
Received January 1, 2019, accepted February 17, 2019, date of publication March 5, 2019, date of current version April 1, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2903150

DAPV: Diagnosing Anomalies in MANETs Routing
With Provenance and Verification

TENG LI 1, JIANFENG MA1, QINGQI PEI 2, HOUBING SONG 3, (Senior Member, IEEE),

YULONG SHEN 4, AND CONG SUN 1
1School of Cyber Engineering, Xidian University, Xi’an 710071, China
2Shaanxi Key Laboratory of Blockchain and Security Computuing, Xidian University, Xi’an 710071, China
3Department of Electrical and Computer Engineering, West Virginia University, Montgomery, WV 25801, USA
4School of Computer Science, Xidian University, Xi’an 710071, China

Corresponding author: Teng Li (litengxidian@gmail.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61602357 and Grant 61872283, in part

by the Shaanxi Science and Technology Coordination and Innovation Project under Grant 016TZC-G-6-3, in part by the China

Postdoctoral Science Foundation Funded Project under Grant 2018M640962, in part by the Key Program of NSFC-Tongyong Union

Foundation under Grant U1636209, in part by the Natural Science Basis Research Plan in Shaanxi Province of China under Grant

2016JM6034, and in part by the China 111 Project under Grant B16037.

ABSTRACT Routing security plays an important role in the mobile ad hoc networks (MANETs). Despite

many attempts to improve its security, the routing mechanism of MANETs remains vulnerable to attacks.

Unlike most existing solutions that prevent the specific problems, our approach tends to detect the misbehav-

ior and identify the anomalous nodes in MANETs automatically. The existing approaches offer support for

detecting attacks or debugging in different routing phases, but many of them cannot answer the absence of

an event. Besides, without considering the privacy of the nodes, these methods depend on the central control

program or a third party to supervise the whole network. In this paper, we present a system called DAPV that

can find single or collaborative malicious nodes and the paralyzed nodes which behave abnormally. DAPV

can detect both direct and indirect attacks launched during the routing phase. To detect malicious or abnormal

nodes, DAPV relies on two main techniques. First, the provenance tracking enables the hosts to deduce the

expected log information of the peers with the known log entries. Second, the privacy-preserving verification

uses Merkle Hash Tree to verify the logs without revealing any privacy of the nodes. We demonstrate

the effectiveness of our approach by applying DAPV to three scenarios: 1) detecting injected malicious

intermediated routers which commit active and passive attacks in MANETs; 2) resisting the collaborative

black-hole attack of the AODV protocol, and; 3) detecting paralyzed routers in university campus networks.

Our experimental results show that our approach can detect the malicious and paralyzed nodes, and the

overhead of DAPV is moderate.

INDEX TERMS Wireless network security, anomalies detection, distributed verification.

I. INTRODUCTION

Mobile Ad hoc Networks (MANETs) [1] are continuously

self-configuring, infrastructure-less networks made of a col-

lection of mobile devices without any centralized manage-

ment. In such networks, each node can play a role as a host

or a router cooperating with other nodes [2]. As the primary

goal of MANETs routing, secure routing means to establish a

correct and efficient path by the distributed nodes themselves

and can transmit the data fast and correctly. Besides the

The associate editor coordinating the review of this manuscript and
approving it for publication was Marco Anisetti.

passive attack in which the intruders attempt to eavesdrop

on the communication, many kinds of active attacks tend to

damage the network by changing the data which is more

common and harmful in MANETs. A typical case is that

the single-node adversary or the coordinate adversaries will

compromise the network by direct attack or indirect attack

after deceiving the routing. In the direct attack, the adver-

saries can tamper or drop the packets to make the network

paralyzed, such as the black hole attack [3] and worm hole

attack [4]. As for the indirect attack, the adversaries delib-

erately modify their own logs without influencing the data

forwarding to confuse the network debugging system [5],

35302
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0001-5147-8336
https://orcid.org/0000-0002-8448-705X
https://orcid.org/0000-0001-9116-2694
https://orcid.org/0000-0001-7614-1422
https://orcid.org/0000-0003-2631-9223


T. Li et al.: DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification

such as PeerReview [6] and NetReview [7] which depend on

the nodes’ log to detect faults in the network. The capability

to find such malicious adversaries or the nodes attacked

by these offending nodes is also essential to a diverse set

of network management tasks such as performing network

accountability [8], identifying malicious and misbehaving

nodes [9], and enforcing trust management policies in dis-

tributed systems [10].

In order to find the abnormal nodes launching direct or

indirect attack and explain why such misbehaviors are trig-

gered in the network without disclosing the node’s privacy,

we present DAPV, an automatic fault detection system for

the routing of MANETs using provenance reasoning to trace

back the faults that have occurred in MANETs until we find

the causes of the faults. In this approach, we first spot the

influenced nodes without human inspectors and then find out

which node originally triggers such faults by using prove-

nance reasoning. The provenance of an observed event in

our method is a chain of events forming a back trace to

link this event to its original causes. This chain is called the

provenance of the event [11], [12]. If a request log entry is

detected to be false on the destination node, DAPV can then

trace the request log back to the previous-hop node, where

another false log entry may also be found. We can continue

to track the fault to another node and then we may finally

deduce that the false log entry was caused by specific mali-

cious behavior of the tracked node, e.g. package tampering

or truncating. The provenance of DAPV can help us explain

why such an event is abnormal or why such a log did not

occur.

The abnormal events in MANETs can be either specified

as the occurrence of something bad, e.g. wrong log entry

on a destination node, or as the absence of something good,

e.g. missing log entry on some node. Both kinds of abnor-

mal events can lead to the compromised network. Existing

solutions, SNooPY [13] or NetSight [14], provide forensic

capabilities by permitting inspectors to track down the mis-

behaving node for identifying the occurrence of malicious

behaviors. But these approaches fail to report the absence of

good events since we do not have a valid starting point for the

back-tracing, e.g. we do not know where the missing packets

should have come from. On the contrary, our approach can

perform good reasoning for the provenance on both kinds of

abnormal events.

In our approach, we will verify the data packets and log

entries to infer the invalid states of nodes and get the facts

on provenance. This kind of attack detection usually requires

the participating nodes to disclose details of the routing

policy or their private log data [15], [16]. But for privacy

reasons, the hosts of MANETs are reluctant to disclose all

of these data. Hence, the requirement on privacy preserva-

tion of the nodes inherently conflicts with the provenance

reasoning, thus adding a new dimension to the tracking

and detection mechanism of routing fault detection. Recent

work, PeerReview [6] and Y! [17], detected faults without

considering the issue of privacy. To deal with this contra-

diction, we use the Merkle Hash Tree (MHT) and digital

signature algorithm to protect the privacy of the nodes. MHT

can provide zero-knowledge fault detection without directly

checking through all of the original data. Digital signature

algorithm can be used by the message recipient to ascertain

the originator’s identity and ensure whether the message has

been altered during the transmission phase. To illustrate the

efficiency and correctness of our approach, we use DAPV

to debug several realistic problems in three applications:

direct and indirect attacks in MANETs; single and multiple

black hole attacks of AODV; and different kinds of attacks in

routers. In summary, this paper makes the following contri-

butions:

1. A decentralized approach for automatically detecting

both direct and indirect attacks launched in routing discovery

and data forwarding phase in MANETs without introducing

any third party.

2. The approach can not only detect the malicious nodes

who launched the attacks in the path but also spot the para-

lyzed routers which were attacked by the adversaries that may

not be in the route path.

3. We provide both positive and negative provenance as

well as a concrete algorithm for tracking single and collab-

orative malicious adversaries in MANETs.

4. Our approach can preserve the privacy of the nodes

during the provenance by using reasoning and Merkle Hash

Tree instead of looking through the plain log entries.

II. OVERVIEW

A. THREAT SCENARIO

MANETs are self-organizing, infrastructure-less and have

changeable topology. These features add the difficulty to

embedding a security mechanism into routing protocols of

MANETs. According to the these characteristics, we con-

sider a scenario in which the nodes can be categorized into

three roles: the sender, the receiver and the intermediated

routers. Only the message sender is initially trusted and there

might be more than one malicious node, either indepen-

dently or collaboratively performing the attack alongmultiple

routing paths. In the routing discovery phase, a malicious

node has the ability of camouflaging as a destination or

declaring to have a shortest/fastest route to the destination.

