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1. Introduction
Research from as early as the 1950s (Masse and Gibrat
1957) suggests that effective capacity planning for indus-
trial facilities must treat uncertainty explicitly. The list of
uncertain parameters can include product demands at those
facilities, expansion costs, operating costs, and production
efficiencies. This paper studies capacity-planning problems
in which a sequence of discrete, capacity-expansion deci-
sions must be made over a finite planning horizon, subject
to one or more sources of uncertainty.
A deterministic, single-period instance of our model

without capacity-expansion decisions can be viewed as
an operations-planning model for some type of system.
For example, the system could represent a single plant
with multiple production facilities, each with fixed produc-
tion capacity, and each producing multiple products. Given
known production costs and product demands, the system
manager must identify a minimum-cost, capacity-feasible
operational plan to meet those demands. Even this single-
period deterministic problem may be complicated, requir-
ing a high level of modeling fidelity that incorporates both
continuous and discrete decision variables.

The full planning problem is more complex because it
spans a multiperiod horizon, must incorporate capacity-
expansion decisions to accommodate demand growth, and
faces uncertainty in demand, costs, and possibly other
parameters. (Strategic capacity-expansion decisions link the
time periods, whereas operational decisions such as prod-
uct inventory levels do not.) An optimal capacity-expansion
plan will (a) enable production to meet demand, and
(b) minimize the expected costs of capacity expansion and
production over the planning horizon.
We formulate the stochastic capacity-planning problem

as a multistage, stochastic, mixed-integer program, with
uncertain parameters represented through a standard sce-
nario tree (see, for example, Ruszczyński and Shapiro
2003, pp. 29–30). Given a finite number of scenarios and
their probabilities, this problem can then be stated as a
large-scale mixed-integer program (MIP), i.e., a “determin-
istic equivalent.” That model can be solved, in theory, by a
commercial optimization code. As we shall see, however,
only the smallest real-world instances appear to be tractable
with this approach.
We overcome this intractability by applying dynamic col-

umn generation to a Dantzig-Wolfe reformulation of the
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problem (Dantzig and Wolfe 1960, Appelgren 1969). (See
Vanderbeck and Wolsey 1996 for a general solution method
for Dantzig-Wolfe reformulations of integer programs; see
Lübbecke and Desrosiers 2005 for an overview of appli-
cations.) The Dantzig-Wolfe master problem contains only
binary variables and represents a simplified deterministic
equivalent for the problem. The Dantzig-Wolfe subprob-
lems are MIPs and generate columns for the linear pro-
gramming (LP) relaxation of the master problem at each
node of the scenario tree. Because we use a special “split-
variable formulation” of the original model (e.g., Lustig
et al. 1991), the master problem exhibits structure that
tends to yield strong LP relaxations, and even integer
solutions. This makes the master problem, and thus the
full problem, particularly easy to solve. When a facility
can be expanded at most once over the planning hori-
zon, model simplifications enhance performance. Specially
structured subproblems admit stronger formulations that
further enhance performance, and “duals stabilization” for
the master problem (e.g., du Merle et al. 1999) dramati-
cally reduces the number of columns generated, improving
solution times for all problem variants.
The literature on stochastic capacity-planning problems

is extensive: Luss (1982) and Van Mieghem (2003) present
comprehensive surveys. Manne’s seminal paper (Manne
1961), which models demand growth as an infinite-
horizon stochastic process, stimulated much research in this
area (e.g., Erlenkotter 1967, Manne 1967, Giglio 1970,
Freidenfelds 1980). The typical infinite-horizon model can-
not incorporate, however, the complex operational con-
straints that many real-world applications require.
More recent studies incorporate application-specific con-

straints. For example, Sen et al. (1994) describe a two-
stage model that integrates demand, capacity expansion,
and budget constraints, although it incorporates only con-
tinuous capacity-expansion decisions and a single capacity-
expansion technology. The authors solve the model with the
sampling-based, stochastic-decomposition algorithm devel-
oped by Higle and Sen (1996).
The assumptions of a discrete probability distribution for

uncertain parameters and a finite planning horizon mean
that a set of scenarios can represent uncertain outcomes.
This results in a standard mathematical programming prob-
lem that is typically very large, but which enables the
incorporation of a detailed operational submodel and many
“strategic details,” such as a variety of capacity-expansion
technologies. Berman et al. (1994) present and solve a
scenario-based multistage model with a single capacity-
expansion technology. Chen et al. (2002) extend this con-
cept to multiple capacity-expansion technologies. Both of
these approaches assume continuous capacity-expansion
decisions, however.
The modeling of fixed charges and economies of scale

adds considerable complexity to a stochastic program. Chen
et al. (2002) describe economies of scale for capacity
expansions in their multistage model, but can only solve

a model with linear costs. Eppen et al. (1989), Riis and
Andersen (2002), Riis and Lodahl (2002), and Barahona
et al. (2005) all use integer variables to model such effects
in the first stage of a two-stage model. Although more com-
plex, these problems still admit solution through Benders
decomposition because integer variables are confined to the
first stage (Laporte and Louveaux 1993).
In recent years, increased computing power and advances

in optimization techniques have made it possible to
solve multistage, stochastic, integer-programming models.
Ahmed et al. (2003) solve such problems with a spe-
cial branch-and-bound procedure. Ahmed and Sahinidis
(2003) and Huang and Ahmed (2005) propose approxima-
tion schemes that converge asymptotically to an optimal
solution as the planning horizon lengthens.
Dynamic programming, although limited in its ability

to integrate practical constraints, appears in a few recent
applications. Laguna (1998) solves a two-stage model,
which Riis and Andersen (2004) extend to multiple stages.
Rajagopalan et al. (1998) present a multistage model with
deterministic demand, but with uncertainty in the timing of
the availability of new capacity-expansion technologies.
Unlike its continuous counterpart, a multistage stochas-

tic program with integer variables in all stages does not
allow a nested Benders decomposition. In theory, LP-based
branch and bound can solve the deterministic equivalent for
such a problem, although practical instances usually exceed
the capabilities of today’s software and hardware. How-
ever, new research on solving large deterministic integer
programs (IPs) via column generation (e.g., Lübbecke and
Desrosiers 2005) has spawned research on solving stochas-
tic IPs with this technique: Lulli and Sen (2004) use branch
and price (column generation plus branch and bound) for
stochastic batch-sizing problems; Shiina and Birge (2004)
use column generation to solve a unit-commitment problem
under demand uncertainty; Damodaran and Wilhelm (2004)
model high-technology product upgrades under uncertain
demand; and Silva and Wood (2006) show how to solve a
special class of two-stage problems by branch and price.
We propose a new column-generation approach for solv-

ing multistage, stochastic, capacity-planning problems: our
master problem and subproblems differ substantially from
those developed by other researchers. Importantly, the gen-
erality of our approach should lend itself to applications in
a variety of industries.
Our research relates most closely to that of Ahmed

et al. (2003), who present a multistage, stochastic, capacity-
planning model that incorporates continuous as well as
binary capacity-expansion decisions. Ahmed et al. disag-
gregate the continuous variables using the reformulation
strategy of Krarup and Bilde (1977), which enables a strong
problem formulation. Our approach differs in three major
aspects:
1. We disaggregate binary capacity-expansion decisions

rather than continuous ones.
2. Random demand parameters directly determine a

facility’s capacity requirements in Ahmed et al. (2003), and
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operational constraints are simple: Total installed capacity
must meet or exceed demand. (In theory, their model can
accommodate more-complicated operational constraints.)
Our approach incorporates a general operational-level sub-
model that meets demand using installed capacity however
the modeler deems fit.
3. Ahmed et al. (2003) solve their MIP using an

LP-based branch-and-bound algorithm that incorporates a
heuristic for finding feasible solutions, whereas we use col-
umn generation.
The remainder of this paper is organized as follows. Sec-

tion 2 describes a general, multistage, stochastic, capacity-
planning model with discrete capacity-expansion decisions,
and formulates this problem as a deterministic-equivalent
MIP. A reformulation, using the technique of “variable
splitting,” then enables a Dantzig-Wolfe decomposition
whose master problem can have a stronger LP relax-
ation than the original formulation. Section 3 explores the
strength of the decomposition. Section 4 presents a sim-
plified split-variable formulation of a restricted model that
allows at most one expansion of each facility over the plan-
ning horizon. Section 5 describes a capacity-planning prob-
lem for an electricity distribution network, and uses that
for computational studies: we solve both split-variable for-
mulations by Dantzig-Wolfe decomposition, and compare
against a potentially competitive, scenario-based decompo-
sition scheme. Section 6 presents conclusions.

