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DAR’S CONJECTURE AND THE

LOG-BRUNN-MINKOWSKI INEQUALITY

Dongmeng Xi & Gangsong Leng

Abstract

In 1999, Dar conjectured that there is a stronger version of
the celebrated Brunn-Minkowski inequality. However, as pointed
out by Campi, Gardner, and Gronchi in 2011, this problem seems
to be open even for planar o-symmetric convex bodies. In this
paper, we give a positive answer to Dar’s conjecture for all planar
convex bodies. We also give the equality condition of this stronger
inequality.

For planar o-symmetric convex bodies, the log-Brunn-Minkows-
ki inequality was established by Böröczky, Lutwak, Yang, and
Zhang in 2012. It is stronger than the classical Brunn-Minkowski
inequality, for planar o-symmetric convex bodies. Gaoyong Zhang
asked if there is a general version of this inequality. Fortunately,
the solution of Dar’s conjecture, especially, the definition of “di-
lation position”, inspires us to obtain a general version of the
log-Brunn-Minkowski inequality. As expected, this inequality im-
plies the classical Brunn-Minkowski inequality for all planar con-
vex bodies.

1. Introduction

Let Kn be the class of convex bodies (compact, convex sets with non-
empty interiors) in Euclidean n-space Rn, and let Kn

o be the class of
members of Kn containing o (the origin) in their interiors. The classical
Brunn-Minkowski inequality (see, e.g., [18, 19,26,35]) states that

(1.1) |K + L|
1

n ≥ |K|
1

n + |L|
1

n ,

with equality if and only if K and L are homothetic. Here K,L ∈ Kn,
| · | denotes the n-dimensional Lebesgue measure, K + L denotes the
Minkowski sum of K and L:

K + L = {x+ y : x ∈ K and y ∈ L}.
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In his survey article, Gardner [18] summarized the history of the
Brunn-Minkowski inequality and some applications in many other fields.
For recent related work about this inequality, see e.g., [6,14–16,20,32,39].

In 1999, Dar [10] conjectured that

(1.2) |K + L|
1

n ≥M(K,L)
1

n +
|K|

1

n |L|
1

n

M(K,L)
1

n

,

for convex bodies K and L. Here M(K,L) is defined by

M(K,L) = max
x∈Rn

|K ∩ (x+ L)|.

Dar’s conjecture has a close relationship with the stability of the
Brunn-Minkowski inequality, and plays an important role in asymptotic
geometric analysis. The stability estimates are actually strong forms
of the Brunn-Minkowski inequality in special circumstances. Original
works about this issue are due to Diskant, Groemer, and Schneider
referred in [11,13,23–25,35]. Dar [10] pointed out that the “weak esti-
mates” about the “geometric Banach-Mazur distance” cannot be essen-
tially improved. In fact, this might be why Dar proposed his conjecture
(1.2).

Figalli, Maggi, and Pratelli [14, 15] tackled the stability problem for
convex bodies with a more natural distance, i.e., “relative asymmetry”
(which has a close relationship with the functional M(K,L)), by using
a mass transportation approach. Using the same distance as in [14,15],
Segal [36] improved the constants that appeared in the stability versions
in these inequalities for convex bodies. He also showed in [36, Page 391]
that Dar’s conjecture (1.2) will lead to a stronger stability version of
the Brunn-Minkowski inequality for convex bodies.

Dar [10] showed that (1.2) implies (1.1) for convex bodies. He also
proved (1.2) in some special cases, such as:

(1) K is unconditional with respect a basis {ei}
n
i=1 and L = TK,

where T is linear and diagonal with respect to the same basis;
(2) K and L are ellipsoids;
(3) K ⊂ R2 is a parallelogram and L is a planar symmetric convex

body;
(4) K is a simplex and L = −K.
In their article, Campi, Gardner, and Gronchi [9, Page 1208] de-

scribed this as “a fascinating conjecture”. However, they also pointed
out that Dar’s conjecture “seems to be open even for planar o-symmetric
bodies”. Besides, the equality condition of (1.2) is also unknown.

In this paper, we prove that the inequality (1.2) holds for all planar
convex bodies, and we also give the equality condition.
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Theorem 1. Let K,L be planar convex bodies. Then, we have

(1.3) |K + L|
1

2 ≥M(K,L)
1

2 +
|K|

1

2 |L|
1

2

M(K,L)
1

2

.

Equality holds if and only if one of the following conditions holds:
(i) K and L are parallelograms with parallel sides, and |K| = |L|;
(ii) K and L are homothetic.

In our proof of Theorem 1, the definition of “dilation position” plays
a key role. It enables us to do a further study on the other stronger
version of (1.1), i.e., the log-Brunn-Minkowski inequality.

The log-Brunn-Minkowski inequality for planar o-symmetric (sym-
metry with respect to the origin) convex bodies was established by
Böröczky, Lutwak, Yang, and Zhang [6]. It states that:

If K and L are o-symmetric convex bodies in the plane, then for all
real λ ∈ [0, 1],

(1.4) |(1− λ) ·K +o λ · L| ≥ |K|
1−λ|L|λ.

When λ ∈ (0, 1), equality in (1.4) holds if and only if K and L are dilates
or K and L are parallelograms with parallel sides. Here hK and hL are
support functions (see Section 2 for the definition); (1− λ) ·K +o λ · L
is the geometric Minkowski combination of K and L, which is defined
in [6] for K,L ∈ Kn

o as the Aleksandrov body (see, e.g., [1]) associated

with the function h1−λK hλL.
For o-symmetric convex bodies K and L, Böröczky, Lutwak, Yang,

and Zhang [6] also established the following log-Minkowski inequality:

(1.5)

∫
S1

log
hL
hK

dVK ≥
|K|

2
log

|L|

|K|
.

Equality holds if and only if K and L are dilates or K and L are parallel-
ograms with parallel sides. Here S1 denotes the unit sphere of R2, and
VK denotes the cone-volume measure (see Section 2 for its definition).

On one hand, we observe that the equality condition of (1.3) is similar
to (1.4) and (1.5), equivalently to say, the uniqueness of the logarithmic
Minkowski problem, see [6, 7, 37, 38] for details. We study the relation-
ship between Dar’s conjecture and the log-Brunn-Minkowski inequality
in Section 4.

On the other hand, it is natural to ask if there is a general version
of (1.4) for planar convex bodies that are not o-symmetric. Although
there is a counterexample [6], showing that, if K is an o-centered cube
and L is a distinct translate of K, then (1.4) does not hold; however,
there exists a translate of K, say, K, such that K and L satisfy (1.4).
Here we only require that K and L are at a “dilation position” (see the
definition below).
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The following Problem was shared by Professor Gaoyong Zhang
(which was proposed by Professors Böröczky, Lutwak, Yang, and Zhang)
when he was visiting Shanghai University in 2013.

Problem 1. Let K,L ∈ K2. Is there a “good” position of the origin
o, such that K and an “appropriate” translate of L satisfy (1.4)?

The following Theorem 2 is an answer to Problem 1. Before this, we
give the definition of the so-called dilation position.