Several malicious nodes connected with each other can also

deceive the source node by declaring that they have a short-

est/fastest route to the destination, and the destination is

imitated by one of the malicious nodes. The preparations

done by malicious nodes in the routing discovery phase

can help in the following data forwarding phase to rewrite,

discard the packets (direct attack) or temper their own log

(indirect attack) against the expected security requirement.

More specifically, we consider a multi-node black-hole attack

in MANETs, as well as the attacks with the misbehaviors

of rewriting, discarding packets (direct attack) or tempering

routing logs (indirect attack) during their data forwarding

phase. Besides, we also study the routers suffering the attacks

which make them paralyzed in the routing path, such as the

VOLUME 7, 2019 35303



T. Li et al.: DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification

FIGURE 1. The procedure of DAPV. (a) Initial misbehavior detection.
(b) Direct attack detection. (c) Indirect attack detection.

SSL attack [18], DOS attack [19], ARP spoofing attack [20],

etc.

B. APPROACH

The overview of the architecture of DAPV is given

in Figure 1. The detection of our approach is performed in

the data forwarding phase. We assume to trust only the source

node for our detection. This is different from the MOS (min-

imum observer sets) [21] which trusts both the source and

destination to deduce the information of the medial routers.

Our attacker model is more realistic to allow the malicious

destination because according to the routing path established

under a black-hole attack, we can neither ensure that the

destination is a benign node, nor validate the information

from the destination initially. We use the logs on the trusted

source node to deduce the information that should be held by

the destination node. Then, DAPV should verify whether the

expected logs on the destination are consistent with its real log

entries (see Figure 1(a)). If the expected log entry is absent in

the destination, or the real log entries are verified to be false,

DAPV uses positive or negative provenance to find the reason

and the malicious node. After the provenance reasoning,

we can distinguish whether the destination is malicious or

it is just influenced by the malicious intermediated nodes

(see Figure 1(b)). In the above two processes, we assume

that the integrity of the destination and intermediated router’s

log should be held. It means that if they committed some

malicious behavior, such as tempering or dropping some

packets, they must log what they have done. In contrast, if the

consistency between expected logs and real logs is verified,

DAPV will then use the information from both the source

and destination to verify whether the intermediate nodes

behave well or commit attack by tempering their own log

to confuse the network debugging system (see Figure 1(c)).

In this process, we assume that only the integrity of the

destination’s log should be held. Finally, DAPV constructs

the provenance graph to show the reasoning and verification

link to the malicious node behavior.

With the consideration of privacy preservation during the

provenance reasoning and verification, we built an MHT for

each node consistent with its log entries. Instead of checking

the plain log data of the nodes, DAPV chooses to verify the

log entry from the leaf node of theMHT all the way to the root

node. By comparing the calculated root hash value, DAPV

can realize privacy preserving verification. To achieve the

robustness of verification, DAPV leverages DSA to avoid

the malicious intermediate nodes tempering the verification

parameters.

III. DESCRIPTION OF DAPV

In this section, we present the details of our anomalies diag-

nosing mechanism with provenance and reasoning.

A. BASIC PROVENANCE RULES

Network Datalog (NDlog) is based on the Datalog [22].

In NDlog, the state of the node is described as a set of declar-

ative rules. Each rule has the form p :- q1, q2, q3, . . . ,qn . . . ,

which means as ‘‘q1 and q2 and q3 and qn implies p’’.

For instance, the rule A(@X,S):- B(@X,P), S = 2*P

says that the left tuple A(@X,S) should be derived on node

X if there exists a tuple B(@X,P), and S = 2*P. Commas

separating the predicates in the right side represent logical

conjunctions (AND). The symbol @ specifies the node on

which the tuple resides. Rules can also include tuples from

different nodes and deduce the new rules in a recursive fash-

ion. For instance, from the rule A(@X,S):- B(@X,P) and

the rule B(@X,P):- C(@Y,P), we can deduce a derived

rule A(@X,S):- C(@Y,P).

We propose the basic rules in NDlog for both routing

discovery and data forwarding as shown in Table 1. The

predicates used by these reasoning rules can be either real or

expected. The real predicates are validated on the host accord-

ing to its routing logs, and the expected predicates are derived

by the subsequent credible reasoning on real predicates used

later by the verification. For instance, the reasoning can derive

the expected predicate, e.g. A(@X,S), from the valid real

predicate, e.g. C(@Y,P), based on the rule A(@X,S) :-

C(@Y,P).

In Table 1, C and R represent the sender’s and receiver’s

storage place respectively. S represents the sender, D means

the receiver and SEQ is the corresponding sequence number.

Intermediate routers’ messages are stored in the place of M

(for different intermediated routers it can be M1, M2 . . .). MSG

is the message that the source node wants to send to the

destination host. The log is strongly relevant to the time,

therefore we use a timestamp T of a time slot to provide

historical queries. The duration of this time slot can vary to

ensure the real predicates used in the reasoning are included

in this slot.

35304 VOLUME 7, 2019



T. Li et al.: DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification

TABLE 1. The deduction rules for DAPV.

Rules 1-8 are for the routing discovery phase. As a

sender wants to find a route to the destination, it first

broadcasts a routing request to its neighbors, and a real

predicate sendRequest(@C,S,D,SEQ,T) is logged.

The predicate means S wants to find a routing path

to D with a destination sequence number SEQ and this

request is logged at place C. When a neighbor M gains

the request, it first looks for the routing table, if it does

not have the route to the destination, the neighbor con-

tinues to broadcast the routing request to other nodes

(a predicate reqForward(@M,S,D,SEQ,STAUS,T)

is confirmed to be real from Rule 2 and the real

getRequest(@M,S,D,SEQ,T)). When each time the

intermediate node can correctly forward the destination

query, the destination is expected to log a predicate

getRequest(@R,S,D,SEQ,T), (Rule 3). When the des-

tination gets the request and checks that the route is available

in the same time slot, it will send the reply to the source node

(Rule 4). If the intermediated routers also credibly forward

the reply, the source node will get the reply message (Rule

5). When the recipient gets the request and the source node

gets the reply, we can locate the destination by confirm-

ing the expected findDest(@C,S,D,SEQ,STAUS,T)

to be real (Rule 6). When the source node has the

route to the destination, the intermediated nodes will have

the link to the destination as well (Rule 7). Once the

sender finds the destination, the data link is established

(Rule 8).

Rule 9-13 are for the data forwarding phase. When

the source node proposes the message sending request

msgRequest(@C,S,D,SEQ,MSG,T), the benign desti-

nation should log an authorization record to the request (Rule

9). After the authorization (the predicateauthSend(@R,S,

D,SEQ,MSG,T) becomes real), the source node begins to

send themessage and the intermediate routers should keep the

promise to forward the message (Rule 10). If the intermediate

routers behave well, the recipient node will get the message

(Rule 11) and send the acknowledgement message to the

source node (Rule 12). If the sender has been authorized

to send the message but receives an error, it will resend the

message again (Rule 13).

Except for the primary rules presented in Table 1, there

are auxiliary NDlog rules to support the correct running of

our whole reasoning process. For example, some definition

of predicates may allow a necessary prerequisite assumption

that if the left-sided expected predicate τ can only be deduced

by the rule τ :- α, β, then the validation of τ implies the right-

sided predicates α and β must be real. That means we also

have α :- τ and β :- τ . This necessary prerequisite assumption

can hold on at least Rule 3, 5, 6, 8, 9, 12 and 13.

B. PROVENANCE VERIFICATION

During provenance reasoning, DAPV should verify the real

router log on its consistency with the expected log. When the

expected log predicate and the real log belong to different

parties, the verification requires the owner of the real log

to release its log data [6], which violates the requirement

on privacy preservation of the individual node. In order to

conduct a privacy-preserving verification, we introduce the

Merkle Hash Tree to achieve the goal of privacy protection

and use a digital signature algorithm to assist the verification

phase.