2. A Multistage, Stochastic,
Capacity-Planning Model

We follow Ahmed et al. (2003) and represent uncertainty
using a rooted scenario tree � over T decision stages.
For simplicity, we think of these stages occurring at evenly
spaced increments of time. The scenario tree at each stage t
consists of a set of nodes, each of which represents a poten-
tial state of the world at time t. We denote the complete
set of nodes of the scenario tree by � . A unique root node,
denoted n = 0, defines stage t = 1.
For each node n ∈� , �n denotes the probability that the

corresponding state of the world occurs. The set �n ⊆ �
denotes the successors of n (which we define to include
n itself): �n consists of n plus all nodes in the tree from
which a unique path to the root includes n. Similarly,
�n ⊆� denotes the set of all predecessors of n: �n con-
sists of n and all nodes in the unique path from n up to and
including the root node. For any leaf node n in the tree, �n

defines a scenario. Note that all scenarios have the same
realization at the root node of � , so �0 = 1.

We now present the compact formulation of our stochas-
tic capacity-planning model.

Data

cn: discounted cost vector for expanding capacity of sys-
tem facilities at scenario-tree node n; this vector has
dimension F , the number of facilities.

qn: discounted cost vector for operating the system at
scenario-tree node n.

u0: vector of initial capacities of facilities.
Vn: matrix that converts operating decisions and/or activ-

ities into capacity utilization at scenario-tree node n.
Uhn: nonnegative matrix that converts capacity-expansion

decisions at scenario-tree node h into available oper-
ating capacity at successor node n ∈�h.

�n: feasible region for operating decisions at scenario-
tree node n, with strategic capacity constraints
omitted.

�n: probability that the state of the world, defined by
�cn�qn�Vn�Uhn��n�, occurs.

Variables

Note: Capacity-expansion decisions could be complicated
because we might use a variety of different technologies to
expand a facility f , and decisions in one time period could
affect decisions in another. However, for simplicity of pre-
sentation, the model described here assumes that facility f
can be expanded at scenario-tree node n or not, using a
single technology, but can be expanded multiple times over
the planning horizon.
x′

n: vector of binary decisions for capacity expansion of
facilities at scenario-tree node n� Specifically, x′

fn = 1
if facility f is expanded at node n, 0 otherwise.

yn: vector of continuous and/or discrete operating deci-
sions at scenario-tree node n.

Formulation

CF: z∗
CF =min

∑
n∈�

�n�c
�
n x

′
n +q�

n yn� (1)

s.t. Vnyn � u0 + ∑
h∈�n

Uhnx
′
h ∀n ∈� � (2)

yn ∈�n ∀n ∈� � (3)

x′
n ∈ �0�1�F ∀n ∈� � (4)

Note: By convention, if “AB” denotes a MIP, then “AB-LP”
denotes that model’s LP relaxation. Also, z∗

AB (z∗
AB-LP)

denotes the optimal objective value to AB (AB-LP).
With the exception of �n, parameters subscripted by n

in the model indicate potentially random quantities. Con-
straints (3) represent generic relationships between the
operational variables yn, independent of all x

′
h. These con-

straints may also include random effects. For example, our
application includes, among other constructs, flow-balance
constraints with random demands.
Constraints (2) ensure that adequate capacity exists to sat-

isfy the operational requirements Vnyn at node n. The matri-
ces Uhn can model lags between when capacity-expansion
decisions are executed and when capacity becomes avail-
able and, more generally, can model capacity that increases
or decreases after installation.
Constraints (2) and (3) can handle a general operational

model at each node of the scenario tree. If a set of discrete
capacity-expansion decisions adequately models continu-
ous capacity expansions with fixed charges, the “(SCAP)”
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model of Ahmed et al. (2003) may be viewed as an instance
of CF: this instance sets qn = 0 and defines constraints (3)
as yn = dn, where dn represents demands at node n.
Capacity-planning problems like CF typically have weak

LP relaxations, and that makes them difficult to solve. The
scale imposed by a scenario tree, especially when some
components of yn must be integer, exacerbates this dif-
ficulty. On the other hand, an optimization model over
yn ∈�n, for a single node n, might be relatively easy
to solve as a MIP. This structure suggests some form of
decomposition.

2.1. A Split-Variable Reformulation and
Dantzig-Wolfe Decomposition

The classical approach to solving multistage, stochastic,
linear programs uses nested Benders decomposition (e.g.,
Birge and Louveaux 1997, pp. 234–236), but integer vari-
ables in the subproblems make this impracticable. Our
approach exploits Dantzig-Wolfe decomposition (Dantzig
and Wolfe 1960) as extended to integer variables by
Appelgren (1969). As we shall later discuss, a straightfor-
ward Dantzig-Wolfe decomposition of CF could lead to a
master problem that provides a weak lower bound on z∗

CF.
To address this difficulty, we apply decomposition to the
following split-variable reformulation:

SV: z∗
SV =min

∑
n∈�

�n�c
�
n x

′
n +q�

n yn� (5)

s.t. xhn � x′
h ∀n ∈� � h ∈�n� (6)

Vnyn � u0 + ∑
h∈�n

Uhnxhn ∀n ∈� � (7)

yn ∈�n ∀n ∈� � (8)

x′
n ∈ �0�1�F ∀n ∈� � (9)

xhn ∈ �0�1�F ∀n ∈� � h ∈�n� (10)

The proof of the following proposition is obvious.

Proposition 1. Suppose that Uhn � 0 ∀n ∈ � � h ∈ �n.
Then, �x′

n�yn�n∈� is feasible for CF if and only if there
exists �xhn�n∈� � h∈�n

such that �x′
n� �xhn�h∈�n

�yn� is feasible
for SV. That is, CF and SV are essentially equivalent, and
z∗
CF = z∗

SV. �

For each node n, and for each of its predecessor nodes
h ∈ �n, SV defines a new vector of split variables xhn

that indicates whether capacity expansions of facilities at
scenario-tree node h contribute toward meeting the capac-
ity requirement at node n. Here, one may think of xhn as
requests for capacity expansions at nodes h ∈�n which, if
granted, will jointly satisfy capacity requirements at node n.
Constraints (7) accumulate such requests. The variables
x′

n determine actual capacity expansions at node n and
can be viewed as capacity grants. Thus, the natural inter-
pretation of constraints (6) is that variables xhn request
capacity and variables x′

h grant capacity. (As an alternative,

looking “down the tree” from node n, one may split
x′

n into variables xnh, which indicate whether a capacity-
expansion decision at node n is exploitable, nonexclu-
sively, at successor node h. This equivalent interpretation
can be formalized by rewriting constraints (6) as xnh � x′

n

∀n ∈� � h ∈�n.)
The split-variable reformulation has some similarities

to the reformulation that Krarup and Bilde (1977) use
to strengthen lot-sizing models, and to the variable-
disaggregation-based reformulation used by Ahmed et al.
(2003) for strengthening stochastic capacity-expansion
models. Our model differs from those in that the split vari-
ables xhn are binary and force binary capacity-expansion
decisions x′

n. In contrast, Ahmed et al. disaggregate con-
tinuous variables that force both continuous and binary
capacity-expansion decisions. (We do not consider continu-
ous capacity expansions.) With this disaggregation, demand
provides an explicit lower bound on each facility’s capacity,
and this leads to tighter constraints and a stronger model.
The aim of our variable-disaggregation reformulation

and solution methodology is to obtain a tighter approxi-
mation of the convex hull of the feasible solutions to an
IP. In this general respect, our approach relates to extended
formulations for 0–1 IPs, and particularly to the “lift-
and-project” techniques described by Sherali and Adams
(1990), Lovasz and Schrijver (1991), Balas et al. (1996),
Sherali et al. (1998), and Lasserre (2001).
Variable splitting is a common technique used in stochas-

tic programming to enable the decomposition of certain
models. The conventional application of this approach
decomposes a model by scenarios. The decomposed model
can then be solved by a variety of approaches, such
as Lagrangian relaxation plus branch and bound (Carøe
and Schultz 1999), the branch-and-fix coordination scheme
(Alonso-Ayuso et al. 2003), or branch and price (Lulli and
Sen 2004). Applied to CF, for each node n ∈ � , this sce-
nario decomposition would split variables x′

n and yn into
variables for the stage t associated with n and all scenar-
ios s that are indistinguishable at n. Thus, the split variables
here would be x′

ts and yts . Because all split variables for
a particular node n correspond to the same realization of
the random parameters, their values must be equal: “nonan-
ticipativity constraints” impose this condition (e.g., Birge
and Louveaux 1997, p. 25). Our formulation uses relaxed,
yet still valid nonanticipativity constraints (6). Lagrangian
relaxation of these (relaxed) constraints enables a nodal
decomposition, i.e., a decomposition by scenario-tree node.
Dentcheva and Römisch (2004) show that the duality

gap achieved using Lagrangian relaxation to implement a
scenario decomposition of a problem is no greater than
that resulting from the nodal decomposition. This makes
nodal decomposition less attractive. On the other hand, the
number of nonanticipativity constraints in scenario decom-
position can be huge because they must be imposed on
all variables at each nonleaf node. Furthermore, subprob-
lem size increases proportionally to the number of stages.
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Indeed, computational experiments in §5 show that sce-
nario decomposition can become intractable for a real-
world class of capacity-planning problems.

