
�

����� ��	
�
�
��

Danube loess stratigraphy – Towards a pan-European loess stratigraphic model
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ley, Ian J., Újvári, Gábor, Sümegi, Pál, Timar-Gabor, Alida, Veres, Daniel, Sirocko,
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†This paper is dedicated in the memory of our teacher, colleague and friend George J. Kukla, 

who passed away on Saturday, May 31
st
 2014 during preparation of this paper.  
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Abstract 

The Danube River drainage basin is the second largest river catchment in Europe and contains a 

significant and extensive region of thick loess deposits that preserve a record of a wide variety of 

recent and past environments. Indeed, the Danube River and tributaries may themselves be 

responsible for the transportation of large volumes of silt that ultimately drive loess formation in the 

middle and lower reaches of this large catchment. However, this vast loess province lacks a unified 

stratigraphic scheme. European loess research started in the late 17th century in the Danube Basin 

with the work of Count Luigi Ferdinand Marsigli. Since that time numerous investigations provided 

the basis for the pioneering stratigraphic framework proposed initially by Kukla (1970, 1977) in his 

correlations of loess with deep-sea sediments. Loess-palaeosol sequences in the middle and lower 

reaches of the Danube River basin were a key part of this framework and contain some of the longest 

and most complete continental climate records in Europe, covering more than the last million years. 

However, the very size of the Danube loess belt and the large number of countries it covers presents 

a major limiting factor in developing a unified approach that enables continental scale analysis of the 

deposits. Local loess-palaeosol stratigraphic schemes have been defined separately in different 

countries and the difficulties in correlating such schemes, which often change significantly with 

advances in age-dating, have limited the number of basin-wide studies. A unified basin-wide 

stratigraphic model would greatly alleviate these difficulties and facilitate research into the wider 

significance of these loess records. Therefore we review the existing stratigraphic schemes and 

define a new Danube Basin wide loess stratigraphy based around a synthetic type section of the 

Mošorin and Stari Slankamen sites in Serbia. We present a detailed comparison with the 

sedimentological and palaeoclimatic records preserved in sediments of the Chinese Loess Plateau, 

with the oxygen isotope records from deep-sea sediments, and with classic European Pleistocene 

stratigraphic subdivisions. The hierarchy of Danubian stratigraphic units is determined by 

climatically controlled environmental shifts, in a similar way to the Chinese loess stratigraphic 
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scheme. A new unified Danube loess stratigraphic model has a number of advantages, including 

preventing confusion resulting from the use of multiple national schemes, a more transparent basis, 

and the potential to set Pleistocene palaeoenvironmental changes recorded in the Danube catchment 

area into a global context. The use of a very simple labelling system based on the well-established 

Chinese loess scheme facilitates interpretation of palaeoenvironmental information reported from the 

Danube Basin loess sites in a wider more accessible context that can be readily correlated world-

wide. This stratigraphic approach also provides, for the first time, an appropriate framework for the 

development of an integrated, pan-European and potentially pan-Eurasian loess stratigraphic scheme. 

 

Key words: Danube, Europe, loess, Pleistocene, stratigraphy, Chinese Loess Plateau 

 

1. Introduction 

 

Loess deposits cover 10% of the world’s continents and even larger parts of Eurasia (Pécsi, 1990), 

and represent some of the most important climate archives available (Porter, 2001). Perhaps equally 

significant, loess deposits contain uniquely widespread records of past atmospheric dust dynamics 

(e.g., Újvari et al., 2010), a major component of global climate forcing, which have the potential to 

be linked to other dust records in ice cores and the marine realm (Maher et al., 2010). Loess deposits 

are therefore of critical importance in understanding past climate change. Despite this, interpretation 

of loess deposits has been greatly limited by difficulties in stratigraphic correlation between deposits 

and other records, a result of the complex nature of soil development in loess, the use of national 

stratigraphic schemes, a lack of precise numerical age-dating methods for loess, and potential 

hiatuses in records. Loess deposits have enormous potential for global, hemispheric and regional 

climate interpretation if they can be placed within a larger and widely applicable stratigraphic 

framework that covers basin scale depocentres. With the exception of Chinese loess-palaeosol 
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sequences (CLPS) (Liu, 1985) this has not been fully achieved and is therefore a major focus for 

immediate research. 

Smalley et al. (2009) recently reiterated the association of major loess depocentres with major 

rivers, and a possible causal relationship has been proposed based on empirical data in Eastern 

Europe and China (Újvari et al., 2012; Stevens et al., 2013). The Danube is Europe’s second largest 

river in terms of catchment area (app. 800,000 km2) and an important "loess river" (sensu Smalley 

and Leach, 1978), as it flows through extensive loess and alluvial deposits. The Danube Basin (DB) 

contains the largest and most significant European loess region east of the Russian Plain, preserving 

a palaeoenvironmental record that extends back over the last million years (Marković et al., 2011) 

and is distributed across 19 countries. However, analysis of these sequences basin-wide has been 

greatly restricted, preventing large-scale climate interpretations or correlations. 

The Danube River and its tributaries originate in the German Black Forest, the central 

European Alps, the Bohemian massif, and the Carpathian, Dinaric and Balkan mountains, and 

connects the Central and South-Eastern European plains. In the middle and lower part of the basin, 

several large rivers converge with the Danube, including major tributaries such as the Sava, Drava 

(Dráva, Drau), Morava, Tamiš (Timiș ), Tisa (Tizsa, Theiss), Olt, Ialomiț a, Argeș , Jiu, Buzau, 

Siret and Prut (Figure 1). While precise sources of material are debated, the term “Danube loess” 

describes the likely importance of river transport of silt-sized material over long distances across 

different environments from the mountains to the river’s delta at the Black Sea. During glacial 

periods, the Danube transported large quantities of glacially-ground silt from the Alpine ice caps and 

foreland glaciers, as well as from glaciated headwaters including the Carpathians (Reuther et al., 

2007) and Balkans (Kuhlemann et al., 2008; Hughes et al., 2006; 2010, 2013) (Figure 1A). This was 

one reason for Kukla’s (1975) early definition having a strong Danubian perspective in 

characterizing the loess as ‘periglacial’ sediment. In recognizing the role of fluvial activity Smalley 

et al. (2009) proposed that both, glacial and periglacial factors, can be crucial for the production of 
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silt material in the case of most European loess deposits, supported by river erosion and transport. 

The Alps are probably the most significant source of proto-loess material to the Danube and its huge 

loess belt downstream (Buggle et al., 2008; Újvári et al., 2008; 2012), although there were also likely 

to be contributions from other regional or local sources such as the Caspian lowlands and coastal 

plains (Kukla, 1975), and large proglacial plains south of the Scandinavian ice-sheet, especially 

relevant for the Lower Danube area (e.g. Buggle et al., 2008; Bokhorst et al., 2011). Beyond the 

middle Danube confluences with its major tributaries, large amounts of sediment input from the river 

has likely resulted in the great thickness of loess cover in the Middle and Lower DB, in some places 

exceeding 70 m (Haase et al., 2007; Fitzsimmons et al., 2012; Jipa, 2014). 

Danubian loess-palaeosol sequences (DLPS) are among the longest and most complete in 

Europe (Marković et al., 2009a; 2011; Buggle et al., 2013). Pleistocene climatic variations have been 

recorded in detail in the DLPS, providing among the oldest and most complete European continental 

archives of environmental change (Fink and Kukla, 1977; Marković et al., 2012a). Investigations 

into the large number of loess sequences contained within the DB (Figure 1B) have been made by a 

great number of loess scholars, many of whom have lived and worked in the region. Indeed, this 

research has led to some very important events in the global history of loess research (Smalley et al., 

2001, 2010). 

Given this enormous potential of the DLPS records for providing archives of palaeoclimatic 

change on the European continent, it is perhaps surprising that there are not many basin-wide studies 

of Danubian loess (Smalley and Leach, 1978; Fitzsimmons et al., 2012). This is perhaps due to the 

historical, political and scientific separation between Danubian countries, which have resulted in a 

large number of country-specific loess stratigraphic models. However, recent advances in 

understanding the chronostratigraphy of some key loess exposures in the Middle and Lower DB 

provide promising opportunities to develop a unified stratigraphic model following the famous 

Chinese loess L(oess) and S(oil) stratigraphic nomenclature (Kukla, 1987; Kukla and An, 1989), at 
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least for the Middle and Late Pleistocene loess sequences (e.g. Panaiotu et al., 2001; Jordanova et al., 

2007, 2008; Marković et al., 2009b, 2011; Buggle et al., 2009; Balescu et al., 2010; Timar-Gabor et 

al., 2011; Varga et al., 2011; Radan, 2012; Újvári et al., 2014). Similar stratigraphic models have 

also been applied to the Ukrainian (e.g. Bogutsky and Łanzont, 2002; Buggle et al., 2009; Bokhorst 

et al., 2011) and Polish loess deposits (Bokhorst et al., 2011; Jary, 2009; Jary and Ciszek, 2013), 

indicating the potential for defining an integrated, pan-European loess stratigraphic system. 

The aim of this study is hence to define a unified DLPS chrono-stratigraphic model, preceded 

by a review of the existing loess stratigraphic models in the Danube area, and then to indicate 

possible links between the stratigraphic models of “classical” European and Asian loess provinces. 

The potential continental stratigraphic correlations have great potential for developing an integrated 

understanding of spatial and temporal variations in Pleistocene environmental dynamics at the 

Eurasian continental scale. It is hoped that this will act as a catalyst for the future use of a catchment 

or even continental scale approach for understanding the palaeoenvironmental record, as contained 

within these highly significant deposits. 

 

 

2. Comparison of the existing loess-palaeosol stratigraphic models in the Danube 

Basin 

 

As a consequence of current and past environmental diversity, the Danube loess belt includes two 

main landscape zones characterised by different models for loess formation. The first represents a 

discontinuous slope loess cover usually associated with fluvial terraces in the upper part of the DB 

and in hilly parts of tributary basins. In this zone, higher relief and higher humidity means that the 

loess deposits and inherited fossil soils are more prone to erosion. The stratigraphic record preserved 

in this loess zone is therefore often incomplete and characterised by the reworking of fossil soil and 
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loess units due to slope processes. Loess stratigraphic subdivisions in Austrian, Czech and Slovakian 

sequences of this zone are complicated by this greater erosion potential and also by the more humid 

climate and shifted seasonality compared to further down the Danube loess belt, leading to complex 

soil stratigraphy (Sprafke et al., 2014). The second zone includes the relatively continuous plateau-

like mantles in the Middle and Lower Danube lowlands, covering an area approximately from the 

northern and western limits of the Great Hungarian plain to the Black Sea coast (Hosek et al., 2014; 

Jipa, 2014; Neugebauer-Maresch et al., 2014). The greater preservation potential of these plateau 

deposits leads to an easier correlation of soil horizons between sites, and the stratigraphy of 

Southeastern Pannonian and Lower Danube Basin loess plateaus in particular is clear-cut as a result 

of the more arid, stable environmental conditions in the region (Fitzsimmons et al., 2012). Thus, 

southeastern European loess sediments have more in common with those in Central Asia (Dodonov 

and Baiguzina, 1995; Machalett et al., 2008) and central China (e.g. Kukla, 1987, Kukla and An, 

1989; Ding et al., 1995; Lu et al., 1999; Guo et al., 2000) than with other European loess provinces 

such as northern France, Germany and Belgium (Antoine et al., 2001), Austria, Czech and Slovak 

Republic (Antoine et al., 2013) and central Ukraine (Buggle et al., 2009).  

Despite geomorphologically and climatically controlled differences in the loess-palaeosol 

records within the DB, recent studies suggest that it is possible to assign a basin-wide stratigraphic 

scheme for DLPS (Marković et al., 2011, 2012a; Fitzsimmons et al., 2012). The record of alternation 

between dominant aeolian deposition and pedogenetic overprinting, clearly represented by 

environmental magneto-stratigraphic parameters, should allow for direct DLPS inter-profile 

correlations from the Alpine foothills to the Black Sea coast. These correlations can be further 

extended to Central Asian and Chinese loess regions creating a pan-Eurasian loess stratigraphic 

system that takes advantage of widespread deposits in hemispheric climate reconstructions. 

The proposed stratigraphic model outlined below is mainly based on environmental magneto-

stratigraphic information, essentially magnetic susceptibility (MS). The MS variations sensitively 
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reflect changes in litho- and pedo-stratigraphy. The application of MS as a palaeoclimatic proxy and 

correlative stratigraphic tool in the Eurasian loess steppe environments is based on (1) the 

mineralogical homogeneity of the loess and (2) the neo-formation of ferrimagnetic minerals in the 

course of silicate weathering and pedogenesis. The latter depends largely on the temporal variation 

of soil humidity and thus of palaeoclimate variations. Thus, increasing pedogenesis in purely aeolian 

loess is concurrent with the enhancement of mineral magnetic signals and provides a 

climatostratigraphic metronome (cf. Buggle et al., 2008, 2014). 

However, these correlative stratigraphic interpretations require underpinning through 

independent chronostratigraphical means via amino-acid recemisation (AAR) relative dating, and 

absolute luminescence dating geochronologies. To minimise the influence of local environmental 

conditions on themineral magnetic record, we have focused on the loess palaeosol-sections located 

on loess plateaus, where loess deposition was a relatively stable process and preservation potential 

highest. While loess deposits on slopes are frequently impacted by reworking and erosion, loess 

plateau deposits such as those on the CLP are generally held to contain a mostly continuous sequence 

of aeolian sediments with few major hiatuses in deposition (Porter, 2001). While some plateau 

deposits may contain short hiatuses, luminescence dating and palaeomagnetic profiling have 

demonstrated that these are generally of short duration (<4 kyrs; Stevens et al., 2007; Zhu et al., 

2007) and that on the longer timescales that are relevant to basin-wide, long-term unified 

stratigraphic models, these are not significant. Many Danubian sequences are formed in plateau-like 

depositional environments comparable to the Chinese Loess Plateau, where relatively continuous, 

uniform and well-preserved loess records facilitate relatively straight-forward cross correlations 

between sites (Marković et al., 2012a). We deliberately target these and avoid using other Danubian 

non-plateau loess sequences, which are characterised by a greater influence of erosional or slope 

processes (e.g. Terhorst et al., 2014). 
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2.1. Pedostratigraphy 

It is often possible to establish a pedostratigraphy, in the sense of a stratigraphy of soils and 

intercalated loess layers, preferably based on complete regional terrestrial sequences. The basic 

conditions in this context are firstly the re-occurrence of certain types of palaeosols at the same 

stratigraphic position within a regional-specific sequence of palaeosols, and secondly the presence of 

pedostratigraphic marker horizons. There are several examples of such marker horizons: the 

“Mende-Base” soilcomplex (Pécsi et al., 1977), the “F5” palaeosol (Bronger, 1976, 2003) in the 

loess of the Carpathian basin, the “S5” palaeosol in the Chinese loess (Kukla, 1987), as well as the 

characteristic succession of “PK III” and “PK II” in Czech and Slovakian loesses (cf. Hošek et al., 

2014). This pedostratigraphic fingerprinting was observed by Kukla (1970) in Central European 

loess-palaeosol-sequences and then transferred to the Chinese Loess Plateau (CLP) (Kukla, 1987). 

Kukla (1970) explained the characteristic features of almost every individual Late and Middle 

Pleistocene palaeosol complex by assigning these complexes to individual warm marine isotope 

stages. Subsequently, when Heller and Liu (1984) recognised the same pattern in the CLP on the 

basis of rock magnetic records, the characteristic succession of distinctive palaeosol complexes in the 

Eurasian loess led to a revolution in loess stratigraphy. However, many decades passed before this 

scheme was successfully applied to European loess sequences (cf. Marković et al., 2009).  