1) MERKLE HASH TREE

Merkle Hash Tree (MHT) is a kind of binary hash tree, each

of whose non-leaf node is labeled with the hash of the labels

or values of its children nodes, and every leaf node is labeled

with the hash value of real data [23]. MHT is commonly

used in efficient and secure verification of the contents of

large data structures. We designed a kind of MHT that is

used for constructing the node’s log for privacy-preserving

verification. As a kind of binary tree, the edges of MHT

from each parent to its two children are tagged with 0 and

1 respectively (see Figure 2). The purpose of verification

is to ensure the expected actions or messages derived in

the reasoning phase are satisfied by the real log of related

nodes. The process consists of three steps: predicate encod-

ing, MHT building, and verification. Before building the tree,

we should first encode the information. Take the following

predicate encoding as an example. reqForward(@M,S1,

D1, SEQ,STAUS‘NO’,T) can be encoded by specifying

S1 = “01”, D1 = “0110”, SEQ = “010, STAUS(NO) = “0

VOLUME 7, 2019 35305



T. Li et al.: DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification

FIGURE 2. Merkle hash tree.

involved in the tree. The predicate reachDest(@M ,S2,

D2, SEQ,STAUS=‘YES’,T) can be encoded by spec-

ifying S2 = “10”, D2 = “1000”, SEQ = “101”,

STAUS(YES)=“1”. The value of T is in the leaf node. How

many bits the variables, such as S1 and S2, cost for the pred-

icate encoding depend on the count of nodes and variables.

Our goal is to distinguish each predicate on different nodes.

After reqForward(@M,S1, D1, SEQ,STAUS=

‘NO’,T) is encoded as a string, e.g. “0101100100”,

we use it to build the tree. Each node will search its

real log to find out the predicating log, which is used

to construct the MHT. We label the node’s left child

as 1 and right child as 0. Then, we can calculate the

hash value of each node i: Hi=H(bit_data(i) ‖

parent_bit_data(i)) ‖ Hleft_child(i) ‖ Hright_child(i)).

bit_data(i) and parent_bit_data(i) are the value

of current node and parent node respectively, which can

be either 0 or 1. Hleft_child(i) and Hright_child(i) are

the hash value of the node(i)’s left child and right child

respectively. They will be empty if the current node is the

leaf node. We can calculate the hash value from the leaf node

to the root, and this value will be published. That means every

node may know the root hash value of any other nodes.

In the verification phase, the router S1 infers the log

entries reqForward(@M ,S1, D1, SEQ,STAUS =

‘NO’,T) of D1. Then, S1 will require in advance the

root hash value on all of the log information owned by

D1. Next, S1 will ask D1 whether there exits the inferred

log. To answer the question, D1 starts from the MHT root

and follows the edges (in Figure 2, the right green branch)

using the string “0101100100” to find the leaf node

(in Figure 2, node 1) in its own MHT and then provides

bit_data, parent_bit_data (Hleft_child and Hright_child
are empty now) of the leaf for S1. Then, S1 can use

these parameters to calculate the hash value of the leaf

node using the mentioned function. Next, D1 provides the

parameters of the leaf node’s parent node (in Figure 2,

node 2), bit_data, parent_bit_data, Hleft_child
and Hright_child. bit_data = 0, parent_bit_data

= 1, Hleft_child is the hash value of node 3 and

Hright_child is the hash value of node 1. Then, S1 can

use these parameters to calculate the hash of node 2. In this

way, S1 can calculate the MHT’s hash from the leaf node all

the way to the root node. If the calculated hash equals the

former published value, the verification result is true. Due to

the decentralization of our method, the hosts in DAPV work

in a coordinated way and will exchange logs or parameters.

To avoid tempering of these parameters, we use the Digital

Signature Algorithm (DSA) to prove to the recipient that the

messages or the parameters are signed by the originator.

By using MHT, the verification is done on the verifier and

the prover is responsible for providing the parameters during

the calculating. Instead of receiving the plain log entries,

the verifier requires the parameters, which are bits data and

hash values, and cannot know the other privacy of the prover.

Because the verifier ask for the root hash value of the prover

before calculating, the prover cannot forget that it has such

a message in its MHT in advance for it does not know the

verifiedmessage. In this way, we can achieve the goal of zero-

knowledge verification but preserve the privacy of the nodes.

C. PROVENANCE REASONING

To detect the mentioned direct and indirect attack, we should

first do the initial detection towards the destination. During

the initial detection, we use the log entry of the trusted sender

to deduce the expected log entry in the destination. After

verifying the real log with the expected log on the destination,

we can knowwhich kind of attack theMANETs are suffering.

If the log on the destination is not correct, DAPV goes to

the direct attack detection. We assume that the integrity of

the destination and intermediated router’s log should be held

during the initial attack detection and the direct attack detec-

tion. If the log on the destination is correct, DAPV goes to the

indirect attack detection to check if the intermediated routers

have changed their own log. During this phase, we assume

that only the integrity of the destination’s log should be held.

There are both false log or absent log events in the routing

phase. We categorize the events into positive and negative

events. For the positive event, such as the false log entry or

just the normal log entry, we can use the positive provenance

to derive a back trace recursively until we find the original

attacker. The goal of positive provenance is to detect inconsis-

tent or incorrect states in the faulty component [24]. Negative

provenance is used to explain why such an event is missing

or absent - e.g., why such a routing request did not arrive on

the destination or why the acknowledgement message did not

appear on the source node. Although these events cannot be

directly explained by positive provenance, we can also form

a similar back trace that explains where the missing log or

packets should have come according to the basic rules that

we mentioned in Table 1. The goal of negative provenance

is to find out the ways in which a missing event should have

occurred and show the reason why it did not come to pass.

35306 VOLUME 7, 2019



T. Li et al.: DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification

1) INITIAL MISBEHAVIOR DETECTION

We use the DAPV to supervise the initial symptom of an

attack. In MANETs routing, from the beginning, we focus on

the correctness of the destination. Thus, we should first know

what information should have arrived at the recipient and then

we can conduct the verification. With the above basic rules in

Sec.3.1, we can deduce the expected destination information.

We call this process as C→R (source node deduces the desti-

nation node).

sendRequest(@C,S,D,SEQ,T)

→ getRequest(@R,S,D,SEQ,T) (1)

getReply(@C,S,D,SEQ,T)

→ sendReply(@R,S,D,SEQ,T) (2)

findDest(@C,S,D,SEQ,T)

∧ getReply(@C,S,D,SEQ,T)

→ getRequest(@R,S,D,SEQ,T) (3)

dataLink(@C,S,D,SEQ,STAUS,T)

∧ msgRequest(@C,S,D,SEQ,MSG,T)

→ authSend(@R,S,D,SEQ,MSG,T) (4)

msgRecvAck(@C,S,D,SEQ,MSG,T)

→ msgRecv(@R,S,D,SEQ,MSG,T) (5)

reSendMsg(@C,S,D,SEQ,MSG,T)

∧ recvError(@C,S,D,ERROR,T)

→ authSend(@R,S,D,SEQ,MSG,T) (6)

We start reasoning from the source node, which is

the only trusted node from the beginning. We use the

sender’s log stored at the place of C to infer the

logs expected to be stored at R, e.g. the log entry

getReply(@C,S,D,SEQ,T) is on the source node.

According to Rule 2, the expected predicates of the receiver

can be deduced (sendReply(@R,S,D,SEQ,T)), which

should comply with the real log on the destination. Then the

source node uses MHT to verify the deduced predicate with

the real log entries on the destination. If the result is false,

we know that there may exist intermediate malicious nodes

that influence the message transmission. Hence, we go to the

direct attack detection. If the result is correct, we should also

check the log of the intermediated routers to find if there is

any indirect attack.