2.2. Dantzig-Wolfe Reformulation of SV

The capacity-expansion constraints (6) in SV link capac-
ity expansions across successors of a scenario-tree node;
these are “complicating constraints” to what are otherwise
a set of simpler (sub)problems, one for each scenario-tree
node n. (Subproblem n includes split variables xhn indexed
over h ∈�n, but these variables are not linked across sub-
problems. They may be viewed, therefore, as alternative
capacity-expansion choices for subproblem n alone.) Thus,
we can use decomposition to partition the constraints of
the split-variable formulation into two sets: the set of link-
ing (complicating) constraints (6), and the set of constraints
specific to scenario-tree node n, for which we define

�n =
{

�xhn�h∈�n
� Vnyn � u0 + ∑

h∈�n

Uhnxhn�xhn ∈ �0�1�F

∀h ∈�n� yn ∈�n

}
� (11)

In what follows, we find it convenient in some situations
to replace the notation �xhn�h∈�n

with the more “vector-
oriented” notation �xnn · · ·x0n� ≡ �xnnxp�n�nxp�p�n��n · · ·x0n�,
where p�n� denotes the direct predecessor of node n.
If we rewrite �n as the finite, enumerated set �n =

��x̂nn · · · x̂0n�
j � j ∈ �n�, we can then express any element of

�n through

�xnn · · ·x0n� = ∑
j∈�n

�x̂nn · · · x̂0n�
jwj

n�

∑
j∈�n

wj
n = 1� wj

n ∈ �0�1� ∀ j ∈ �n�
(12)

Each vector �x̂nn · · · x̂0n�
j represents a collection of

capacity-expansion requests from nodes h ∈ �n; satisfy-
ing these requests will ensure feasible system operation at
node n. Hence, we refer to each collection as a feasible
expansion plan (FEP).
Without loss of generality, we may assume that each

FEP has associated with it at least one optimal operational
plan 
yj

n, i.e., �n simultaneously indexes FEPs and opera-
tional plans at scenario-tree node n. Thus, we can attach
the operational costs q�

n 
yj
n to the wj

n, and substitute for
�xnn · · ·x0n� using (12) to obtain the Dantzig-Wolfe refor-
mulation of SV. We denote this multiscenario, column-
oriented master problem as “SV-MP.”
For each scenario node n, SV-MP contains a group of

columns with index set �n. Each j ∈ �n corresponds to an
FEP. For simplicity, we assume that SV-MP is always fea-
sible, i.e., �n �= � for any n. The formulation for SV-MP
follows, with previously defined notation omitted:

Indices and Index Sets

j ∈ �n: FEPs for scenario-tree node n.

Data

x̂j
hn: binary vector representing capacity-expansion

requests at scenario-tree node h that form part of
FEP j for node n.


yj
n: operational plan used at scenario-tree node n with

FEP j .

Variables

x′
n: binary decision vector for capacity expansion of facil-

ities at scenario-tree node n.
wj

n: 1 if FEP j is selected for scenario-tree node n, 0
otherwise.

Formulation

SV-MP (dual variables for LP relaxation in brackets):

z∗
SV-MP =min

∑
n∈�

�nc
�
n x

′
n + ∑

n∈�

∑
j∈�n

�nq
�
n 
yj

nw
j
n

[dual variables] (13)

s.t.
∑
j∈�n

x̂j
hnw

j
n � x′

h ∀n ∈� � h ∈�n�

	
hn�� (14)∑
j∈�n

wj
n = 1 ∀n ∈� � 	�n�� (15)

wj
n ∈ �0�1� ∀n ∈� � j ∈ �n�

x′
n ∈ �0�1�F ∀n ∈� �

SV-MP’s objective function (13) minimizes expected
capacity-expansion costs plus expected operational costs.
Constraints (14) ensure that no FEP is chosen for any node
without sufficient capacity having been installed (granted).
Convexity constraints (15) select exactly one FEP for each
scenario-tree node n.
Naturally, the cardinality of �n in SV-MP will be huge,

so we solve SV-MP using dynamic column generation.
First, we create a restricted master problem SV-RMP, which
is identical to SV-MP, except that each set �n now repre-
sents a modest-sized subset of all the FEPs at scenario-tree
node n. Second, we solve the LP relaxation of SV-RMP
(SV-RMP-LP), which replaces wj

n ∈ �0�1� and x′
n ∈ �0�1�

by wj
n � 0 and x′

n � 0, respectively. (The convexity con-
straints imply satisfaction of wj

n � 1 and x′
n � 1.) Finally,

given a solution to SV-RMP-LP, we extract dual variables,
and attempt to generate new columns corresponding to
FEPs with negative reduced costs, by solving optimiza-
tion subproblems (e.g., Barnhart et al. 1998, Lübbecke and
Desrosiers 2005).
The subproblem at scenario-tree node n is

SV-SP�n�:

z∗
SV-SP�n� =min �nq

�
n yn − ∑

h∈�n


��
hnxhn − �̂n (16)

s.t. Vnyn � u0 + ∑
h∈�n

Uhnxhn� (17)

yn ∈�n� (18)

xhn ∈ �0�1�F ∀h ∈�n� (19)
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The cycle of solving SV-RMP-LP, extracting duals, and
generating new columns repeats until no columns price
favorably, i.e., no columns with negative reduced cost can
be found and so we have solved SV-MP-LP to optimal-
ity. If the optimal solution to SV-MP-LP happens to be
integer, then we have solved SV-MP, and thus SV. If not,
we may resort to a branch-and-price algorithm, which
generates columns within a branch-and-bound procedure
(Savelsbergh 1997), or settle for solving the SV-RMP as an
IP in the hope of obtaining a good integer solution.

3. Strength of the Decomposition
Dantzig-Wolfe decomposition of a large LP replaces the
direct solution of a large-scale problem with a sequence
of solutions of smaller, easier-to-solve problems, which
are coordinated through a master problem. This indirect
approach helps to solve certain large MIPs, also. Further-
more, decomposition of a MIP may improve solution effi-
ciency by defining a master problem whose LP relaxation
is stronger than the relaxation of the original MIP.
In the class of problems we consider, there are sev-

eral possible approaches to constructing such a decomposi-
tion. The simplest approach decomposes CF directly—that
is, without first applying the split-variable reformulation.
This decomposition expresses feasible points for the master
problem CF-MP as convex combinations of extreme points
of conv(�n) for n ∈� , i.e., the convex hulls of the subprob-
lems’ feasible regions �n. If each subproblem is simply
an LP, then conv��n� = �n and z∗

CF-MP-LP = z∗
CF-LP. (Recall

our convention: CF-MP-LP denotes the LP relaxation of
the master problem for the Dantzig-Wolfe decomposition
of CF.) On the other hand, if conv��n� ⊂ �n—for exam-
ple, when the subproblem is an IP whose LP relaxation
does not have integer extreme points—then the resulting
master problem can have a tighter relaxation than that of
the original MIP (Barnhart et al. 1998).
We have implemented a direct Dantzig-Wolfe decom-

position of CF. In our test-problem instances, the mixed-
integer subproblems for this decomposition need not have,
but typically do have, naturally integer LP solutions.
This results in no strengthening of the MIP through
decomposition—for example, in the smallest instance
z∗
CF-LP = z∗

CF-MP-LP = 201�017, whereas the optimal integer
solution has z∗

CF-IP = 444�149.
A second approach to decomposition would use the split-

variable formulation, but with the integrality of variables
xhn relaxed. Let “SVR” denote this model. In a typical
Dantzig-Wolfe decomposition of SVR, we would expect
z∗
SVR-MP-LP > z∗

CF-LP, which is desirable, of course; and this
decomposition would have an advantage over the decom-
position of SV because the SVR subproblems would have
fewer binary variables and would solve faster, presumably.
However, the columns returned to SVR-MP would repre-
sent the fractions of capacity-expansion options used in the
subproblems—compare this to the zeroes and ones in the
columns returned in the decomposition of SV—and thus we
would expect SVR-MP-LP to be weaker than SV-MP-LP.