In the contrast to the national schemes discussed above, Bronger was the first researcher who 

developed a unified Danube basin-wide stratigraphic model (Bronger, 1976, 2003) (Table 1). This 

stratigraphic scheme was based on pedostratigraphic inter-profile correlation and introduced the label 

F (fossil soil) for the individual pedocomplexes supplemented with a numerical suffix (e.g. F1, F2 

etc) according to the stratigraphic position of the individual pedocomplexes at the investigated 

section. Initially based on pedostratigraphic criteria, Bronger’s stratigraphic model has been revised 

several times (Bronger, 1976, 2003; Bronger and Heinkele, 1989; Bronger et al., 1998). Following a 

proposed set of dominant pedostratigraphic criteria formulated in 1961 at the 6th INQUA Congress 
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in Warsaw, Poland, the youngest Brown Forest Soil or Brown Forest Soil-Lessivé palaeosol exposed 

at different loess profiles was taken to represent the last (Riss/Würm or Eemian) interglacial, an 

equivalent of MIS 5e (Fink, 1962). However, this model did not consider the strong Pleistocene 

environmental gradients over the DB catchment, where forest soils did not form in some locations 

during the last interglacial. Thus, Bronger (1976) correlated palaeosols F5 in Hungary (Mende Base 

(MB) soil complex - Oches and McCoy, 1995a) and V-S4 inSerbia (Marković et al., 2008), formed 

during MIS 11, with the Czech PKIII pedocomplex or lower part of the Austrian Stillfried A 

complex, both formed during the last interglacial period. 

A good example of the ongoing chonostratigraphical improvements to the DLPS over the few 

decades are the changing stratigraphic interpretations of the Serbian Stari Slankamen loess-palaeosol 

sequence (Table 1). Thermoluminescence (TL) dating by Singhvi et al. (1989) suggested that the 

fossil chernozems F2 and F3 were formed no earlier than during MIS 5a and 5e (Tables 1). 

Pedostratigraphic interpretations have been improved considerably by the application to these 

sequences of recent advances in magneto- and amino-stratigraphy, as well as luminescence dating 

techniques (Schmidt et al., 2010; Murray et al., 2014). 

 

2.2. Magnetic stratigraphy 

 

Both the natural remanent (palaeo-)magnetisation and the rock magnetic properties allow indirect 

dating of soils and sediments. Magnetic dating includes all approaches dealing with the temporal 

variation of the Earth’s magnetic field (EMF) as well as with the application of climate dependent 

variations of rock/mineral magnetic properties of sedimentary sequences and their correlation to 

independently dated palaeoclimatic archives. Palaeomagnetic dating employs the temporal variation 

of the direction as well as the intensity of the EMF on time scales from 102 to 107 years. The well-

known temporal pattern of changing polarity and (relative) palaeo-intensity variation on time scales 
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from 103 to 105 years provides an excellent tool for stratigraphic subdivisions, especially of 

Quaternary continental deposits (cf. Hambach etal. 2008a).  

Here we consider both magnetic polarity zonation and mineral magnetic records (mainly 

magnetic susceptibility, MS) as a means to derive chronostratigraphic models. Attempts to recognise 

the standard polarity sequence (Cande and Kent, 1995) in DLPS date back over 40 years, when 

Kukla and colleagues first used palaeomagnetic approaches in loess stratigraphy. Certainly the most 

famous is the palaeomagnetic zonation at the Moravian Red Hill (Červeny Kopec) loess site (Buha et 

al., 1969; Kukla and Koči, 1972; Kukla, 1970, 1975, 1977). Subsequent palaeomagnetic 

investigations were undertaken at Krems and Stratzendorf in Austria (Fink and Kukla, 1977; Kukla, 

1978; Kukla and Cilek, 1996) (Figure 2) and Paks in Hungary (Pécsi et al., 1977; Márton, 1979). 

However, in spite of these pioneering palaeomagnetic approaches performed at several key Danube 

loess sections and subsequent models developed for certain key sites, for example at Stari Slankamen 

in Serbia (Marković et al., 2011), there is still no consistent magnetic polarity record recorded at the 

DLPS as exists for the CLPS (e.g. Evans and Heller, 2001).  

 Beyond environmental differences between sites, the most probable reason for differences in 

interpretation of palaeomagnetic zonation could be related to differences in the methodological 

approaches (including sampling, measurements and most importantly data treatment and analyses) 

performed by many research groups over a long time period (e.g. Evans and Heller, 2001). Older 

palaeomagnetic interpretations at individual sites of Early Pleistocene age that are still applied in 

Austria and the Czech Republic (e.g. Kukla, 1975; Fink and Kukla, 1972), despite their undeniable 

historical significance, should be viewed with some scepticism because of probable limitations with 

instrumentation and discontinuous preservation of the loess record in the investigated region. In 

addition to palaeomagnetic polarity records, mineral magnetic parameters as function of stratigraphy 

(such as MS) serve as a chronometric method in loess research. Following the seminal work of 

Heller and Liu (1986) studies by Forster et al. (1996), Sartori et al. (1999) and Jordanova and 
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Petersen (1999) were the first to apply an MS-based stratigraphic approach to DLPS in the middle 

and in the lower Danube catchment, respectively. Following these initial MS measurements, we have 

had the opportunity to provide sensitive inter-profile correlations between numerous Danubian loess 

sections (Buggle et al., 2009; Marković et al., 2011; Fitzsimmons et al., 2012) 

 

 2.2.1. Palaeomagnetic reversal zonation (polarity stratigraphy) 

 

Loess sections in the DB have a number of stratigraphic limitations that vary by location, 

notably poor preservation of older Early and Middle Pleistocene units and a diversity of local and 

regional morphological and vegetation expressions and dust accumulation rates. Austrian, Slovakian, 

Czech and geomorphologically more dynamic slope loess linked with fluvial terrace landscapes and 

local tectonic basins (Antoine et al., 2013; Hosek et al., 2014; Sprafke et al., 2014) yield more 

complex and incomplete stratigraphic records than those in Hungary or Croatia (Novothny et al., 

2009; Wacha and Frechen, 2011; Wacha et al. 2013), or in the semi-arid Serbian, Romanian and 

Bulgarian loess plateau zone (Buggle et al. 2009; Marković et al., 2012a). These environmental 

differences limit the preservation of primary palaeomagnetic and environmental magnetic records, as 

well as dictating the post-depositional magnetic overprints. Additional problems are the limited 

number of preserved Early and Middle Pleistocene sequences in the region and the reduced 

resolution of these sediments. These condensed sedimentary intervals mainly contain evidence of the 

Matuyama reversed polarity Chron. Therefore, the delineation of a reliable magnetic polarity based 

stratigraphy for the Early Pleistocene DLPS is a challenging task and requires careful evaluation of 

the available palaeomagnetic datasets. By contrast, magnetostratigraphical interpretations of Middle 

and Late Pleistocene DLPS are more consistent, especially because of the greater availability of 

records located over the entire Danube loess belt for this time interval, as discussed below. 
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2.2.1.1. Evidence for the Matuyama-Brunhes palaeomagnetic polarity boundary 

On supra-millennial time scales, palaeomagnetic reversals occur synchronously around the 

world, allowing the reversal boundary recorded in different archives to be used as a time marker for 

correlating different continuous sedimentary records (Zhou and Shackleton, 1999). The youngest 

major magnetic polarity reversal, the Matuyama-Brunhes palaeomagnetic polarity boundary (MBB), 

788 ka, is found in marine sediments within MIS 19 which is an interglacial stage (Channellet al., 

2010; Tauxe et al., 1996), while in the CLPS it is documented stratigraphically lower in a loess unit 

L8 which is a glacial stage corresponding to MIS 20 (Heller and Liu, 1986; Zhou and Shackleton, 

1999). This age offset has led to confusion when correlating palaeoclimatic records of the CLPS with 

marine and ice core records. Several explanations for this important chronostratigraphic problem 

have been proposed, and are still hotly debated, including the delayed remanence lock-in, magnetic 

overprinting, complicated remnance acquisition or retention, or errors in the loess chronologies (Liu 

et al., 2008; Kong et al., 2014; Wang et al., 2014; Singer, 2014 see as a review). However, evidence 

of the MBB position is even more varied and problematic at the key Danubian loess sections than in 

China, where the transition is generally stratigraphically shallower andmore consistent between 

investigated sections (Liu et al., 2008), at least on the main central Chinese Loess Plateau. 

Using the local stratigraphic schemes, the MBB position is observed withinthe uppermost 

part of the pedocomplexes PKX at the Czech Red Hill section (Forster at al., 1996), and PD2 at the 

Hungarian Paks sections (Sartori et al., 1999) (Figure 3 and Table 2). These strongly developed 

pedocomplexes are formed above the oldest preserved depositional units that consist of up to 3 m 

thick accumulations of sediments with typical loess characteristics (in this context a “typical loess” 

deposit is considered to be a unit that is homogeneous, silt dominated with a high percentage of 

carbonate content, low MS values and negligible evidence for pedogenic alteration (e.g. Smalley et 

al., 2011). The presence of the MBB within these loess units has resulted in them being assigned as 

chronostratigraphic equivalents of MIS 19 (Újvári et al., 2014). However, this assignment does not 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

17 

 

account for the likely impact of lock-in depth and soil forming processes that have been widely 

shown to impact loess sequences as stated above. This position is significantly different from the 

identified level of the MBB in the Serbian Stari Slankamen (Marković et al., 2011), Bulgarian 

Viatovo and Koriten (Jordanova et al., 2008), and Romanian Tuzla (Balescu et al., 2003) sections. 

Despite the fact that different stratigraphic schemes have been used for these sections, which 

confuses their correlation, the recorded location of the MBB in the uppermost part of the oldest thick 

loess unit L7 at Viatovo, Koriten and at Tuzla sections is in good agreement with the apparent 

position of the MBB at the base of the lowermost thick loess unit, termed V-L9, at Stari Slankamen. 

Here, the primary remanence is heavily masked or even destroyed by deep rooting and related 

pedogenic processes. V-L9 has been correlated with MIS 22 (Marković et al., 2011) and is separated 

from the centre of the MIS-19 equivalent V-S7 unit by more than 1.5 m, where the reversal should be 

located according to the marine isotope stratigraphy. Radan (2012) reported the position of the MBB 

in the Zimnicea borehole in Romania as within loess layer L8, although again differences in 

stratigraphic nomenclature mean this loess unit actually corresponds to L7 layer at Tuzla, Viatovo 

and Koriten and V-L9 in Stari Slankamen (Figures 3 and 4). These differences are a consequence of 

the situation that palaeosols V-S6, V-L7S1, V-S7 and V-S8 at Stari Slankamen correspond to the 

welded pedocomplex S6 in Viatovo, Koriten and Tuzla sections, or the double palaeosol S6 at 

Mircea Voda and Zimnicea (Buggle et al., 2009, Radan, 2012). While there is considerable 

uncertainty about these positions, made more complex due to different stratigraphic models, 

evidence for the MBB polarity transition preserved at key sections of the Danube loess belt 

seemingly has an even deeper stratigraphic position than on the CLPS. It is also worth noting that 

this complexity would be greatly alleviated by a unified stratigraphic scheme, which we propose in 

this paper. 

To some extent these differences in MBB position can be explained by the diversity of loess 

stratigraphic features and the different existing stratigraphic models across the DB, and by the 
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influence of complexities in remanance acquisition and retention (Spasov et al., 2003), as in Chinese 

loess. The contrasting processes of detrital and chemical remnant magnetisation have been shown to 

interact in CLPS sequences to yield an alternating signature of reversed and normal polarity, even 

where the geomagnetic field may not have varied (Spassov et al., 2003), and indeed at high dust 

sedimentation rate sites, spurious signals may be preserved (Wang et al., 2014). This may account 

for some of the complexities seen here, accompanied by the substantial effect of pedogenesis and 

root activity on the generally lower accumulation rate sequences in the Danube basin. For example, 

at the Stari Slankamen site bioturbation resulting from penetration by large root channels associated 

with massive carbonate concretions and hydromorphic features strongly affect the critical interval 

from V-S7 to V-L9 (Marković et al., 2011). 

 

2.2.1.2. Episodes of normal polarity within the Matuyama and the boundary with the Gauss 

palaeomagnetic Chron 

 

The main Danubian loess sections also exhibit different stratigraphic positions of the 

Matuyama normal palaeomagnetic subchrons. Initially, Fink and Kukla (1972) reported evidence of 

two normal polarity intervals in the lower parts of Austrian sections Krems and Stranzendorf, most 

likely representing equivalents of the Jaramillo and Olduvai palaeomagnetic subchrons. One interval 

of normal polarity within a reversed palaeomagnetic zone in the lower part of Czech Red Hill loess-

palaeosol sequence has been interpreted as an equivalent of the Jaramillo subchron (Fink and Kukla, 

1977; Kukla and Cilek, 1996) (Figure 2). Forster et al. (1996), however, demonstrated that these 

conclusions were based on an incorrect correlation of sub-profiles and that the sections record only 

the MBB. 

Initially the loess-palaeosol sequences from Krems and Stranzendorf (Figure 2) were 

interpreted as covering the interval from the lower Brunhes to the uppermost Gauss (Fink and Kukla, 
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1977). However, Kukla and Cilek (1996) reported revised combined results from Red Hill, Krems 

and Stranzendorffollowing the suggestion of the probable incompleteness of the Krems sequence 

after investigation of micro-vertebrates by Rabeder (1981). However, based on the fact that Austrian 

loess-palaeosol sequences are highly susceptible to erosion and re-deposition processes (Sprafke et 

al., 2014), the revised correlation by Kukla and Cilek (1996) should also be viewed with caution. An 

additional challenge to improving the chronostratigraphic model for Austrian slope loess is the 

limited possibility of using MS for stratigraphic correlation. It has not been possible to use MS 

variations to clearly differentiate loess layers and different types of fossil soils and pedocomplexes. 

For example, at the Wels-Aschet section, loess unit AS9 has significantly higher MS values than the 

strongly developed interglacial palaeosol, AS7c (Scholger and Terhorst, 2013, see Table 2). 

The Jaramillo subchron has been also found in Hungarian loess deposits, in the Dunaföldvár 

exposure and the Dunakömlőd borehole (red and ochre red soils of Dv1-6 in the Dunaföldvár 

complex (Újvári et al., 2014). Koloszár (2010) presented evidence for the Jaramillo subchron being 

recorded in the Tengelic red clay formation in the Udvari 2A borehole. 

The Tengelic red clay formation (Ujvari et al., 2014) is similar to the proposed Bulgarian ‘red 

clay complex’ that underlies the loess in this region (Jordanova et al., 2008). At the Viatovo loess 

section two normal magnetozones were also found in this lowermost reddish clay rich sequence, 

most probably corresponding to the Jaramillo and Olduvai subchrons of the Matuyama reversed 

chron (Jordanova et al., 2008). Here, it is important to stress the problematic nature of the 

nomenclature, as the famous Chinese Red Clay Formation at the base of thick Quaternary loess 

formations of the Central Chinese Loess Plateau (Ding et al., 1999) is of Pliocene age and represents 

a fundamental shift in depositional and weathering conditions between loess and red clay units. The 

boundary is sharp and well defined. The formation of the so called “red clay” sediments in the 

Danube area (Jordanova et al., 2008) does not necessarily correspond to the formation interval of the 

Chinese “Pliocene Red Clay formation” and the former are more akin to weathered loess and an 
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extension of the loess stratigraphic framework. Indeed, Kovács et al. (2012) reviewed the 

geochronological and stratigraphical framework of the red clay in the Carpathian Basin and showed 

that the DB red clay exhibits depositional ages from 0.5 to ~ 3.5 Ma years, with strong local and 

regional differences of the upper and lower boundary age. To avoid confusion and the incorrect 

stratigraphic correlation of the Bulgarian red clay complex and Chinese Red Clay Formation, as well 

as with other unrelated and diachronous ”red clay” formations in the Danube basin, Marković et al. 

(2011) proposed the term 'Basal Complex' for the equivalent stratigraphical unit at Stari Slankamen 

to that named the “Red Clay Complex” by Jordanova et al. (2008). Similar palaeomagnetic evidence 

is also expressed at the Stari Slankamen site as a normal polarity interval in the lowermost part of the 

Basal Complex which most probably corresponds with Jaramillo normal subchron (Marković, et al., 

2011). Thus, the Basal Complex in Serbia, Bulgaria and Romania corresponds to the Czech and 

Austrian alternation of loess and palaeosol units formed during the Matuyama Chron. 

