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Abstract

Weakly supervised object localization remains a chal-

lenge when learning object localization models from im-

age category labels. Optimizing image classification tends

to activate object parts and ignore the full object extent,

while expanding object parts into full object extent could

deteriorate the performance of image classification. In this

paper, we propose a divergent activation (DA) approach,

and target at learning complementary and discriminative

visual patterns for image classification and weakly super-

vised object localization from the perspective of discrep-

ancy. To this end, we design hierarchical divergent acti-

vation (HDA), which leverages the semantic discrepancy to

spread feature activation, implicitly. We also propose dis-

crepant divergent activation (DDA), which pursues object

extent by learning mutually exclusive visual patterns, ex-

plicitly. Deep networks implemented with HDA and DDA,

referred to as DANets, diverge and fuse discrepant yet dis-

criminative features for image classification and object lo-

calization in an end-to-end manner. Experiments validate

that DANets advance the performance of object localization

while maintaining high performance of image classification

on CUB-200 and ILSVRC datasets 1.

1. Introduction

Weakly supervised learning refers to methods that uti-

lize training data with incomplete annotations to learn

recognition models. Weakly supervised object localization

(WSOL) requires solely the image-level annotations indi-

cating the presence or absence of a class of objects in im-

ages to learn localization models [39]. It can leverage rich

Web images with tags as a data source for model learning.

To tackle the WSOL problem with convolutional neural

∗Corresponding author.
1The code is available at https://github.com/xuehaolan/DANet
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Figure 1: Evolution of the activation maps during training.

In the early stages of training, both the CAM [39] and our

DANet activate partial objects. Along with the learning pro-

cedure, the activated region of CAM shrinks to a small ob-

ject part while that of our approach diverges to full object

extent. (Best viewed in color)

network (CNN), people resort to the discriminative localiza-

tion method [39], i.e., learning class activation maps for ob-

ject localization using excitation back-propagation from im-

age category supervision[36]. In the forward-propagation

procedure the convolutional filters in CNN act as object de-

tectors and in the back-propagation procedure the feature

maps are excited to produce class activation maps, which

identify discriminative regions for specific object classes.

Discriminative localization methods are simple yet effi-

cient for weakly supervised object localization. However,

they are usually observed to activate object parts instead of

full object extent, as shown in the first row of Fig. 1. Spe-

cific activated object parts are capable of minimizing image

classification loss, but experience difficultly in optimizing

object localization. Existing approach has explored graph
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propagation [40], data argumentation [13], dilated convolu-

tion [31], and adversarial erasing [37, 12] to expand class

activation maps and pursue full object extent. Nevertheless,

most exist approaches address the problem in the way of

step-wised or alternative optimization. Theoretically plau-

sible frameworks for localizing full object extent under the

constraint of image classification performance remain to be

explored.

In this paper, we propose a divergent activation (DA)

approach, and target at learning complementary and dis-

criminative visual patterns from the perspective of discrep-

ancy. To this end, we design hierarchical divergent activa-

tion (HDA) and discrepant divergent activation (DDA). The

HDA is inspired by the image category structure, i.e., im-

ages from different categories can be merged by their sim-

ilarity and assigned with hierarchical class labels. Training

classification models with hierarchical class labels can ef-

fectively expand visual patterns and provide extra guidance

to discriminative localization. The DDA is based on the

complementary spatial structure, i.e., an object could be de-

composed into spatially exclusive visual patterns. Activat-

ing and fusing such visual patterns during training facilitate

localizing full object extent, Fig. 1.

Deep networks implemented with DA, referred to as

DANets, incorporate image classification and weakly super-

vised object localization with a joint optimization objective

(loss) function. With an end-to-end learning procedure op-

timizing the objective function, DANets discover comple-

mentary and discriminative visual patterns for precise ob-

ject localization while maintaining the high performance of

image classification.

The contributions of this paper include:

(1) We propose a divergent activation (DA) method, and

jointly optimize weakly supervised object localization and

image classification in a systematic way.