Indeed, if (a) subproblem variables have no associated
costs, and (b) the maximum fraction of capacity utiliza-
tion in any subproblem is , 0 <  < 1, then it is easy to
construct instances in which z∗

SVR-MP-LP � z∗
SV-MP-LP.

Computational tests with Dantzig-Wolfe decomposition
for SVR confirm the observations made above. For the
“smallest problem instance” referred to above, z∗

SVR-MP-LP =
363�079. This is certainly better than z∗

CF-MP-LP = 201�017,
but is still far from z∗

SV-MP-LP = z∗
CF-IP = 444�149. There-

fore, SVR-MP-LP may solve faster than SV-MP-LP—
solution times are 27.6 seconds versus 55.9 seconds,
respectively, for this instance—but after solving SVR-MP-
LP, the nonzero optimality gap means that we would need
to implement and apply a branch-and-price algorithm to
guarantee an optimal solution. In contrast, SV-MP-LP has
an integer solution in all problem instances we have tested,
and thus the branch-and-price step is avoided.
We do find it remarkable that every one of our com-

putational tests yields an optimal integer solution for
SV-MP-LP. (Fractional intermediate solutions are not
unusual.) Because the constraint matrix for this problem
has coefficients that are either 0, 1, or −1 (when placed
in standard form), it is easy to see that fixing the wj

n to
binary values leads to binary solutions for x′

n even when the
latter variables are allowed to be continuous. Furthermore,
for each node n in the scenario tree, the submatrix corre-
sponding to the variables wj

n has a perfect-matrix structure
(Padberg 1974). These perfect submatrices prevent frac-
tional solutions from occurring within a single block of
variables wj

n, j ∈ �n� thus making it less likely for fractional
solutions to occur in SV-MP-LP. (See Ryan and Falkner
1988 for an account of this effect in set-partitioning prob-
lems.) On the other hand, the complete constraint matrix for
SV-MP-LP may lack the perfect-matrix property because
of constraints on the x′

n that link its (perfect) submatri-
ces. Consequently, the interaction between these submatri-
ces can give rise to fractional solutions, as we show in §5.

4. At Most One Capacity Expansion
of a Facility

The general model SV allows the expansion of a facil-
ity’s capacity more than once over the planning horizon.
However, in some industries, planning for multiple expan-
sions makes little sense because associated fixed charges
are large, or “setups” have highly undesirable side effects.
This section, therefore, studies a version of SV that restricts
each facility to being expanded at most once over the plan-
ning horizon. With this change, SV becomes SV1′:

z∗
SV1′ =min

∑
n∈�

�n�c
�
n x

′
n +q�

n yn� (20)

s.t. xhn � x′
h ∀n ∈� � h ∈�n� (21)

Vnyn � u0 + ∑
h∈�n

Uhnxhn ∀n ∈� � (22)
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∑
h∈�n

x′
h � 1 ∀n ∈� � (23)

yn ∈�n ∀n ∈� � (24)

x′
n ∈ �0�1�F ∀n ∈� � (25)

xhn ∈ �0�1�F ∀n ∈� � h ∈�n� (26)

The model SV1′ simplifies further if we assume that the
matrix Uhn is deterministic and does not evolve with the
scenario tree, that is, Uhn = U ∀n ∈� � h ∈�n. In this case,
we can transform SV1′ into an equivalent formulation with
fewer variables:

SV1: z∗
SV1 =min

∑
n∈�

�n�c
�
n x

′
n +q�

n yn� (27)

s.t. xn �
∑

h∈�n

x′
h ∀n ∈� � (28)

Vnyn � u0 + Uxn ∀n ∈� � (29)∑
h∈�n

x′
h � 1 ∀n ∈� � (30)

yn ∈�n ∀n ∈� � (31)

x′
n ∈ �0�1�F ∀n ∈� � (32)

xn ∈ �0�1�F ∀n ∈� � (33)

The following proposition implies the equivalence of SV1′

and SV1.

Proposition 2. Suppose that Uhn = U � 0 ∀n ∈ � ,
h ∈�n. Then, there exists �xhn�h∈�n

with �x′
n� �xhn�h∈�n

�yn�
being feasible for SV1′ if and only if there exists xn such
that �x′

n�xn�yn� is feasible for SV1.

Proof. Suppose that �x′
n� �xhn�h∈�n

�yn� is feasible for
SV1′. Let xn =∑

h∈�n
xhn. To show that �x′

n�xn�yn� is feasi-
ble for SV1, it suffices to check that constraints (28), (29),
and (33) are satisfied. Constraints (21) imply (28), and con-
straints (22) give (29). Moreover, xn is binary because of
(21) and (23).
Conversely, if �x′

n�xn�yn� is feasible for SV1, then let
xhn = x′

h for all h ∈ �n. All constraints of SV1′ hold triv-
ially, except for (22). These constraints are satisfied because

Vnyn � u0 + Uxn � u0 + U
∑

h∈�n

x′
h = u0 + U

∑
h∈�n

xhn�

This completes the proof. �

We can now formulate a Dantzig-Wolfe decomposition
of SV1, analogous to that of §2.2, by defining

�n = {
xn

∣∣Vnyn � u0 + Uxn�xn ∈ �0�1�F � yn ∈�n

}
�

and by expressing xn through x̂j
n, j ∈ �n, which denote the

enumerated feasible solutions in �n:

xn = ∑
j∈�n

x̂j
nw

j
n�

∑
j∈�n

wj
n = 1� wj

n ∈ �0�1� ∀ j ∈ �n�

This gives a simpler master problem

SV1-MP (dual variables for LP relaxation in brackets):

z∗
SV1-MP =min

∑
n∈�

�nc
�
n x

′
n + ∑

n∈�

∑
j∈�n

�nq
�
n 
yj

nw
j
n

[dual variables] (34)

s.t.
∑
j∈�n

x̂j
nw

j
n �

∑
h∈�n

x′
h ∀n ∈� � 	
n�� (35)

∑
h∈�n

x′
h � 1 ∀n ∈� � (36)

∑
j∈�n

wj
n = 1 ∀n ∈� � 	�n�� (37)

wj
n ∈ �0�1� ∀n ∈� � j ∈ �n�

x′
n ∈ �0�1�F ∀n ∈� �

and a simpler subproblem

SV1-SP(n):

z∗
SV1-SP�n� =min �nq

�
n yn − 
��

n xn − �̂n (38)

s.t. Vnyn � u0 + Uxn� (39)

yn ∈�n� (40)

xn ∈ �0�1�F � (41)

Recall that SV-SP�n� includes binary variables xhn for all
nodes h ∈ �n. In contrast, SV1-SP�n� incorporates only
binary variables xn. Thus, the number of binary variables
in SV1-SP�n� reduces by a factor of ��n�, which can make
this subproblem easier to solve. The reader will note that
constraints (36) for nonleaf nodes are redundant. However,
we include these constraints in SV1-MP because, for rea-
sons we cannot explain, the Dantzig-Wolfe algorithm tends
to solve faster with them included.