 

2.2.1.3. Short geomagnetic excursions within the Brunhes palaeomagnetic chron 

 

Kukla and Koči (1972) identified the Blake palaeomagnetic event (120–110 ka) within the 

double pedocomplex PKII and PKIII confirming astratigraphic link between these two palaeosols 

and the MIS 5 period. Recently, Scholger and Terhorst (2013) performed detailed palaeomagnetic 

investigation at the Wels-Aschet section and recognised many excursions of reversed polarity within 

the Bruhnes. These short-lived geomagnetic reversals were regarded as equivalents of the Blake 

(120–110 ka), Albuquerque - Fram Strait (165–155 ka), Jamaica - Pringle Falls (215–205 ka), 

Calabrian Ridge 1 (325–315 ka) and Emperor - Big Lost - Calabrian Ridge 3 (570–560 ka) 

geomagnetic excursions of the geomagnetic reference timescale based on their positions in the 

sedimentary column. For the excursion in the loess complex AS4e, depending on which reference 

time scale is used, either the Calabrian Ridge 2 (525–515 ka), West Eifel 5 (528+-16 ka) or a much 
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younger age excursion were deemed plausible (Table 2). At Krems, Hambach et al. (2008b) reported 

evidence for the Mono Lake and Laschamp geomagnetic excursions from last glacial loess using 

both detailed palaeomagnetic direction and intensity variations. 

Similar detailed palaeomagnetic sampling and measurements were performed on the lower 

part of the Stari Slankamen loess-palaeosol sequence. Evidence of the so-called Stage 17 reversed 

polarity excursion has been identifiedinpalaeosol V-S6 and independently confirms its proposed 

chronostratigraphic correlation with MIS 17, based on MS variations (Marković, et al., 2011).  

 

2.2.2. Magnetic susceptibility interprofile correlation 

 

Since the seminal work of Heller and Liu (1984, 1986), mineral magnetic parameters became 

fundamental palaeoclimate proxies in loess/palaeosol research. Magnetic susceptibility (MS; induced 

magnetisation/applied magnetic field) and its dependence on the frequency of the applied field 

(MSfd) turned out to be, along side grain size (GS) and geochemical indices of climate/environment, 

a highly sensitive proxy for temperature and humidity during loess accumulation (cf. Buggle et al. 

2014). The application of MS and MSfd as palaeoclimatic proxies in the Eurasian loess steppe 

environments is based, in addition to the mineralogical homogeneity of the loess, mainly on the neo-

formation of ferrimagnetic minerals in the course of silicate weathering and pedogenesis. The latter 

depends largely on the temporal variation of soil humidity and thus the temporal course of 

palaeoclimate. Thus, increasing pedogenesis goes along with the enhancement of the mineral 

magnetic signals. However, the properties of a given magnetic assemblage in loess depends not only 

on the concentration and mixture of the minerals, but largely on the grain size distribution of the 

magnetic particles. For a given ferromagnetic (s.l.) mineral concentration, MS varies widely, 

depending only on grain size, being largest for very fine so called superparamagnetic (SP) particles. 

These SP-particles precipitate from weathering solutions largely controlling the mineral magnetic 
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signal in loess palaeosol sequences and are the main cause of the enhancement of the mineral 

magnetic signals. Accordingly, the weathering and pedogenesis controlled magnetic enhancement, 

therefore, provides a sensitive proxy for soil palaeo-humidity and hence for palaeoclimate (e.g. 

Buggle et al. 2014; Evans and Heller 2003; Singer and Verosub, 2007).  

Since Heller and Liu (1984, 1986) promoted MS variations as a sensitive palaeoclimatic 

proxy, and due to relative simple measuring procedure (in the field, as well as in the laboratory), it 

became the most commonly measured global proxy from the loess-palaeosol sequences. MS 

fluctuations recorded in DLPS apparently reflect the pedostratigraphy well (Marković et al., 2008, 

2011). This is a typical example of the model involving magnetic enhancement via pedogenesis, 

similar to that seen in Chinese and Central Asian loess deposits (e.g. Heller and Liu, 1984; Maher 

and Thompson, 1992). This enhancement of the magnetic signal as a consequence of pedogenetic 

processes appears to be valid for a huge Eurasian semi-arid loess belt (Ding et al., 2002; Dodonov 

and Zhou, 2008). Measurement of loess MS is therefore a rapid and consistent tool for inter-profile 

correlations, even on very long distances across Europe and Asia. It is striking in fact how some 

intervals of MS patterns seen in Serbian and Chinese loess-palaeosol sequences match each other 

(Marković et al., 2012a; Figure 5).  

Several important conditions allow the use of MS records of the DLPS as a key stratigraphic 

tool. As a consequence of the drier Pleistocene environmental conditions in the region compared to 

other parts of Europe, the oldest and most complete European loess records (e.g. Marković et al., 

2011, 2012a) were preserved within the Middle and Lower DB. As noted above there were drier 

conditions in the middle and lower Danube basin during the Pleistocene and this results in the DLPS 

satisfying one of the most important stratigraphic criteria for use as a basis for a stratigraphic 

scheme: quasi-continuity of the depositional record, at least on multi-millennial timescales. An 

additional important criterion is a relatively uniform stratigraphy over a wide region, with a 

relatively small number of stratigraphical units in comparison with other European loess provinces 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

23 

 

(Marković et al., 2008; Buggle et al., 2009); this also being facilitated by the drier lower to middle 

basin climate.  

Figure 4 shows proposed correlations between MS records of the main sections of the Danube 

loess area: Paks in Hungary (Sartori et al., 1999), the composite profile of Sedlec near Prague-

Sedlesovice-Sedlec close to Mikulov-Červeny Kopec (Forster et al., 1996), the Serbian sections 

Batajnica (Marković et al., 2009b), Ruma (Marković et al., 2006), Stari Slankamen 1 (Marković et 

al., 2003) and Stari Slankamen 2 (Marković et al., 2011), Koriten (Jordanova and Petersen, 1999) 

and Viatovo (Jordanova et al., 2008) in Bulgaria, and the Romanian sites Mircea Voda (Timar-Gabor 

et al., 2011), Mostiştea (Panaiotu et al., 2001) and Zimnicea (Radan, 2012). A broad-scale 

correlation with marine oxygen isotope stratigraphy (Lisiecki and Raymo et al., 2005; Berger, 2008) 

and a potential palaeomagnetic zonation up to the Olduvai Subchron is also proposed (Sartori et al., 

1999; Jordanova et al., 2008; Marković et al., 2011). 

The ‘background’ (i.e. less weathered or unweathered) MS recorded in loess units is very 

similar in all analysed sections (Buggle et al., 2008; Buggle et al., 2013; Buggle et al., 2014) 

indicating a generally similar origin, which is mainly silt-sized deflated material. However, the 

amplitude of MS values is quite different when comparing chronostratigraphically equivalent 

interglacial pedocomplexes from Czech (Forster et al., 1996), Hungarian (Sartori et al., 1999), 

Serbian, Romanian and Bulgarian sections (Marković et al., 2009b, 2011, 2012a; Jordanova et al., 

2008; Radan, 2012). As these palaeosols are formed in a very similar plateau-like situation and from 

presumably (from the similar MS values in loess units) very similar parent material, the differences 

in absolute MS values are mostly related to different climatic, environmental and local geomorphic 

conditions.  

In spite of these regional differences in MS peak magnitude, following the common 

variability of signal recorded in Middle and Lower DLPS, the definition of basin-wide stratigraphic 

correlation is relatively simple. While previous stratigraphic schemes even in these areas have at 
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times required substantial revision (for example the famous Hungarian section of Paks), this has 

generally been due to a lack of available techniques to detect gaps or inconsistencies in the records. 

This has meant that schemes have been developed based on approaches that use either a counting 

downwards from the top technique, or one based on counting from a recognised reference unit. For 

example, the absence of the V-S2 (MIS 7) pedo-complex at the Stari Slankamen exposure can be 

detected visually by using the presence of a distinct erosional horizon. However, what would be less 

clear from either visual, or even from magnetic susceptibility, is the exact number of units removed. 

The application of independent stratigraphic/geochronological approaches, such as amino-acid 

recemisation (AAR) relative geochronology (Marković et al., 2011) and luminescence dating 

(Schmidt et al., 2010; Murray et al., 2014) (Figure 8) can be used along with comparison of recorded 

MS patterns to a reference column to constrain this information. In this way the use of visual and MS 

stratigraphy can be augmented to develop secure stratigraphic schemes that are readily correlatable 

across the lower and middle Danube basin. In some cases the fit of the magnetic susceptibility profile 

to expected patterns can be used to determine the stratigraphic integrity of a sequence. For example, 

several hiatuses in the uppermost part of the Paks exposure yield an atypical Late Pleistocene MS 

pattern at the site, in comparison to that typically seen in other Danube loess sections (Figure 4). 

However, ideally independent evidence should be used to better constrain these missing intervals. 

As such, using the characteristic MS pattern as a stratigraphic tool for correlating loess sites 

in various parts of the Danubian loess belt, alongside ground truthing using independent 

geochronological tools where possible, allows the establishment of a basin-wide stratigraphic model, 

at least with regard to the most recent eight glacial-interglacial loess-palaeosol couplets.  

 

2.3. AAR relative geochronology 
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The racemisation/epimerisation of amino-acids preserved in Quaternary fossils provides relative 

geochronological information applicable to a wide range of stratigraphic problems, depositional 

environments, and timescales (Penkman and Kaufman, 2012). AAR ratios of isomer pairs measured 

from land snails have been successfully used for the correlation of loess stratigraphic units across the 

northern hemisphere: loess provinces in Europe, Asia and North America (Oches et al., 2000; Oches 

and McCoy, 2001). Previous applications of the AAR geochronological approach to European loess-

palaeosol sequences were almost completely related to the DLPS (Oches and McCoy, 1995a, 1995b, 

1995c). However, the potential of the AAR method for solving long-term stratigraphical issues has, 

as yet, not been widely recognised within the research community. At present, environmental 

magnetism, coupled with absolute dating using luminescence or radiocarbon techniques, is the 

preferred approach for reconstructing chronostratigraphies within loess in general. 

The first phase of the application of AAR to loess was completed in the 1990s at the classical 

sections in Austria, Slovakia, Czech Republic and Hungary (Oches and McCoy, 2001). The use of 

the AAR technique by Zöller et al. (1994), as well as Oches and McCoy (1995a, 1995b, 1995c) in 

these countries substantially improved our understanding of Danubian loess stratigraphy. The most 

abundant shells of the taxa, including Succinea, Helicopsis, Trichia and Pupilla, offer the most direct 

aminostratigraphic comparison with data from loess elsewhere in the DB. While the 

aminostratigraphic data arising from these studies have provided limited resolution on 

stadial/interstadial time scales, stratigraphic subdivision into younger glacial/interglacial couplets 

was very successful. These resulting chronostratigraphic interpretations for the four youngest 

glacial/interglacial cycles enabled revision of the previous 'classical' stratigraphic schemes. More 

advanced reverse-phase liquid chromatography AAR was subsequently applied to northern Serbia 

(Marković et al., 2004a, 2004b, 2005, 2006, 2007, 2011) and Hungary (Novothny et al., 2009) 

approximately one decade later. This technique has the considerable advantage that multiple amino 

acids can be measured, with varying racemization rates, meaning for the first time stadial-interstadial 
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differentiation was plausible. However, as yet, the technique has not been applied to loess sections in 

the lower Danube regions in Bulgaria and Romania. 

Figure 6 shows comparison between marine isotope stratigraphy and glacial cycles defined by 

Kukla (1975, 1977), and the stratigraphic subdivisions of Czech, Slovak, Austrian, Hungarian 

(Oches and McCoy, 1995a, 1995b), and Serbian (Marković et al., 2006, 2008, 2011) loess 

pedocomplexes, as refined using AAR to reliably facilitate basin-wide correlation of the interglacial 

pedocomplexes for the most recent four interglacial-glacial cycles. 

Shells of the typical loess genus Pupilla,which are abundant in all of the investigated 

Danubian loess sites in Serbia, Hungary, Austria, Germany, Ukraine, Czech Republic and Slovakia, 

offer the possibility of direct aminostratigraphical comparison. Figure 7 summarises the gradual 

increase of D-alloisoleucine/L-isoleucine epimerization rates measured from Pupilla shells collected 

from sites in Central Europe across to the Middle DB across all stratigraphic units. This trend is most 

likely to be a consequence of regional gradients in mean annual temperatures, which would have 

persisted throughout the Pleistocene. This gradient must be taken into account when establishing 

aminostratigraphic correlations (Marković et al., 2006, 2008, 2011). 

Recently, Marković et al. (2011) presented application of AAR relative geochronology to the 

long-term loess-palaeosol sequence at Stari Slankamen in order to test the resolution of the method. 

These results indicate that the AAR methodological approach can be a powerful tool in resolving 

glacial interglacial cycles younger than 700 ka. However, the erosional hiatus suggested by the MS 

record and presence of a gravel unit at the site was confirmed using AAR and shown to indicate that 

pedocomplex V-S2 and part of the bracketing loess units are missing at the site (Figure 8). 

 

2.4. Recent results from improved luminescence absolute chronology 

 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

27 

 

Compared to many other Quaternary deposits, loess has a distinct advantage because of the 

possibility for absolute dating by luminescence techniques. Indeed, early developments in TL dating 

and new luminescence methodologies such as thermally transferred optically stimulated 

luminescence dating (TT-OSL) and post-IR infrared stimulated luminescence dating (post-IR IRSL), 

were undertaken on loess samples due to the suitability of loess for luminescence methods (see 

Roberts, 2008 for a review). Early TL chronologies from the DLPS (e.g. Wintle, 1987; Singhvi et al. 

1989) were obtained using protocols which have since been shown to be potentially unreliable in 

loess environments (Frechen et al., 1997). Subsequently, optically stimulated luminescence dating 

(OSL) on quartz, and infrared stimulated luminescence dating (IRSL) on feldspars and polymineral 

samples dominated by feldspar signals were adopted and thought to provide more reliable age 

estimates (Balescu et al. 2003, 2010; Novothny et al. 2009, 2010; Lang et al. 2003; Timar et al. 

2010). However, these methods are not without limitations. Direct dating of sediments by OSL, 

IRSL, TL, TT-OSL and post-IR IRSL methods is a rapidly developing field of Quaternary 

geochronology. Significant recent advances in this field have arisen from studies of loess deposits 

generally (e.g. Roberts, 2008), and in a number of cases, Danubian loess (Anechitei-Deacu et al., 

2014; Stevens et al., 2011; Thiel et al., 2011; Timar-Gabor et al., 2011; Schmidt et al., 2010; Timar-

Gabor and Wintle, 2013; Fitzisimmons and Hambach, 2014; Zöller et al., 2014). These developments 

in luminescence dating have been reviewed elsewhere (e.g. Roberts, 2008, Fitzsimmons et al., 2012), 

and will only be summarised briefly here in terms of studies of the Danubian loess. 

While quartz OSL dating is widely considered to be the most reliable method of choice for 

loess work, OSL dating of loessic quartz is generally acknowledged to have an upper age limit 

ranging from 50 to 100 ka (Wintle and Murray, 2006; Timar et al., 2010; Timar-Gabor et al., 2011; 

Timar-Gabor and Wintle, 2013). Investigations into the OSL characteristics of quartz of different 

size fractions from Romania, from sites with independent age control, suggest that the reliability and 

upper dating limit is partially dependent on the grain size chosen for measurement (Constantin et al., 
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2012; Timar-Gabor et al., 2011, 2012; Timar-Gabor and Wintle, 2013); it has been suggested that 

this may reflect variations in depositional processes and source sediment of the different size 

fractions (Anechitei-Deacu et al., 2014) but at present the cause of these discrepancies is unclear. At 

present, the most reliable quartz OSL dating results for Danubian loess appear to derive from fine-

grained material, for ages up to ca. 70 ka (Timar-Gabor et al., 2012), and loess sections in Romania 

have been successfully dated within these limitations (Anechitei-Deacu et al., 2014; Constantin et al., 

2012 Fitzsimmons et al., 2013; Fitzsimmons and Hambach, 2014), alongside sections in Serbia 

(Schmidt et al., 2010, Stevens et al., 2011). However, studies employing quartz OSL in Hungary 

have sometimes met with poor quartz luminescence properties such as low signals and 

reproducibility, although reliable ages may be obtained (Schatz et al., 2012). 