LetK,L ∈ Kn.We sayK and L are at a dilation position, if o ∈ K∩L,
and

(1.6) r(K,L)L ⊂ K ⊂ R(K,L)L.

Here r(K,L) and R(K,L) are relative inradius and relative outradius
(e.g., see [6, 12,22,34]) of K with respect to L, i.e.,

r(K,L) = max{t > 0 : x+ tL ⊂ K and x ∈ Rn},

R(K,L) = min{t > 0 : K ⊂ x+ tL and x ∈ Rn}.

It is clear that

(1.7) r(K,L) = 1/R(L,K).

By the definition, it is clear that two o-symmetric convex bodies are
always at a dilation position. Therefore, Theorem 2 and Theorem 3
below are extensions of (1.4) and (1.5).

When K and L are at a dilation position, by Lemma 2.1, o may be
in ∂K ∩ ∂L. Therefore, we should extend the definition of “geometric
Minkowski combination” slightly. Let K,L ∈ Kn with o ∈ K ∩ L. The
geometric Minkowski combination of K and L is defined as follows:

(1.8) (1− λ) ·K +o λ ·L :=
⋂

u∈Sn−1

{x ∈ Rn : x · u ≤ hK(u)1−λhL(u)
λ},

for λ ∈ (0, 1); (1−λ)·K+oλ·L := K for λ = 0; and (1−λ)·K+oλ·L := L
for λ = 1.

Lemma 2.2 shows that (1−λ) ·K+o λ ·L defined by (1.8) is always a
convex body, as long asK and L are at a dilation position. The following
is the general log-Brunn-Minkowski inequality for planar convex bodies.

Theorem 2. Let K,L ∈ K2 with o ∈ K ∩ L. If K and L are at a
dilation position, then for all real λ ∈ [0, 1],

(1.9) |(1− λ) ·K +o λ · L| ≥ |K|
1−λ|L|λ.

When λ ∈ (0, 1), equality in the inequality holds if and only if K and L
are dilates or K and L are parallelograms with parallel sides.

The following is the general log-Minkowski inequality for planar con-
vex bodies.
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Theorem 3. Let K,L ∈ K2 with o ∈ K ∩ L. If K and L are at a
dilation position, then

(1.10)

∫
S1

log
hL
hK

dVK ≥
|K|

2
log

|L|

|K|
.

Equality holds if and only if K and L are dilates or K and L are par-
allelograms with parallel sides.

It can be seen from (1.6) that {hK = 0} = {hL = 0}. The integral in
(1.10) should be understood to be taken on S1 except the set {hK = 0},
which is of measure 0, with respect to the measure VK .

For o-symmetric convex bodies in the plane, it has been shown in
[6] that the log-Brunn-Minkowski inequality (1.4) is stronger than the
classical Brunn-Minkowski inequality (1.1). In this paper, by Lemma
2.1 and Theorem 2, together with the fact that (1 − λ) ·K +o λ · L ⊂
(1−λ)K +λL, we see that (1.9) implies the classical Brunn-Minkowski
inequality (1.1) for all planar convex bodies.

In [6], the proofs of (1.4) and (1.5) use the o-symmetry in several
crucial ways. However, in the general case, our proofs require new ap-
proaches. First, we prove (1.10) for bodies in K2

o under the assumption
that the cone-volume measure of a body satisfies the strict subspace
concentration inequality. See Section 2 for the definition and the de-
velopment history of the subspace concentration condition. Then, by
establishing two approximation lemmas, we show that (1.10) does not
require the subspace concentration condition, and it holds even for the
case that o is in the boundary. That is to say, the definition of “dilation
position” is natural.

This paper is organized as follows. Section 2 contains the basic no-
tation and definitions, and some basic properties of dilation position.
Section 3 proves Dar’s conjecture in dimension 2, and gives the equality
condition. In Section 4, we show a connection between Dar’s conjec-
ture and the log-Brunn-Minkowski inequality. In Section 5, we show
some properties of dilation position, and prove the equivalence of the
log-Brunn-Minkowski inequality (1.9) and the log-Minkowski inequality
(1.10). Section 6 proves a version of the log-Minkowski inequality (1.10)
under an assumption. In the final Section 7, we establish two approxi-
mation lemmas, and thereby prove Theorems 2 and 3.

Acknowledgements. The authors would like to thank Professor Gaoy-
ong Zhang for attracting our attention to the problem of the general
log-Brunn-Minkowski inequality for planar convex bodies when he was
visiting Shanghai University in 2013. The authors would also like to
thank Jin Li and Kejie Shi for their very helpful comments on various
drafts of this work. In addition, the authors are grateful to the referees
for their very valuable comments and suggestions for improvements.
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2. Preliminaries

In this section, we collect some basic notation and definitions about
convex bodies, and we show some basic properties of the dilation posi-
tion. Good general references for the theory of convex bodies are the
books of Gardner [19], Gruber [26], Leichtweiss [31], and Schneider [35].

Denote by Bn the unit ball of Rn, and let Sn−1 be the unit sphere.
By intA, clA and ∂A we denote, respectively, the interior, closure and
boundary of A ⊂ Rn.

Suppose A1, A2, ..., Ak ⊂ Rn are compact. Denote by [A1, A2, ..., Ak ]
the convex hull of A1 ∪A2 ∪ ... ∪Ak. When Ai = {xi} is a single point
set, we will usually write [A1, A2, ..., xi, ..., Ak ] rather than [A1, A2, ...,
{xi}, ..., Ak]. Thus, for distinct points x1 and x2, [x1, x2] is a line seg-
ment. We also denote by l(x1x2) the line through the points x1, x2.

The scalar product “·” in Rn will often be used to describe hyper-
planes and half-spaces. A hyperplane can be written in the form

Hu,α = {x ∈ Rn : x · u = α}.

The hyperplane Hu,α bounds the two closed half-spaces

H−
u,α = {x ∈ Rn : x · u ≤ α},

H+
u,α = {x ∈ Rn : x · u ≥ α}.

Especially, a hyperplane in R2 is just a line. Similarly, lu,α denotes a
line. We also denote by l− and l+ two closed half-spaces bounded by
the line l. Then, l−u,α and l+u,α are two closed half-spaces bounded by lu,α;

l(x1x2)
− and l(x1x2)

+ are two closed half-spaces bounded by l(x1x2).
Let A ⊂ R2 be a subset and l a line. We say that l supports A at x

if x ∈ A ∩ l and either A ⊂ l+ or A ⊂ l−. We call l a support line of A
at x. In this paper, if l is a support line of a planar convex body K, we
always assume K ⊂ l−.

The support function hK : Rn → R of a compact convex set K ⊂ Rn

is defined, for x ∈ Rn, by

hK(x) = max{x · y : y ∈ K}.

We shall use dH to denote the Hausdorff metric on Kn. If K,L ∈ Kn,
the Hausdorff distance dH(K,L) is defined by

dH(K,L) = min{α : K ⊂ L+ αBn and L ⊂ K + αBn},

or equivalently,

dH(K,L) = max
u∈Sn−1

|hK(u)− hL(u)|.