5. Computational Results
This section applies the SV and SV1 formulations to
instances of a model for planning the capacity expansion
of an electricity distribution network subject to uncertain
demand. The details of this class of models have been
described in Singh (2004), so we give only a brief descrip-
tion. A distribution network is the local, low-voltage part
of the electricity system that connects customers to the
long-distance, high-voltage transmission system, which in
turn connects to generating plants. The distribution network
may be viewed as connecting to the transmission system,
via a substation, at a single point or “source.” (In reality, it
may connect to several points.) For each demand realization
(i.e., at each scenario-tree node), the distribution network
of interest must operate in a radial (tree) configuration, so
that power flows from the source to each demand point
along a unique path of power lines. Typically, each line
has a switch at either end that can be open or closed, and
although the full network has an underlying mesh structure,
it is always operated in a radial configuration by opening
and closing these switches.
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We model the underlying mesh structure of the network
as a connected, undirected graph G = �� �	� consisting of
a set of vertices i ∈� and a set of edges e ∈	 such that e =
�i� j�, where i� j ∈ � and i �= j . A vertex represents either
a supply point, a demand point, a junction, or a switch-
ing point; an edge represents (a) a route along which a line
connecting the adjacent vertices has already been installed
and may or may not be replaced with a higher-capacity line
(or “cable”), or (b) it represents a new route along which a
new line may be installed. In case (a), the initial capacity
of an edge equals the capacity of the line installed in the
corresponding route; in case (b) the initial capacity is zero.
(References to an edge refer to the corresponding line.)
Power may flow in either direction along a line, and to

model this we create a directed version of G, denoted G′ =
�� �
�. The set of vertices in G′ is the same as in G, but 

replaces each edge e = �i� j� with two antiparallel, directed
arcs (i� j) and (j� i). For edge e = �i� j�, we define 
e =
��i� j�� �j� i��, so we may also write 
 = ⋃

e∈	�
e�� We
model the power source as a single vertex i0 ∈ � . (Note:
By allowing negative arc flows, we could use undirected-
graph constructs in this formulation. However, the directed-
graph formulation appears to have a stronger LP relaxation;
see Magnanti and Wolsey 1995.)
We now present a compact formulation of the multistage,

stochastic, capacity-planning model for radial distribution
networks.

Indices and Index Sets

i ∈� : vertices in the distribution network.
e ∈	: edges in the network.
k ∈
: antiparallel arcs corresponding to edges in 	.
k ∈
e: pair of antiparallel arcs representing edge e.
l ∈�en: technologies (power cables) available for expand-

ing capacity of edge e at scenario-tree node n.
i0: power-source vertex �i0 ∈� �.

Data [units]

Aik: 1 if k = �j� i�, −1 if k = �i� j�, and 0 otherwise.
Celn: discounted cost of expanding capacity of edge e

using technology l at scenario-tree node n 	$�.
Din: demand (“load”) at vertex i at scenario-tree node n

[MVA].
�n: probability associated with scenario-tree node n.
Ue0: initial capacity of edge e [MVA].

Uelhn: capacity on edge e gained from installing technol-
ogy l at scenario-tree node h, which becomes avail-
able for use at successor node n [MVA].

�Ue: upper bound representing the maximum possible
power flow on edge e [MVA].

Variables [units]

x′
eln: 1 if technology l is chosen for expanding edge e at

scenario-tree node n, and 0 otherwise.

ykn: nonnegative power flow on arc k at scenario-tree
node n [MVA].

rkn: 1 if arc k is active (part of the operating radial con-
figuration) at scenario-tree node n, and 0 otherwise.

Formulation

CF-E:

z∗
CF-E =min

∑
n∈�

�n

∑
e∈	

∑
l∈�en

Celnx
′
eln (42)

s.t. ykn �Ue0 + ∑
h∈�n

∑
l∈�en

Uelhnx
′
elh

∀ e ∈	� k ∈
e� n ∈� � (43)∑
k∈


Aikykn = Din ∀ i ∈� � n ∈� � (44)

∑
k∈
�Aik=1

rkn =1 ∀i∈� \�i0�� n∈� � (45)

∑
k∈


rkn = �� � − 1 ∀n ∈� � (46)

ykn �
�Uerkn ∀ e ∈	� k ∈
e� n ∈� � (47)

ykn � 0 ∀k ∈
� n ∈� � (48)

rkn ∈ �0�1� ∀k ∈
� n ∈� � (49)

x′
eln ∈�0�1� ∀e∈	� l∈�en� n∈� � (50)

The objective function (42) minimizes the expected
discounted cost of capacity expansions because opera-
tional costs are zero. Constraints (43) ensure that the flow
through any edge does not exceed the edge’s total capac-
ity (initial plus additional capacity acquired at predecessor
scenario-tree nodes); these constraints correspond to con-
straints (2) in CF. Note that Ue0 = 0 for potential routes.
Constraints (44) represent the standard Kirchhoff current-
balance (flow-balance) constraints at each vertex i. Con-
straints (45) and (46) enforce the requirement of a radial
operating configuration. Constraints (47) ensure that flow
is permitted on an arc k only if arc k is part of the radial
configuration in scenario-tree node n, i.e., only if rkn = 1.
Observe that constraints (44)–(49) are the operational con-
straints corresponding to constraints (3) in CF.
The binary variables, and the capacity-expansion and

radial-configuration constraints in CF-E result in a difficult
MIP. The split-variable reformulation and Dantzig-Wolfe
decomposition approach leads to subproblems SV-SP�n� (or
SV1-SP�n�) that also incorporate such variables and con-
straints, and are therefore challenging, albeit simpler, MIPs
in their own right. A “super-network model” for any sub-
problem provides a stronger LP relaxation for that sub-
problem. This model replaces certain sets of vertices and
edges with simpler constructs involving “super-vertices”
and “super-edges,” which reduces the number of binary vari-
ables and exploits some problem-specific valid inequalities;
see Singh et al. (2009) for details. We make use of this
strengthened formulation in all of the tests reported here.
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We report results for seven problem instances that differ
by the number of stages in a binary scenario tree (five prob-
lems) and the number of stages in a ternary scenario tree
(two problems). All problem instances derive from data for
an actual distribution network in Auckland, New Zealand.
The network comprises 152 vertices, most of which are
demand points, and 182 edges. For this network, the distri-
bution company provided data that define:
1. network connectivity in terms of existing and poten-

tial routes (edges) and vertices;
2. the current demand Di0 at each vertex i;
3. the capacity of each existing route;
4. the capacity made available on each route by installing

a new line, if allowed (only a single type of cable is ever
specified, so at most one technology and thus one capacity
is available for capacity expansion of any route); and
5. the cost of installing each new cable.
All problem instances have a single capacity-expansion

technology (a cable) and are designed so that an optimal
solution always exists in which no edge is expanded more
than once over the planning horizon. This allows us to
apply both SV1 and SV formulations and make direct com-
parisons.
Demand is the only stochastic parameter in our prob-

lems. For any problem instance, each demand scenario
occurs with equal probability. In a problem instance with
a binary scenario tree, each scenario-tree node, except
the root node, is randomly allocated a demand growth
factor �n, 1 < �n < 2. Let the current demand Di0 for
each vertex i correspond to node-0 demands, i.e., root-
node demands, and recall that p�n� denotes the direct-
predecessor node of each nonroot, scenario-tree node.
Then, the demands at all other scenario-tree nodes are com-
puted as follows:

For (each stage t = 2 to T ){
For (each scenario-tree node n in stage t){
For (each vertex i ∈ V ) Din ← �nDi�p�n�;

}
}

Demands in the ternary scenario tree are computed in a
similar fashion, except that a growth factor �in, 1< �in < 2,
is randomly generated for each vertex i and each scenario-
tree node except the root node, and “Din ← �nDi�p�n�”
above is replaced by “Din ← �inDi�p�n�.” Observe that the
ternary scenario trees provide a sterner test for our algo-
rithms because the demand does not grow at a uniform rate
for each vertex.
We have implemented and tested our algorithms on a

desktop computer with a Pentium IV 2.6 GHz processor
and 1 GB of RAM. We generate all models, and implement
all decomposition algorithms within the Mosel algebraic
modeling system, version 1.24, from Dash Optimization.
The restricted master problems are solved, as LPs or IPs,

with Xpress Optimizer, version 14.24, also from Dash Opti-
mization, but the MIP subproblems and the deterministic-
equivalent models are solved with CPLEX, version 9.0,
from ILOG, Inc.
Solver settings remain constant throughout all tests. All

MIPs are solved with default parameter settings except that
Gomory cuts are turned off and a moderate level of probing
is used (CPX_PARAM_PROBE = 2). All subproblems are
solved to optimality and the deterministic-equivalent prob-
lems are solved with a relative optimality tolerance of 1.0%.
A time limit of 7,200 seconds is applied in some tests.
Observe that any (nontrivial) instance of RMP-LP will be

infeasible unless one feasible column (FEP) exists for each
scenario-tree node. We could use the classical “Phase I”
approach to find an initial feasible solution, but it is sim-
pler to guarantee such a solution by seeding the master
problem with one FEP for each scenario-tree node. Except
for trivially infeasible problems, an FEP for each node that
requires all possible capacity expansions will surely be fea-
sible, so those generate our initial columns.
Any such FEP translates into a column in RMP-LP that

has coefficients of one in the capacity-expansion constraints
for each facility, a coefficient of one in the convexity con-
straint for the corresponding scenario-tree node, and zeroes
elsewhere. Note that our application imposes no operational
costs, so these initial columns, as well as the columns gen-
erated later, all have cost coefficients of zero.
Given an initial feasible solution, the basic decomposi-

tion algorithms for SV and SV1 repeat the following major
iteration until no column prices favorably:

Solve the master problem for a new set
of dual variables;

For (each stage t = 1 to T ) {
For (each scenario-tree node n in stage t) {
Solve the subproblem for node n given the
current set of dual variables;

If (the corresponding master-problem column
prices favorably)

Add the column to the master problem;
}

}

We note that the master problem could be re-solved after
each new column is added. Although the master problem is
only a linear program, and re-solving may actually reduce
the number of major iterations required to solve the prob-
lem, we have not found the extra computational effort to
be worthwhile. Furthermore, defining a major iteration this
way simplifies computation of lower bounds on z∗, as dis-
cussed below.
The scenario-decomposition algorithm works similarly,

except that (a) the master problem solves for the optimal
Lagrangian multipliers for the scenario decomposition, and
(b) each scenario subproblem is solved once in each major
iteration (rather than each scenario-tree node subproblem).
In practice, our nodal decomposition does not need to be
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embedded in a branch-and-bound algorithm, so we have
not implemented a branch-and-bound stage for the scenario
decomposition. That is, we are only solving the LP relax-
ation of the scenario decomposition.
Let “SVx” denote either SV or SV1. While solving SVx

by Dantzig-Wolfe decomposition, a lower bound zSVx-MP-LP

on z∗
SVx-MP-LP is readily available. In particular, using the

arguments in Wolsey (1998, p. 189), it is easy to show that

zSVx-MP-LP = zSVx-MP-RMP + ∑
n∈�

�n � z∗
SVx-MP-LP� (51)

where zSVx-MP-RMP and �n denote the optimal objective val-
ues for RMP-LP and SP�n� for SVx at the current iter-
ation, respectively. Note that this lower bound is only
valid when “full pricing” is invoked, that is, after a major
iteration has been completed, and all subproblems SP�n�,
n ∈� have been solved to optimality using the same set
of dual variables. At any particular iteration, it is easy to
compute an upper bound z̄ on z∗ = z∗

CF by solving the
integer RMP (RMP-IP) with the existing set of columns,
assuming this is feasible. We define the (relative) optimal-
ity gap for the master problem, “MP-Gap,” as 100% ×
�z̄ − zSVx-MP-LP�/zSVx-MP-LP. The decomposition algorithm
can be terminated whenever MP-Gap reaches an acceptable
level.
Observe that when the solution to RMP-LP is fractional,

we must solve RMP-IP to obtain z̄, which can be expen-
sive if carried out after every major iteration. Thus, for
the overall efficiency of the algorithm, the number of such
checks should be limited. As an empirical rule, when allow-
ing a nonzero optimality gap, we start checking MP-Gap
at the first iteration when the gap between the RMP-LP
objective and the lower bound, “LP-Gap,” reaches 80% of
the prespecified termination tolerance. For example, for a
termination tolerance of 5%, we start checking MP-Gap
when LP-Gap reaches 4%. After the first check, we re-
solve RMP-IP with a branch-and-bound algorithm only
when RMP-LP yields fractional solutions for five consec-
utive iterations. We demonstrate the effect of termination
tolerances on solution times later.
Unfortunately, our Dantzig-Wolfe master problems suffer

from severe dual degeneracy, and this slows convergence
of a conventionally implemented decomposition algorithm.
To improve convergence speed, we apply “duals stabiliza-
tion” to the sequence of RMP-LP solutions, comparing two
different methods that we call “du Merle stabilization” and
“interior-point stabilization.” In effect, the first method (du
Merle et al. 1999) solves the dual master problem using
an elastic, hyperrectangular trust region. That is, the master
problem for major iteration � includes a hyperrectangular
trust region around the dual solution from iteration � − 1
(see the “boxstep method” of Marsten 1975), but penalized
violations of this region are allowed. The second method
simply solves RMP-LP using an interior-point algorithm,
which yields an interior-point dual solution. This technique,

Figure 1. An example network with a fractional
optimal solution for SV-MP-LP.

a b

c

1

2

3

identified in Bixby et al. (1992), has been used by a num-
ber of researchers studying column-generation algorithms,
e.g., Desrosiers et al. (2002).
The optimal solutions of SV-MP-LP are invariably inte-

gral in our test problems. Consequently, we have not
required a full branch-and-price solution procedure. It is
interesting to note, however, that it is possible to devise
problem instances with fractional optimal solutions. Such an
example can be constructed in a network with three edges
that connect a single supply vertex to two demand vertices;
see Figure 1. The problem has two stages and three equally
likely scenarios. In the first stage (scenario-tree node 0) the
demand is zero, and in each scenario in the second stage a
different vertex is chosen to be the supply vertex and the
others each have demand of one. We assume that a, b, and
c are the supply vertices in scenario-tree nodes 1, 2, and 3,
respectively. (By adding a dummy supply vertex, it is easy
to modify this example so that the supply vertex remains
constant across scenarios, as we assume in CF-E.)
To construct a fractional optimal solution for this net-

work, we suppose that the capacity on each edge can
be expanded using two technologies l = 1�2 with incre-
ments of one or two units, but technology 1 is available
only in stage 1, and technology 2 is only available in
stage 2. In other words, the cost of expansion in stage 1
is Ce10 = 1, Ce20 = �, for each edge e; and in stage 2 this
cost is Ce1n = �, Ce2n = 2, for each edge e, and scenario
node n = 1�2�3. A fractional optimal solution for CF has
x′

eln = 0 everywhere, except x′
110 = x′

210 = x′
310 = 0�5, and

x′
221 = 0�5 (in scenario 1 where a is the supply node),

x′
322 = 0�5 (in scenario 2 where b is the supply node),

x′
123 = 0�5 (in scenario 3 where c is the supply node)�

The total (expected) cost of this plan is 2�5. In each scenario
this solution provides a capacity of 1�5 for an edge incident
to the supply vertex and capacity of 0�5 on the other edges
so that a feasible flow exists in the second stage.
In terms of the variables of SV-MP-LP, each scenario-

node apart from the root node generates three FEPS. For
scenario-node 1, we obtain

�x̂11x̂01�
1 = �0�0�0�1�1�0��

�x̂11x̂01�
2 = �1�0�0�0�0�1��

�x̂11x̂01�
3 = �0�1�0�0�0�1��

corresponding to expansion of edges 1 and 2 in stage 1;
expansion of edge 1 (by two units) in stage 2 and edge 3
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in stage 1; and expansion of edge 2 in stage 2 and edge 3
in stage 1. Similarly, for scenario-node 2, we obtain

�x̂12x̂02�
1 = �0�0�0�0�1�1��

�x̂12x̂02�
2 = �0�1�0�1�0�0��

�x̂12x̂02�
3 = �0�0�1�1�0�0��

and for scenario-node 3, we obtain

�x̂13x̂03�
1 = �0�0�0�1�0�1��

�x̂13x̂03�
2 = �1�0�0�0�1�0��

�x̂13x̂03�
3 = �0�0�1�0�1�0��

The optimal fractional solution chooses w1
1 = w3

1 = 0�5,
w1

2 = w3
2 = 0�5, w1

3 = w2
3 = 0�5, which is feasible for

SV-MP-LP when considered along with x′
110 = x′

210 =
x′
310 = 0�5, and

x′
221 = 0�5 (in scenario 1 where a is the supply node),

x′
322 = 0�5 (in scenario 2 where b is the supply node),

x′
123 = 0�5 (in scenario 3 where c is the supply node)�

The optimal integer solution for this example expands
an (arbitrary) edge in the first stage by one unit. If this
edge happens to be incident to the supply vertex in the
second stage, then the other incident edge is expanded by
two units. Otherwise, an edge that is incident to the supply
vertex is (arbitrarily) chosen and expanded by two units. It
is easily verified that this has optimal (expected) cost 3.
In addition to computational results for Dantzig-Wolfe

(nodal) decomposition, we have tested a scenario-decom-
position approach applied to CF. To define this, we let
� denote the set of decision stages, �t = �1� � � � � t�, and
s ∈ � the set of scenarios, each of which occurs with
probability �s . We now define �ts to be a realization
of a random variable in scenario s at stage t, and st