2) DIRECT ATTACK DETECTION

In both the routing discovery phase and data forwarding

phase, the adversary can launch a direct attack when the inter-

mediate routers may deliberately temper or discard the for-

warded messages to the receiver. The obvious phenomenon

of this kind of attacks is the false log on the destination. If the

initial misbehavior detection reports a result of a false log,

we know that there must be at least one malicious router

which has tempered or discarded the forwarded messages,

and these malicious nodes can either be the intermediate

nodes or the destination itself. A concrete case for such an

attack is the black hole attack.We should use the correct log in

the source node to deduce the expected log of the intermediate

routers. We call this process as C→M (source node deduces

intermediate routers).

sendRequest(@C,S,D,SEQ,T)

→ getRequest(@M,S,D,SEQ,T) (7)

findDest(@C,S,D,SEQ,T)

∧ getReply(@C,S,D,SEQ,T)

→ reqForward(@M,S,D,SEQ,STAUS,T) (8)

getReply(@C,S,D,SEQ,STAUS,T)

→ repForward(@M,S,D,SEQ,STAUS,T) (9)

findDest(@C,S,D,SEQ,STAUS,T)

→ reachDest(@M,S,D,SEQ,STAUS,T) (10)

dataLink(@C,S,D,SEQ,’Yes’,T)

∧ msgRequest(@C,S,D,SEQ,MSG,T)

∧ sendMsg(@C,S,D,SEQ,MSG,T)

→ msgForward(@M,S,D,SEQ,MSG,T) (11)

msgRecvAck(@C,S,D,SEQ,MSG,T)

→ msgRecvReplyForward

(@M,S,D,SEQ,MSG,T) (12)

In most cases, the route path from the sender to the receiver

has more than one hop, such as N1-M3-M6-M7-N9, and the

intermediate routers areM3,M6 andM7. DAPV checks them in

a reverse order until we find the first benign node whose near-

est successor’s log is false. For instance, if N9 is detected to be

false and we have deduced findDest(@C,S,D,SEQ,T)

and getReply(@C,S,D,SEQ,T) from the log entries

of sender S, then with the deducing rule (8), the sender

will know that reqForward(@M,S,D,SEQ,STAUS,T)

should exist on the intermediated routers. After that,

the sender uses MHT to verify the expected log with the real

logs on M7, M6 and M3 respectively. If M7 and M6 are incorrect

and M3 is correct, we confirm that M3 is the malicious node

which affected the following nodes on the routing path. The

order of the candidate node is critical to our detection. The

reason why we check the nodes in a reverse order is that the

nodes closest to the fault node are more likely to record false

logs than the far away nodes, and detecting the false log is

much faster than checking the correct log.

3) INDIRECT ATTACK DETECTION

It is difficult to detect the indirect attack in MANETs routing

because the attacker does not influence the transmitted pack-

ets: it eavesdrops on the messages or tempers its own data

log to prevent the network administrator from sniffing out

the faults. Encryption is the countermeasure to eavesdropping

which is not discussed in this paper. Instead, we focus on the

router’s log tempering in this paper.

If the result of initial misbehavior detection is correct,

we can also check whether there exist indirect attacks.We can

use both source node’s log and the verified destination’s log to

VOLUME 7, 2019 35307



T. Li et al.: DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification

infer the expected predicates of the intermediate log. We call

this process as C+R→M (source node and destination node

deduce intermediate routers).

getReply(@C,S,D,SEQ,T)

∧ sendReply(@R,S,D,SEQ,T) (13)

→ repForward(@M,S,D,SEQ,STAUS,T)

sendMsg(@C,S,D,SEQ,MSG,T) (14)

∧ authSend(@R,S,D,SEQ,MSG,T)

→ msgForward(@M,S,D,SEQ,MSG,T)

msgRecvAck(@C,S,D,SEQ,MSG,T)

∧ msgRecv(@R,S,D,SEQ,MSG,T)

→ msgRecvReplyForward (15)

(@M,S,D,SEQ,MSG,T)

authSend(@R,S,D,SEQ,MSG,T)

∧ msgRequest(@C,S,D,SEQ,MSG,T)

→ reachDest(@M,S,D,SEQ,T) (16)

As we get the expected log of the intermediate routers,

the routers provide the parameters of the MHT to the sender

combining it with DSA to guarantee the security of the

transmission. After the verification, we can know whether

MANETs routing suffers from the indirect attack.

D. PROVENANCE GRAPH

Provenance can be represented as a Directed Acyclic

Graph (DAG) in which the vertices are events and the edges

show direct causal relationships. We try to construct a prove-

nance graph consisting of multiple event chains which can

reach the attack nodes. First, we define some types of event

vertices:

• EXIST([t1, t2], N , τ ): Tuple τ existed on node N from

time t1 to t2;

• ABSENT([t1, t2], N , τ ): Tuple τ was absent on node N

in time interval [t1, t2];

• DERIVE([t1, t2], D, τ , τD, r): Tuple τ on node N was

derived by the tuple set τD via rule r ;

• CORRESPOND([t1, t2], N , τ ): Tuple τ was correspond

with the expected tuple on node N in [t1, t2];

• NCORRESPOND([t1, t2], N , τ ): Tuple τ was not corre-

spond with the expected tuple on node N in [t1, t2];

• TEMPER([t1, t2], N , τ ): Tuple τ was tempered by node

N in [t1, t2];

• DISCARD([t1, t2],N , τ ): Tuple τ was discarded by node

N in [t1, t2];

• DIRECT_ATTACK([t1, t2], N , τ ): Node N launched

direct attack and tuple τ was not correspond with the

expected one;

• INDIRECT_ATTACK([t1, t2], N , τ ): Node N launched

indirect attack and tuple τ was discarded or tempered by

intermediated routers;

The edges between the vertices include the relationship

of the tuples which have been denoted by the basic rules.

FIGURE 3. Positive provenance, as returned by DAPV.

Tuples can exist on a node because they are derived by

other tuples. With MHT, we can know whether the tuples are

absent, correspond or do not correspond with the expected

tuples. At last, we can find which malicious node tempered

or discarded the messages. There are many other logs, such

as the log entries of device booting, that we cannot use for

deducing according to our basic rules, and we should not

involve these irrelevant logs into our log set. We first prone

these irrelevant logs and choose the relevant logs according

to those in the basic rules in Table 1. When the new round

discovery phase starts, the sequence number of the request

message sent from the source node increases from 1. So we

put all of the logs according to the basic rules into the log set

during the time intervals before the send command starts a

new round routing discovery phase.

1) GRAPH CONSTRUCTION ALGORITHM

Provenance systems like ExSPAN [25] rely on a materialized

provenance graph: while the distributed system is executing,

they build some representation of the vertices and edges in

the graph, and they respond to queries by projecting out the

relevant subtree. This approach does not suit for the nega-

tive provenance because the provenance graph is typically

infinite [17].

For the above problem, DAPV provides the provenance

graph according to our attack detection phases. DAPV only

makes the nodes as well as their relevant log of the deduc-

ing phase involved in the provenance graph. The positive

provenance graph of DAPV constructs two parts: the initial

attack derive part (Figure 3, the event vertices with the hollow

arrow) and the attack provenance part (Figure 3, the event

35308 VOLUME 7, 2019



T. Li et al.: DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification

Algorithm 1 Provenance Graph Construction Algorithm

Input: intermediated_route_list (m1, m2, m3 . . .mn), con-

taining intermediated routers; τC , source’s log entries;

τD, destination’s log entries.

Output: Use Graph_Draw() function to draw the prove-

nance graph.

1: τS = EXIST([t1, t2], S, τ );

2: τ ′
D = DERIVE([t1, t2], D, τ , τS , r);

3: Graph_Draw(τS , r);

4: intermediated_route_list(m1, m2, m3 . . .mn);

5: result = MHT_Verify(D, τ ′
D);

6: if result == NCORRESPOND([t1, t2], D, Dτ ) then

7: Graph_Draw(result , initial_derive);

8: τM = DERIVE([t1, t2],M , τ , τS , r);

9: Graph_Draw(τM , r);

10: for i = n to 1 do

11: result = MHT_Verify(Mi, τM );

12: if result == ABSENT([t1, t2], Mi, τM ) then

13: Graph_Draw(result , provenance_derive);

14: CONTINUE;

15: else

16: BREAK;

17: end if

18: end for

19: if i== n then

20: result = DISCARD([t1, t2], D, τM );

21: Graph_Draw(result , provenance_derive);

22: result = DIRECT_ATTACK([t1, t2], D, τM );

23: Graph_Draw(result , provenance_derive);

24: RETURN;

25: else

26: result = DISCARD([t1, t2], Mi, τM );

27: Graph_Draw(result , provenance_derive);

28: result = DIRECT_ATTACK([t1, t2],Mi, τM );

29: Graph_Draw(result , provenance_derive);

30: RETURN;

31: end if

32: else

33: τM = DERIVE([t1, t2], M , τ , τS + τD, r);

34: Graph_Draw(τM , r);

35: for i = 1 to n do

36: result = MHT_Verify(Mi, τM );

37: if result == ABSENT([t1, t2], Mi, τM ) ‖

result == NCORRESPOND([t1, t2],Mi, τM ) then

38: Graph_Draw(result , provenance_derive);

39: result == TEMPER([t1, t2], Mi, τM );

40: Graph_Draw(result , provenance_derive);

41: result = INDIRECT_ATTACK([t1, t2], Mi, τM );

42: Graph_Draw(result , provenance_derive);

43: else

44: Graph_Draw(result , provenance_derive);

45: CONTINUE;

46: end if

47: end for

48: RETURN;

49: end if

FIGURE 4. Negative provenance, as returned by DAPV.

vertices with the solid arrow), while the negative provenance

graph of DAPV only has the attack provenance part (Figure 4,

the event vertices with the solid arrow). The initial attack

derive part can deduce the initial problems automatically.