(2) We design hierarchical divergent activation (HDA)

and discrepant divergent activation (DDA) modules, and

leverage semantic discrepancy and spatial discrepancy to

learn complementary and discriminative visual patterns.

(3) We update popular deep neural networks including

VGG16 and GoogLeNet to DANets and advance the per-

formance about weakly supervised object localization.

2. Related Work

Multiple instance learning (MIL) and discriminaitve lo-

calization are major WSOL methods. With the MIL

method, an image is first decomposed into region proposals,

based on which proposal selection and classifier estimation

are iteratively performed [29, 35, 4, 1, 23, 27]. With the dis-

criminaitve localization method, deep pixels are activated

with excitation back-propagation to cover objects of interest

under the supervision of image class labels [40, 15, 8, 38, 3].

2.1. Weakly Supervised Object Localization

Step-wised multiple instance learning. A major

WSOL approach is decomposing an image into a “bag” of

region proposals (instances) and iteratively selecting high-

scored instances from each bag when learning detectors in

step-wised manner [4]. MIL has been updated to MIL net-

works [1] where the convolutional filters behave as detec-

tors to activate regions of interest on the feature maps [27].

Recent approaches have used image segmentation [7], con-

text information [11], online classifier refinement [23], and

min-entropy [27, 28] to regularize the MIL procedure. Pro-

gressive optimization [35] and clique partition [27] have

been explored to enhance object localization.

Benefit from the location prior of region proposals, the

step-wised MIL methods are effective to localize object ex-

tent. However, they are puzzled by the time-consuming pro-

posal generation procedure. The WeakRPN [24] approach

takes a step towards learning region proposal networks, but

remains relying on region proposals in the training phrase.

End-to-end discriminative localization. Discrimina-

tive localization excites object extent in an end-to-end man-

ner by introducing a global average pooling (GAP) module

into the classification network [39]. With the GAP module,

convolutional filters behave as detectors to activate discrim-

inative regions on feature maps to localize objects. How-

ever, most discriminative localization approaches are ob-

served to activate object parts instead of full object extent.

The reason behind the phenomenon lies in that the networks

tend to learn the most compact features for image classifi-

cation while suppressing less discriminative ones [20].

One way to enhance object localization is self-paced

learning [38, 10]. For example, the self-produced guid-

ance (SPG) approach uses a classification network to learn

high confident regions, and then leverages attention maps to

learn the object extent under the guidance of high confident

regions. The other way to pursue full object extent is about

adversarial erasing and hide-and-seek[12, 15, 8, 13, 37],

which first activates the most discriminative regions and

then erases them so that less discriminative regions can be

activated. Although [37] uses end-to-end learning, it re-

mains a step-wised processing strategy in each training it-

eration. In this paper, we propose a divergent activation

approach, where the discrepant feature maps can be simul-

taneously activated.

The self-paced and adversarial erasing approaches work

a progressive manner, i.e., discovering and fusing discrim-

inative regions. Although practically plausible, they are

theoretically sub-optimal as working in a way of heuris-

tic search. The soft proposal network [40] integrates con-

fidence propagation with discriminative localization in an

end-to-end manner, but remain falling into progressive op-

timization instead of joint optimization.
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Figure 2: Architecture of the proposed DANet, which leverages the hierarchical features and the hierarchical image class

supervision to implement the hierarchical divergent activation (HDA) during classification. It also implements discrepant

divergent activation (DDA) by maximizing the spatial discrepancy of feature maps. During the localization process, the

discrepant yet complementary visual patterns are fused to diverge object parts to full object extent. (Best viewed in color)

2.2. Classification with Category Hierarchy

Our research is also related to category hierarchy of

images, which has been exploited for fine-grained image

recognition [34, 32, 14, 30, 2]. The main idea lies in that the

discriminative visual patterns of parent classes are different

from those of sub-classes. This implies that the activated re-

gions of objects could be expanded if multiple sub-classes

are merged.

This inspires us designing hierarchical divergent diver-

gence and leveraging the semantic discrepancy to spread vi-

sual patterns for object localization. To our best knowledge,

this is the first time that the category hierarchy is explored

for WSOL.