= ��s1��s2� � � � ��st� to be the information available in
scenario s at stage t. This gives the following scenario-
based formulation (which is also a type of split-variable
formulation):

CF-SD: min
∑
s∈�

�s

∑
t∈�

�c�
stx

′
st +q�

styst� (52)

s.t. Vstyst � u0 + ∑
�∈�t

Us�x
′
s�

∀ s ∈� � t ∈� � (53)

x′
st = x′

�t

∀s∈� � �∈� � t∈� � st =�t� (54)

yst = y�t

∀s∈� � �∈� � t∈� � st =�t� (55)

yst ∈�st ∀ s ∈� � t ∈� � (56)

x′
st ∈ �0�1�F ∀ s ∈� � t ∈� � (57)

With the restriction of at most one capacity expansion, this
model becomes

CF1-SD: min
∑
s∈�

�s

∑
t∈�

�c�
stx

′
st +q�

styst�

s.t. Vstyst � u0 + U
∑
�∈�t

x′
s�

∀ s ∈� � t ∈� � (58)

x′
st = x′

�t

∀s∈� � �∈� � t∈� � st =�t� (59)

yst = y�t

∀s∈� � �∈� � t∈� � st =�t� (60)∑
t∈�

x′
st � 1 ∀ s ∈� � (61)

yst ∈�st ∀ s ∈� � t ∈� � (62)

x′
st ∈ �0�1�F ∀ s ∈� � t ∈� � (63)

We obtain scenario decompositions of CF-SD and CF1-SD
by applying Lagrangian relaxation to the nonanticipativ-
ity constraints (54)–(55) and (59)–(60), respectively) (e.g.,
Carøe and Schultz 1999), although we only attempt to solve
the LP relaxation of the Lagrangian master problem.
We use the following abbreviations to denote the various

formulations tested here.

Abbreviation Formulation and Solution Procedure

CF-DE Compact formulation CF, solved as a
deterministic equivalent.

SV-DE General split-variable formulation SV,
solved as a deterministic equivalent.

SV1-DE Specialized split-variable formulation
SV1 that allows the expansion of a
facility at most once in a scenario,
solved as a deterministic equivalent.

SV-DW-M Dantzig-Wolfe decomposition of SV
with du Merle duals stabilization.

SV-DW-I Dantzig-Wolfe decomposition of SV
with interior-point duals stabilization.

SV1-DW-M Dantzig-Wolfe decomposition of SV1
with du Merle duals stabilization.

SV1-DW-I Dantzig-Wolfe decomposition of SV1
with interior-point duals stabilization.

CF-SD Scenario decomposition of CF-SD.
CF1-SD Scenario decomposition of CF1-SD.

Table 1 displays the scenario-tree statistics for the seven
problem instances, along with their solution times as deter-
ministic equivalents, or using Dantzig-Wolfe decomposi-
tion. These results illustrate the power of decomposition in
solving the larger problem instances.
The test problems are quite large. The largest problem

instance we can solve by decomposition, with the 7,200-
second limit imposed, has five stages and 81 scenarios.
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Table 1. Solution times, in CPU seconds, for each procedure.

Scenario-tree statistics (num.) Deterministic equivalent (sec.) Dantzig-Wolfe decomposition (sec.)

Stages Scenarios Nodes CF-DE SV-DE SV1-DE SV-DW-M SV-DW-I SV1-DW-M SV1-DW-I

2 2 3 9�1 7�5 2�5 20.4 55�9 4�3 17�7
3 4 7 640�5 (1.8%) 1�457�6 — 203�5 95�0 55�8
4 8 15 (42.4%) (42.2%) (34.9%) — 2�852�3 638�1 284�5
5 16 31 (68.7%) (69.3%) (65.6%) — (85.1%) 3�624�2 1�212�8
6 32 63 — — — — — — 4�301�4
5 81 121 — — — — (26.9%) 7�043�5 2�812�3
6 243 364 — — — — — — (7.6%)

Notes. The problems are solved to optimality, or until a 7,200-second limit is reached. Values in parentheses give the optimality gap at 7,200
seconds for those problems that do not solve, except that a dash indicates “greater than 100%.”

For this instance, CF-DE has 59,048 binary variables and
95,310 constraints, SV-DE has 158,602 binary variables
and 194,864 constraints, and SV1-DE has 81,070 binary
variables and 117,332 constraints. All models have 15,004
continuous variables. Neither CPLEX 9.0 nor Xpress Opti-
mizer 14.24 can solve any of these models in one day of
computing time.
For this same largest instance, the largest subproblems

for SV-DW have only 1,216 binary variables, whereas the
SV1-DW subproblems have just 488 binary variables. The
subproblems share the same 124 continuous variables and
800 constraints, and each solves in under three seconds on
average. (Recall that the number of binary variables in the
SV-DW subproblem for node n increases with its depth in
the scenario tree, so that the subproblems for leaf nodes are
the largest.)
The restricted master problems for SV-DW and SV1-DW

are also of modest size. The master problem for SV1-DW-I,
in the 5-stage-81-scenario problem, has only 23,161 vari-
ables in its last iteration, iteration 18 (see Table 3), and
requires only 8.5 seconds to solve. In all iterations it has
44,165 constraints. The SV-DW master problem always has
more constraints (see §2.2), but its LP relaxation usually
solves quickly, too. The SV-DW master problem has 99,675
constraints for the 5-stage-81-scenario problem instance.
Although SV-DW-I cannot solve this problem in under
7,200 seconds, at iteration 18 its LP master problem has

Table 2. Computation times for SV-DW-I and SV1-DW-I to reach relative optimality gaps of 5%,
1%, and 0%.

Dantzig-Wolfe decomposition

Scenario-tree statistics (num.) SV-DW-I solution time (sec.) SV1-DW-I solution time (sec.)

Stages Scenarios Nodes 5% 1% 0% 5% 1% 0%

2 2 3 30�9 35�6 55�9 14�1 14�1 17�7
3 4 7 151�4 174�0 203�5 33�9 52�0 55�8
4 8 15 1�886�3 2�088�7 2�852�3 188�1 188�1 284�5
5 16 31 16�908�2 21�355�2 24�620�0 838�8 935�5 1�212�8
6 32 63 — — — 2�303�4 3�286�7 4�301�4

5 81 121 18�005�3 21�875�7 29�820�7 1�171�2 1�370�4 2�812�3
6 243 364 — — — 7�407�1 11�146�2 23�637�9

24,181 variables and solves in 7.3 seconds, whereas at iter-
ation 92 the number of variables grows to 27,808, but still
requires only 9.9 seconds to solve.
We also need to discuss results, not shown in the table,

regarding the quality of the LP bound obtained from
Dantzig-Wolfe decomposition. In all instances from Table 1
that can be solved to optimality, SV1-MP-LP has an inte-
gral solution and is therefore tight, i.e., z∗

SV1-MP-LP = z∗.
A similar statement holds for SV-MP-LP. The improvement
over the LP bound can be large, also. For example, (a) in
the smallest problem instance, z∗

CF-DE-LP = 201�017, whereas
z∗
SV-MP-LP = z∗

SV1-MP-LP = 444�149; and (b) in the largest
problem instance, z∗

CF-DE-LP = 123�388, whereas z∗
SV1-MP-LP =

960�881. (Table 1 does not show that we can, in fact,
solve CF-DE-LP and SV1-MP-LP for the largest problem
instance; Table 2 gives the solution time for SV1-MP-LP.)
Case (b) demonstrates that Dantzig-Wolfe decomposition
of SV1 can improve upon the standard LP lower bound
by 779%.
Our results also show that interior-point duals stabiliza-

tion is an important adjunct to the decomposition methodol-
ogy, and that it is clearly superior to du Merle duals stabili-
zation. For the 2-stage-2-scenario problem, the du Merle
method requires extensive tuning of its parameters to
get SV-DW-M to converge. We also spent considerable
effort tuning parameters for the 3-stage-4-scenario prob-
lem instance, but without success (as indicated by the
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Table 3. Number of major iterations for SV-DW-I and
SV1-DW-I to reach relative optimality gaps of
5%, 1%, and 0%.

Dantzig-Wolfe decomposition

Scenario-tree SV-DW-I SV1-DW-I
statistics (num.) iterations (num.) iterations (num.)