We also do the initial attack derive phase in negative prove-

nance, but we do not construct it in the graph because the log

on the destination is correct.

In Algorithm 1, τS is the event vertice set in the source node

S using for the deducing (as shown in Figure 3, datalink,

msgRequest and sendMsg). τ ′
D is the deduced result set

on destination node D. We show this deducing process in

graph with Graph_Draw(τS , r). Then, we use the MHT to

verify the deduced results with the real existing log on des-

tination. If the verified result is false, we check the inter-

mediated routers. First, we should also deduce the expected

event vertice set τM of intermediated routers. Then, we use

MHT to verify the routers in a reverse sequence. If all the

intermediated routers behave well, we can proof that the

destination itself is the malicious node. Otherwise, we can

find the adversary launching direct attack. If all the verifica-

tions on the destination node are correct, we will go to the

negative provenance, we use the tuples on both source node

and destination node to deduce the intermediated routers’

event vertice set τM and go to the verification phase like in

the positive provenance. Algorithm 1 shows all the details of

our graph construction.

Figure 3 is the answer to positive provenance in our system,

we only return the misbehavior nodes derivation and verifi-

cation in the provenance graph. DAPV first uses the log on

the sender to deduce the log in the destination and verifies

its existence by using MHT. Once the it finds the suspicious

result, it starts to inquiries the intermediated routers and

constructs the whole provenance graph. Finally, it finds out

that the forwarding router R3 launched the active attack.

Figure 4 is the answer returned to negative provenance.

The indirect attack detection consumes more time than the

direct attack detection as DAPV will check all the correct

logs in the destination. First in the destination verification

phase, cause the indirect attack does not influence the log

on the recipient, we will do all the check in C→R without

VOLUME 7, 2019 35309



T. Li et al.: DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification

showing in the negative provenance graph. Then, we go to the

C+R→M, we should also verify every intermediate routers

because each of them may launch attacks by tempering or

discarding its own log. Finally, it finds out that the forwarding

router R7 launched the passive attack.

IV. EVALUATION

In this section, we evaluateDAPV in three scenarios: 1) resist-

ing the collaborative black-hole attack of the AODV protocol;

2) detecting injected malicious intermediated routers which

commit active and passive attacks in MANETs; 3) detecting

the paralyzed routers in a university networks. To provide a

baseline for comparisons, we aligned our experiments with

our former work CRVad [26] and the original AODV protocol

performance. CRVad is a baseline for DAPV because it can

also verify the correctness of the nodes after the route was

built. However, during the data forwarding phase DAPV adds

the DSA mechanism and uses the simplest way to handle

the multiple derivation as well as provide the positive and

negative provenance to find out the malicious nodes.

A. EXPERIMENT SETUP

We used NS-3 [27] to do our first two experiments and

also deployed DAPV in a university education network.

We injected several faults into the MANETs during the rout-

ing discovery and data forwarding phase as shown in Table 2.

Then, DAPV could detect the faults and find out themalicious

nodes. We also mounted both a single-node and collaborative

black hole attack over the AODV routing protocol. DAPV

could distinguish the suspicious log entries with the expected

logs and find out the adversaries during the routing discovery

phase. Besides, we launched different attacks towards the net-

work containing Cisco, Huawei and TP-Link routers. Then,

we used DAPV to detect the anomalies in the network.

We conducted the reasoning process using an open source

tool IRIS [28], and have proved that the conclusions we

inferred are correct. All of the reasoning results we used

have been written in NDlog and verified on IRIS. We built

up multi-hop topology among different nodes. We used the

Logging Module (NS_LOG_DEBUG) of NS-3 and syslogs

in the routers for log sending and receiving messages. Then,

each node can use this kind of information to build up its own

Merkle Hash Tree. We use C++ to build the tree and conduct

the root hash value verification phase with DSA in openssl.

DAPV can detect the misbehavior and identify the mali-

cious nodes automatically. First, DAPV extracts the logs

from the nodes with the logging module. Second, on the

source node, DAPV uses its logs with the corresponding

rules to deduce the expected logs on the target nodes (with

the open source tool IRIS). Third, combined with MHT,

the source node conducts the provenance verification to con-

firm whether the real log entries match the expected ones.

Finally, according to our algorithms, DAPV returns the prove-

nance graph for the whole deducing and verification phase

which shows the exact malicious nodes and their attacking

behaviors.

FIGURE 5. Turnaround time for the detection of the injected faults. (a) F1.
(b) F2. (c) F3. (d) F4. (e) F5. (f) F6. (g) F7. (h) F8.

B. USABILITY: INJECTED FAULTS DETECTION

1) PERFORMANCE OF DETECTING THE INJECTED FAULTS

In our experiment, we inject eight different faults into our

routing phases. F1-F4 are direct attacks that vary in the

routing phase,malicious behavior and attacker number. These

variants also exist in F5-F8 which are indirect attacks. We set

the hops between the source node to the destination node

from 4 hops to 12 hops, and we randomly generate the

adversary’s node. Among the direct attacks, we can see that

the detection of the double malicious nodes consumes more

time than the single malicious node detection. In Figure 5(b)

and 5(d), we can see that the double malicious node detection

needs more reasoning steps, MHT verification, DSA time

consumption and nodes drawing. During our deducing and

verification, we first check the logs of the routing discovery

phase and then the data forwarding phase. The detection of

35310 VOLUME 7, 2019



T. Li et al.: DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification

TABLE 2. Injected faults in our experiments.

the direct attack in the data forwarding phase costs more time

than in the routing discovery phase, which is also proven

in Figure 5(c) and Figure 5(a). Only when we confirm that

all of the logs on the destination are correct, can we go to

the indirect attack detection. This means that we will spend

more time on the initial attack detection during the indirect

faults detection than the direct faults detection which can be

seen in Figure 5. As we have mentioned in Section III-D,

we do not draw all of the correct initial detection during

the indirect faults detection, so it will reduce the graphing

time which can also be seen in Figure 5(e) - Figure 5(h).

As Algorithm 1 shows, we do the indirect attack detection

in each of the intermediated routers, so the time consumption

of the single attacker and the double attacker in the indirect

attack detection are approaching.

We use IRIS [28] to conduct our reasoning process. First,

we use the NDlog language to write the basic transmitting

rules. Then we extract the sending and receiving evidences

from the log files of the NS3. The evidences which should

exist on the nodes are reasoned before the verification and we

just confirm these evidences to judge which node committed

the attacks. The time and spatial cost of the deduction of

each rule are given in Figure 6. We have observed four main

factors, which are reasoning steps, rule numbers, variables

and IRs, affecting the time and memory cost of DAPV. From

the Figure 6, we can see the results of the time and memory

cost varies with the changing of these factors. As for the time

cost, we can see the strong relevance of the time cost with

reasoning steps, rule numbers and variables. The IRs has little

influences on the time costs. In memory cost, we can see the

reasoning steps is the influential factor and the memory costs

are closed with each other. The whole time and spatial cost is

acceptable according to our experimental results.

2) PROVENANCE VERIFICATION PERFORMANCE

COMPARISON

In the MANETs routing environment, the malicious nodes

may exist in different order in the route path. They may be

close to the destination or close to the source node. In the

direct attack detection, the closer a malicious node is to the

destination, the fewer logs will be verified. The verification

phase is strongly related to the log entry number. So the verifi-

cations over a suspicious node may have different results due

to different sizes of the log entries. As we have mentioned

FIGURE 6. (a) Time and (b) memory cost of DAPV reasoning.

in Section III-B1, the depth of the Merkle Hash Tree is

also relevant to the message coding length. The longer the

message coding, the more time will be paid during the tree

building and MHT verification. In the routers, there are many

logs that we should deal with. Some logs are needed for our

deducing and verification and others are irrelevant. We show

the performance that DAPV and CRVad deals with different

sizes of logs.