The feldspar IRSL signal is, by contrast with quartz, subject to fading of the luminescence 

signal through time, resulting in the need to substantially correct the age estimates (Auclair et al., 

2003). However, IRSL techniques have readily been applied to European deposits but fading was 

either not measured or reported to be absent (see Roberts, 2008 for review). This seems surprising 

given recent development in post-IR IRSL that have involved measuring fading rates for standard 

IRSL protocols, which have shown this phenomenon to be widespread. It seems that methods of 

fading measurement on European loess sequences used previously have been inadequate to quantify 

fading rates in loess feldspars (Roberts, 2008). The recent development of the post-IR IRSL protocol 

appears to access a more stable signal, showing no or much lower fading rates, and thereby reducing 

the need for an empirical correction that is likely to only be valid for younger age samples. This 

technique, partially developed on European loess, extends the dating range beyond that of quartz, 

potentially to up to 300 ka (Thiel et al., 2011; Buylaert et al., 2012). This protocol has been 

successfully applied to a number of Austrian, Hungarian, Croatian, Serbian and Romanian sites, and 

confirm or extend existing chronostratigraphic models (Schmidt et al., 2010; Thiel et al., 2011, 2014; 

Stevens et al., 2012; Schatz et al., 2012; Wacha and Frechen, 2011; Vasiliniuc et al. 2012; Murray et 
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al., 2014) and provides an independent age control (Fitzsimmons et al., 2013). For example, Schmidt 

et al. (2010) obtained coupled post IR-OSL and IRSL dating results from loess units V-L1 and V-L2 

at Stari Slankamen in Serbia which support the existing chronostratigraphic model. Luminescence 

data from last glacial loess unit V-L1 yield ages of approximately 25 to 65 ka. These results are 

similar to recent IRSL or OSL dating for the last glacial loess at other investigated sites in the 

Vojvodina region reported in recent papers (Marković et al., 2007, 2008; Fuchs et al., 2008; 

Bokhorst et al., 2009; Újvári et al., 2010; Stevens et al., 2011; Hatte et al., 2013). Further, dates from 

loess unit V-L2 yield minimum ages of between 100 to 193 ka, supporting our suggestion of a 

penultimate glacial age for the unit (Schmidt et al., 2010). In the study of Vasiliniuc et al. (2011, 

2012) (Figure 9) post IR-IR225 ages in agreement with fine (4-11μm) quartz OSL ages for the 

uppermost Romanian loess unit have been obtained while for L2, L3 and L4 the (uncorrected for 

fading) ages obtained by applying post IR-IR225 on polymineral fine grains yielded ages of 156±24 

ka, 269±46 ka and 360±71 ka, respectively. The ages are in good agreement with the palaeomagnetic 

time-depth model and assign these units to MIS6, MIS 8 and MIS 10. However, there are still 

uncertainties with the post-IR IRSL technique, notably in the size of the residual (Stevens et al., 

2011) and the upper age limit (Thiel et al., 2014). 

The reliability of luminescence techniques, including new protocols such as post-IR IRSL 

and of different grain sizes of quartz, can be assessed very well within parts of the DLPS due to the 

excellent preservation of volcanic tephra layers which provide independent age control (e.g. Veres et 

al., 2013a; Fitzsimmons et al., 2013; Anechitei-Deacu et al., 2014; Constantin et al., 2012; Wacha 

and Frechen, 2011). The lower Danubian loess represents one of the few regions in Eastern Europe 

which can be used to test the accuracy of luminescence dating techniques, although species specific 

AMS 14C dating of small gastropod shells may also prove important for younger deposits (Pigati et 

al., 2013). 
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An additional important advance is the application of luminescence chronologies to 

estimating sedimentation rates of loess (Újvári et al., 2010; Fitzsimmons and Hambach, 2014). This 

approach is generally constrained to the last glacial cycle as reliable quartz OSL ages are limited to 

last glacial loess (Timar-Gabor and Wintle, 2013) and age estimations of older loess and palaeosol 

units decrease in reliability as the post-IRIRSL290 signal approaches saturation towards ~300 ka 

(Murray et al., 2014; Thiel et al., 2014). Nevertheless, a number of useful estimates of sedimentation 

rates have been determined by using luminescence dating from sites in Serbia (Stevens et al., 2011), 

Hungary (Újvári et al., 2010; Novothny et al., 2011; Schatz et al., 2012; Thiel et al., 2014) and 

Romania (Timar et al., 2010; Vasiliniuc et al., 2010; Constantin et al., 2014; Fitzsimmons and 

Hambach, 2014). At the site of Urluia in southeastern Romania, substantial deposits of the 

Campanian Ignimbrite volcanic tephra provide a useful upper age limit (ca. 39 ka) to investigating 

the variability of sedimentation rates from MIS 3 to the present, and indicate substantial loess 

accumulation during the last glacial maximum period on the order of 6-8 m within several thousand 

years (Fitzsimmons and Hambach, 2014). Thiel et al. (2014) confirmed previous stratigraphic 

expectations related to the loess wall in the Paks brickyard, Hungary (Sartori et al., 1999; Horváth, 

2001; Marković et al., 2009b; 2011, 2012a) (Figure 10). This demonstrates that the loess-palaeosol 

sequences at Paks are not a continuous record. Such unconformities are also common in other DLPS 

and point to the fact that all these sequences are only quasi-continuous records. The study does 

demonstrate that the Basaharc Double soil (BD1+2) complex is correlated with MIS 7. The Basaharc 

Lower soil (BA) likely corresponds to MIS 9, however, below this the signal approaches saturation. 

Finally, Stevens et al. (2011) demonstrate that there are differences in calculated sedimentation rates 

over the last glacial cycle between Danubian loess sites, notably some sites that show very little 

glacial loess accumulation during the early part of the last glacial, compared to others where loess 

sedimentation increases early in the glacial. Site specific differences and different luminescence 

protocols cannot be ruled out as factors that account for these discrepancies, however, and these 
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differences require further investigation in order to develop fully integrated basin scale models of 

dust accumulation that can be of use to communities that model modern and past fluxes of 

atmospheric dust (Albani et al., 2014). 

Luminescence dating has also been used to assess the timing of transitional intervals in loess 

deposition and alteration, as well as palaeosol development. A current study by Marković et al. 

(2014c) has raised an important question about the temporal accordance between the main loess-

palaeosol stratigraphical boundaries andthe equivalent MIS transitions. The synchronicity between 

the start of the Holocene and theinitiation of soil formation on Serbian loess plateaus is 

checkedthrough application of luminescence dating of the transitional interval between the last 

glacial loess and modern soil. The two uppermost luminescence dates from the Orlovat loess section 

clearly demonstrate an Early Holocene age almost 0.7 m below the Holocene soil V-S0 to loess 

boundary. Critically, this contrasts with other sites in the basin in terms of when soil-forming 

conditions regain dominance in the region during the Holocene and whether the lower boundary of 

soil V-S1 chronologically corresponds to Termination 1 (Bard et al., 1992). The luminescence dating 

results from this and various other sites in the Vojvodina region (Stari Slankamen, Rogulić, Surduk 

and Crvenka) indicate that the precise timing of these transitions, such as the decrease in loess 

accumulation and initiation of Holocene soil formation, may vary between locations. The results at 

the Orlovat section indicate thatloess deposition continued well into the Holocene. Chernozem soil 

formation started considerably later than the beginning of the Holocene. This interpretation is 

supported by very young luminescence ages (7.6 ± 0.5 ka) from the lower part of modern soil V-S0 

at Stari Slankamen (Schmidt et al., 2010) and from the last glacial loess V-L1 (10.0 ± 1.1 ka) 1.6 m 

deeper than the lower boundary of the modern soil in the Rogulić gully on the Titel loess plateau 

(Bokhorst et al., 2011). It is also supported by a very young 14C age (7.3 ± 0.38 cal 14C ka BP) for the 

uppermost part of the last glacial loess at Surduk (Hatte et al., 2013). This would be in marked 

contrast to CLPS where Holocene soil formation extends well in to last glacial loess (Stevens et al., 
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2008). By contrast, in northern Serbia at Crvenka, quartz OSL dates from the Holocene soil and the 

boundary with last glacial loess unit V-L1 suggest that soil formation began at the onset of the 

Holocene (Stevens et al., 2011). 

The increasingly widespread adoption of absolute dating using luminescence techniques 

clearly demonstrates their applicability for testing stratigraphic correlations between sites, in addition 

to elucidating rates of loess accumulation and pedogenesis. Furthermore, the presence of the well-

dated Campagnian Ignimbrite tephra in the eastern Danubian loess enables reliable assessment of the 

accuracy of the different protocols in some areas over a limited time range. Absolute chronologies 

are fundamental to the development of a regional stratigraphic model, despite the existing age limits 

and challenges with the current luminescence dating techniques. 

 

3. A unified Danube loess stratigraphic model 

 

Our proposed chronostratigraphic model spans the Middle Pleistocene transition through to the 

present (Ruddiman et al., 1989; Heslop et al., 2002). The climatic changes of the mid-Pleistocene 

transition resulted in a shift to more arid conditions in the DB (Buggle et al. 2013; Fitzsimmons et al. 

2012), making it relatively difficult to subdivide stratigraphic units straddling this time period. 

Regional environmental responses to these significant global climate changes were not uniform in 

the DB area resulting in a high spatial and temporal diversity of palaeosols. For example, during the 

last interglacial period, quite different palaeosols have developed simultaneously in the basin, 

including luvisols in Austria, cambisols in Hungary, or chernozems in Serbia, resulting in some 

important differences in loess-palaeosol stratigraphy of the key loess sections. An additional problem 

for valid stratigraphical correlations is the considerable environmental diversity over the entire 

Danube loess belt, resulting in some important differences in the loess-palaeosol stratigraphy of the 

key loess sections. This is related to the high propensity of the DLPS to erosion and re-deposition, in 
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turn driving a low sedimentary preservation potential, which seriously limits detailed stratigraphic 

interpretations. However, even more confusing are the often highly complicated national 

stratigraphic nomenclatural schemes. In these national schemes 14 different letters have been used 

(Fitzsimmons et al., 2012), or in some cases a particular pedocomplex received the names of the 

local settlements, such as: Stillfried, Paudorf and Göttweig in Austria (Fink, 1962; 1965), Mende, 

Basharc and Paks in Hungary (Pécsi and Schweitzer, 1993), or Surduk in Serbia (Antoine et al., 

2009a). While important regional differences in soil type are of significance and a way to distinguish 

time equivalent soils under contrasting environmental conditions, this type of loess stratigraphical 

nomenclature is valuable only to a narrow number of regional loess specialists and is a major 

inhibitor for the wider use of the Danube loess records in regionally, hemispherically or globally 

integrated palaeoclimatic and palaeoenvironmental research. As such, a unified scheme, much like 

that of the Loess Plateau in China and in the deep marine records (where significant differences in 

depositional conditions also occur) is required to utilise the basin-wide deposits to their full potential. 

After comprehensive stratigraphic analyses of the key Danube loess sections and critical 

evaluation of the existing stratigraphical models, we propose the direct correlation presented in 

Tables 1 and 2. This compares the classical Austrian and Czech stratigraphic models (Fink and 

Kukla, 1977; Kukla, 1975; Zöller et al., 1994; Forster et al., 1996; Kukla and Cilek, 1996) with 

current stratigraphic models based on magnetic stratigraphic analysis and supported by luminescence 

dating and AAR geochronology (Sartori et al., 1999; Marković et al., 2006, 2009b, 2011; Buggle et 

al., 2009; Panaiotu et al., 2001; Timar et al., 2010; Timar-Gabor et al., 2011; Jordanova et al., 2007, 

2008; Radan, 2102; Újvari et al., 2014). Loess-palaeosol units are correlated to each other, to 

Chinese loess stratigraphy (Kukla and An, 1989), and to the equivalent MIS (Lisiecki and Raymo, 

2005) andglacial cycles as defined by Kukla (1975). This is a crucial part of integrating these 

important sequences into the global network of long-term palaeoclimate records. 
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Bulgarian sites such as Ljubenovo, Viatovo, and Koriten, as well as Zimnicea, Mircea Voda, 

Tuzla and Costinesti in Romania have apparently greatly reduced resolution in the older part of the 

Middle Pleistocene (Figure 4). This is a serious limitation for stratigraphic interpretations over this 

interval. For example, the welded pedocomplex S6 in Bulgaria and Romania corresponds to several 

separate loess-palaeosol units in Serbia, Hungary, and the Czech Republic. At the site of Mircea 

Voda (Romania), Buggle et al. (2009) subdivided the S6 pedocomplex into S6S1, S6L1, and S6S2 

indicating that S6S1 is an equivalent of MIS17. Also, at the site of Zimnicea (Romania), Radan 

(2012) labelled the upper palaeosol as S6 (MIS 17) and the lower one as S7, correlating it with MIS 

19. Furthermore, at the site of Viatovo (Bulgaria), Jordanova et al. (2008) correlated the S6 

pedocomplex with MIS 17, 18, 19 and 21, whilst relating the thin interbedded loess units within S6 

to formation during MIS 18 and 20. However, a comparison of the MS pattern and the position of the 

Brunhes-Matuyama boundary between the Stari Slankamen record and the Bulgarian S6 

pedocomplex suggests that the latter could have been formed even prior to the end of MIS 21.  

Contrary to the complicated and problematic stratigraphic interpretations for older DLPS, 

inter-profile correlation of younger loess palaeosol units is much simpler and more consistent. Loess 

units accumulated during MIS 16 are exposed at all sections as a thick, typical loess layer. An 

important stratigraphical marker is also a strongly developed pedocomplex formed from MIS 15 to 

13 (PK7+8 in the Czech Republic, Phe and MTp1+2 in Hungary, V-S5 in Serbia, and S5 in Romania 

and Bulgaria). This pedocomplex shows a much greater degree of pedochemical weathering and clay 

mineral formation than in modern soils of this region, a feature that appears to be a characteristic of 

the middle part of all Brunhes loess-palaeosol sediments in Eurasia (Bronger, 2003). It also matches 

the characteristics of the poorly developed MIS 14 cold event in the marine record (e.g. Bassinot et 

al., 1994; Lisiecki and Raymo, 2005) and covers the same interval as the Chinese Loess Plateau S5. 

This wide scale similarity led Vandenberghe (2000) to underline the importance of this long warm 
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period, as expressed in V-S5 soil formation and palaeobotanical evidence, as a key element in 

linking Chinese and European stratigraphies. 

The pattern of MS variations and the aminostratigraphical assignments in the upper part of 

the profiles suggest a correlation of the youngest four major palaeosols (PKVI, PKV, PKIV+III, and 

PKII in the Czech Republic; MB, BA, BD2+1, and MF2 in Hungary; VS4, VS3, VS2, and VS1 in 

Serbia; S4, S3, S2, and S1 in Romania and Bulgaria) with MIS 11, 9, 7, and 5 respectively (Table 2; 

Figure 4), with the uppermost fossil soil confirmed as MIS 5 equivalent using luminescence 

techniques. In Serbia, Romania and Bulgaria the 4th pedocomplex (S4), which is an equivalent to 

interglacial MIS 11 (Candy et al., 2010; 2014), is expressed as the youngest forest fossil soil. These 

fossil complexes are separated by thick typical loess horizons corresponding to MIS 10, 8, 6, and 4-2 

respectively. These loess and palaeosol couplets were originally named as the young loess formation 

(Pécsi, 1995; Oches and McCoy, 1995a). A successful inter-profile correlation of the main loess and 

palaeosol units within the Danube loess belt requires a uniform definition of loess and palaeosol 

boundaries, combined with a standard stratigraphical classification. To ensure the application of 

uniform stratigraphic criteria, we follow the same definitions for stratigraphic units as previously 

established by Kukla (1987) and Kukla and An (1989). The most accurate, objective, and easily 

reproducible delimitation of stratigraphic units is based on the low field MS supported by 

independent methods such as luminescence dating, amino-acid geochronology and identified 

palaeomagnetic reversal boundaries. 