Let K ∈ Kn. The surface area measure SK(·) of K is a Borel measure
on Sn−1 defined for a Borel set ω ⊂ Sn−1 by

SK(ω) = Hn−1(ν−1K (ω)),
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where νK : ∂′K → Sn−1 is the Gauss map of K, defined on ∂′K, the set
of points of ∂K that have a unique outer unit normal, and Hn−1 is the
(n− 1)-dimensional Hausdorff measure.

Let K ∈ Kn with o ∈ K. The cone-volume measure VK of K is a
Borel measure on Sn−1 defined by

dVK =
1

n
hKdSK .

We shall recall the notion of subspace concentration condition, which
is defined in [7]. It limits how concentrated a measure can be in a
subspace.

A finite Borel measure μ on Sn−1 is said to satisfy the subspace con-
centration inequality if, for every subspace ξ of Rn, such that 0 < dimξ <
n,

(2.1) μ(ξ ∩ Sn−1) ≤
1

n
μ(Sn−1)dimξ.

The measure is said to satisfy the subspace concentration condition if
in addition to satisfying the subspace concentration inequality (2.1),
whenever

μ(ξ ∩ Sn−1) =
1

n
μ(Sn−1)dimξ,

for some subspace ξ, then there exists a subspace ξ′, which is comple-
mentary to ξ in Rn, so that also

μ(ξ′ ∩ Sn−1) =
1

n
μ(Sn−1)dimξ′,

or equivalently so that μ is concentrated on Sn−1 ∩ (ξ ∪ ξ′).
The measure μ on Sn−1 is said to satisfy the strict subspace concen-

tration inequality if the inequality in (2.1) is strict for each subspace
ξ ⊂ Rn, such that 0 < dimξ < n.

The necessity of (2.1) for cone-volume measures of o-symmetric poly-
topes in Rn was shown by Henk, Schürmann, and Wills [30], and inde-
pendently by He, Leng, and Li [28]. See Xiong [40] for an alternate proof.
Böröczky, Lutwak, Yang, and Zhang [7] proved that the subspace con-
centration condition is both necessary and sufficient for the existence
of a solution to the even logarithmic Minkowski problem. They also
showed in [8] that the subspace concentration condition is both neces-
sary and sufficient for a Borel measure on the Euclidean sphere to have
an affine isotropic image. Recently, Henk and Linke [29] proved that
cone-volume measures of polytopes in Rn with centroid at o satisfy the
subspace concentration condition.

Suppose K,L ⊂ Rn are convex bodies. The mixed volume V1(K,L)
of K,L is defined by

(2.2) V1(K,L) =
1

n
lim
ε→0+

|K + εL| − |K|

ε
=

1

n

∫
Sn−1

hL(u)dSK(u).
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When n = 2, it is clear that V1(K,L) = V1(L,K), and we will write
V (K,L) rather than V1(K,L).

Let K be a convex body in Rn. For x ∈ K, the extended radial
function ρK(x, z) of K is defined by

ρK(x, z) = max{λ ≥ 0 : x+ λz ∈ K} for z ∈ Rn\{0}.

Note that x could be in the boundary of K. Generally, see [21] for the
definition of extended radial function of a star-shaped set with respect
to the point x.

Now we show some basic properties of the dilation position. Let
K,L ∈ Kn with o ∈ K ∩ L. K and L are at a dilation position if they
satisfy (1.6). Note that:

(1) dilation position may not be unique, i.e., if K and L are at a
dilation position, then a translate of K and a translate of L may also be
at a dilation position (e.g., K,L are parallelograms with parallel sides
and centered at o);

(2) if K and L are at a dilation position, then K and a dilation of L
are also at a dilation position;

(3) for arbitrary convex bodiesK and L, they may not be at a dilation
position, however, the following is true.

Lemma 2.1. Let K,L ∈ Kn.
(i) There are a translate of L, say L, and a translate of K, say K, so
that K and L are at a dilation position.
(ii) If K and L are at a dilation position, then o ∈ int(K∩L)∪(∂K∩∂L).

Proof. Set R = R(K,L) and r = r(K,L).
(i) If K and L are homothetic, then R = r, and there exists a point
t0 ∈ Rn such that

K = rL+ t0.

Choose a p0 ∈ L. Let L = L− p0, and let K = rL. Then we are done.
Assume K and L are not homothetic, then R > r. There are points

t1, t2 ∈ Rn so that

Lr := rL+ t1 ⊂ K ⊂ RL+ t2 =: LR.

Let t′ be given by

t′ :=
R

R− r
t1 −

r

R− r
t2.

Let

L =
1

r
(Lr − t′) and K = K − t′.

By a direct computation, we see that K and L are at a dilation position.

(ii) By the definition, o ∈ K∩L and rL ⊂ K ⊂ RL. Then, there does not
exist this case: o ∈ ∂K but o ∈ intL. Otherwise, there is a δ > 0 such
that δBn ⊂ L ⊂ 1

r
K. It follows that o ∈ intK, a contradiction. Similarly,
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there does not exist this case: o ∈ ∂L but o ∈ intK. Therefore, either
o ∈ ∂K ∩ ∂L or o ∈ intK ∩ intL = int(K ∩ L). q.e.d.

Let K ∈ Kn
o and L ∈ Kn. If K and L are at a dilation position, then,

by Lemma 2.1, o ∈ intL, and

(2.3) R(K,L) = max
u∈Sn−1

hK(u)

hL(u)
= max

u∈Sn−1

ρK(u)

ρL(u)
,

and

(2.4) r(K,L) = min
u∈Sn−1

hK(u)

hL(u)
= min

u∈Sn−1

ρK(u)

ρL(u)
.

The following lemma shows that (1 − λ) ·K +o λ · L is well defined
for K,L ∈ Kn that are at a dilation position.

Lemma 2.2. Let K,L ∈ Kn with o ∈ K ∩ L. Suppose K and L
are at a dilation position. Then, for all real λ ∈ [0, 1], the geometric
Minkowski combination of K and L defined by (1.8) is a convex body.

Moreover, (1−λ)·K+oλ·L→ K as λ→ 0, and (1−λ)·K+oλ·L→ L
as λ→ 1, with respect to the Hausdorff measure.

Proof. Set r = r(K,L), and R = R(K,L). Since (1 − λ) ·K +o λ · L
is defined by the intersection of closed and convex sets, it is also closed
and convex. It remains to show that (1−λ) ·K +o λ ·L is bounded, and
has interior points. Since rL ⊂ K ⊂ RL, we have rhK(u) ≤ hL(u) ≤
RhK(u) for all u ∈ Sn−1. It follows that rλhK(u) ≤ hK(u)1−λhL(u)

λ ≤
RλhK(u) for all u ∈ Sn−1 and λ ∈ (0, 1). This and the fact K =⋂
u∈Sn−1

{x ∈ Rn : x · u ≤ hK(u)} show that

(2.5) rλK ⊂ (1− λ) ·K +o λ · L ⊂ RλK.