We use NS-3 to simulate the ad hoc network environment

and let the nodes send and receive packets. At the same time,

the log file for each node will be created as a .pcap file.

Each node reads the file and uses the information to build

up the Merkle Hash Tree and conducts the verification phase.

The time cost and memory cost of the detection, including

VOLUME 7, 2019 35311



T. Li et al.: DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification

FIGURE 7. Time cost of the verification. (a) Msg Code Len = 4. (b) Msg Code Len = 6. (c) Msg Code Len = 8. (d) Msg Code Len = 10.

FIGURE 8. Memory cost of the verification. (a) Msg Code Len = 4. (b) Msg Code Len = 6. (c) Msg Code Len = 8. (d) Msg Code Len = 10.

the cost for constructing the MHT, are respectively given

in Figure 7 and Figure 8. In these cases, the green line is our

prior work where the CRVad which concentrates on detecting

attacks when the routing path has been built. The red line

indicates the average results of our DAPV which can detect

the attacks in both the routing discovery phase and data

forwarding phase. The blue line is the best case of theDAPV’s

performance during the attack detection. First, we can see

from Figure 7 and 8 that time cost or memory increases

as the message code length and number of logs increase.

Second, DAPV has higher results in the time cost as well as

the memory cost. The DSA and provenance graph introduced

to DAPV increase the cost in time and memory. DAPV has

more rules arranging from route discovery phase to the data

forwarding phase deducing process than the CRVad, which

also costs more time during the MTH building, log deducing

and verification. The overall cost is limited and the results

show that our approach is practical for use on real network

logs.

C. USABILITY: BLACK HOLE ATTACK DETECTION

1) PERFORMANCE OF SINGLE BLACK HOLE DETECTION

In the single black hole detection, we measure the detection

accuracy rate of CRVad, DAPV without log pruning and

DAPV with log pruning. We also set the routing length from

2 hops to 12 hops. Figure 9 shows our result. With CRVad,

the detection accuracy rate varies from 79% to 84.7% averag-

ing 82%. As for DAPV without the log pruning, the accuracy

rate is from 88% to 92.5% averaging 90.3%. The pruning

log generally improve the accuracy rate by 6%. With the

log pruning, DAPV achieves the accuracy rate from 96% to

FIGURE 9. Detection accuracy rate on single black hole.

98.5% averaging 97%. According to the result, with the log

pruning, we can achieve a higher detection accuracy rate.

Figure 10 shows the time comparison among the original

AODV protocol, DAPV without log pruning and DAPV with

log pruning. Without the log pruning, DAPV needs to check

more redundant logs and rules which will consume much

more time than that with the pruning process. The result

shows that the method without pruning can have the time

cost from 148.2 ms to 223.8 ms which is relatively higher

than the original AODVprotocol.Without much abundant log

comparison process, the method of DAPV with log pruning

can bring the time cost down from 18.0 ms to 35.1 ms which

should be acceptable in the MANETs.

35312 VOLUME 7, 2019



T. Li et al.: DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification

FIGURE 10. Time cost of single black hole detection comparison.

FIGURE 11. DAPV performance on multi-black holes detection.
(a) Detection accuracy rate on multi-black holes. (b) Time cost of
multi-black holes detection comparison.

2) PERFORMANCE OF MULTIPLE BLACK HOLES DETECTION

We apply multiple black holes into the MANETs and many

of them cooperate with each other to launch the attack.

FIGURE 12. DAPV detection accuracy rate on five attacks.

We compare the results of DAPV from a single black hole

environment to a 4 black holes environment and we are

surprised to find out that our method had better results in

handling the multiple black holes. When the coordinated

malicious nodes show up, they cooperate with each other and

help each other to deceive the source node. When the benign

nodes find one of them, it is easy to find the nodes which

help with the malicious nodes. The results in Figure 11(a)

show that we gain a good result when the black holes arise.

Figure 11(b) shows the time cost of multiple black holes

detection and as the black hole increases the time cost also

arises. But, we also notice that the detection accuracy rate

drops from 10 hops to 12 hops in the multi-black holes

detection. We still try to find out the reason and we assume it

is relevant to the original AODV protocol’s packet loss rate,

because we find that the packet loss rate rises from 10 hops.

D. USABILITY: ROUTERS ANOMALIES DETECTION

We evaluate DAPV by using the real packets data from a

university network from November 20th 2016 to April 20th

2017.We extracted the parameters from the packets and trans-

formed them into the form of tuple mentioned in Table 1. The

routers in the network include Cisco (CRV100, RV110W),

Huawei (WS832, WS833) and TP-Link (TL-WR842N,

TL-WR886N). We performed 5 different attacks towards

routers with the tools and platforms shown in Table 3. Then,

we evaluated the performance of DAPV on detecting these

attacks.

We launched these five kinds of attacks on the path using

the tools and platforms in the above table. We did each

attack 20 times each month for every router in the path and

calculated the average results according to Equation 17.

Average Accuracy Rate =

∑N
i=2

Cni
Ts

N
(17)

Cni represents the correct detection times of the total attack

times (Ts is 100 in our experiment) and N means the number

VOLUME 7, 2019 35313



T. Li et al.: DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification

TABLE 3. Attacks and the tools.

of the routers in the path (the first router’s i is 1 and the last

is N ). According to Figure 12, the detection accuracy rates

of the first four attacks are approach each other and DAPV

achieves a lower accuracy rate on the gateway monitoring

attack. When we launched the first four attacks towards the

routers, they could cause the routers to go down or not

respond. Thus, these attacks will influence the forwarding

function of the routers and DAPV can easily detect these

anomalies during the reasoning process. As for the gateway

monitoring attack, it will not influence the normal forwarding

of the router and it is difficult to detect as the routers all

behave normally. However, this kind of attack will influence

the normal logs in the routers. Therefore, we used the logs

in the routers to do the reasoning process and gained a good

result in detecting this kind of indirect attack.

Precision =
Correctly detected attacks

Total inserted attacks
(18)

Recall =
Correctly detected attacks

Total detected attacks
(19)

We compare the performance of detecting these five

attacks between DAPV and CRVad.We inserted these 5 kinds

of attacks respectively in the routing paths which range from

2 hops to 12 hops. The precision and recall are calculated

according to Equation 18 and 19. We collected the key-value

pairs of recall and precision. Then, we select the points which

range from 0.1 to 1 in the recall and draw the fitted curve

in Figure 13. The error sum of the squares of DAPV and

CRVad are 0.0151 and 0.0144 respectively, which are accept-

able in our experiments. CRVad only detects the attackers

in the routing path which ignores the routers that may be

under attack by the malicious nodes. DAPV can detect the

anomalies that contain the malicious nodes and the paralyzed

routers that are attacked and can achieve better results than

CRVad.

V. RELATED WORK

A. PROVENANCE

There is substantial literature on tracing provenance in

databases [11] and in networks [12], [25], but only a few

papers consider both positive and negative provenances in

the routing mechanism. SNP [13] focuses on explaining to

their operators why the network systems are in a certain state.

ExSPAN [29] enables provenance support in the database

system and SPIDeR can verify the route decision procedure.

None of these papers consider the problem of negative prove-

nance. Wu et al. [30] provided a method to answer why-not

FIGURE 13. Comparison between DAPV and CRVad on Precision and
Recall.

queries in SDN with negative provenance and the follow-

ing work Y! [17] can also track the negative provenance in

SDN and BGP. Both of these works should involve human

operators and cannot start automatically and the distributed

system scenario is the arbitrary control environment which

can share the information among the nodes without consid-

ering privacy. None of these works considers the distributed

environment and networks, as we do here. In the network

literature, there is some prior work on tracking the faults in

the routing system, including our own work CRVad [26], but

it can only guarantee the security when the routing link path

has already been built.

B. PRIVACY

This line of work, initiated by PeerReview [6] which detects

faults by collecting all of the observations about each

node violating our privacy policy. NetReview proposes to

use the hash chain to verify the correctness of the BGP.