3. Divergent Activation Network

In this section, we first review and reformulate the dis-

criminative method for WSOL. We then propose the diver-

gent activation (DA) method and incorporate it with dis-

criminative localization in a joint optimization framework.

3.1. Class Activation Map Revisit

We use a discriminative localization model in [37] to

extract class activation maps from classification networks.

The network is first converted to a fully convolutional net-

work by removing the global pooling layer and transform-

ing the weights of the fully connected layers to 1 × 1 con-

volutional filters, Fig. 2.

Let F ∈ RP×P×N denote the feature maps of CNN,

where P defines the resolution of the feature maps and N

the channel number. Let W k
c ∈ R1×1×N denote the 1 × 1

convolutional filters, where c = 1, · · ·C denote the class

index and k = 1, · · ·K denote the feature map index. The

kth activation map, Ak
c , for class c is computed as Ak

c = F ∗
W k

c . The activation maps are then summarized to produce

a single class activation map, Mc =
∑

k A
k
c .

The class activation maps for all classes are then fed to a

global average pooling (GAP) layer to produce logits, mc =∑
i,j

Mc(i,j)

P×P
, where (i, j) denotes the spatial location on the

activation map . A softmax operation is applied to produce

classification results. The output of the softmax layer for

class c, pc, is given by
exp(mc)∑
c
exp(mc)

, and the classification

loss function is defined as

argmin
α

L(α), (1)

where L(α) = − 1
C

∑
c yclog(pc). yc ∈ {0, 1} denotes the

label for class c and α the network parameters.

The class activation maps produced by the image clas-

sification network are observed shrinking to small object

parts, Fig. 1. This phenomenon is attributed to the intrin-

sic compact nature of the convoltuional features. With the

solely objective (loss) function to optimize image classifi-

cation, the only goal of learning is to capture and represent

the relevant visual patterns between input images and ob-

ject category label y [25]. Since the category label y im-

plicitly determines the relevant and irrelevant features in F ,

an optimal representation of image would capture the rele-

vant features and compress F by suppressing the irrelevant

visual patterns which do not contribute to the prediction of

y. Considering the corresponding relationship between fea-

ture maps F and the class activation map M defined above,

a compressed F produces sparse class activation map M ,

which indicates the spatial locations of objects from class c.
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3.2. Divergent Activation

To expand the compressed features and explore richer

visual patterns for object localization, we propose divergent

activation (DA) and integrated it with an image classifica-

tion network. The divergent activation is fulfilled from the

perspective of discrepancy learning, and is deployed as hi-

erarchical divergent activation (HDA) and discrepant diver-

gent activation (DDA) modules. The learning procedure is

fulfilled by optimizing a joint objective function, as

argmin
α

{LH(α) + λLD(α)}, (2)

where LH(α) denotes the hierarchical classification loss

and LD(α) the divergent activation loss. λ is the regular-

ization factor.

Hierarchical divergent activation (HDA). For image

classification, CNNs learn to discriminate an image class

from the others by activating the discriminative visual pat-

terns. Meanwhile, the similar visual patterns between

classes are suppressed, as shown by each network branch

in Fig. 2. To localize full object extent, the key lies in how

to activate the suppressed visual patterns.

It is a common sense that for two classes which are se-

mantically similar, e.g., “dog” and “wolf”, there exist many

similar visual patterns (object parts). If we merge the sim-

ilar (child) classes into a parent class and train a classifier

for the parent class, e.g., a “dog+wolf” class, those similar

visual patterns shared by the child classes are activated if

they are discriminative to other parent classes. Recursively,

regarding the parent classes as new child classes and merg-

ing them to obtain a new parent class, more visual patterns

are further activated.