Following the widely recognised CLPS stratigraphic model (Kukla, 1987, Kukla and An, 

1989), we designate the Danubian L (loess) and S (palaeosol) stratigraphic units, numbered in order 

of increasing age. Early attempts to develop a Danube loess stratigraphic model proposed the prefix 

"D" to refer to the standard Pleistocene loess-palaeosol stratigraphy in the Middle DB loess area 

(Marković et al., 2003, 2008, 2012a). However, including such a prefix "D" would again cause 

unnecessary complications for wide applications of this stratigraphic model. Thus, for labelling the 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

36 

 

Danube loess we propose the same nomenclature already well established for the Chinese loess 

stratotype sections, i.e. a system based on the “S” and “L” labelling systematic without any specific 

regional prefixes. For labelling hierarchically lower units, there are two modes in the Chinese 

system. For example, according to the initially established scheme the uppermost (youngest) 

interstadial palaeosol within the L1 loess would be labelled L1-2 and the loess that directly underlies 

it would be termed L1-3 (see Liu et al., 1985; Liu and Ding, 1998). Later on, an alternative 

nomenclature for lower units was proposed by Kukla and An (1989), according to which the same 

units would be labelled as L1SS1 and L1LL2, respectively. Today, the Kukla and An (1989) version 

is widely accepted for Chinese loess sites. In some previous DLPS studies the last glacial interstadial 

pedocomplexes have been labelled (V)L1S1 and the underlying loess (V)L1L2 (Panaiotu et al., 

2001; Jordanova and Petersen, 1999; Marković et al., 2006, 2009, 2011; Buggle et al., 2009, 2013). 

The newly proposed stratigraphic scheme for the DLPS strictly follows the rules defined by 

Kukla and An (1989) for the Chinese loess stratigraphy: 

1. The upper boundary of a loess unit and the lower boundary of an interglacial pedocomplex 

unit is drawn at the top of the primary unweathered calcareous loess usually coincident with 

accumulation of carbonate concretions and bioturbation mostly related to humic infiltrations from 

overlying soil in former root channels. The boundary is characterized by a rapid increase upwards of 

the MS values. Average MS values in “S” units are at least 50% higher than in the “L” units that 

underly them. 

2. The lower boundary of a loess unit or the upper boundary of a soil unit is drawn at the level 

of the first appearance of typical sub-aerial loess that is unaltered or only partly affected by 

bioturbation. The transition from interglacial palaeosol unit to the overlying loess unit is less sharp, 

but still this stratigraphic boundary is clearly indicated by significant gradual decrease of MS values 

from the palaeosol to the loess unit above.  
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3. The units of the first-order are prefixed by a single capital letter L for loess layers and S for 

pedocomplexes and palaeosols. They are numbered in order of increasing age. 

4. The second or third-order units are named by the designation of the corresponding first order 

unit, followed with only one additional capital letter 'L' for loess, and 'S' for soil, for each 

stratigraphic level. They are also numbered in increasing order. Usually, second-order stratigraphic 

units can be recognised by the more gentle changes of MS values within the magnitude and range 

that characterizes the first-order unit. 

5. The nature of the boundaries of the second- and third-order units, because of their more 

complicated origin and more problematic chronological determination, will be discussed in more 

detail. 

6. Stratigraphical units of higher order, so-called 'super-units', include several integrated 

couplets of loess and palaeosol units, with the lower and upper boundary of the terminating units as 

their lower and upper boundaries. They are numbered in order of increasing age. This situation gives 

an opportunity for the definition of older 'Super-units' following improvements in understanding of 

the stratigraphy of older sequences. 

 

3.1. The synthetic Mošorin/StariSlankamen loess-palaeosol type section 

 

The most detailed stratigraphical record in the Danubian loess, in terms of number of studies 

undertaken and data currently available, comes from the combined sections in the wider ‘Titel loess 

plateau’. The three main sections (including the Mošorin section) are situated close to the village of 

Mošorin and the famous section at Čot, near Stari Slankamen, in the Vojvodina region of northern 

Serbia (Bronger, 2003; Marković et al., 2011, 2012a, 2012b) (Figure 11). These two localities are 

only 15 km distant from each other.  
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The Mošorin composite section is situated in the northern part of the Titel loess plateau 

(45o17-18’N and 20o12-15’E, top of the section is 120 m a.s.l.). The modern soil (S0) and the most 

recent three glacial loess units L1, L2, and L3 and palaeopedocomplexes S1, S2, and S3 are 

represented in profile Mošorin 1, located in the Veliki Surduk deep loess gully at the eastern edge of 

the village. The Mošorin 2 sub-profile, in the Feudvar loess gully, exposes the loess units L3 and L4, 

and pedocomplexes S3 and S4, and is situated 3 km west of the Mošorin 1 subprofile. 

An important stratigraphic marker in the Mošorin 2 subprofile is the abrupt increase of MS in 

L4 loess unit, which is suggested to represent a tephra horizon. This is the probable equivalent to the 

Bag tephra identified in South Slovakia and Hungary (e.g. Pouchlet et al., 1999; Horváth, 2001; 

Bradák, 2009). Pouchlet et al. (1999) suggested that the Vulsini and Alban Hills (central Italian 

volcanic area) as likely sources of the volcanic ash, and it was correlated with Villa Senni Tuff, dated 

to around 350 ka. Although the lack of reliable glass chemical data for this tephra in the loess 

sections currently precludes a secure correlation, this age estimate fits very well with the age of the 

abrupt L4 MS peak in our proposed timescale. Finally, Mošorin 3 subprofile is exposed in steep 

cliffs near the Tisa River at Dukatar. It includes the lowermost loess–palaeosol sequences L5 and 

pedocomplex S5 at the base of the section (Figure 13). The site at Dukatar has been previously 

investigated by many researchers (Marković-Marjanović et al., 1972; Bronger, 1976, 2003; Singhvi 

et al., 1989; Butrym et al., 1991). The composite Mošorin section was reconstructed on the basis of 

the cross-matching pedo- and MS variations at the sections. The total thickness of Mošorin 

composite sequence is 47.3 m. As a result of the unusually high accumulation rates, this is one of the 

most detailed European loess records covering the last five glacial–interglacial cycles.  

The completeness of the last five glacial/interglacial cycles at the Mošorin section was tested 

by comparison with the Batajnica loess–palaeosol sequence. These two sites are approximately 45 

km apart. The Batajnica loess section occurs about 15 km northwest of Belgrade (44o55’29”N; 

20o19’11”E; top of the section is 111 m a.s.l.). Similar to the Mošorin composite section, the 
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composite Batajnica section was reconstructed on the basis of inter-profile correlation, using pedo- 

and MS stratigraphy. The total thickness of the Batajnica composite profile is 40.5 m, and the depth 

of the lower base of palaeosol S5 is 33.45 m (Marković et al. 2009b, 2012b). Despite being 45 km 

apart, the patterns of MS records are almost identical in these sections, although there are clear 

differences in the thickness of the stratigraphic units. Even some details, such as the appearance of 

highly weathered remnants of tephra shards, observed in the loess units L2 and L3 (very base) are 

identified at both sections (Figure 12). However, the latter layer has been missed at Titel when the 

sections were sampled in detail employing 5 cm sample spacing, but was undoubtedly visually 

identified when the sections were cleaned for the detailed description of palaeosols. 

The Stari Slankamen profile (45o07’58’’ N and 20o18’44’’ E, top of the section is 130 m 

a.s.l.) is approximately 40 m thick. This section is located some 20 km south of the Mošorin locality 

(Figure 10). In this study we focus on the lowermost 14.3 m of the section that probably includes the 

oldest loess deposits of the region so far observed (Marković et al., 2011). Initial palaeomagnetic 

analysis indicates potential for palaeoclimatic reconstructions extending at least one million years. 

Details of field and laboratory investigations and of the current litho- and pedo-stratigraphical time 

scale are presented by Marković et al. (2009b, 2011, 2012a, 2012b). 

The synthetic stratigraphic column from the Mošorin and Stari Slankamen (MSS) localities 

and their MS records are shown in Figure 13. Without doubt the synthetic MSS sequence is the most 

complete in the DB.  

 

3.2. Stratigraphic status of interstadial palaeosols 

 

Designating the stratigraphic status of interstadial or stadial units is more complex than higher order 

sub-divisions. Terrestrial sub-aerial clastic sedimentary records are characterised by unconformities 

and discontinuities of accumulation, which are frequently referred to as being disadvantageous in 
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comparison to the supposedly more continuous ice, marine and lacustrine archives. Nevertheless, 

despite being subject to complexities such as variable accumulation rates and more dynamic 

environmental thresholds, loess-palaeosol sequences represent some of the longest and most 

continuous records of environmental change on land. Global climate change initiates spatially and 

temporally diverse regional terrestrial responses. The precise timing of climatic terminations does 

not necessarily occur coevally with the dated boundaries of loess and palaeosol units (Stevens et al., 

2008; Marković et al., 2014c). This complicates the assignment of uniform stratigraphic schemes 

over wide areas at stadial-interstadial levels. Nonetheless, we consider this possible with detailed 

analysis of stratigraphic and age dating information.  

An additional problem is that loess can very rapidly transform into sediment with an initial 

soil structure, or under extended periods, into a well developed soil. As a result of the significant 

palaeoenvironmental diversity over Danube region during the last glacial interstadial (MIS 3), the 

intensity of the pedogenic overprint on the local loess matrix was highly variable. As such, the 

character of the resulting palaeosol represents a wide variety of habitats from ancient analogues of 

modern boreal to Arctic brown soils (Antoine et al., 2013), to soils related to the parklands and 

grasslands in the Middle Danube (Marković et al., 2008; Schatz et al., 2011; Kovács et al., 2012), 

and to the dry steppe bioclimatopedo-zone soils in the Lower Danube lowland (Buggle et al., 2009). 

This middle last glacial L1S1 unit is usually correlated with MIS 3 (a period between 24 and 

60 ka, van Kreveldet al., 2000; Thompson and Goldstein, 2006). Recent luminescence chronological 

studies have generally confirmed this statement (Fuchs et al., 2008, 2013; Novothny et al., 2009; 

Stevens et al., 2011; Timar-Gabor et al., 2011; Constantin et al., 2014) presenting results that are in 

good agreement with MIS3 time frame. However, these results also suggest the occurrence of local 

sedimentary hiatuses within the L1S1 pedocomplex (Fitzsimmons and Hambach, 2014; Wacha and 

Frechen, 2011; Wacha et al., 2013; Fuchs et al., 2013). Loess sub-layers and the CI tephra 

intercalated in L1S1 preserve evidence of sudden changes in climatic and environmental conditions. 
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With the exception of the youngest loess sequences at Krems (Austria) (Hambach et al., 2008b; 

Terhorst et al., 2014), the formation and further preservation of palaeopedological and loessic 

horizons of the L1S1 pedocomplex could not be directly correlated with individual NW European 

interstadials, such as the Denekamp, Hengelo, Moershoofd or Glinde, or the Greenland Interstadials 

(GI) 8, 12, 13, 14, respectively. Thus, labelling of the third order stratigraphical units, such as 

L1S1S1or L1S1L1 in the present stratigraphic model, does not at this stage have chonostratigraphic 

significance. It just illustrates the morphological diversity of the L1S1 subunit in representing local 

environmental responses. In this case the labelling has a dynamic character. For example, the mid 

last glacial interval is represented in the Vojvodina region in northern Serbia by a weakly developed 

soil complex L1S1. This appears either as a single, complete pedohorizon (Ruma site), or as a double 

palaeosol (Batajnica, Irig, Mišeluk, Susek and Petrovaradin) or multiple (Stari Slankamen, Titel loess 

plateau and Crvenka) palaeosols (Marković et al., 2008). These sections are located inside an area of 

only 100 km diameter. 

How can such diversity in the L1S1 pedocomplex structure over such a small distance under 

similar plateau-like deposition conditions be explained? During the last glacial period in the 

Vojvodina region, dry semi-arid conditions prevailed around the threshold between loess formation 

and initial pedogenesis and led to the formation of weakly developed pedological horizons 

(Marković et al., 2006, 2007; Hatté et al., 2013). This offers some explanation of why it is very hard 

to distinguish differences between loess and initial pedogenetic layers in these sections and why over 

short distances the same stratigraphical subunits have quite different expressions (Figure 14). These 

non-uniform environmental conditions are further accentuated by the fact that during the whole last 

glacial, or even the last interglacial, different types of the grassland vegetation predominated in 

different areas (Marković et al., 2008; Zech et al., 2013). Stratigraphically the position of the weakly 

developed palaeosols of the last glacial within the loess subunit L1L1 is also very interesting. Figure 

14 shows the variable position of these initial pedogenetic horizons in three adjacent sections on the 
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Titel loess plateau, in spite of the unambiguous inter-profile correlation based on MS records. The 

characteristics are also considerably different from the upper last glacial record of the famous Dolní 

Věstonice section where loess is intercalated with several tundra gley palaeosols (Antoine et al., 

2013). The tundra gleyed pedohorizons represent a cold wetland environment, but do not influence 

significant changes in the MS, grain size, carbonate, or organic carbon content variations.Some of 

the last glacial sedimentary intervals in Hungarian (Sümegi et al., 2012) and Austrian loess sections 

(Terhorst et al., 2014, 2015) also provide detailed records of environmental changes with 

exceptionally good age models. However, overall the Hungarian and Serbian embryonic palaeosols 

and Austrian and Czech tundra gley palaeosols reflect different short-term last glacial environmental 

dynamics across the basin. Thus, the last glacial DLPS cannot currently be directly linked with 

events in the Greenland ice-core stratigraphy, especially given age model limitations and accepted 

precision. 

 

3.3. Is there a possible correlation between the Danube loess and Greenland ice-core event 

stratigraphy? 

 

One of the most important palaeoclimatic discoveries in the last decades of the 20th century has been 

the identification of abrupt climate changes during the last glacial cycle in the North Atlantic region. 

These are now known as Dansgaard–Oeschger and Bond cycles, and Heinrich events (Bond et al., 

1992, Dansgaard et al., 1993; Bond and Lotti, 1995). In the meantime, the specific patterns of short 

relative warm intervals known as Greenland Interstadials (GI) became a stratigraphic standard for the 

last glacial period (Björck et al., 1998; Blockley et al., 2012). 

Recent results of the ELSA (Eifel Laminated Sediment Archive) project confirm the 

dominant climatic influence of the abrupt climatic events in the North Atlantic region and provide 

additional important environmental evidence that during the last glacial period the atmosphere over 
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Central Europe was permanently dusty (Sirocko et al., 2005, 2013; Seelos et al., 2009). The ELSA 

dust stack comprises the last glacial/interglacial period of the last 133 ka. The record indicates that 

the coldest periods of the last glacial cycle, MIS 4 (70 – 60 ka BP) and MIS 2 (29 – 14.7 ka BP), 

were characterised by relatively stable climate conditions related to the accumulation of homogenous 

dust sediments. Conditions during MIS 3 were generally dusty, but several periods of reduced dust 

deposition have also been detected over this interval. Even in MIS 5 high frequencies of dust storm 

events during the cold events C24 and C23 after the last warm stage (MIS 5e) have been detected 

(Sirocko et al., 2005, 2013; Seelos et al., 2009) (Figure 15).  

The high level of correspondence between the dust records from the Greenland ice-cores and 

the Eifel maar lakes indicates a substantial opportunity for direct linkage between marine, ice-core 

and terrestrial records. However, recent reviews of central and eastern European climate over the last 

glacial period highlight how such correlations are substantially less well understood than in western 

European sequences (Feurdean et al., 2014). Thus, is it possible to correlate the DLPS and Greenland 

ice-core event stratigraphy? Seelos et al. (2009) reported evidence of continuous dust deposition 

during the last glacial period over Central Europe. Similar aeolian dust input was probably occurring 

over most of Europe during the last glacial. However, with the potential exception of several semi-

continuous Danubian loess records, loess formation was not continuous at least on millennial 

timescales. These sedimentary interruptions are related to the nature of loess formation, a process 

controlled not only by atmospheric dust abundance but also by different local trapping, geomorphic 

and preservation conditions. This is a significant limiting factor for continuous loess deposition, as 

well as for suitable reconstruction of climatic and environmental dynamics. 