Stages Scenarios Nodes 5% 1% 0% 5% 1% 0%

2 2 3 17 19 26 11 11 13
3 4 7 27 30 35 10 14 15
4 8 15 67 72 88 10 10 13
5 16 31 183 221 245 12 13 16
6 32 63 — — — 11 14 17

5 81 121 63 73 92 10 11 18
6 243 364 — — — 11 14 23

dash). In contrast, the interior-point method requires no tun-
ing, and it significantly outperforms the du Merle alterna-
tive. Nonetheless, the results of both stabilization methods
exhibit the well-known tailing-off effect. Thus, terminat-
ing the Dantzig-Wolfe decomposition early by setting an
acceptable optimality tolerance for MP-Gap may be worth-
while. Table 2 reports the time it takes SV-DW-I and SV1-
DW-I to satisfy tolerances of 5%, 1%, and 0%.
Table 3 reports the number of major iterations corre-

sponding to the times reported in Table 2. Here, we see
that SV-DW requires many more iterations to converge than
SV1-DW. As observed above, the differences in the average
solution times between the restricted master problems and
subproblems for SV and SV1 are relatively small. There-
fore, the large differences seen in overall solution times
clearly result from SV-DW-I requiring many more iterations
than SV1-DW-I. (It is interesting to see that the number of
iterations for SV1-DW-I does not increase commensurately
with problem size, at least for this application. This bodes
well for solving even larger problems.)
It is important to note that the subproblems for this

particular application are difficult, deterministic network-
design problems (Johnson et al. 1978). For this reason, and
because we solve one subproblem for each scenario-tree
node in each major iteration, the total time spent solv-
ing subproblems is substantial. SV-DW-I spends 93.7% of
its time solving subproblems, whereas SV1-DW-I spends
98.2%, averaged over the problems both methods can solve.
Clearly, then, any improvement in solution time for the
subproblems will improve overall solution time almost as
much. All of the technology that has proved useful for solv-
ing deterministic network-design problems is worth evalu-
ating for this purpose (e.g., Bienstock and Muratore 2000,
Magnanti and Raghavan 2005).
Models that fit the paradigm of SV or SV1, but which

have simpler subproblems, may solve very quickly. For
example, the multistage stochastic model of Riis and
Andersen (2004) does fit the paradigm of SV, and its sub-
problems are easily solved knapsack problems.

Table 4. Solution times, in CPU seconds, for the prob-
lem instances using Dantzig-Wolfe decompo-
sition and scenario decomposition.

Scenario-tree Dantzig-Wolfe Scenario
statistics (num.) decomp. (sec.) decomp. (sec.)

Stages Scenarios Nodes SV-DW-I SV1-DW-I CF-SD CF1-SD

2 2 3 55�9 17�7 7.0 3.7
3 4 7 203�5 55�8 (1.1%) (1.1%)
4 8 15 2�852�3 284�5 — —
5 16 31 (85.1%) 1�212�8 — —
6 32 63 — 4�301�4 — —

5 81 121 (26.9%) 2�812�3 — —
6 243 364 — (7.6%) — —

Notes. We attempt to solve all problems to optimality. A dash in the
middle set of columns indicates “greater than 100%,” while a dash
in the last set indicates “greater than 7,200 seconds.”

As a final test, we compare our approach with sce-
nario decomposition. The work by Dentcheva and Römisch
(2004) implies that the optimal duality gap from a scenario
decomposition must be at least as tight as the gap from our
nodal decomposition. This would make scenario decompo-
sition a preferred approach if its master problem and sub-
problems solve efficiently. Table 4 shows the solution times
of the problem instances using both Dantzig-Wolfe (nodal)
decomposition and scenario decomposition. Only times for
SV-DW-I and SV1-DW-I are shown because they are the
most efficient of the approaches in Table 1.
The results show that the scenario decomposition is sig-

nificantly more efficient than our nodal decomposition for
the smallest 2-stage-2-scenario problem. However, scenario
decomposition becomes intractable for larger problem
instances. This happens because the size of each sce-
nario subproblem increases in proportion to the number
of stages, and the larger subproblems become impossible
to solve. Indeed, this is a core limitation of the scenario-
decomposition approach. On the other hand, Dantzig-Wolfe
decomposition of the split-variable formulations leads to
subproblems for scenario-tree nodes that increase in size
and difficulty only marginally with the number of stages.
Moreover, in the instances we have tested, the duality gap
of zero from the Dantzig-Wolfe decomposition cannot be
improved upon.

6. Conclusions
We have described a general, compact (“deterministic-
equivalent”) formulation of a multistage, stochastic,
integer-programming model for planning the capacity
expansion of a production system with one or more produc-
tion facilities. Capacity expansion decisions are discrete,
and a scenario tree represents uncertainty.
We reformulate the compact formulation using a

variable-splitting technique to give a general, split-variable
model (SV) that allows multiple capacity expansions of a
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facility over the planning horizon. We also devise a special-
case model SV1, which restricts each facility to at most
one capacity expansion over that horizon. A Dantzig-Wolfe
reformulation of either model results in a master problem
having a substantially stronger LP relaxation than the com-
pact formulation.
For each node n in the scenario tree, we define �n as the

set of all predecessors of n, which includes n itself. Apart
from variables xhn, which may be viewed as requests for
capacity to be installed in nodes h ∈�n, the variables in a
subproblem SP(n) for the Dantzig-Wolfe reformulation of
SV pertain only to node n. Indeed, the variables xhn, for
all h ∈ �n, may be viewed simply as alternative capacity-
expansion options for SP(n). As a result, the subprob-
lems increase in difficulty only slightly with an increasing
number of stages in a scenario tree. In SV1, the situa-
tion is even better because the column-generation subprob-
lems involve no variables (such as xhn� from predecessor
nodes in the scenario tree. Thus, these subproblems do not
become larger as the number of stages increases. This sit-
uation contrasts with scenario-decomposition methods in
which the subproblems must cover the entire planning hori-
zon, and thus increase substantially in size as more stages
are added.
We have applied our methods to solve a capacity-

planning problem for an electricity-distribution network,
which requires the use of mixed-integer subproblems. How-
ever, the algorithm described is quite general. As long as a
good method exists to solve it, a subproblem can incorpo-
rate arbitrary nonlinearities or other complexities that the
relevant application requires.
To enable a fair comparison between formulations SV

and SV1, all computational tests carried out in this paper
assume (as is the case in our application) that capacity
increments U are independent of scenario and time. When
capacity increments vary, SV1 is no longer valid, and we
describe the model variant, SV1′, that must be applied.
Further testing is needed to determine the computational
implications of relaxing this assumption.
Much of the benefit to our approach will derive from

situations (as with the electricity network) in which the
subproblems are difficult mixed-integer programs (MIPs).
In such a setting, it may be impossible to solve a sin-
gle large-scale MIP, or even the MIP subproblems gener-
ated by a scenario decomposition. On the other hand, in
models with easier subproblems, our approach might be
improved by amalgamating subproblems to obtain tighter
relaxations and faster convergence. (The “DQA algorithm,”
described by Mulvey and Ruszczyński 1995, makes use of
this technique.)
The efficiency of column generation hinges on the use of

a good duals-stabilization method for the master problem.
For our application, the “interior-point duals-stabilization”
method, which obtains dual variables from an interior-point
algorithm, greatly outperforms the well-known method of

du Merle et al. (1999). Note that we re-solve the mas-
ter problems using an interior-point algorithm, from a
cold start, after adding a new set of columns. There is
some potential to increase the speed of our algorithm by
re-solving the master problems faster, using a suitable hot-
start procedure for interior-point methods (e.g., Gondzio
and Grothey 2003). Most of the computational time for our
application accrues from subproblem solutions, however,
so we can expect only minor speed-ups. Nonetheless, hot
starts might be worthwhile in an application with simpler
subproblems, or a more difficult master problem.
Our split-variable formulation uses nonanticipativity

constraints (6) that are inequalities. The validity of these
constraints depends on the assumption that capacity expan-
sions are nonnegative quantities. With this assumption
removed (for example, to admit facility closures), the
inequalities must be replaced by equalities, and the mas-
ter problem becomes equality constrained. Based on this
observation, it is tempting to suppose that more gen-
eral multistage, stochastic, integer-programming problems
might be attacked profitably using our decomposition
approach. Our experiments show that this approach does
work for small problems, with only modest increases in
computational effort. Larger problems can take 10 times
longer to run, however, so more research is needed on this
topic.
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