Based on above analysis, we propose hierarchical di-

vergent activation (HDA) to activate the similar regions

among classes. Given an image dataset containing Ch

classes of objects, e.g., 200 classes of birds in CUB-200-

2011 [26], we first merge them into Ch+1 parent classes

based on the semantic similarity among the child classes,

and then merge the Ch+1 classes into Ch+2 classes, where

Ch+2 < Ch+1 < Ch. On the hierarchical classes, the loss

function of HDA is defined as

argmin
α

LH(α) =
∑

h

Lh(α) = −
∑

h

1

Ch

∑

c

yhc log(p
h
c ),

(3)

where Lh is the loss of the hth class hierarchy. yhc is the

label of the cth class where c ∈ Ch and Ch is the number

of the classes in hth class hierarchy.

The essence of HDA lies in that by hierarchically chang-

ing the discriminative conditions using child-parent classes,

more informative visual patterns are collected and the acti-

vation maps diverge from small object parts to full object

extent.
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Figure 3: Discrepant divergent activation (DDA) leverages

spatial discrepancy of feature maps to learn visual patterns

suppressed by image classification.

Discrepant divergent activation (DDA). HDA tends to

activate full object extent by fusing complementary seman-

tics from multiple hierarchy levels, but does not consider

the spatial complementary of activation maps for a single

hierarchy level of objects. We thus further propose the dis-

crepant divergent activation (DDA) to aggregate visual pat-

terns, Fig. 3.

To fulfill this purpose, a single class activation map is

first expanded to K activation maps. Specifically for the

cth class, we introduce the DDA loss so that the K acti-

vation maps are discrepant, as much as possible, with each

other. This is equivalent to minimize the similarity among

activation maps, Ac , as

argmin
α

LD(α) =
∑

1≤k<k′≤K

S(Ak
c , A

k′

c ), (4)

where Ak
c denotes the kth activation map for the cth class.

S(Ak
c , A

k′

c ) =
Ak

c ·A
k′

c

‖Ak
c‖·‖A

k′

c ‖
is the cosine similarity between

activation map Ak
c and Ak′

c .

Once Eq. 4 is optimized, the activation maps of class

c are most discrepant to each other. If an activation map

discovers one object part, the other maps will be forced to

activate other spatially exclusive parts. It means that the

visual patterns discovered by each two activation maps are

different with each other and the activated regions on the

maps are complementary.

3.3. Network Implementation

Fully convolutional neural networks implemented DA

modules, referred to as DANets, activate and fuse comple-

mentary discriminative regions for precise object localiza-

tion and accurate image classification in an end-to-end man-

ner, Fig. 2. Given a network, multiple scales of feature maps

(i.e., convolutional maps of CONV3, CONV4 and CONV5
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Figure 4: Explanation of the proposed hierarchical divergent activation (HDA) and discrepant divergent activation (DDA).

With the HDA module, the parent class (A) can learn more visual patterns to span the feature space. Such visual patterns are

suppressed by each child class (A1 or A2) as they are not discriminate against A1 and A2. With the DDA module, the visual

patterns learned by each class (A1 or A2) are aggregated. This is because the discrepancy constraint drives learning different

but discriminative features for image classification. (Best viewed in color)

in VGG-16) are first extracted to represent hierarchical im-

age categories. Atop the feature maps from each hierarchy,

a 1×1 convolutional layer is added to produce K activation

maps for each class. The activation maps are then fed to the

HDA and DDA modules.

For each hierarchy in HDA, the K activation maps for

each class are averaged to generate the activation map of

this hierarchy. A global average pooling layer is then used

to generate logits, which is followed by the HDA loss de-

fined in Eq. 3 for image classification. In DDA, the activa-

tion maps from the same class are first concatenated and the

DDA loss, defined in Eq. 4, which minimizes the similari-

ties among the maps is added.

In the training phase, the HDA and DDA modules are

jointly optimized[16] with SGD algorithm. In the test-

ing phase, the output classification prediction which comes

from the last hierarchy is used to predict the class of an

image, Fig. 2. The maps from all hierarchy levels are aver-

aged to form the final activation results and a thresholding

approach [38] is then applied to predict the object locations.

3.4. Discussion

From the perspective of representation learning, DANets

span the feature space by aggregating visual patterns. As

shown in Fig. 4, with the HDA module, the discriminative

visual patterns learned by each class (A1 or A2) are united.

