 Hash encrypted chunk for 128 KB .487

commitment generation or for
commitment processing
Communication Operation

7 Receive decryption key request 156 bytes ∼1.79
8 Transmit decryption key response 104 bytes ∼1.39
9 Transmit chunk 128 KB ∼1053

Credit Management Operation
10 Query credit file N/A ∼0.004
11 Update credit file without N/A ∼0.02

commit to disk (rely on OS)
12 Update credit file and N/A ∼9.25

commit to disk
13 Update credit file and N/A ∼0.27

commit to disk every 100 updates

Table 1: Timings of per chunk transaction Dandelion op-

erations. Timings for operations 1-6 are obtained using

getrusage(RUSAGE SELF) over 10000 executions to obtain 1 usec

precision. Timings for operations 7-9 are approximated according

to our application layer rate-limiting for 1Mb/s uplink and 1Mb/s

downlink. They are provided as reference for comparison with

CPU-centric and credit management operations. Timings for oper-

ations 10-13 are approximated using gettimeofday() over 10000 ex-

ecutions. Operations 3 and 5 use 8-byte-block Blowfish-CBC with

128-bit key and 128-bit initialization vector.1, 2 and 4 use HMAC-

SHA1 with 128-bit key. Operation 6 uses SHA-1. Operations 10-

12 are performed on a credit file with 10000 44-byte entries. For

committing to disk in operations 12 and 13, we use fsync() and we

disable HDD caching.

it with the sender client’s key (operation 5), and hashing
the encrypted chunk (operation 6).

Note that the profiling of the server repeats the same
operation multiple times. It does not consider the paral-
lel processing of I/O and CPU operations. In addition, it
does not include the cost of system calls and the cost of
TCP/IP stack processing. Therefore, we refrain from de-
riving conclusions on the throughput of the server. Such
conclusions are derived in the subsequent evaluation.

6.2 Server Performance
A Dandelion server mediates the chunk exchanges be-

tween its clients. The download throughput of clients in
our system is bound by how fast a server can process
their decryption key requests. Both the server’s compu-
tational resources and bandwidth may become the per-
formance bottleneck.

We deploy a Dandelion server that runs on the same
machine as the one used for Dandelion profiling. We also
deploy ∼200 clients that run on distinct PlanetLab hosts.
The server machine shares a 100Mb/s Ethernet II link.
To mitigate bandwidth variability in the shared link and
to emulate a low cost server with an uplink and downlink
that ranges from 1Mb/s to 5Mb/s, we rate-limit the server
at the application layer.

In each experiment, the clients send requests for de-
cryption keys to the server and we measure the aggregate
rate with which all clients receive key responses. The
server always queries and updates the credit base from
and to the credit file without forcing commitment to disk.
The specified per client request rate varies from 1 to 14
requests per second. For each request rate, the experi-
ment duration was 10 minutes and the results were av-
eraged over 10 runs. As the request rate increases and
the server’s receiver buffers become full, clients do not
send new requests at the specified rate, due to TCP’s flow
control. When the request rate increases to the point that
the server’s resources become saturated, the key response
rate from the server decreases.

Figure 3(a) depicts the server’s decryption key
throughput for various server bandwidth capacities. As
the bandwidth increases from 1Mb/s to 3Mb/s, the
server’s decryption key response throughput increases.
This indicates that for 1Mb/s to 3Mb/s access links, the
bottleneck is the bandwidth. When the bandwidth limit
is 4Mb/s and 5Mb/s, the server exhibits similar perfor-
mance, which suggests that the access link is not satu-
rated at 4Mb/s. The results show that a server running on
our commodity PC with 4Mb/s or 5Mb/s access link can
process up to ∼1200 decryption key requests per sec-
ond. This indicates that with a 128KB chunk size, this
server may simultaneously support almost 1200 clients
that download from each other at 128KB/s. With a larger
chunk size, each such client sends decryption key re-
quests at a slower rate, and the number of supported
clients increases.