Since (1−λ) ·K+o λ ·L := K for λ = 0, and (1−λ) ·K+o λ ·L := L for
λ = 1, hence (2.5) holds even for λ ∈ {0, 1}. Therefore (1−λ) ·K+oλ ·L
is bounded, and has interior points, for all λ ∈ [0, 1].

From (2.5), it is easy to see that (1− λ) ·K +o λ · L→ K as λ→ 0.
In a similar way, it follows that (1−λ) ·K+o λ ·L→ L as λ→ 1. q.e.d.

In this paper, we shall make use of the overgraph and undergraph
functions. Let K ∈ Kn. For u ∈ Sn−1, denote by Ku the image of
the orthogonal projection of K onto u⊥. Define the overgraph function
f(K;x) and undergraph function g(K;x) of K as follows:

(2.6) K = {x+ tu : −g(K;x) ≤ t ≤ f(K;x) for x ∈ Ku}.

Then, f(K;x) and g(K;x) are concave on Ku.
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3. Proof of Dar’s conjecture in dimension 2

In order to prove Theorem 1, we need 7 Lemmas. The relative Bon-
nesen inequality plays an important role, it states that:

Lemma 3.1. [6] If K,L ∈ K2, then for r(K,L) ≤ t ≤ R(K,L),

(3.1) |K| − 2tV (K,L) + t2|L| ≤ 0.

The inequality is strict whenever r(K,L) < t < R(K,L). When t =
r(K,L), equality will occur in (3.1) if and only if K is the Minkowski
sum of a dilation of L and a line segment. When t = R(K,L), equality
will occur in (3.1) if and only if L is the Minkowski sum of a dilation
of K and a line segment.

Bonnesen [5] proved this inequality for L = B2; the first proof for the
relative case included the equality cases was given by Bol [4], and may
also be found in Blaschke [2] and Flanders [17]. We refer to [6, Lemma
4.1] for a detailed proof. Further study of Bonnesen-type inequalities
can be seen in [3, 13,22,34].

Lemma 3.2. Let K,L ∈ K2. Suppose that K ∩ L has nonempty
interior. Then, the set ∂K\∂L is the union of at most countably many
disjoint connected open subsets (with respect to the relative topology in
∂K) of ∂K.

Proof. Let po ∈ int(K ∩ L). Then, we have

(3.2) ∂K\∂L = {x ∈ ∂K : ρL(po, x− po) 
= 1}.

Suppose there exists a point x0 ∈ ∂K∩∂L. Without loss of generality,
we assume x0−po

‖x0−po‖
= (1, 0), where ‖ ·‖ denotes the Euclidean norm, and

(cos θ, sin θ) denotes the coordinate of a unit vector. Note that the map
θ �→ (cos θ, sin θ) is a homeomorphism from [0, 2π) to S1. We define the
function gK(θ) of a planar convex body K by

(3.3) gK(θ) := ρK(po, (cos θ, sin θ)) for θ ∈ [0, 2π).

It is clear that the map θ �→ po+gK(θ)(cos θ, sin θ) is a homeomorphism
from [0, 2π) to ∂K, and θ �→ po+gL(θ)(cos θ, sin θ) is a homeomorphism
from [0, 2π) to ∂L.

Notice that the set {θ ∈ [0, 2π) : gK(θ) 
= gL(θ)} is open on R1,
because gK(0) = gL(0). By the structure of open sets on a line, the set
{θ ∈ [0, 2π) : gK(θ) 
= gL(θ)} is the union of at most countably many
disjoint open intervals (αi, βi). It is also easy to see that gK(αi) = gL(αi)
and gK(βi) = gL(βi).

Note that {x ∈ ∂K : ρL(po, x− po) 
= 1} is just the image set

{po + gK(θ)(cos θ, sin θ) : gK(θ) 
= gL(θ) and θ ∈ [0, 2π)},

and the map θ �→ gK(θ)(cos θ, sin θ) is a homeomorphism from [0, 2π)
to ∂K. Thus, we complete the proof of this lemma. q.e.d.
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Now we give the definition of an arc. Let K,L ∈ K2. Suppose that
K ∩ L has nonempty interior and ∂K ∩ ∂L 
= ∅. From Lemma 3.2, we
have

∂K\∂L =
⋃
i∈I

(ãibi)K .

Here I contains at most countably many elements, (ãibi)K are disjoint
connected open subsets (with respect to the relative topology in ∂K) of

∂K, and ai, bi ∈ ∂K ∩∂L are endpoints of (ãibi)K . Note ai, bi /∈ (ãibi)K .

We call (ãibi)K an arc on ∂K with respect to L (or simply arc), for

i ∈ I. The arc (ãibi)K is precisely the boundary part of K from ai to bi
counterclockwise. In addition, (ãibi)L, i ∈ I, are precisely all the arcs
on ∂L with respect to K.

Note that ∂K\∂L is the union of (∂K\L) and (∂K ∩ intL), two open
subsets (with respect to the relative topology in ∂K) of ∂K. Thus, an

arc (ãibi)K is either contained in (∂K\L) or contained in (∂K ∩ intL).

Lemma 3.3. Let K,L ∈ K2. Suppose Lr = r(K,L)L + t1 ⊂ K and

Lr 
= K, where t1 ∈ R2. Let (ãb)K ⊂ ∂K\Lr be an arc on ∂K with

respect to Lr. Suppose that (ãb)K is contained in l−(ab). Then, the arc

(ãb)K satisfies the following property (P):
(P): there are two support lines: l1 supports K at a, and l2 supports K
at b, such that l1 ∩ l2 ⊂ intl−(ab).

Proof. At the beginning, we will give an equivalent statement of prop-
erty (P).

Set u = (a − b)/‖a − b‖. Let v be the unit vector orthogonal to u
and such that l+(ab) = l+v,α for some α. Choose a Cartesian system,
such that v is the positive direction of the e1−axis, and u is the positive
direction of the e2−axis. Without loss of generality, suppose v = (1, 0)
and u = (0, 1).

For this u, let the overgraph and undergraph functions f(K;x),
g(K;x) and f(Lr;x), g(Lr;x) be defined by (2.6). Let [sK , tK ] denote
the projection of K on the e1−axis, and let [sLr

, tLr
] denote the pro-

jection of Lr on the e1−axis. Then f(K;x) and g(K;x) are concave on
[sK , tK ], and f(Lr;x), g(Lr;x) are concave on [sLr

, tLr
]. Here x should

be understood as a coordinate as well as a point on the e1−axis.
Denote by f ′−(K; ·) and g′−(K; ·) the left derivatives of f(K; ·) and

g(K; ·).
Note the following facts:
(1) if l1//l2 (i.e., with opposite outer normal vectors), then l1 ∩ l2 =

∅ ⊂ intl−(ab);
(2) a line l is tangent to the graph of f(K;x) at (0, f(K; 0)) if and

only if l supportsK at a, and a line l′ is tangent to the graph of −g(K;x)
at (0,−g(K; 0)) if and only if l′ supports K at b;
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(3) let λ1 be the slope of a support line of the graph of f(K;x)
at (0, f(K; 0)), and λ2 be the slope of a support line of the graph of
−g(K;x) at (0,−g(K; 0)), then

f ′+(K; 0) ≤ λ1 ≤ f ′−(K; 0), −g′−(K; 0) ≤ λ2 ≤ −g
′
+(K; 0).