The parent class (A) can learn visual patterns to span the

feature space. Such visual patterns are ignored by a child

class (A1 or A2) as they are not discriminative to other child

classes. With the DDA module, the discriminative visual

patterns learned by each class (A1 or A2) are enriched, as

the discrepancy constraint drives learning different but dis-

criminative feature maps for image classification. DANets

therefore enhances the representative capacity of features

for image classification and object localization, which pro-

vides the WSOL problem with a fresh insight.

From the perspective of ensemble learning, DANets ac-

tually assemble multiple discrepant learners. Regarding

each activation map as a learner for image classification and

object localization, the HDA module implements a hierar-

chical ensemble in the semantic space, while the DDA mod-

ule implements paralleled ensemble in the feature space.

Classical machine learning research suggests that learners

to be assembled should “disagree” with each other, as much

as possible [19]. The discrepancy incorporated in the HDA

and DDA modules therefore shows the general sense to de-

sign and assemble learners in deep neural networks.

4. Experiments

4.1. Experimental Setup

Datasets. DANet is evaluated on the commonly used

CUB-200-2011 [26] and ILSVRC 2016 [5, 18] datasets.

CUB-200-2011 contains 11,788 images of 200 bird species

with 5,994 images for training and 5,794 for test. Following

the biological taxonomy we divide the 200 species of birds

into a three-level hierarchy, which includes 37 families, and

11 orders. For ILSVRC 2016, we use 1.2 million images

with 1,000 classes for training, and 5,000 images in the val-

idation set for testing. We apply the off-the-shelf category

hierarchy of ILSVRC 2016 dataset from WordNet [17], a

language database which structures concepts and how they

relate. These hierarchical class labels are obtained from

knowledge graphs with taxonomic hierarchy. As for other

datasets, a related hierarchy can also be structured from

WordNet.
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Evaluation metrics. Two metrics are used for WSOL

performance evaluation. The first localization metric is sug-

gested by [18]: fraction of images with right prediction of

classification of the image labels and 50% IoU with the

ground-truth box. The second is the Correct Localization

(CorLoc) rate [6], which indicates the localization perfor-

mance given the class label for each test image.

Experimental details. The proposed DA modules are

integrated with the commonly used CNNs including VG-

Gnet [21] and GoogLeNet [22]. Following the settings of

previous work [38], we remove the layers after conv5-3

(from pool5 to prob) of the VGG-16 network and the last

inception block of GoogLeNet. We then add two convolu-

tional layers with kernel size 3 × 3, stride 1, pad 1 with

1024 units, and a convolutional layer of size 1 × 1, stride

1 with 1000 units (200 units for CUB-200-2011). As il-

lustrated in Fig. 2, discrepant activation maps can be con-

veniently obtained from the feature maps before the GAP

layer. Both networks are fine-tuned on the pre-trained

weights of ILSVRC [18]. The input images are randomly

cropped to 224 × 224 pixels after being re-sized to 256 ×
256 pixels. For classification, we average the scores from

the softmax layer with 10 crops.

4.2. Ablation Studies

The ablation studies on CUB-200-2011 using VGGnet

are used to evaluate the effects of the proposed DA modules.

Effect of HDA. As shown in Table 1, HDA reduces the

top-1/top-5 loc. err. by 5.14%/4.36% compared with the

baseline CAM approach, at the cost of little (∼ 1%) clas-

sification performance. In Fig. 5, examples of activation

maps show the impact of the HDA module. With only the

supervision from child class labels, CAM tends to activate

object parts, e.g., the bird head. With the introduced image

category hierarchy supervisions, the activation maps enrich

common visual patterns belonging to the same parent class

of birds. For example, the slim body and similar feather

color of family Warbler is activated by the HDA module,

and the activation regions diverge from bird head to bird

body. We also do ablation study on number of hierarchy

levels with limited hierarchy levels provided by biological

taxonomy and obtained 55.85%, 52.80%, and 50.71% loc.

err. with one, two and three levels, respectively. It can be

seen that loc. err. decreased when more hierarchy supervi-

sions are introduced.