Figures 3(b) and 3(c) show the average CPU and me-
mory utilization at the server over the duration of the
above experiments. We observe that for 4Mb/s and
5Mb/s, the server’s CPU utilization reaches ∼100%, in-
dicating that the bottleneck is the CPU. In Figure 3(c),
we see that the server consumes a very small portion of
the available memory.

6.3 System Performance
The following experiments evaluate the performance

of the Dandelion system on PlanetLab. We examine the
impact of chunk size and the impact of seeding on the
performance of the system. We also compare our sys-
tem’s performance to BitTorrent’s. In all experiments
we ran a Dandelion server within a PlanetLab VServer
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Figure 3: (a) Aggregate decryption key response throughput of the Dandelion server as a function of per-client key request rate, for

varying server rate-limits; (b) server’s CPU utilization(%) as a function of per-client decryption key request rate; (c) server’s memory

utilization (%) as a function of per-client decryption key request rate.

spawned on a highly available Xeon 3GHZ/2MB CPU
and 2GB RAM machine. We rate-limit the server at
2Mb/s.

Leechers are given sufficient initial credit to com-
pletely download a file. Clients always respond to chunk
requests from their selected downloaders and they never
request chunks from the server. We do not rate-limit
the Dandelion and BitTorrent clients, as a means for
testing our system in heterogeneous Internet environ-
ments. To cover the bandwidth-delay product in Planet-
Lab, the TCP sender and receiver buffer size is set equal
to 120KB.

For each configuration we repeat the experiment 10
times and we extract mean values and 95% confidence
intervals over the swarm-wide mean file download com-
pletion times of each run. The file download comple-
tion time is the time that elapses between the moment
the client contacts the server to start a download and the
moment its download is completed.

6.3.1 Selecting Chunk Size
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Figure 4: Mean file download completion times of 40 leechers as

a function of chunk size. The swarm has one initial seeder. The

x axis corresponds to the chunk size. The y axis corresponds to

the mean download completion time in the swarm. The error bars

correspond to 95% confidence intervals.

This experiment aims at examining the tradeoffs in-
volved in selecting the size of the chunk, the verifiable
transaction unit in Dandelion. Intuitively, since clients
are able to serve a chunk only as soon as they complete
its download, a smaller chunk size yields a more efficient
distribution pipeline. In addition, when the file is divided
into many pieces, chunk scheduling techniques such as
rarest-first can be more effective, as there is sufficient
content entropy in the network. Consequently, clients
can promptly discover and download content of interest.
However, a smaller chunk size increases the rate with
which key requests are sent to the server, reducing the
scalability of the system. In addition, due to TCP’s slow
start, a small chunk size cannot ensure high bandwidth
utilization during the TCP transfer of any chunk.

In each configuration, we deploy around 40 Dande-
lion leechers and one initial seeder, i.e. a client that has
the complete file before the distribution starts. Leech-
ers start downloading files almost simultaneously. We
deploy only 40 leechers to ensure that the server is not
saturated, even if we use 64KB chunk size.

Figure 4 shows the leecher mean download comple-
tion time as a function of the chunk size. For smaller
files, e.g., the 10MB file, the system has the best per-
formance for chunk size equal to 64KB. The system’s
performance degrades with the chunk size. As the file
size increases, the beneficial impact of small chunks, be-
comes less significant. For example, for 250MB file,
a 128KB chunk size yields notably better performance
than a 64KB chunk size.

Based on the above results and further fine-tuning, in
the rest of this evaluation, we use 128KB chunks.

6.3.2 Impact of Dandelion Seeders

One of Dandelion’s main advantages is that it pro-
vides robust incentives for clients to seed. We quantify
the performance gains from the existence of seeders in
our system. In each experiment, we deploy ∼200 leech-
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ers. Leechers start downloading the file almost simulta-
neously, creating a flash crowd.

We show the impact of seeders by varying the prob-
ability that a leecher remains online to seed a file after
it completes its download. In each experiment, a swarm
has one initial seeder. Upon completion of its download,
each leecher stays in the swarm and seeds with probabil-
ity a. Probability a varies in 25% and 100%.
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Figure 5: Swarm-wide mean file download completion times

of ∼200 leechers as a function of file size for varying portion of

leechers that become seeders. The error bars correspond to 95%

confidence intervals.