However, despite these limitations some sedimentary intervals preserved in the Danube loess 

belt hold the potential for correlation with Greenland ice-core event stratigraphy (Blockley et al., 

2012). The famous Dolní Věstonice site has long been believed to record the terrestrial equivalent of 

climatic oscillations known from marine and ice-core records (Demek and Kukla, 1969; Kukla and 
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Cilek, 1996). The lower part of the Dolní Věstonice sequence provides an exceptionally well-

preserved soil complex composed of three chernozem palaeosols intercalated with five aeolian silt 

layers (Kukla (1975) defined these layers as a loess markers). This pedocomplex is the most 

complete record of dust response to environmental dynamics in the European loess belt for the 

period 110-70 ka. It has been proposed, based on luminescence ages combined with 

sedimentological and palaeopedological analysis, that this soil complex recorded all the main 

climatic events expressed in the North GRIP record from GI-25 to GI-19 (Antoine et al., 2013; 

Rousseau et al., 2013) (Figure 15). However, a great deal of questions still remain, not least whether 

the lowermost Bt horizon was effected by post depositional processes, and critically whether the 

luminescence chronologies are sufficiently precise to make the proposed temporal correlations with 

higher–resolution Greenland ice-core records. Given 1σ uncertainties on a luminescence age are at 

best 5% this equates to ±3.5-5.5 ka uncertainty, far too large to allow such fine correlations over this 

time interval. However, the argument lies over whether the sedimentological and palaeopedological 

evidence can be used to tune these age estimates sufficiently to allow correlation. These sudden 

environmental shifts represented by the appearance of the dust markers have great stratigraphic 

significance. 

Bokhorst and Vandenberghe (2009) have extensively discussed the limitations of correlating 

short climatic oscillations recorded in the Greenland ice cores with loess records. They found that the 

reliability of tuning on the basis of the climatic proxy signal between two nearby loess sections 

should be considered carefully. They argue that a multi-proxy approach can strongly improve the 

validity of age tuning between two terrestrial records because this procedure may separate local from 

regional or global signals. However, the issue of the precision of age models is still critical here as 

the oscillation wave-length of a particular set of climatic shifts is often shorter than the errors on the 

age model, meaning that miscorrelations are statistically very likely and at the very least leads and 

lags are entirely lost. 
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Some sedimentary intervals of the Nussloch (Middle Rhine, Germany) loess-palaeosol 

sequence have also been directly correlated with Greenland stadial-interstadial cycles (Rousseau et 

al., 2002, 2007; Antoine et al., 2009b). The 14C and luminescence chronologies suggest that the 

upper partof the Nussloch loess site corresponds to the interval starting with GI-8 (correlated with 

the Lohner Boden, see Zöller and Semmel, 2001), while the top loess unit is correlated with the 

sequence younger than the GI-2 in Greenland. The tundra gleys exposed at the site, G1a, G1b, G2a, 

G2b, G3, G4 and G7, were correlated to GI-7 to 2 in Greenland (Rousseau et al., 2007). Similarly, 

although less continuous and detailed, the late last glacial grain-size record at Dolní Věstonice shows 

strongly contrasting variations with numerous abrupt coarse-grained events in the upper part of the 

sequence spanning the interval between approximately 30 to 20 ka (Antoine et al., 2013). Similar, 

abrupt grain size compositional changes are also observed in sections over the Titel loess plateau and 

in Katymar in southeastern Hungary (Marković et al., 2008; Bokhorst et al., 2011). However, we are 

still far from achieving a valid correlation between the Greenland ice-core and the Danube loess 

records and similar reservations about timescale precision in the loess sequences apply to the last 

glacial of Nussloch and Dolní Věstonice. 

 

 

3.4. ‘Super-units’ as higher order stratigraphical units 

 

The long-term Plio-Pleistocene climatic variations indicate a gradual cooling trend associated with 

increasing amplitude of benthic 18O values over time (Lisiecki and Raymo, 2005; Rohling et al., 

2014). Following the first significant cool phase related to MIS 22, several even cooler episodes 

occurred during MIS 16, MIS 12, MIS 6 and MIS 2. These events correspond to Danubian and 

Chinese loess units L9, L6, L7, L2, and L1 (more precisely L1L1), as well as to the Elsterian, Saalian 

and Weichselian ice advances. This synchronicity indicates a direct link between global climate 
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changes recorded in the deep-sea sediments and northern ice-sheet and Eurasian dust deposition 

dynamics (Kukla and Cilek, 1996).  

According to the palaeoenvironmental signature of preserved Danube loess record we can 

subdivide the six major higher order stratigraphical units ('Super-units'). These 'Super-units', 

generally coincide with 'Super-cycles' as defined by Kukla (2005). 'Super-cycles' were established in 

order to bring the classical continental stages into correspondence with the marine isotope 

stratigraphy. They are composed of more than one glacial-interglacial cycle, beginning with an initial 

interglacial phase and finishing with the next most substantial glacial period. Kukla (2005) compared 

the structure of these 'super-cycles' with an enlarged individual glacial-interglacial cycle. Thus, a 

'Super-cycle', as defined by Kukla (2005), includes: an introductory interglacial (equivalent of an 

interglacial period in a classical interglacial/glacial cycle), the alternation of several lower but 

increasing amplitude glacials (representing early glacial conditions) and finally, the coldest glacial 

phase of 'Super-cycle' (corresponding to full-glacial conditions). 

The oldest 'Super-cycle' 5 is probably an equivalent of the basal palaeosol complex in Stari 

Slankamen (Marković et al., 2011), the so-called the ‘Red Clay Formation’ at Viatovo (Jordanova et 

al., 2008) and the lowermost sedimentary interval in the Zimnicea borehole (Radan, 2012). These 

records represent several fused interglacial palaeosols, possibly reflecting more humid climate 

conditions during the latest part of the Early Pleistocene, and certainly a lower loess sedimentation 

rate (Figure 16). This 'Super-cycle' also corresponds to the palaeosols of L and K glacial cycles at the 

Red Hill, the discontinuous sequence at Krems (Kukla, 1975), and the loess-palaeosol column at 

Stranzendorf (Fink and Kukla, 1977; Kukla and Cilek, 1996) (Figure 2).  

Subsequently the Danube loess stratigraphic 'Super-cycle’ 4 includes the oldest thick loess 

layer L9, closely spaced palaeosols from S8 to S6, separated by thin loess units, and finally the thick 

loess unit L6. In the Lower DB these palaeosols are more condensed, and include less pronounced 
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silty layers. This 'Super-cycle' is composed of light yellowish-brown compact loess, partly affected 

by pedogenesis, interbedded with rubified palaeosols including large carbonate concretions.  

The overlying 'Super-cycle' 3 consists of the oldest thick typical loess layer L6 and the 

strongly developed pedocomplex S5 which represents a long period from MIS 15 to 13. This distinct 

pedocomplex is noticeable at key exposures from the Alpine slopes to the Black Sea coast 

(Fitzsimmons et al., 2012). The main characteristic of this unit is a sharp environmental difference 

between the full-glacial loess unit L6, and the prolonged interglacial pedocomplex S5.  

'Super-cycle' 2 is delimited by 'super-terminations' III and II, and coincides with terminations 

V and II. It begins with pedocomplex S4, an equivalent of MIS 11, and terminates with the 

penultimate glacial loess L2 (MIS 2). The loess units L4 and L3 are relatively poorly developed in 

comparison to the youngest loess layers L2 and L1. In contrast, the fossil interglacial pedocomplexes 

S3 and S2 are more strongly developed than the Holocene soil, but less than the S5 and S4 

pedocomplexes. 

The ‘Super-cycle’ 1 includes the last glacial-interglacial cycle or palaeosol S1 loess unit L1, 

as well a modern soil S0and is not likely to have terminated with a coldest glacial stage yet (Kukla, 

2005). The average duration of the Danube loess 'super-units' is about 250 ka. Marković et al. 

(2012b) reported spectral analyses of orbitally tuned loess-palaeosol records the most prominent 

spectral peak of 256 ka indicating that the climate dynamics in Vojvodina is dominated mainly by 

the Earth's orbital eccentricity cycle. This observation is generally consistent with other Eurasian 

terrestrial records and could have continental significance. However, natural processes controlling 

the appearance of a 256 ka cycle in Eurasian continental records are still unknown (Basarin et al., 

2014). 

 

3.5. Advantages of the proposed Danube loess stratigraphic model  
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The advantages of this stratigraphic model over the existing, numerous European terrestrially based 

chronostratigraphies are as follows. 

1. The proposed stratigraphic scheme is based on a type sequence – the composite MSS loess 

sequence. In this way the formal standard stratigraphic criteria required for 

chronostratigraphic schemes are fulfilled. This also brings European sequences in line with 

CLPS where the Luochuan section is considered the type-section for the Chinese Loess 

Plateau (Liu et al., 1985). Moreover, the type sequence provides a quasi-continuous 

(continuous at least on multi-millennial scale), high-resolution proxy record of the last eight 

glacial-interglacial cycles (Figures 5 and 13). This record can be regarded as one of the 

oldest, most detailed and complete European continental proxy archives. Hence, the 

composite MSS loess sequence offers the potential as a master sequence (or reference 

section) for the Danube area, if not for the European loess belt in general.  

2. By using the same nomenclature that is already well accepted for CLPS, the chronological 

synchronization between the Danube and Chinese stratigraphic units is facilitated. Therefore, 

this novel stratigraphic scheme allows standardization of the previously region/country 

specific stratigraphies of European loess sections and offers greater potential for correlating 

the complex diversity of European loess stratigraphic records across the Eurasian loess belt 

and to Central Asian and Chinese sections.  

3. The basis of the proposed system is much more transparent than many previously 

complicated national stratigraphic schemes. This is particularly important given the 

increasing focus on past dust cycling in climate literature. Hence, a unified 

chronostratigraphic scheme, greatly promotes the high potential of the DB loess sites for 

Quaternary and climate research to the geoscience community and for the first time allows 

the sequences to be used to their full regional and global context potential. 
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4. The use of multiple different national-based schemes has no basis in environmental, fluvial or 

aeolian similarities or differences. Furthermore, the terminologies used are often inconsistent, 

vary through time with new data and publications, and often use incompatible or overlapping 

nomenclature despite no implied genetic association. A unified scheme provides a consistent 

reference point upon which to base these national or local schemes and alleviates this 

confusion. 

 

4. Direct comparison with the Chinese loess stratigraphical model 

 

Eurasia is characterised by extreme continental climatic conditions in its inner part, with maritime 

climates on the margins, as well as significant climatic variability from north to south, and from west 

to east. These features give rise to a considerable diversity of loess sequences from the arid and semi-

arid zones in Central China, Central Asia and Southeastern Europe to the humid periglacial European 

loess regions, as well as the periglacial and subarctic frozen loess zone in Siberia (e.g. Dodonov and 

Zhou, 2008; Marković et al., 2012a). The oldest, thickest and most complete loess-palaeosol 

successions are related to a great middle Eurasian semi arid loess zone. Spatially, this great 

continental loess belt spans approximately 45o and 30o N latitude, from the DB, through Central Asia 

(Kazakhstan, Uzbekistan and Tajikistan), across to the huge Chinese loess province. 

 The remarkable accordance between Danubian and Chinese loess records (Figure 5)opens up 

the possibility for a transcontinental correlation of European, Central Asian and Chinese loess 

sequences, using a standardised nomenclature and chronostratigraphic model. In the following 

discussion, we apply the unified stratigraphy of the DLPS for a direct correlation of two very distant 

loess regions, the Danube loess region, represented by the composite type sequence MSS, and the 

CLPS represented by the type sequence of Luochuan (e.g. Kukla and an, 1989; Hao et al., 2012). 

Bronger and co-workers (Bronger, 1976, 2003; Bronger and Heinkele 1989; Bronger et al., 1998) 
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presented the first attempt at a transcontinental stratigraphic correlation between European and Asian 

loess regions. This correlation was based on palaeopedological investigations of palaeosols in the 

middle DB and the Chinese Loess plateau. These stratigraphic interpretations were revised in 

subsequent studies of Marković et al. (2011, 2012a). The main limitation of the earlier correlations 

was related to an idealised concept of the uniform response of such diverse terrestrial environments 

to global climate change. Even within the DB the nature of soil conditions is extremely diverse over 

time equivalent units, making correlation based only on pedostratigraphy extremely difficult(Figure 

4). 

 Aeolian deposits in China extend to the base of the Miocene (Guo et al., 2002). The Basal 

complex in the DLPS, as represented in the MSS composite, is of Early Pleistocene age. In other 

parts of the DB region, the basal complex may extend to the Pliocene, but no older units have been 

detected (Kovács et al., 2013) and more research is needed on the lower part of the aeolian DB 

sequence. Hence, due to a significantly longer period of dust deposition and already high 

sedimentation rates during the Pliocene and Early Pleistocene, the total thickness of the aeolian 

deposits on the Chinese Loess Plateau tend to be greater than loess deposits in the DB (Marković, 

2012a). However, from the latest part of the Early Pleistocene onwards it is possible to apply direct 

correlation between Danubian and Chinese loess records.  

 Figures 5 and 17 show the correlation between the MSS loess-palaeosol type sequence and 

the equivalent for the Chinese loess at Luochuan (Liu et al., 1985; Hao et al., 2012). Below we 

suggest that the loess chronostratigraphies in the Vojvodina region and in the central CLP from S0 to 

L9, correspond strongly. This transcontinental correlation reveals also that there are significant 

similarities between the magnetic records of northern Serbia and the central CLP. Not only is the 

general multi-millennial and longer pattern of MS variations almost identical in loess sections from 

DB and CLP but these distant MS successions often have a close correspondence on shorter 

timescales. This correspondence appears to be stronger than the correlation with the globally 
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integrated marine records, potentially suggesting a similar response of continental climate to global 

changes that differs from shifting ice volume. This is well illustrated by the normalized MS records, 

plotted on a relative depth scale, for the Serbian and Chinese the Late Pleistocene and early Middle 

Pleistocene (Figure 17). What are the reasons for such high similarities over multi-millennial 

timescales between loess records from the DB plateaux and the Chinese loess plateau?  

 If we accept that the similarities are not solely a function of the way that MS is recorded and 

preserved in continental loess records, a similar environmental evolution needs to be postulated for 

these distant regions situated on opposite sides of the Eurasian continent. For example, several recent 

studies highlight corresponding trends of Pleistocene aridification in the DB as well as in the Chinese 

Loess Plateau (Marković et al., 2009b, 2011; Buggle et al., 2013, 2014). In any case, it is apparent 

that the similar nature of MS signal acquisition in the two regions provides the base for comparable 

environmental records based on magnetic signal enhancement via pedogenesis (Marković et al., 

2012a). Bronger (2003) provided a direct comparison between the palaeopedological characteristics 

of the middle Danube loess sites and the Chinese Louchuan section. These comparative 

palaeopedological interpretations are a better fit after our modification of Bronger’s initial 

stratigraphical subdivision. Based on these results, palaeosol units S11, S8, S7 and S5 at Luochuan 

(Bronger et al., 1998) are strongly developed and similar to their stratigraphic equivalents at Stari 

Slankamen: the strongly rubified basal pedocomplex, S8, S7 and S5. The palaeopedological 

characteristics of these units clearly differ from the temperate forest S4 palaeosols and the steppe-

like interglacial pedocomplexes S3, S2 and S1 in Serbia and China. The apparently different climatic 

conditions under which the Danubian pedocomplexes developed are not only seen macroscopically, 

but also in their mineralogy, geochemistry and micromorphological properties (Buggle et al., 2013). 

A detailed analysis of the changes in palaeoenvironmental conditions in terms of temperature, 

rainfall and seasonality has been given by Buggle et al (2014) comparing the different interglacials 

from the early Middle Pleistocene to the present. Evaluating potential triggers of this aridification of 
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interglacial periods, Buggle et al. (2013) suggested that progressively increasing dryness of the 

interglacials and cooling during glacials in the DB as well as other Asian loess regions reflects 

increasing continentality caused by Pleistocene surface uplift of Eurasian mountain ranges.Our 

proposed new stratigraphic scheme makes the geographical extent of this transition clear. 

 Simultaneously with this trend of interglacial aridification, the calculated accumulation rates 

in Danubian loess units also increase, indicating a concurrent trend to colder, drier and dustier glacial 

conditions. The thickest loess units in DB and China are L9, L6, L2 and L1. This observed intensity 

of dust deposition in the DBalso correlates to the Chinese loess accumulation dynamics (e.g. Hao et 

al., 2012), as well as with dust evidence from the EPICA ice-core from Dome C, Antarctica 

(Lambert et al., 2008). In addition it also parallels the trend to more intense glaciations indicated in 

the marine ice-volume indices (e.g. Lisiecki and Raymo, 2005). Thus, two distant loess records on 

the western and eastern sides of Eurasia provide a similar pattern of climatic and environmental 

changes, probably controlled by global increases in ice volume, especially on the Eurasian continent 

in particular, and the Northern Hemisphere in general. 