Papadimitriou et al. [21] used this reasoning combined with

the zero knowledge map to verify the node’s correct-

ness, but trusted the MOS(minimal observer set) as cred-

ible information which can be malicious at the first step.

In recent work, such as Y! [17], SNP [13],MCI [31] andmeta

provenance [32], they can give back trace map towards the

misbehavior but they seldom consider privacy preserved in

the distributed system. None of these works can achieve both

privacy preservation as well as credible verification as we do

in our work.

35314 VOLUME 7, 2019



T. Li et al.: DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification

C. ATTACK DETECTION

In the context of ad hoc networks, there are a lot of stud-

ies focusing on attack prevention, such as [33]–[35] which

mainly focus on the security issues before the link was built,

but most of them are secure network protocols and they

cannot detect some malicious behavior in both the routing

discovery phase and data forwarding phase. Several secure

protocols [36]–[38] have been proposed to guarantee the

security of the logs, but they require that nodes meet a certain

criteria sharing a common secret key and only focus on

one kind of attack which is either direct or indirect attack,

and cannot tackle both of them. Our method is to detect

the malicious nodes during the routing discovery phase and

data forwarding phase as well as detect direct and indirect

attacks. NetPro [39] and SRDPV [40] can mitigate the above

problems but it ignores the paralyzed routers in the path

attacked by remote adversaries. DAPV cannot only diagnose

the malicious nodes who launched the attacks in the path

but also spot the paralyzed routers which are attacked by the

adversaries that may not be in the route path.

VI. CONCLUSION

In this paper, we proposed an approach, DAPV, to automat-

ically detect the direct and indirect attacks by using prove-

nance in MANETs. First, we used NDlog in reasoning the

expected log and then checking whether the destination has

been influenced. Next, we conducted the direct attack detec-

tion or the indirect attack detection with the assistance of

MHT to preserve privacy. Finally, DAPV returned a prove-

nance graph to show the tracking trace to the malicious nodes.

DAPV could explain why an event was at fault and why an

expected event did not occur with the concept of provenance.

According to the algorithm of DAPV, we could detect which

router was malicious and what kind of attack it was without

revealing any privacy information. According to our experi-

ment, our approach is scalable and practical for use on real

MANETs routing security. Most of the debugging systems

based on the log entries assume that the logs of each node

truthfully reflect its behaviors. The logging system is inde-

pendent from the communication mechanisms that malicious

attackers may affect. Our system can contribute to solving the

distributed verification and anomaly detection in Unmanned

Aerial Vehicle networks, the 5th generation networks and the

sensor networks. They all need to achieve the verification in

a distributed way and without a third party. For the practical

use of our approach in the future, rigorous specifications on

the logging actions are needed, and code-level verification

is indispensable to ensure the logging behavior under the

constraint of these specifications.

REFERENCES

[1] L. Abusalah, A. Khokhar, and M. Guizani, ‘‘A survey of secure mobile

Ad Hoc routing protocols,’’ IEEE Commun. Surveys Tuts., vol. 10, no. 4,

pp. 78–93, 4th Quart. 2008.

[2] A. Nadeem and M. P. Howarth, ‘‘A survey of MANET intrusion detection

prevention approaches for network layer attacks,’’ IEEE Commun. Surveys

Tuts., vol. 15, no. 4, pp. 2027–2045, 4th Quart. 2013.

[3] H. Deng, W. Li, and D. P. Agrawal, ‘‘Routing security in wireless ad hoc

networks,’’ IEEE Commun. Mag., vol. 40, no. 10, pp. 70–75, Oct. 2002.

[4] Y.-C. Hu, A. Perrig, and D. B. Johnson, ‘‘Packet leashes: A defense

against wormhole attacks in wireless networks,’’ in Proc. 22nd Annu.

Joint Conf. IEEE Comput. Commun.. IEEE Societies, vol. 3, Apr. 2003,

pp. 1976–1986.

[5] T. Li, J. Ma, and C. Sun, ‘‘Dlog: Diagnosing router events with syslogs

for anomaly detection,’’ J. Supercomputing, vol. 74, no. 2, pp. 845–867,

Feb. 2018.

[6] A. Haeberlen, P. Kouznetsov, and P. Druschel, ‘‘PeerReview: Practical

accountability for distributed systems,’’ ACM SIGOPS Symp. Oper. Syst.

Princ., vol. 41, no. 6, pp. 175–188, 2007.

[7] A. Haeberlen, I. C. Avramopoulos, J. Rexford, and P. Druschel, ‘‘Netre-

view: Detecting when interdomain routing goes wrong,’’ in Proc. NSDI,

Apr. 2009, pp. 437–452.

[8] J. Jiang, W. Li, J. Luo, and J. Tan, ‘‘A network accountability based verifi-

cation mechanism for detecting inter-domain routing path inconsistency,’’

J. Netw. Comput. Appl., vol. 36, no. 6, pp. 1671–1683, Nov. 2013.

[9] Y. Xie, V. Sekar, M. K. Reiter, and H. Zhang, ‘‘Forensic analysis for

epidemic attacks in federated networks,’’ in Proc. IEEE Int. Conf. Netw.

Protocols, Nov. 2006, pp. 43–53.

[10] P. Laskowski and J. Chuang, ‘‘Network monitors and contracting systems:

Competition and innovation,’’ ACM SIGCOMM Comput. Commun. Rev.,

vol. 36, no. 4, pp. 183–194, Sep. 2006.

[11] P. Buneman, S. Khanna, and T. Wang-Chiew, ‘‘Why and where: A char-

acterization of data provenance,’’ in Database Theory—ICDT. New York,

NY, USA: Springer, 2001, pp. 316–330.

[12] Y. Liu et al., ‘‘Towards a timely causality analysis for enterprise security,’’

in Proc. 25th Netw. Distrib. Syst. Secur. Symp. (NDSS) San Diego, CA,

USA: The Internet Society, 2018, pp. 1–15.

[13] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr,

‘‘Secure network provenance,’’ in Proc. 33rd ACM Symp. Operating Syst.

Princ., Oct. 2011, pp. 295–310.

[14] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and N. McKeown,

‘‘I know what your packet did last hop: Using packet histories to trou-

bleshoot networks,’’ in Proc. 11th USENIX Symp. Networked Syst. Design

Implement., Sep. 2014, pp. 71–85.

[15] A. J. Gurney, A. Haeberlen, W. Zhou, M. Sherr, and B. T. Loo, ‘‘Having

your cake and eating it too: Routing security with privacy protections,’’ in

Proc. 10th ACM Workshop Hot Topics Netw., Nov. 2011, p. 15.

[16] M. Du, F. Li, G. Zheng, and V. Srikumar, ‘‘Deeplog: Anomaly detection

and diagnosis from system logs through deep learning,’’ in Proc. ACM

SIGSAC Conf. Comput. Commun. Secur., Oct. 2017, pp. 1285–1298.

[17] Y.Wu,M. Zhao, A. Haeberlen,W. Zhou, and B. T. Loo, ‘‘Diagnosingmiss-

ing events in distributed systems with negative provenance,’’ ACM SIG-

COMM Comput. Commun. Rev., vol. 44, no. 4, pp. 383–394, Aug. 2015.

[18] W. El-Hajj, ‘‘The most recent SSL security attacks: Origins, implementa-

tion, evaluation, and suggested countermeasures,’’ Secur. Commun. Netw.,

vol. 5, no. 1, pp. 113–124, Jan. 2012.

[19] Z. Tan, A. Jamdagni, X. He, P. Nanda, and R. P. Liu, ‘‘A system for denial-

of-service attack detection based on multivariate correlation analysis,’’

IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 2, pp. 447–456, Feb. 2014.

[20] S. Y. Nam, S. Djuraev, and M. Park, ‘‘Collaborative approach to miti-

gating ARP poisoning-based Man-in-the-Middle attacks,’’ Comput. Netw.,

vol. 57, no. 18, pp. 3866–3884, Dec. 2013.

[21] A. Papadimitriou, M. Zhao, and A. Haeberlen, ‘‘Towards privacy-

preserving fault detection,’’ in Proc. 9th Workshop Hot Topics Dependable

Syst., Nov. 2013, p. 6.

[22] B. T. Loo et al., ‘‘Declarative networking,’’Commun. ACM, vol. 52, no. 11,

pp. 87–95, May 2009.