In Table 1,“CAM+multi-loss” refers to applying the

same supervision to the feature pyramid of the network in

Fig. 2 without using the DA module. It can be seen that

both the cls. err. and loc. err. of “CAM+multi-loss” are

worse than that of the baseline CAM approach. This shows

that simply updating the backbone network of CAM to a

feature pyramid network does not necessarily boost the per-

formance of WSOL. The reason lies in that without DA
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Figure 5: Examples of HDA Maps on CUB-200-2011. The

first two rows are supervision and activation maps of CAM

and the last two rows are ours. Different frames indicate

different labels. With solely child labels provided, CAM fo-

cuses only on the most discriminative parts i.e., bird head,

while the proposed HDA approach diverges towards full ob-

ject extent.

cls. err loc. err

Method top1 top5 top1 top5

CAM [39] 23.42 7.47 55.85 47.84

CAM+multi-loss 24.99 8.11 58.58 49.97

HDA 24.13 6.96 50.71 43.48

HDA+DDA 24.63 7.73 47.48 38.04

Table 1: The effect of the proposed hierarchical diver-

gent activation (HDA) and discrepant divergent activation

(DDA). Comparing with the baseline CAM approach, DA

modules achieve 8.37%/9.80% localization performance

gain at the cost of 1.21%/0.26% classification performance.

Lower digits indicate better performance.

modules the CAM on the feature pyramid fails activating

complementary visual patterns.

Effect of DDA. In Fig. 6a, we evaluate the loc. err. un-

der different numbers (K) of discrepant activation maps and

provides a reference for the selection of K. With too few

discrepant maps, it is difficult to produce sufficient spatial

discrepancy. With too many discrepant activation maps, the

parameters increase significantly, which increases the risk
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(a) K (b) λ

Figure 6: Evaluation of DDA parameters, i.e., activation

map number K and regularization factor λ, on CUB-200-

2011.

DDA map1 DDA map2 DDA map n DDA ResultDDA map3

Figure 7: Discrepant activation maps on the cub-200-2011

test set. Discrepant visual patterns (1st to 4th columns) are

fused to cover the full object extent (last column). (Best

view in color)

of over-fitting. To alleviate the difficulty of learning ad-

ditional parameters, we randomly dropout half of the dis-

crepant activation maps in each training mini-batch, which

are validated to achieve higher performance and faster net-

work convergence.

In Fig. 6b, we evaluate the regularization factor λ (de-

fined in Eq. 2) and observed that K = 8, λ = 0.01 reports

the best performance. With proper parameters, complemen-

tary visual patterns are discovered in discrepant activation

maps, a combination of these activation maps covers the

full object extent, as shown in Fig. 7 and Fig. 9.

Statistical analysis. In Fig. 8, we show the statistical

analysis of “correct bounding boxes” which indicates cor-

rect classification with over 50% IoU with the ground-truth

boxes on CUB and ILSVRC datasets. It can be seen that the

proposed DANet enhances the quality of correct bounding

boxes on both datasets by improving the IoU rates.

4.3. Comparison with the state-of-the-arts

We compare the proposed DANets with the state-of-the-

art approaches on the CUB-200-2011 test set and ILSVRC

validation set and report the results in Table 2, Table 3, and

Table 4, respectively.

(a) CUB-200-2011 (b) ILSVRC

Figure 8: Statistical analysis of “correct bounding boxes”.

cls. err. loc. err.

Method top1 top5 top1 top5

GoogLeNet-CAM [39] 26.2 8.5 58.94 49.34

GoogLeNet-SPG [38] - - 53.36 42.28

GoogLeNet-DANet (ours) 28.8 9.4 50.55 39.54

VGGnet-CAM [39] 23.4 7.5 55.85 47.84

VGGnet-ACoL [37] 28.1 - 54.08 43.49

VGGnet-SPG [38] 24.5 7.9 51.07 42.15

VGGnet-DANet (ours) 24.6 7.7 47.48 38.04

Table 2: Performance comparison on the CUB-200-2011

test set. DANets achieve significant localization perfor-

mance gain over the state-of-the-arts while reporting com-

parable image classification performance.