From the facts above it is easy to see that property (P) is equivalent
to

(3.4) f ′−(K; 0) + g′−(K; 0) ≥ 0.

To prove this lemma, we suppose the contrary, i.e.,

f ′−(K; 0) + g′−(K; 0) < 0.

Since f ′−(K;x) and g′−(K;x) are left-continuous, there exists a constant
δ > 0, such that

f ′−(K;x) + g′−(K;x) < 0,

for all x ∈ [−δ, 0]. Let c1 = f ′−(K;−δ)+g′−(K;−δ) < 0, c2 = f ′−(K;−δ),
and c3 = g′−(K;−δ). Then, by the concavity of f(K; ·) and g(K; ·), we
have

(3.5) f(K;x− ε) ≥ f(K;x)− c2ε, and g(K;x− ε) ≥ g(K;x)− c3ε,

for all x ∈ [− δ
2 , tLr

] and ε < δ
2 .

Since (ãb)K ⊂ ∂K\L, and the functions f(K; ·), g(K; ·), f(Lr; ·), and
g(Lr; ·) are continuous, there exist m1,m2 > 0 such that
(3.6)
f(K;x−ε)−f(Lr;x) ≥ m1 > 0, and g(K;x−ε)−g(Lr ;x) ≥ m1 > 0,

for all x ∈ [sLr
,− δ

2 ] and ε < m2. Note: (ãb)K ⊂ ∂K\L implies sLr
> sK ,

and hence we can choose m2 sufficiently small so that x− ε ∈ [sK , tK ].
Note that c2 + c3 = c1 < 0. For 0 < ε < min{ δ2 ,

m1

|c3|−c1
,m2}, let η be

such that 0 < η < −c1ε. Then, by (3.5) and (3.6), we have

f(K;x−ε) ≥ f(K;x)−c1ε+c3ε > f(K;x)+c3ε+η ≥ f(Lr;x)+c3ε+η,

g(K;x − ε) ≥ g(K;x) − c3ε > g(Lr;x)− c3ε− η,

for all x ∈ [−1
2δ, tLr

]; and

f(K;x− ε) ≥ f(Lr;x) + c3ε+m1 − c3ε > f(Lr;x) + c3ε+ η,

g(K;x− ε) ≥ g(Lr;x)− c3ε+m1 + c3ε > g(Lr;x)− c3ε− η,

for all x ∈ [sLr
,− δ

2 ].
Note that f(K;x − ε) = f(K + εv;x), g(K;x − ε) = g(K + εv;x),

f(Lr;x) + c3ε + η = f(Lr + (c3ε + η)u;x), and g(Lr;x) − c3ε − η =
g(Lr + (c3ε + η)u;x). Then, the body L1 = Lr − εv + (c3ε + η)u is
contained in the interior of K. This leads to a contradiction, since a
larger homothetic copy of L1 will also be contained in K.

Therefore, we get (3.4). This means that the arc (ãb)K satisfies prop-
erty (P). q.e.d.
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Lemma 3.4. Let K,L ∈ K2 satisfy o ∈ K ∩ L and r(K,L) < 1.

Suppose K and L are at a dilation position. Let (ãb)K ⊂ ∂K\L be an

arc on ∂K with respect to L. Suppose that (ãb)K is contained in l−(ab).

Then, (ãb)K satisfies property (P).

Proof. Since K and L are at a dilation position, hence

Lr := r(K,L)L ⊂ K.

By the assumptions (ãb)K ⊂ ∂K\L and r(K,L) < 1, we see that

(ãb)K ⊂ ∂K\Lr. Since (ãb)K is a connected open subset (with respect

to the relative topology in ∂K) of ∂K, there exists an arc Ã on ∂K with

respect to Lr, such that (ãb)K ⊂ Ã. By Lemma 3.3, Ã satisfies property

(P). It follows from the convexity of K that the arc (ãb)K must satisfy
property (P), too. q.e.d.

Let K,L ∈ K2 with o ∈ K ∩ L. Suppose K and L are at a dilation
position and ∂K ∩ ∂L 
= ∅. Then K ∩L has nonempty interior. Denote

the arcs on ∂K with respect to L by (ãibi)K , i ∈ I, where I contains at
most countably many elements. For i ∈ I, we define the branch BK

i of

K with respect to the arc (ãibi)K by

BK
i := {λx : x ∈ cl(ãibi)K and 0 ≤ λ ≤ ρK(x)}.

We also define C(K,L) by

(3.7) C(K,L) := {λx : x ∈ ∂K ∩ ∂L and 0 ≤ λ ≤ ρK(x)}.

Since I contains at most countably many elements, we have

(3.8)
∑
i∈I

|BK
i |+ |C(K,L)| = |K|,

and

(3.9)
∑
i∈I

|BL
i |+ |C(K,L)| = |L|.

The following lemma is crucial in the proof of Theorem 1.

Lemma 3.5. Let K,L ∈ K2 satisfy o ∈ K ∩ L and r(K,L) < 1 <

R(K,L). Suppose K and L are at a dilation position. Let (ãibi)K ⊂

∂K\L and (ãibi)L ⊂ ∂L ∩ intK be arcs. Denote by BK
i the branch of

K with respect to (ãibi)K , and by BL
i the branch of L with respect to

(ãibi)L. Then, we have

(3.10) (2R(K,L) − 1)|BL
i | ≥ |B

K
i |.

Suppose (ãibi)K ⊂ l−(aibi). If equality holds in (3.10), then there are
parallel (i.e., with opposite outer normal vectors) support lines of K
at ai and bi, and there are no other support lines of K at ai and bi
satisfying property (P).
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Figure 1. The branches BK
i and BL

i in Lemma 3.5.

Proof. SetR = R(K,L). Suppose that (ãibi)K is contained in l−(aibi).
Then, by Lemma 3.4, there are two support lines: l1 supports K at ai,
and l2 supports K at bi, such that l1 ∩ l2 ⊂ intl−(aibi). The lines l1 and
l2 are either parallel or meeting at a point s ∈ l−(aibi). Let l3 be such
that o ∈ l3 and l3//l1//l2 in the first case, and let l3 = l(os) in the
second case. See Figure 1 for details. Note: our proof is feasible even
for the case ∠aiobi ≥ π.

Suppose K ⊂ l−1 ∩ l−2 . Set c̃i2d
i
2 = (R · (ãibi)L) ∩ l−1 ∩ l−2 , where ci2 ∈

l1, d
i
2 ∈ l2. Let c̃i1d

i
1 = 1

R
c̃i2d

i
2, then c̃i1d

i
1 ⊂ (ãibi)L. Define E(c̃i2d

i
2) and

E(c̃i1d
i
1) as follows:

E(c̃i2d
i
2) = {λx : x ∈ clc̃i2d

i
2 and λ ∈ [0, 1]},

E(c̃i1d
i
1) = {λx : x ∈ clc̃i1d

i
1 and λ ∈ [0, 1]}.