Figure 5 depicts the mean download completion time
over all ∼200 leechers as a function of the file size, for
varying a. The results show the beneficial impact of
seeders and the importance of a mechanism to robustly
incent seeding. For example, for a 250MB file, we ob-
serve a swarm-wide mean download completion time of
674 sec and 837 sec when leechers become seeders with
100% and 25% probability, respectively. If we express
the impact of seeders as the ratio of the mean down-
load time for a = 100% over the mean download time
for a = 25%, we observe that the impact is reduced as the
file size increases. The larger the file is, the longer clients
remain online to download it, resulting in clients con-
tributing their upload bandwidth for longer periods. For
smaller files however, leechers rely heavily on the initial
seeder and the leechers that become seeders to download
their content from. Therefore for small files, a reduction
in probability a results in substantially longer download
completion times.

6.3.3 Comparison with BitTorrent

Figure 5 also shows the download completion times
of∼200 tit-for-tat compliant CTorrent 1.3.4 leechers. All
BitTorrent leechers remain online after their download
completion (a = 100%). The purpose of this illustration
is to show that Dandelion can attain performance com-
parable to the one achieved by BitTorrent, although it
employs a different downloader selection algorithm and
involves the server in each chunk exchange.

Although Dandelion appears to outperform BitTorrent
for certain file sizes, we do not claim that it is in general
a better-performing protocol. The performance of both
protocols is highly dependent on numerous parameters,
which we have not exhaustively analyzed.

6.3.4 Credit Distribution

We examine the distribution of credit during a Dande-
lion file distribution. The purpose of this measurement is
to identify which type of clients tend to accumulate the
most credit in swarms of similar configuration to ours.

Figure 6 shows the scatter plot of the client’s credit
after a single 250MB file download by ∼200 leechers to-
gether with the mean download rate of each client. In the
experiment, there is only one initial seeder. All nodes
are given 100% of the credit needed to download the file
and they all become seeders upon download completion.
We observe that the seeder obtained the most credit dur-
ing the file distribution. This is expected, as a seeder is
always in position to upload useful content to its peers
and our seeder had a fast access link. Since fast down-
loaders obtain useful content earlier in the distribution
and are likely to have uplinks proportional to their down-
link, they should be able to deliver more content and earn
more credit. Our results confirm this intuition and show
that there is strong correlation between average down-
load rate and credit ratio, i.e. the product-moment corre-
lation coefficient is equal to 0.72.

We also observe that many clients uploaded substan-
tially less than they downloaded. Indicatively, 25.8% of
the clients had less than 70% of their initial credit.
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Figure 6: The scatter plot of the distribution of credit after ∼200

leechers have completed a 250MB file download and their average

download rates. The x axis shows the credit ratio, which is the
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7 Conclusion
This paper describes Dandelion: a cooperative (P2P)

system for the distribution of paid content. Dandelion’s
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primary function is to enable a content provider to pro-
vide strong incentives for clients to contribute their up-
link bandwidth.

Dandelion rewards selfish clients with virtual currency
(credit) when they upload valid content to their peers and
charges clients when they download content from self-
ish peers. Since Dandelion employs a non-manipulable
cryptographic scheme for the fair exchange of content
uploads for credit, the content provider is able to redeem
a client’s credit for monetary rewards. Thus, it provides
strong incentives for clients to seed content and to not
free-ride.

Our experimental results show that seeding substan-
tially improves swarm-wide performance. They also
show that a Dandelion server running on commodity
hardware and with moderate bandwidth can scale to
a few thousand clients. Dandelion’s deployment in
medium size swarms demonstrates that it can attain per-
formance that is comparable to BitTorrent. These facts
demonstrate the plausibility of our design choice: cen-
tralizing the incentive mechanism in order to increase re-
source availability in P2P content distribution networks.
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