On the CUB-200-2011 test set, with a VGGnet back-

bone, DANet reports 6.60%/5.45% lower top-1/top-5 loc.

err. and 3.5% lower top-1 cls. err. compared with the ad-

versarial erasing approach (ACoL) approach [37] at the cost

of little classification performance. It reports 3.59%/4.11%
lower top-1/top-5 localization error compared with the self-

produced guidance (SPG) approach [38] at the cost of 0.1%-

0.2% classification performance. With a GoogleLeNet

backbone, it reports 2.81%/2.74% performance gain over

the state-of-the-art SPG approach [38]. We also imple-

mented DANet with ResNet-50 and obtained: 18.4% cls.

err. and 38.9% loc. err., demonstrating the advantage of

DANet with high capacity networks.

On the large-scale ILSVRC dataset, it can be seen that

the DANet with a GoogLeNet backbone, simultaneously

improves the classification and localization performance

comparing with the state-of-the-art ACoL approach [37].

It also reports comparable performance with the state-of-

the-art SPG [38] approach. This validates the priority of

the proposed joint optimization framework over the step-

wised optimization method employed in the compared ap-

proaches.

In Table 4, we evaluate the CorLoc performance on the

CUB-200-2011 test set. By removing disturbance the from

image classification, this metric can explicitly reflect the lo-

calization performance. It can be seen that DANet with a
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Figure 9: Comparison with the CAM [39] method. Our method can locate larger object regions to improve localization

performance (ground-truth bounding boxes are in yellow and the predicted are in red).

cls. err. loc. err.

Method top1 top5 top1 top5

VGGnet-Backprop [21] - - 61.12 51.46

VGGnet-CAM [39] 33.4 12.2 57.20 45.14

VGGnet-ACoL [37] 32.5 12.0 54.17 40.57

GoogLeNet-Backprop [21] - - 61.31 50.55

GoogLeNet 31.9 11.3 60.09 49.34

GoogLeNet-GMP [39] 35.6 13.9 57.78 45.26

GoogLeNet-CAM [39] 35.0 13.2 56.40 43.00

GoogLeNet-HaS-32 [13] - - 54.53 -

GoogLeNet-ACoL [37] 29.0 11.8 53.28 42.58

GoogLeNet-SPG [38] - - 51.40 40.00

GoogLeNet-DANet (ours) 27.5 8.6 52.47 41.72

Table 3: Performance comparison on the large-scale

ILSVRC validation set. DANets improve both object local-

ization and image classification performance over the state-

of-the-art adversarial erasing approach (ACoL).

VGGnet backbone respectively outperforms ACoL [37] and

SPG [38] up to 13.6% (67.7% vs. 54.1%) and 8.8% (67.7%

vs. 58.9%). It also outperforms the other state-of-the-art

approaches with significant margins.

5. Conclusion

In this paper, we proposed a simple yet effective diver-

gent activation (DA) approach for weakly supervised object

localization. We designed hierarchical divergent activation

(HDA) and discrepant divergent activation (DDA) modules

and unified them with the deep learning framework, leading

to DANets. We also defined a joint objective function so

Method CorLoc

GoogLeNet-CAM [39] 55.1

GoogLeNet-Friend or Foe[33] 56.51

GoogLeNet-DANet (ours) 67.03

VGGnet-ACoL [37] 54.1

VGGnet-CAM [39] 56.0

VGGnet-SPG [38] 58.9

VGGnet-TSC [9] 65.5

VGGnet-DANet (ours) 67.7

Table 4: CorLoc rate on the CUB-200-2011 test set. Larger

number indicates better performance.

that the DA loss can be simultaneously optimized with the

image classification loss. During learning, DANets diverge

object parts into full object extent and significantly improve

the performance of weakly supervised object localization

while maintaining the high performance of image classifi-

cation. The underlying reality lies in that the DA modules

span the feature space by learning complementary visual

patterns while DANets implement a special kind of learner

ensemble by maximizing the discrepancy between learners.

This provides fresh insights to the challenging weakly su-

pervised learning problem.
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