There are points ci4, d
i
4, c

i
3, d

i
3 ∈ l3 such that ci1 ∈ (ai, c

i
3), d

i
1 ∈ (bi, d

i
3),

[ci2, c
i
4]//[c

i
1, c

i
3], and [di2, d

i
4]//[d

i
1, d

i
3]. By the convexity of K and L, it

is clear that

(3.11) R · E(c̃i1d
i
1) = E(c̃i2d

i
2);

(3.12) R · [o, ci1, c
i
3] = [o, ci2, c

i
4], R · [o, di1, d

i
3] = [o, di2, d

i
4];

(3.13) E(c̃i1d
i
1) ∪ [o, ai, c

i
1] ∪ [o, bi, d

i
1] ⊂ BL

i ;

(3.14) BK
i ⊂ E(c̃i2d

i
2) ∪ [o, ai, c

i
2] ∪ [o, bi, d

i
2];

(3.15) E(c̃i1d
i
1) ⊂ [o, ci1, c

i
3] ∪ [o, di1, d

i
3];
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(3.16) E(c̃i2d
i
2) ⊂ [o, ci2, c

i
4] ∪ [o, di2, d

i
4].

Set V1 = |[o, ai, c
i
1]|, V2 = |[o, bi, d

i
1]|, V3 = |E(c̃i1d

i
1)|. By (3.11), (3.12),

(3.13), and (3.14), to prove (3.10), it suffices to prove

(2R − 1)(V1 + V2 + V3) ≥ R2V3 + |[o, ai, c
i
2]|+ |[o, bi, d

i
2]|.

Since ‖ci2‖ = R‖ci1‖ and ‖di2‖ = R‖di1‖, it suffices to show

(3.17) (R − 1)(V1 + V2) ≥ (R − 1)2V3.

Let ci5 ∈ [ci2, c
i
4] and di5 ∈ [di2, d

i
4] be such that [ci1, c

i
5]//[d

i
1, d

i
5]//l3.

(R−1)V1 is just the area of [ai, c
i
1, c

i
2], (R−1)V2 is the area of [bi, d

i
1, d

i
2].

By (3.15) and (3.16), (R − 1)2V3 is less than or equal to the sum of
|[ci2, c

i
1, c

i
5]| and |[d

i
2, d

i
1, d

i
5]|. Recall that l1, l2 and l3 are either parallel

or meeting at a common point s ∈ l−(aibi). Thus, we will deduce that

(3.18) |[ci2, c
i
1, c

i
5]| ≤ |[c

i
1, ai, c

i
2]|,

and

(3.19) |[di2, d
i
1, d

i
5]| ≤ |[d

i
1, bi, d

i
2]|.

In fact, if l1//l2//l3, then [ai, c
i
2, c

i
5, c

i
1] and [bi, d

i
2, d

i
5, d

i
1] are parallelo-

grams, and equalities hold in (3.18) and (3.19). If l1, l2 and l3 meet at
an s ∈ l−(aibi), then ‖c

i
2 − ci5‖ < ‖ai − ci1‖ and ‖di2 − di5‖ < ‖bi − di1‖,

and the inequalities (3.18) and (3.19) are strict.
Thus, (3.17) holds, and (3.10) is established. If equality holds in

(3.10), then (3.18) and (3.19) must be equalities, which implies l3//l1
and l3//l2, and there are no other support lines of K at ai and bi satis-
fying property (P). Therefore, we complete the proof of this lemma.

q.e.d.

To establish the equality condition, we need the following 2 lemmas.

Lemma 3.6. Let K ∈ K2. Suppose a1, a2, a3, a4 ∈ ∂K are dis-
tinct, and they locate counterclockwise on ∂K. If there is a pair of par-
allel support lines (i.e., with opposite outer normal vectors) of K at
a1, a2, and there is a pair of parallel support lines of K at a3, a4, then
[a1, a4], [a2, a3] ⊂ ∂K.

Proof. Denote the outer normal vectors of these support lines of K
at a1, a2, a3, a4 by (cos θ1, sin θ1), (cos θ2, sin θ2), (cos θ3, sin θ3), (cos θ4,
sin θ4) respectively.

Since a1, a2, b1, b2 are distinct and locate counterclockwise on the
boundary of the planar convex body K, we can assume

(3.20) 0 ≤ θ1 ≤ θ2 ≤ θ3 ≤ θ4 ≤ 2π.

Since (cos θ1, sin θ1) and (cos θ2, sin θ2) are opposite, we have θ2 =
π + θ1. Similarly, θ4 = π + θ3. Therefore, the inequality (3.20) becomes

0 ≤ θ1 ≤ π + θ1 ≤ θ3 ≤ π + θ3 ≤ 2π,
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which implies

θ1 = 0, θ2 = π = θ3, θ4 = 2π.

Thus, by the convexity of K, we get the desired result. q.e.d.

Lemma 3.7. [33] Let K1 and K2 be two convex bodies in Rn and
u ∈ Sn−1. For y ∈ Pu(Ki), i = 1, 2, write

φ+
i (y) = max{t : tu+ y ∈ Ki},

φ−i (y) = min{t : tu+ y ∈ Ki},

and

f(r) = |K1 ∩ (ru+K2)|,

where Pu(Ki) denotes the projection of Ki onto u⊥. Then, we have

f ′+(0) = H
n−1(C+

u (1, 2)) −Hn−1(C−u (2, 1)),

f ′−(0) = H
n−1(C−u (1, 2)) −Hn−1(C+

u (2, 1)),

where

C+
u (1, 2) = Pu(K1 ∩K2) ∩ {φ

+
1 > φ+

2 ≥ φ−1 > φ−2 },

C−u (1, 2) = Pu(K1 ∩K2) ∩ {φ
+
1 ≥ φ+

2 > φ−1 ≥ φ−2 },

and C±u (2, 1) are defined analogously.

Proof of Theorem 1. Set R1 = R(K,L), and R2 = R(L,K). If R1 ≤ 1
or R2 ≤ 1, then M(K,L) = min{|K|, |L|}, and (1.3) is just the classical
Brunn-Minkowski inequality (1.1). In this case, equality holds in (1.3)
if and only if the condition (ii) holds.

In the following, we may assume R1, R2 > 1. We claim that either
R1M(K,L) ≥ |K| or R2M(K,L) ≥ |L|.

By Lemma 2.1, we can assume without loss of generality that K and
L are at a dilation position. Denote the arcs on ∂K with respect to L

by (ãibi)K , i ∈ I, where I contains at most countably many elements.

Denote the branches of K with respect to the arc (ãibi)K by BK
i , and

the branches of L with respect to the arc (ãibi)L by BL
i . Let C(K,L) be

defined by (3.7). Note that (ãibi)K ⊂ ∂K\L is equivalent to BL
i ⊂ BK

i .
We define index sets I1 and I2 as follows:

I1 = {i : B
L
i ⊂ BK

i };

I2 = {j : B
K
j ⊂ BL

j }.