[23] D. Williams and E. G. Sirer, ‘‘Optimal parameter selection for efficient

memory integrity verification using merkle hash trees,’’ in Proc. 3rd IEEE

Int. Symp. Netw. Comput. Appl., Sep. 2004, pp. 383–388.

[24] A. R. Yumerefendi and J. S. Chase, ‘‘The role of accountability in depend-

able distributed systems,’’ HotDep, vol. 5, p. 3, Jun. 2005.

[25] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and Y. Mao, ‘‘Efficient

querying and maintenance of network provenance at Internet-scale,’’ in

Proc. ACM SIGMOD Int. Conf. Manage. data, Jun. 2010, pp. 615–626.

[26] T. Li, J. Ma, and C. Sun, ‘‘CRVad: Confidential reasoning and verifica-

tion towards secure routing in ad hoc networks,’’ in Algorithms Archi-

tectures for Parallel Processing. New York, NY, USA: Springer, 2015,

pp. 449–462.

[27] NS-3. Ns-3 Software. Accessed: 2019. [Online]. Available:

https://www.nsnam.org/

VOLUME 7, 2019 35315



T. Li et al.: DAPV: Diagnosing Anomalies in MANETs Routing With Provenance and Verification

[28] IRIS. Iris Reasoner. Accessed: 2018. [Online]. Available:

http://iris-reasoner.org/

[29] W. Zhou et al., ‘‘Nettrails: A declarative platform for maintaining and

querying provenance in distributed systems,’’ in Proc. ACM SIGMOD Int.

Conf. Manage. Data, Jun. 2011, pp. 1323–1326.

[30] Y.Wu, A. Haeberlen,W. Zhou, and B. T. Loo, ‘‘Answeringwhy-not queries

in software-defined networks with negative provenance,’’ in Proc. 10th

ACM Workshop Hot Topics Netw., Nov. 2013, p. 3.

[31] Y. Kwon et al., ‘‘MCI:Modeling-based causality inference in audit logging

for attack investigation,’’ in Proc. 25th Netw. Distrib. Syst. Secur. Symp.

(NDSS). San Diego, CA, USA: The Internet Society, 2018, pp. 25–39.

[32] Y. Wu, A. Chen, A. Haeberlen, W. Zhou, and B. T. Loo, ‘‘Automated

bug removal for software-defined networks,’’ in Proc. NSDI, Sep. 2017,

pp. 719–733.

[33] R. Hauser, T. Przygienda, and G. Tsudik, ‘‘Lowering security overhead in

link state routing,’’ Comput. Netw., vol. 31, no. 8, pp. 885–894, Apr. 1999.

[34] D. B. Johnson, ‘‘Routing in ad hoc networks of mobile hosts,’’ in Proc. 1st

Workshop Mobile Comput. Syst. Appl., Dec. 1994, pp. 158–163.

[35] C. Perkins, E. Belding-Royer, and S. Das, ‘‘Ad hoc on-demand distance

vector (AODV) routing,’’ Mobile Comput., Boston, MA, USA, Tech.

Rep. RFC 3561, 2003.

[36] D. B. Johnson, ‘‘The dynamic source routing protocol for mobile ad hoc

networks,’’ Mobile Comput., Boston, MA, USA, Tech. Rep. RFC 4728,

2003.

[37] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and E. M. B. Royer,

‘‘A secure routing protocol for ad hoc networks,’’ in Proc. 10th IEEE Int.

Conf. Netw. Protocols, Nov. 2002, pp. 78–87.

[38] P. Papadimitratos and Z. J. Haas, ‘‘Secure routing for mobile ad hoc

networks,’’ in Proc. SCS Commun. Netw. Distrib. Syst. Model. Simul. Conf.

(CNDS). San Antonio, TX, USA, Jan. 2002, pp. 193–204.

[39] T. Li, J. Ma, and C. Sun, ‘‘Netpro: Detecting attacks in manet routing with

provenance and verification,’’ Sci. China Inf. Sci., vol. 60, no. 11, 2017,

Art. no. 118101.

[40] T. Li, J. Ma, C. Sun, and N. Xi, ‘‘SRDPV: Secure route discovery

and privacy-preserving verication in MANETs,’’ in Wireless Networks.

Nov. 2017, pp. 1–17.

TENG LI received the B.S. and Ph.D. degrees

from the School of Computer Science and Tech-

nology, Xidian University, China, in 2013 and

2018, respectively, where he is currently a Lecturer

with the School of Cyber Engineering. His current

research interests include wireless and mobile net-

works, distributed systems, and intelligent termi-

nals, with the focus on security and privacy issues.

JIANFENG MA received the B.S. degree in com-

puter science from Shaanxi Normal University, in

1982, the M.S. degree in computer science from

Xidian University, in 1992, and the Ph.D. degree in

computer science fromXidian University, in 1995,

where he is currently a Professor with the School

of Computer Science and Technology. He has pub-

lished over 150 journal and conference papers.

His research interests include information security,

cryptography, and network security.

QINGQI PEI received the B.Sc., M.Sc., and

Ph.D. degrees from Xidian University, Xi’an,

China, in 1998, 2004, and 2008, respectively,

where he is currently a Professor and a Ph.D.

student supervisor. His research interests mainly

focus on wireless communication networks and

security, and information security. He has pub-

lished over 90 papers in the significant interna-

tional journals or conferences, and has granted

47 patents. He is a member of the ACM, a Senior

Member of the Chinese Institute of Electronics, and a Senior Member of the

China Computer Federation.

HOUBING SONG (M’12–SM’14) received the

Ph.D. degree in electrical engineering from the

University of Virginia, Charlottesville, VA, USA,

in 2012. In 2017, he joined the Department of

Electrical, Computer, Software, and Systems

Engineering, Embry-Riddle Aeronautical Univer-

sity, Daytona Beach, FL, USA, where he is cur-

rently an Assistant Professor and the Director

of the Security and Optimization for Networked

Globe Laboratory. His research interests include

cyber-physical systems, cybersecurity and privacy, the Internet of Things,

edge computing, big data analytics, unmanned aircraft systems, connected

vehicle, smart and connected health, and wireless communications and

networking.

YULONG SHEN received the B.S. and M.S.

degrees in computer science and the Ph.D. degrees

in cryptography from Xidian University, Xian,

China, in 2002, 2005, and 2008, respectively,

where he is currently a Professor with the School

of Computer Science and Technology. He is

also an Associate Director of the Shaanxi Key

Laboratory of Network and System Security,

and a member of the State Key Laboratory of

Integrated Services Networks, Xidian University.

His research interests include wireless network security and cloud computing

security. He has also served on the Technical ProgramCommittees for several

international conferences, including the ICEBE, INCoS, CIS, and SOWN.

SUN CONG received the Ph.D. degree in com-

puter science from Peking University, in 2011.

He is currently an Associate Professor with the

School of Cyber Engineering, Xidian University.

His research interests include information flow

security and program analysis.

35316 VOLUME 7, 2019


	INTRODUCTION
	OVERVIEW
	THREAT SCENARIO
	APPROACH

	DESCRIPTION OF DAPV
	BASIC PROVENANCE RULES
	PROVENANCE VERIFICATION
	MERKLE HASH TREE

	PROVENANCE REASONING
	INITIAL MISBEHAVIOR DETECTION
	DIRECT ATTACK DETECTION
	INDIRECT ATTACK DETECTION

	PROVENANCE GRAPH
	GRAPH CONSTRUCTION ALGORITHM


	EVALUATION
	EXPERIMENT SETUP
	USABILITY: INJECTED FAULTS DETECTION
	PERFORMANCE OF DETECTING THE INJECTED FAULTS
	PROVENANCE VERIFICATION PERFORMANCE COMPARISON

	USABILITY: BLACK HOLE ATTACK DETECTION
	PERFORMANCE OF SINGLE BLACK HOLE DETECTION
	PERFORMANCE OF MULTIPLE BLACK HOLES DETECTION

	USABILITY: ROUTERS ANOMALIES DETECTION

	RELATED WORK
	PROVENANCE
	PRIVACY
	ATTACK DETECTION

	CONCLUSION
	REFERENCES
	Biographies
	TENG LI
	JIANFENG MA
	QINGQI PEI
	HOUBING SONG
	YULONG SHEN
	SUN CONG