 The second reason for the similarity of the DLPS and CLPS is climatic seasonality. Despite 

fundamental differences in dominant climate modes in the DB (temperate continental) and China 

(monsoonal), the significant imprint of the dry season’s influence on these distant loess records is 

similar between the records (Marković et al., 2012a). The presence of a marked dry season in both 

climate zones has been shown to have a fundamental control on the development of the magnetic 

mineral content by promoting the repeated reduction and then oxidation of the weathering horizon 

(Buggle et al., 2014). 

 The third factor influencing similarities between the Danubian and the Chinese loess records 

is the plateau-like deposition model, operating at least in the middle to lower parts of the DB. For 

example, the almost parallel position of the multiple loess-palaeosol sequences preserved in 

Danubian and Chinese loess plateaus indicate generally the same style of deposition (Marković et al., 
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2012a). This model implies almost continuous plateau topography throughout the history of both 

aeolian deposition and pedogenesis. According to existing relief and climate, erosional processes on 

the Danubian loess plateaus should be confined only to relatively small-scale landforms visibly 

related to the steep cliffs and gullies. A consequence of the significantly lower total thickness of 

Danubian compared to Chinese loess deposits is that the dimensions of the loess landforms are also 

proportionally smaller. 

 In spite of the general similarities, there are also some significant differences between these 

loess records. The absolute magnitude of these MS values is significantly higher in the CLPS than in 

the DPLS. The most likely reason for this is the higher background MS of the parent material.More 

importantly, contrary to the almost uniform amplitude of the absolute MS values in Danubian loess 

and palaeosol units, the Chinese palaeosols from S8 to S6 are significantly smaller in comparison to 

the younger fossil soils. Additionally, accumulation rates differ in the Danube Basin and China over 

this time interval. This can be recognised, when comparing the thickness of units L9 to L6, 

representing the time interval from about 650 to 900 ka, in the two type sections. However, regarding 

the five last glacial-interglacial cycles, the sedimentation rates at several key sites in the Danube area 

have at times been even higher than at Chinese key sections (Figure 5). Stevens et al. (2011) also 

noted specific differences between the Crvenka (Vojvodina, Serbia) and Beiguoyuan (Chinese Loess 

Plateau) climate and accumulation records on millennial time scales, notably in the timing of peak 

sedimentation and recording of abrupt fluctuations in MS and grain size. These differences suggests 

that while overall continental scale climate changes are relatively uniform, there are differences in 

the shorter, more abrupt events and in the climatic nature of certain periods. The nature and reasons 

for these differences is an exciting avenue of future research that should bring significant insight into 

the dynamics and forcing of regional scale climate in the context of global and hemispheric shifts. 
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5. Comparison to other European stratigraphic models 

 

The development of the extensive Danube loess belt coincides with fundamental changes in Earth’s 

climatic cyclicity during the so-called Early-Middle Pleistocene transition. (Marković et al., 2011). It 

is therefore logical that the general pattern of Danube loess stratigraphy should broadly correspond to 

these large-scale climatic and environmental shifts, as do other European stratigraphical systems 

such as the ones described below.  

 Two classical stratigraphical subdivisions, developed during the long tradition of 

investigations into European Pleistocene stratigraphy, are still mostly in use: the Fennoscandian or 

North European, and the Alpine classification schemes. The North European Pleistocene 

stratigraphical scheme has several regional subdivisions in Britain, the North Sea basin, Poland and 

Russia (van Gijjsel, 2006; Figure 18). Kukla (2005) questioned this approach by asking whether 

these classical European stratigraphical systems that are pieced together from discontinuous sets of 

glacial moraines, river terraces and marine transgressions are comparable with the more continuous 

marine, ice-core or loess stratigraphical records. Under this interpretation, previous discrepancies 

between European stratigraphic subdivisions have occurred because of the different expressions of 

the basic Pleistocene climatostratigraphical units (the glacials and the interglacials) and their 

interpretation in local, discontinuous geological records. 

 Across northern Eurasia, the first major glacial event recorded in the lowlands is represented 

by the Hattem Beds of the Netherlands, which are related to the Menapian Stage, or ~MIS 36-34 

(Laban and van der Meer, 2004). In upland areas, Scheidt et al. (2015) demonstrate that the onset of 

the Alpine glaciation started just after the Gauss-Matuyama boundary, as evidenced by changes in 

the characteristics of deposits of the River Rhine. 

 Collective evidence from all the northern continents indicates that MIS 22 is the first major 

cold-climate period when large boreal regions of North America, Eurasia and most of the European 
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Alpine area were significantly glaciated (Head and Gibbard, 2005). This glacial advance event 

coincided with the deposition of the first relatively thick loess L9 in the DB, hinting at the potential 

of loess accumulation to derive information on the intensity of European glaciations where no direct 

stratigraphic or geomorphic record is preserved.  

 There is relatively weak direct evidence of glaciations during MIS 20 and 18 in marine and 

terrestrial records (Lisiecki and Raymo, 2005; Tzedakis et al., 2006). However, the glaciation during 

MIS 16 corresponds to the Donian Stage glaciation which is characterised by first significant ice 

advance in large parts of Europe. This is one of the most extensive cold phases yet experienced in the 

Northern Hemisphere during the mid-Pleistocene transition. These global ice volume variations 

(Head and Gibbard, 2005) also correspond well with the Danube loess record. Thin loess units L8 

and L7 contrast with the thick typical loess layer L6, corresponding to MIS 20, 18 and 16, 

respectively (Figure 13). 

 The extended MIS 15 to 13 interglacial intervals in the marine record,(Lisiecki and Raymo, 

2005), associated with the Danubian pedocomplex S5, were followed, during MIS 12, by another 

extensive glaciation in Europe, known as the Elsterian (Anglian, San 2 or Oka) (Head and Gibbard, 

2005; van Gijjsel, 2006; Gibbard and Cohen, 2008). During MIS 12, evidence for the oldest glaciers 

in the Mediterranean mountains also appears (Hughes et al., 2006, 2010, 2013; Kuhleman et al., 

2008). This significant continental ice advance is related to the anomalously thick loess unit L5 in 

the Danubian loess, again reinforcing the link between loess accumulation in the basin and glacial 

intensity. This is also similar to the CLP record, where a strongly developed palaeosol S5 and 

relative thick loess horizon L5 is represented in the time equivalent record (Figure 5). 

 The glaciations of MIS 10, 8 and 6 are classified as parts of the large, polycyclic Saalian 

(Rissian) glaciation in Europe. The MIS 10 and 8 glacial phases were characterised by the relatively 

weak growth of continental ice, as shown by evidence for reduced ice extent in marine and ice-core 

records (Kukla, 2005). By contrast, the MIS 6 glaciation (the coldest interval of Saalian, Wolstonian, 
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Odrainan, Dniepr or Rissian III phases) is very strongly expressed in the marine record. During 

MIS6 the advances of Eurasian ice margins were significantly more southerly than during the last 

glacial period (Weichselian and equivalents) (Head and Gibbard, 2005). Again, global pulses of 

glacial ice advance took place coevally with increased dust deposition, represented by the relatively 

thin Danubian loesses L4 and L3 corresponding to MIS 10 and 8, as well as the relative thick 

penultimate glacial loess L2 as an equivalent of MIS 6 (Figure 12 and 13). 

 Finally, the last glaciation (Weichselian) begins with an early glacial, cool and dry MIS 5d 

event indicating initial ice advance and sea level drop (Sirocko et al., 2005). Global ice volume then 

continued to gradually increase, culminating in two periods with maximal ice extension during MIS 

4 and finally with the last glacial maximum during MIS 2 (Lambeck and Chappell, 2001). The 

greatest thickness of the Danubian loess deposits formed during this period, especially during the 

cold MIS 4 and 2 intervals associated with the lower and upper last glacial subunits L1LL2 and 

L1LL1. Finally, after the termination of the last glacial, dust covered almost the whole basin, which 

was pedogenically altered during the Holocene (Flandrian or Postglacial) to form the modern soil 

(S0). Strong erosion by the Danube River and its tributaries also began, which has greatly reduced 

the distribution of loess sediments and uncovered the profiles that we study today. 

 

6. Possibilities for further improvements of the Danubian loess stratigraphic 

model 

 

In spite of the significant improvements related to understanding the stratigraphy of the Danube loess 

belt presented above, there are several important limitations that currently exist in our stratigraphic 

interpretations. The most important issue is the limited number of known sections containing long-

term loess-palaeosol successions. The key sections such as those at Red Hill (Červeny Kopec), 

Krems (Schießstätte), Stranzendorf, Mende, Basaharc, Paks, Dunaföldvár, Süttő, Stari Slankamen, 
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Batajnica and Stalać have been known for some time. However, some of these crucial sections have 

since been destroyed. After a long period of exploitation and excavation of construction material in 

the Red Hill brickyard, the majority of the loess-palaeosol units are now missing. Apart from this 

destruction caused by human activity, loess sequences are also highly vulnerable to erosion. The 

realisation of this has recently resulted in the preservation of some sequences as unique geoheritage 

sites (Vasiljević et al., 2011a, 2011b, 2014). However, the question of why there are so few long-

term loess depositional site preserved in Europe is an open question. It may also offer an alternative 

explanation for the increasing sedimentation rates in loess units seen in the Danubian deposits. Other 

serious limitations are the spatial differences in structure and resolution of contemporaneous 

stratigraphical units across the Danube loess belt, problems related to identification of magnetic 

reversals and the difficulties associated with dating sequences beyond the range of luminescence 

dating techniques. Additional problems arise from the variability in accumulation rates of the 

individual strata due to site-specific influences and the welding of palaeosols into complexes which 

cannot be distinguished as representing either multiple interglacial or interstadial phases. High-

resolution conversion of the litho- and pedostratigraphy to a chronostratigraphy is limited by the 

methodological restrictions on the precision of dating techniques. 

 Fortunately, some of the problems may be solved in forthcoming years through 

methodological advances and the discovery of new loess profiles. Recently, several important 

exposures such as those at Ruma and Nosak in Serbia (Marković et al., 2006, 2014b),  Ljubenovo 

and Viatovo in Bulgaria (Jordanova et al., 2007, 2008) and Mircea Voda in Romania (Buggle et al., 

2009; Timar et al., 2010) have been promoted as new important sites while advances in 

luminescence techniques, for example, have greatly improved the accuracy of the Danube loess 

stratigraphy beyond the last glacial cycle (e.g. Thiel et al., 2011). 

 

6.1. Towards a detailed tephrochronostratigraphy for Danubian loess 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

58 

 

 

Tephrochronology provides an important stratigraphic tool for linking, dating, and synchronising 

geological, palaeoenvironmental and archaeological sequences or events. Volcanic ashes deposited 

within loess have the potential to act as reliable marker horizons across loess sequences, particularly 

when chemically tied to specific eruptions, and precisely dated (Lowe, 2011). Pioneering 

tephrostratigraphic investigations have been applied to DLPS (Pouclet et al., 1999; Horvath, 2001), 

however, as the region is favourably located in the dispersal area of several major volcanic fields, 

including the nearby Carpathian, western and central European eruptive zones, and the more distal, 

but exceptionally productive, central and eastern Mediterranean volcanic provinces, the full potential 

of this technique has yet to be exploited (Veres et al., 2013b; Fitzsimmons et al., 2013).  

The Middle Pleistocene Bag tephra is distributed from southern Slovakia, over the Great 

Hungarian plain (Pouclet et al., 1999; Horváth, 2001), and potentially extends to the Vojvodina 

region in northern Serbia where a thin dark layer of anomalously high MS is located in L4 at 

approximately the correct stratigraphic level (Marković et al., 2012a, 2012b). Recently, a remnant of 

a tephra unit (represented by ghost structures of volcanic glass shards and weathered mafic minerals) 

has been identified in the penultimate glacial loess L2 at several Serbian (Marković et al., 2009b, 

2012a) and Croatian (Wacha and Frechen, 2011) sections. Moreover, initial rock magnetic 

investigations indicate the potential occurrence of crypto tephras, such as in the upper part of the 

distinct pedocomplex S5 at Batajnica and Mošorin sections (Marković et al., 2012a). However, all 

these layers lack reliable glass chemical data that makes comparison between records only tentative. 

In this context, one of the most useful marker horizons is the Campanian Ignimbrite (CI/Y5), which 

originated in the Campi Flegrei region of central Italy around 39 ka (e.g. De Vivo et al., 2001; 

Giaccio et al., 2008). The fine ash of this this eruption spread in a plume eastwards and 

northeastwards as far as North Africa, the eastern Mediterranean and the Russian Plain (Costa et al., 

2012). It is at the moment one of the most important chronologic/stratigraphic markers of western 



A
C

C
E
P
T
E
D

 M
A
N

U
S
C

R
IP

T

ACCEPTED MANUSCRIPT

59 

 

Eurasia and provides an independent basis for establishing age-depth relationships for the enclosing 

deposits. Recent geochemical finger printing research coupled with luminescence dating identified 

unexpectedly thick CI occurrences within both the loess unit L1 and in alluvial sequences in southern 

Romania (Veres et al., 2013b; Constantin et al., 2012; Fitzsimmons et al., 2013; Fitzsimmons and 

Hambach, 2014).  

The numerical Ar/Ar age of the CI tephra (De Vivo et al. 2001) means that it also provides a 

particularly useful independent age control for assessing the accuracy of loess luminescence dating 

(Timar-Gabor et al., 2011). Quartz OSL age estimates obtained at several sites match the known age 

of the eruption (Constantin et al., 2012, Fitzsimmons et al., 2013, Anechitei-Deacu et al., 2014), and 

confirm the reliability of luminescence dating using a variety of protocols. These results highlight the 

important role that tephra layers could play as marker horizons at sub-continental scale, provided that 

the potential tephra layers mentioned previously are more thoroughly investigated, both chemically 

and chronologically (Veres et al., 2013b). 

The known distribution of stratigraphically significant tephra horizons in the DB is 

summarised in Table 3 and Figure 19. It is certain that this database will be expanded in the near 

future and thereby provides an independent chronological framework. Figure 19shows our current 

knowledge of the spatial distribution of the major tephra layers preserved in the Danube loess. 

 

6.2. Dating of a loess sequences by relative geomagnetic palaeointensity 

 

Application of relative geomagnetic intensity to dating the Danubian loess-palaeosol sequences is a 

new approach (Hambach et al., 2008b; Zeeden et al. 2009, 2011; Fitzsimmons et al., 2013; Rolf et 

al., 2014). Although these studies only provide results for the Late Pleistocene loess-palaeosols 

sequences, dating by this chonostratigraphical approach also indicates the great potential for defining 

a valid chronology for older loess-palaeosol sequences. The well-known temporal pattern of the 
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Earth’s magnetic field intensity variations, on time scales from 104 to 107 years, provides an 

excellent independent tool for stratigraphical subdivision and correlation, although there are 

ambiguities if the studied sequences are fragmentary or contain sedimentary hiatuses that are poorly 

understood. The record of variations in the intensity of the Earth’s magnetic field also serves as a 

dating tool and has been successfully applied to various sedimentary archives (e.g., Tauxe, 

1993; Roberts et al., 2013; Rolf et al., 2014). Hambach et al. (2009) applied the relative 

palaeomagnetic intensity to the lower part of the Stari Slankamen section. The relative palaeointesity 

record from Stari Slankamen matches the palaeointensity of Earth’s magnetic field for the past 4 Ma 

relatively well (the data are expressed as the virtual axial dipole moment (VADM)). The relative 

palaeomagnetic intensity record matches the VADM model published by Valet and Meynder (1993) 

quite well, and is a much better match to the chonostratigraphical interpretation based on MS 

correlation, rather than the palaeomagentic polarity directional evidence where lock-in effects and 

signal stability strongly impact the record. 

 

7. Conclusions 

 

Some of the most important events in the history of loess research occurred in the DB loess region. 

Through his description of the DLPS, Kukla (1977; 1978) created the glacial-interglacial cycle 

palaeoclimatic paradigm in loess research, and provided an opportunity for direct Pleistocene land-

sea correlations. However, over the following decades, the majority of research interests have been 

shifted to the CLPS, generally accepted as the most important global terrestrial record of Quaternary 

climatic and environmental changes. What are the reasons that Chinese loess became a much more 

globally important palaeoclimatic record than DLPS? Although the fact that the Chinese loess is both 

older and usually thicker than the DLPS will undoubtedly have contributed to its dominance, it 

appears that the crucial limitation for wider use of the DLPS in global palaeoclimatic studies stems 
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from complicated separate national stratigraphic models employed in the basin. The classical loess 

stratigraphies used for DLPS subdivisions still use a total of 14 different letters of alphabet and are 

very confusing even for loess specialists. It is evident that future DB loess research needs simplified 

chronostratigraphic model following the well-accepted Chinese loess stratigraphy. 