By Lemma 3.5, we have

(2R1 − 1)
∑
i∈I1

|BL
i | ≥

∑
i∈I1

|BK
i |,

and

(2R2 − 1)
∑
j∈I2

|BK
j | ≥

∑
j∈I2

|BL
j |.
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If
∑
i∈I1

|BL
i | ≥

∑
j∈I2

|BK
j |, then

(3.21) R2

∑
j∈I2

|BK
j |+ (R2 − 1)

∑
i∈I1

|BL
i | ≥

∑
j∈I2

|BL
j |.

Since
|K ∩ L| =

∑
i∈I1

|BL
i |+

∑
j∈I2

|BK
j |+ |C(K,L)|,

by (3.9), (3.21), and R2 > 1, we get

R2M(K,L) ≥ R2|K∩L| = R2

(∑
i∈I1

|BL
i |+

∑
j∈I2

|BK
j |+ |C(K,L)|

)
≥ |L|.

In a similar way, if
∑
j∈I2

|BK
j | ≥

∑
i∈I1

|BL
i |, then we get

R1M(K,L) ≥ |K|.

Therefore, we have proved either R1M(K,L) ≥ |K| or R2M(K,L) ≥
|L|. Note that r(K,L) = 1

R2
, and we have assumed R1, R2 > 1. Then,

either |K|

M(K,L) ∈ [r(K,L), R(K,L)] or M(K,L)
|L|

∈ [r(K,L), R(K,L)]. Sub-

stituting t = |K|

M(K,L) or t = M(K,L)
|L|

in (3.1), we obtain

(3.22) 2V (K,L) ≥M(K,L) +
|K||L|

M(K,L)
.

By the arithmetic-geometric mean inequality, we have

(3.23) |K|+ |L| ≥ 2|K|
1

2 |L|
1

2 .

This together with (3.22) and the fact that |K+L| = |K|+2V (K,L)+
|L|, gives (1.3).

Now we turn to the equality condition. Note that we have assumed
R1, R2 > 1, which implies K and L are not homethetic. When K and
L satisfy condition (i) in Theorem 1, it is easy to verify that equality
holds in (1.3).

Conversely, suppose equality holds in (1.3). Since (1.3) is established
by using (3.23) and (3.1), then |K| = |L|, and either |K|/M(K,L) = R1

or |L|/M(K,L) = R2. From the proof above, this implies that equality
holds in (3.10) for all branchesBK

i andBL
j , i ∈ I1 and j ∈ I2. By Lemma

3.5, there are parallel support lines of K at ai, bi for i ∈ I1, and parallel
support lines of L at aj, bj for j ∈ I2. Moreover, M(K,L) = |K∩L| and
|C(K,L)| = 0.

Let n1 be the number (the finiteness can be seen in the following) of
the arcs contained in ∂K\L, and n2 be the number of arcs contained
in ∂L\K. Then, n1, n2 ≥ 1. Otherwise, we will get L ⊂ K or K ⊂ L,
a contradiction. If n1 ≥ 3, then it follows from n2 ≥ 1 that there are

arcs (ã1b1)K and (ã2b2)K contained in ∂K\L, so that a1, b1, a2, b2 are
distinct. Suppose a1, b1, a2, b2 locate counterclockwise on ∂K. Then, it
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Figure 2. The cases n1 = n2 = 1 and n1 = 1, n2 = 2.

follows from Lemma 3.6 that [b1, a2], [a1, b2] ⊂ ∂K. Then, there will not

be any other arcs contained in ∂K\L except (ã1b1)K and (ã2b2)K , a
contradiction. So n1 ≤ 2. In a similar way, we deduce 1 ≤ n2 ≤ 2, too.
Therefore, there are only 4 cases: n1 = n2 = 2; n1 = n2 = 1; n1 = 1
and n2 = 2; n1 = 2 and n2 = 1.

When n1 = n2 = 2, suppose

(ã1b1)K , (ã2b2)K ⊂ ∂K\L, and (ã3b3)L, (ã4b4)L ⊂ ∂L\K.

If a1, b1, a2, b2 are not distinct, assume b1 = a2, a1 
= b2. By the neces-

sary condition of Lemma 3.5 for (ã1b1)K , (ã2b2)K respectively, it must
be the case that: there is a unique support line of K at b1 = a2, say
l1, and there is a support line of K through a1 and b2 parallel to l1.
Then, [a1, b2] ⊂ ∂K, and there is no more than one arc contained in
∂L\K, a contradiction. Thus, a1, b1, a2, b2 are distinct, and a3, b3, a4, b4
are distinct too. From Lemma 3.6, it follows that K ∩ L is a parallel-

ogram, and the arcs (ã1b1)L, (ã2b2)L, (ã3b3)K , (ã4b4)K are all line seg-
ments. Furthermore, equality in (3.17) implies that (3.14) and (3.16) are
also equalities for i = 1, 2, 3, 4. Then, K and L must be parallelograms
with parallel sides in this case.

When n1 = n2 = 1, suppose (ã1b1)K ⊂ ∂K\L and (ã2b2)L ⊂ ∂L\K.
Then, we have

∂K\((ã1b1)K ∪ (ã2b2)K) ⊂ ∂K ∩ ∂L.

These two arcs must have a common endpoint, and we suppose b1 = a2.
Otherwise, we will get |C(K,L)| > 0, a contradiction. |C(K,L)| =
0 also implies that [o, a1], [o, b2] ⊂ ∂K ∩ ∂L. Consider the branch
BK

1 , and use the same notation c12, d
1
2 as in Lemma 3.5 (let i = 1).

Equality in (3.17) implies that (3.13), (3.14), (3.15) and (3.16) are

all equalities. Then, (ã1b1)L is either a line segment or the union of

two line segments, and so is (ã2b2)K . Let v1 = (a1 − c12)/‖a1 − c12‖,
and substitute K1 = L, K2 = K into Lemma 3.7. The existence
of parallel support lines at a1, b1 implies Pv1(K ∩ L) = Pv1 [a1, b1].
Since [o, b2] ⊂ ∂K ∩ ∂L, we have Pv1 [a1, b1] ∩ {φ

−
2 ≥ φ−1 } = ∅. Thus,
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H1(C−v1(2, 1)) = 0. Since M(K,L) = |K ∩ L|, by Lemma 3.7, it must

hold that H1(C+
v1
(1, 2)) = 0. Note that {φ+

2 ≥ φ−1 > φ−2 } = Pv1 [a1, b1].

