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DANES’ DROP THEOREM IN LOCALLY CONVEX SPACES

CHENG LIXIN, ZHOU YUNCHI, AND ZHANG FONG

(Communicated by Palle E. T. Jorgensen)

Abstract. Danes’ Drop Theorem is generalized to locally convex spaces.

1. Introduction

Suppose that (E, ‖ · ‖) is a Banach space and B is the closed unit ball of E. By
a drop D(x,B) determined by a point x with ‖x‖ > 1, we shall mean the convex
hull of the set {x} ∪ B. If a nonempty closed set A of Banach space E with a
positive distance from the unit ball B is given, then there exists a ∈ A such that
D(a,B) ∩ A = {a}, which is the so-called Danes’ Drop Theorem [1]. The drop
theorem has found many applications in various situations (see, for instance, [2],
[5], [6], [7], [8] and [9]) and it is equivalent to Ekeland’s variational principle.

Modifying the concept underlying Danes’ Drop Theorem, Rolewicz [3] and Giles
and Kutzarova [4] introduced the notion of the drop and weak drop properties and
many papers have appeared (see, for instance, [10], [11], [12] and [15]).

This note generalizes Danes’ Drop Theorem to locally convex spaces and it is
done by substituting “sequentially closed bounded convex set C” in the space for
“the closed unit ballB” of the Banach space and “A is strongly Minkowski separated
from C” for “A is a positive distance from B”.

2. Minkowski separation of sets

Definition 1. Two nonempty subsets A,B of a locally convex space E are said
to be Minkowski separated (resp., strongly Minkowski separated) if there exist a
continuous Minkowski gauge p on E and a point x0 in E such that either p(x) >
p(y) for all x ∈ Ax0 ≡ A + x0 and y ∈ Bx0 ≡ B + x0 or p(x) < p(y) for all
x ∈ Ax0 and y ∈ Bx0 (resp., either inf{p(x);x ∈ Ax0} > sup{p(y); y ∈ Bx0} or
sup{p(x);x ∈ Ax0} < inf{p(y); y ∈ Bx0}).

We replace the Minkowski gauge p by a continuous linear functional in the above
definition to obtain the common concept of separation sets. Clearly, two separated
(resp., strongly separated) sets are Minkowski separation (resp., strong Minkowski
separation) sets, if either of them is bounded.
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Proposition 2. Suppose that A is a convex set in a normed linear space E, which
is a positive distance from B ⊂ E, if either of A,B is bounded; then A,B are
strongly Minkowski separated.

Proof. Let d = d(A,B) > 0 and let S = {x ∈ E; d(A, x) ≤ d/2}. Then S, with
nonempty interior, is a positive distance from B. Without loss of generality we
assume that 0 ∈ int S and let Ps be the Minkowski gauge of S. It suffices to show

R = inf{Ps(x)− Ps(y);x ∈ B, y ∈ S} > 0.

Note d(S,B) ≥ d/2.
Suppose, to the contrary, that R = 0. Then we can choose sequences {xn}, {yn},

from B and S, resp., such that Ps(xn)−Ps(yn)→ 0; since Ps(xn) > 1, Ps(yn) < 1,
we get Ps(xn)→ 1. Let kn = Ps(xn)−1; then Ps(knxn) = 1, knxn ∈ S.

(i) If B is bounded, then ‖xn− knxn‖ = (1− kn)‖xn‖ → 0. This contradicts the
hypothesis that d(S,B) ≥ d/2.

(ii) If A is bounded, then S is bounded also. Thus, there exists a positive
constant k ≥ 1 such that k−1Ps(x) ≤ ‖x‖ ≤ kPs(x) for all x in E. Therefore {xn}
is a bounded sequence. Hence

d

2
≤ d(S,B) ≤ ‖xn − knxn‖ → 0,

a contradiction which completes the proof.

3. Danes’ Drop Theorem in locally convex spaces

Theorem 3. Given a sequentially closed bounded convex set C in a sequentially
complete locally convex space (E, τ). For every sequentially closed set A, which is
strongly Minkowski separated from C, there exists a point z ∈ A such that D(z, C)∩
A = {z}, where D(z, C) = co(C ∪ z) and co stands for the convex hull operator.

Proof. Without loss of generality we assume that 0 ∈ C. Fix any u0 ∈ A. Let
G = s-clco(C ∪ −C ∪ ±u0) (s-cl denotes τ -sequential closure operator) and let
E1 = span G. Next, let p be the Minkowski gauge by G; then it is a norm on E1.

First, we show that (E1, p) is a Banach space. It suffices to show that the unit ball
G of (E1, p) is complete relative to p. Suppose that {xn} is a τ -Cauchy sequence
since G is bounded and p is generated by G, and which implies τ < τp on E1

where τp denotes the topology generated by the norm p. Since C is τ -sequentially
complete, xn must be τ -convergent to some point x0 of G. Given a positive number
ε, there is an integer k such that p(xm−xn) > ε whenever m,n ≥ k, or equivalently
xm−xn ∈ εG, whenever m,n ≥ k, because G is τ -sequentially closed, xm−x0 ∈ εG,
that is, P (xm − x0) ≤ ε for all m ≥ k. Therefore the sequence {xn} converges to
x0 relative to the norm topology τp. Thus, G is complete relative to p.

Since C is bounded, convex and since A is strongly Minkowski separated from C,
Proposition 2 implies that there exist a point x0 ∈ E and a τ -continuous Minkowski
gauge p1 on E1 such that

p1(x) ≤ α < α+ ε ≤ p1(y)

whenever x ∈ C + x0, y ∈ A+ x0 for some fixed α, ε > 0.
Without loss of generality we can assume that x0 = 0 and write (ε ≤)d =

inf{p1(y) − p1(x);x ∈ C, y ∈ A}. It is easy to see that C is closed, bounded and
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convex relative to the norm p1 of E1 and A∩D(u0, C) is also nonempty (it contains
u0, for example), closed and bounded. Now, define the function f on E1, by

f(x) =

{
p1(x), x ∈ A ∩D(u0, C),

∞, otherwise;

then f is a norm (p) lower semicontinuous proper function on E1 since p1 is τ -
continuous onE. Choose λ > 0 such that diam D(u0, C) < d/λ, where the diameter
of D(u0, C) is in norm p. Use Ekeland’s variational principle (see, for instance, [13]
and [14]) to obtain a point z ∈ A ∩D(u0, C) such that

f(x) + λp(x− z) > f(z) for all x(6= z) in E1.

We claim that {z} = D(z, C) ∩ A. Suppose that y ∈ D(z, C) ∩ A with y 6= z.
Then there exists 0 < µ < 1 and v ∈ C such that y = (1 − µ)z + µv, so that
p1(y) ≤ (1− µ)p1(z) + µp1(v) and µd ≤ µ[p1(z)− p1(v)] ≤ p1(z)− p1(y). Hence

p1(z) = f(z) < f(y) + λp(y − z) = f(y) + λp(µ(v − z))

= p1(y) + λµ(p(v − z)) ≤ p1(y) + λµdiam D(u0, C) ≤ p1(y) + µd

≤ p1(y) + (p1(z)− p1(y)) = p1(z),

a contradiction.
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