We propose a DLPS climato-, chrono- and pedo-stratigraphical model based on the widely 

accepted chronology of the main Pleistocene global palaeoclimatic variations. The major 

stratigraphic formations are designated on the basis of significant environmental shifts affecting the 

area during the uppermost Matuyama Chron, about 850 ka, and after two intense glacial episodes; 

MIS 16 and 12 at about 650 ka and 450 ka, respectively. These are recorded in the changing 

properties of the stratigraphic units, such as: sedimentation rates, as well as environmental 

expressions of the palaeosol and loess units.  

This is the first basin-wide integrated stratigraphical approach to Danubian loess and 

highlights the importance of the sequences as the most complete long-term, and spatially extensive 

Pleistocene terrestrial sedimentary recordin Europe. These sequences and the proposed model 

provide a unique opportunity to fill in gaps within other European continental Pleistocene records 

and related stratigraphical subdivisions, as well as to link regions with diverse climates. In terms of 

the time span and continuity of these loess sections, the chronostratigraphy of DB loess sites, 

especially the composite key section MSS, have the potential to serve as master sequences for 

Pleistocene glacial – interglacial changes in Europe. 

Contrary to the ice records, deep-sea or lacustrine sediments that are characterised by more or 

less continuous sedimentation, loess-palaeosol sequences are more complex depositional systems 

with significantly different accumulation rates, more dynamic environmental thresholds and higher 

sensitivity to erosion. Thus, beyond the last two glacial-interglacial cycles when luminescence 

techniques are not available, valid correlations on regional or even continental scale are only possible 

on the level of first order units (i.e. MIS or glacial loess and interglacial pedocomplex units). 
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However, rapid improvements in numerical dating techniques, associated with tephrochronological 

approaches, may yet improve our understanding of the DLPS chronostratigraphic mosaic over 

forthcoming years. 

Finally the proposed Danube loess chronostratigraphical model can be regarded as an 

important step towards the development of a transcontinental Eurasian stratigraphic system. This 

opens up possibilities for detailed temporal and spatial environmental reconstructions across the 

largest continent on Earth and the initial relationships explored here hint at significant future 

developments for our understanding of loess depositional systems and terrestrial responses to global 

climate changes over a wide area. 
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Table and Figure Captions 

Table 1. Varying chronostratagraphic models proposed for the Stari Slankamen loess-palaesol 

sequence by different researchers and their comparison to the traditional Alpine subdivision 

(Bronger, 1976) and MIS stratigraphy (Singhvi et al., 1989; Butrym et al., 1991; Bronger, 2003; 

Marković et al., 2011). 

 

 

Table 2. The proposed Danube loess stratigraphic model, covering the last approximately one million 

years, and its relation to the Chinese loess record, marine isotope stratigraphy, glacial cycles and 

national loess stratigraphies in the Czech Republic (Kukla and Cilek, 1996), Austria (Scholger and 

Terhorst, 2013), Hungary (Sartori et al., 1999; Újvári et al., 2014, modified), Serbia (Marković et al., 

2011), Romania (Buggle et al., 2009) and Bulgaria (Jordanova et al., 2008). 
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FIGURE CAPTIONS 

 

Figure 1. A) Distribution of the loess sediment across Europe with reconstruction of the continental 

ice caps and sea level during the last glacial maximum (modified from Moine et al. (2002), Rousseau 

(2001) and Marković et al. (2007)) and the permafrost zone (Vandenberghe et al., 2004). Key: 1) 

Loess; 2) Ice caps; 3)Area of the modern Danube Basin;4) Dry continental shelf; 5) Boundary of 

permafrost zone south of the Alps.B) Topographic map showing the locations of the main Middle 

Pleistocene loess sites in the Danube Basin. 

 

Figure 2.Alternative correlation of the loess palaeosol stratigraphy in central China, Xifeng section 

(Liu et al., 1985), with Red Hill (Cerveny Kopec), Krems and Stranzendorf in central Europe (Fink 

and Kukla, 1977; Rebeder, 1981), following Kukla and Cilek (1996). Depth scale is plotted from the 

profile topographic surface. Earlier polarity interpretations are modified(Kukla and Cilek, 1996). 

 

Figure 3. Comparison between the Matuyama/Brunhes Boundary position indeep-sea sediments 

(Lisiecki and Raymo, 2005) and key loess sections in DB: Paks (Sartori et al., 1999) and Red Hill 

(Forster et al., 1996), Stari Slankamen (Marković et al., 2011) and Koriten (Jordanova and Petersen, 

1999). 

 

 

Figure 4. Correlation of the MS records from the longest measured loess profiles in the Danube 

Basin region, extending to MIS 21, along with the global Plio-Pleistocene stack of Lisiecki and 

Raymo (2005). Loess records are illustrated in terms of location, from the most upstream (Paks, 

Hungary) to the most downstream (Mircea Voda, Romania) in the basin and are presented as 

follows: composite profile, Czech Republic (Forster et al., 1996) Paks (Sartori et al., 1999), Ruma 
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(Marković et al., 2006), Stari Slankamen (Marković et al., 2003, 2011), Batajnica (Marković et al., 

2009b), Koriten (Jordanova and Petersen, 1999), Viatovo (Jordanova et al., 2008), Mostistea 

(Panaiotu et al., 2001), Mircea Voda (Buggle et al., 2009; Timar-Gabor et al., 2011) and Zimnicea 

(Radan, 2012). χ denotes mass specific low field initial susceptibility. The grey shading denotes the 

inter-profile correlation of the magnetic susceptibility pattern of the main pedocomplexes across the 

Danube loess belt.  

 

Figure 5. Direct correlations between the Mošorin and Stari Slankamen synthetic (MSS) loess-

palaeosol sequence and the Louchuan loess type section on the Central Chinese Loess Plateau (Hao 

et al., 2012). Dark grey zones labelled Sn represent well-developed palaeosols/pedocmplexes, white 

zones labelled Ln represent typical loess units and light grey zones (unlabelled) represent weakly 

developed palaeosol/pedocomplexes. The uncertain stratigraphic interval in the transition between 

L2 and S2 units is indicated with “?”. 

 

Figure 6. Summary of the national loess stratigraphy nomenclatures from Austria, Czech Republic, 

Slovakia, Hungary (Oches and McCoy, 1995a, 1995b, 1995c) and Serbia (Marković et al., 2004a, 

2004b, 2005, 2007, 2011). Proposed correlation with the deep-sea oxygen isotope stratigraphy and 

glacial cycle designations are also shown (after Kukla, 1977). Termination ages are from SPECMAP 

(Bassinot et al., 1994). 

 

Figure 7. Total acid hydrolosate D-alloisoleucine/L-isoleucine aminostratigraphy of the Danubian 

loess. The values are compared between Danubian localities for the older part of the B glacial cycle 

(MIS 2-5), as well as glacial cycles C (MIS 7-6) and D (MIS 9-8) for the terrestrial land snail 

Pupilla. SRB = Serbia, H = Hungary, A = Austria, SK = Slovakia, UA = Ukraine, D = Germany and 
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CZ = Czech Republic (Oches and McCoy, 1995a, b, c, 2001; Oches et al., 2000; Marković et al., 

2008, 2011). Countries are presented in approximate order of decreasing mean annual temperature. 

 

Figure 8.Results of the luminescence dating and AAR relative geochronology at Stari Slankamen. 

Legend: I. Luminescence dating by Murray et al. (2014); II. Luminescence dating by Schmidt et al. 

(2010); III. Pupilla D/L Glutaminic acid ratios; IV. Linearly plottedage model based on the proposed 

chronology of the main Terminations (Aitken and Stokes, 1997); EL – erosional layer. 

 

Figure 9. Results of fine (4-11µm) quartz (Timar et al. 2010) and coarse (63-90 µm) quartz SAR 

OSL dating (Timar-Gabor et al. 2011), as well as post IR-IR225 using polymineral fine grains 

(Vasiliniuc et al. 2012) ages on the MirceaVoda section. Fine and coarse quartz dates are represented 

by red squares and blue circles respectively, while upside-down triangles represent post IR-IR225 

dating.Ages are compared toanage depth model based on magnetic susceptibility measurements. The 

inset gives an expanded view of the luminescence ages in L1. 

 

Figure 10. Log of the composite profile of Paks in Hungary and pIR-IR290 ages. The grey shaded 

areas show MIS 3, 5, 7, and 9 respectively. The three lowermost age estimates have to be interpreted 

as minimum ages because the pIR-IR290 signal is close to saturation. Note the break in the age axis 

(Thiel et al., 2014).  

 

Figure 11. Location of the Mošorin and Stari Slankamen loess sites (i.e. 1 = Veliki Surduk, 2 = 

Feudvar, 3 = Dukatar, 4 = Rogulićev Surduk, 5 = Stara Ciglana). Embedded legend shown in Fig. 

1and represents A) Investigated sections; B) Contours (m); C) Settlement; D) Rivers. 
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Figure 12. Comparison between MS records of the Batajnica (Marković et al., 2009b) and Mošorin 

sections in Serbia with map showing distance between these sections (Marković et al., 2012b). 

 

Figure 13. Comparison between MS record and palaeopedology of Mošorin and Stari Slankamen 

synthetic (MSS) loess-palaeosol sequence related to equivalent stratigraphic units. Legend: I. Loess; 

II. Embryonic pedogenic layer; III. A horizon; IV. Ah horizon; V. B horizon; VI. Bwt rubified 

horizon; VII. sand beds; VIII. possible tephra layers; IX. Hydromorphic features; X. carbonate 

concretions; XI. krotovinas (Marković et al., 2012b, modified). 

 

Figure 14. Comparison between pedostratigraphy and MS records of the Late Pleistocene Mošorin 

Big gully (Marković et al., 2012b), Mošorin Rogulić gully and Titel old brickyard (Bokhorst et al., 

2011, modified) sections plotted on the same depth scale. The positions of luminescence samples are 

indicated with arrows with related IRSL dates (Bokhorst et al., 2011). The location of these three 

sites is shown in Figure 11. 

 

Figure 15. Comparison of climate proxy records for the period 132 – 0 ka: (a) North GRIP 18O-

record as a temperature proxy for the last glacial cycle in Greenland; (b) the North GRIP 

microparticles record, measured particle diameters; (c) ELSA dust detection stack as a normalized 

probability record; (d) frequency of single dust storms in a 100-years-segmentation from the ELSA 

stack; (e) the coverage of the four core sequences of the ELSA stack, SM3 is a sediment core of a 

recent maar lake, DE3, OW1 and HL2 are cores from dry maars; (f) radiometric dating:AMS 14C 

and OSL and tephrochronology as age control for the ELSA stack (Seelos et al., 2009); (g) combined 

grain-size records from Madaras (Bokhorst et al., 2011), Titel (Bokhorst et al., 2011) and Dolni 

Vestonice (Antoine et al., 2014);(h) the coverage of the three loess sequences used for grain-size 

records in (g).  
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Figure 16. Danube loess stratigraphic Super-units presented as variations of the MIS record plotted 

on a time-scale compared with the LR04 stack (Lisiecki and Raymo, 2005) and Chinese MIS record 

(Sun et al., 2006). 

 

 

Figure 17. Comparison of normalised MS records of the Mošorin and Stari Slankamen synthetic 

(MSS) loess-palaeosol sequence (lower, thicker line) and the Louchuan loess type section (upper, 

normal line) on the Central Chinese Loess Plateau (Hao et al., 2012) during the Late Pleistocene (A), 

and over the interval between S6 and S8 (B). 

 

Figure 18. Overview of the European terrestrial Pleistocene stratigraphical schemes and terminology 

(van Gijssel, 2006) compared with our proposed Danube loess stratigraphic model. 

 

Figure 19. (A) Geographical distribution of the sites with identified tephra layers. Legend: I) 

Campagnean Ignimbrite (CI/Y5) tephra; II) L2 tephra; III) Bag tephra according to Horvath (2001), 

modified. (B) Map of Europe showing the spread of CI/Y5 tephra according to Costa et al. (2012), as 

well as our hypothesised potential spread of the L2 and BAG tephras. Note that these are based on 

location of sites where these tephra layers have been observed (Fig 19A). Dashed lines represent the 

current known extent of each tephra; coarse-dashed line = known distribution of the CI/Y5 tephra, 

medium dashed line = known distribution of the L2 tephra, fine dashed line = known distribution of 

the BAG tephra. 
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Figure 2 
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Figure 3 
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Figure 19 
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Table 1. Varying chronostratagraphic models proposed for the Stari Slankamen loess-palaesol 

sequence by different researchers and their comparison to the traditional Alpine subdivision 

(Bronger, 1976) and MIS stratigraphy (Singhvi et al., 1989; Butrym et al., 1991; Bronger, 2003; 

Marković et al., 2011). 

 

Bronger 
(1976) 

Singhvi 
et al.  
(1989) 

Butrym et al. 
(1991) 

Bronger (2003) Marković et al. (2011) 

paleosol 
Alpine 
sudivision 

MIS 
paleosol MIS 

paleosol MIS paleosol MIS 

F2 Würm 
paleosols 
W 

5a D 5a F2 5a V-S1 5 
F3 5e Not observed F3 5e Not observed 
F4  G 5c F4 7 V-S3 9 

F5 R-W  I 5e F5 
9 or 
11 

V-S4 11 

F6   L 7 F6 
13-
15 

V-S5 13-15 

F7   n1 9  V-S6 17 
F8   n2 9  V-L7S1 18.3 
F9     V-S7 19 
F10     V-S8 21 
     V-S9 25 

F11   
 

 
basal 
complex 

29-? 
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Table 2. The proposed Danube loess stratigraphic model, covering the last approximately one million 

years, and its relation to the Chinese loess record, marine isotope stratigraphy, glacial cycles and 

national loess stratigraphies in the Czech Republic (Kukla and Cilek, 1996), Austria (Scholger and 

Terhorst, 2013), Hungary (Sartori et al., 1999; Ujvari et al., 2014, modified), Serbia (Marković et al., 

2011), Romania (Buggle et al., 2009) and Bulgaria (Jordanova et al., 2008). 

 
MIS CLP Glacial

cyclle 
Czechia Austria Hungary Serbia Romania Bulgaria DB 

1 S0 A Recent soil V-S0 S0 S0 S0 

2 L1LL2  

 

B 

 AS16  V-L1L2 L1L2 L1LL2 L1LL2 

3 L1SS1 PKI AS15+14 MF1 V-L1S1 L1S1 L1SS1 L1SS1 

4 L1LL2  AS13  V-L1L2 L1L2 L1LL2 L1LL2 

5 S1 PKII+III AS12-10 MF2 V-S1 S1 S1 S1 

6 L2 C  AS9  V-L2 L2 L2 L2 

7 S2 PKIV AS8 BD1+2 V-S2 S2 S2 S2 

8 L3 D  AS8a?  V-L3 L3 L3 L3 

9 S3 PKV AS7a+7b? 
+ 7c? 

BA V-S3 S3 S3 S3 

10 L4 E  AS6?  V-L4 L4 L4 L4 

11 S4 PKVI AS5? MB1+2 V-S4 S4 S4 S4 

12 L5  

F-G 

 AS4?  V-L5 L5 L5 L5 

13-15 S5 PKVII + 
VIII 

AS3-1? Phe+Mp
t+Hs1? 

V-S5 S5 S5 S5 

16 L6 H    V-L6 L6 L6 L6 

17 S6 ?  Hs2? V-S6  

 

S6S1? 

 

 

 

 

 

S6 

18.1 L7LL1  

 

I 

   V-L7L1 L7LL1 

18.2 L7SS1    V-L7S1 L7SS1 

18.3 L7LL2    V-L7L2 L7LL2 
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19 S7 PKIX  PD1? V-S7  

S6S2? 

S6 S7 

20 L8 J    V-L8 L8 

21 S8 PKX  PD2? V-S8 S8 

22-24 L9 K-?    V-L9 L7 L7 L9 

25-? S9-? PKXI   Basal 
complex 

? Red clay Basal 
complex 

 
 

 