Then, C+
v1
(1, 2) = Pv1 [a1, b1]∩ {φ

+
1 > φ+

2 }, and hence H1(C+
v1
(1, 2)) = 0

if and only if (ã2b2)K is the line segment [a2, b2]. Similarly, we de-

duce that (ã1b1)L is the line segment [a1, b1]. If [o, a1] is not parallel
to [a2, b2], let v2 = −a1/‖a1‖. By a direct computation as above, we
will get H1(C−v2(2, 1)) = 0, and H1(C+

v2
(1, 2)) > 0, which contradicts

to M(K,L) = |K ∩ L|. Thus, [o, a1]//[a2, b2]. Similarly, [o, b2]//[a1, b1].
Therefore, K ∩ L is a parallelogram. Equality in (3.17) implies that
(3.14) and (3.16) are also equalities for i = 1, 2. Therefore, K and L are
parallelograms with parallel sides in this case.

When n1 = 1, n2 = 2, suppose the 3 arcs are (ã1b1)K ⊂ ∂K\L, and

(b̃1a2)L, (b̃2a1)L ⊂ ∂L\K. If a1, b1, a2, b2 are not distinct, assume with-
out loss of generality that a2 = b2, a1 
= b1. By the necessary condition
of Lemma 3.5 (consider the two branches of L), it must be the case that:
there is a unique support line of K at a2 = b2, say l′, there is a support
line of K through a1 and b1 parallel to l′. Then, [a1, b1], [a2, b2] ⊂ ∂L,
here [b1, a2] should be seen as a degenerate line segment. If a1, b1, a2, b2
are distinct, by Lemma 3.6, [a1, b1], [a2, b2] ⊂ ∂L, and (ã1b1)L is a line
segment. Consider the branch BK

1 , and use the same notation c12, d
1
2

as in Lemma 3.5 (for i = 1). Let v3 = (a1 − c12)/‖a1 − c12‖. By com-
puting H1(C+

v3
(1, 2)), H1(C−v3(2, 1)), and using Lemma 3.7, in a similar

way as in the case n1 = n2 = 1, we deduce that K and L must be
parallelograms with parallel sides.

The case n1 = 2, n2 = 1 is similar to the case n1 = 1, n2 = 2.
Therefore, we complete the proof of Theorem 1. q.e.d.

4. Connection of Dar’s conjecture and the

log-Brunn-Minkowski inequality

From Theorem 1, we find that the equality condition of Dar’s conjec-
ture coincides with that of the log-Brunn-Minkowski inequality. Actu-
ally, we have the following proposition.

Proposition 4.1. Let K,L ∈ K2 with o ∈ K ∩ L and |K| = |L|. If
K and L are at a dilation position, then VK = VL if and only if

(4.1) |K + L|
1

2 = M(K,L)
1

2 +
|K|

1

2 |L|
1

2

M(K,L)
1

2

.

We will show this by establishing Lemma 4.2, which is an extension
of [6, Lemma 5.1]. However, the equality case needs different steps.
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Lemma 4.2. Let K,L ∈ K2 with o ∈ K ∩ L. Suppose K and L are
at a dilation position. Then,

(4.2)

∫
S1

hK
hL

dVK ≤
1

2
·
|K|

|L|

∫
S1

hLdSK ,

with equality if and only if K and L are dilates, or K and L are paral-
lelograms with parallel sides.

Note that the set {hK = 0} = {hL = 0} is of measure 0, with respect
to the measure VK . Thus, the integral in (4.2) is well-defined.

Proof. By Lemma 2.1, either o ∈ int(K ∩L) or o ∈ ∂K ∩ ∂L. We will
consider these cases simultaneously.

Since r(K,L)L ⊂ K ⊂ R(K,L)L, we see that hK(u) = 0 if and only
if hL(u) = 0. Define the set ω by

ω := {u ∈ S1 : hK(u) = 0} = {u ∈ S1 : hL(u) = 0}.

Then, we have

r(K,L) ≤
hK(u)

hL(u)
≤ R(K,L),

for all u ∈ S1\ω. Thus, by Lemma 3.1, for u ∈ S1\ω, we get

|K| − 2
hK(u)

hL(u)
V (K,L) +

(hK(u)

hL(u)

)2
|L| ≤ 0.

Integrating both sides of this, with respect to the measure hLdSK , notic-
ing that the set ω is of measure 0 (whenever the respective measure is
hLdSK or dVK), we obtain

0 ≥

∫
S1

(
|K| − 2

hK(u)

hL(u)
V (K,L) +

(hK(u)

hL(u)

)2
|L|

)
hL(u)dSK(u)

= −2|K|V (K,L) + 2|L|

∫
S1

hK(u)

hL(u)
dVK(u),

which implies (4.2).
If K and L are dilates or parallelograms with parallel sides, then it

is easy to see that equality holds in (4.2).
Now suppose equality holds in (4.2). Then,

(4.3)

|K| − 2
hK(u)

hL(u)
V (K,L) +

(hK(u)

hL(u)

)2
|L| = 0, for all u ∈ suppSK\ω.

By Lemma 3.1, we have

(4.4)
hK(u)

hL(u)
∈ {r(K,L), R(K,L)} for all u ∈ suppSK\ω.

Since K is a convex body, ω must be contained in an open subset of a
half-sphere, and suppSK cannot be concentrated on a half-sphere. Then
suppSK\ω 
= ∅. Without loss of generality, we may assume that there
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exists a u0 ∈ suppSK\ω, such that hK(u0) = r(K,L)hL(u0). From (4.3)
and the equality conditions of Lemma 3.1 we conclude that K must
be a dilation of the Minkowski sum of L and a line segment. Thus,
K = sL+ I1 with s > 0, where I1 is a line segment. In fact, it can be
seen from the proof of Lemma 3.1 or from the following discussion that
s = r(K,L).

If s > r(K,L), then a larger homothetic copy of L will be contained
in K, a contradiction. Thus, s ≤ r(K,L). Since r(K,L)L ⊂ K, we have

shL(u) + hI1(u) = hK(u) ≥ r(K,L)hL(u) for all u ∈ S1.

Then,

hI1(u) ≥ (r(K,L) − s)hL(u) ≥ 0 for all u ∈ S1.

Thus, o ∈ I1. If s < r(K,L), then hI1 > 0, which is impossible because
I1 is a line segment. Therefore,

(4.5) hK(u) = r(K,L)hL(u) + hI1(u) for all u ∈ S1,

with o ∈ I1.
Note that K and L are dilates if and only if I1 = {o}. Suppose

K and L are not dilates, then I1 is nondegenerate. From (4.5) and
o ∈ I1, it follows that the set Ω := {u ∈ S1 : hK(u) = r(K,L)hL(u)} is
contained in a half-sphere. Since K has interior points, suppSK cannot
be concentrated on a half-sphere. This, together with the fact that Ω is
contained in a half-sphere, proves that suppSK\Ω must contain at least
one unit vector u1. Then, from (4.4) and the fact ω ⊂ Ω, we conclude
that hK(u1)/hL(u1) = R(K,L). By the same argument above (4.5) we
deduce that

L =
1

R(K,L)
K + I2,

with o ∈ I2. This together with (4.5) implies that

K =
r(K,L)

R(K,L)
K + r(K,L)I2 + I1.

Note that K and L are not dilates if and only if r(K,L)/R(K,L) < 1.
Thus, we have

K =
1

1− r(K,L)/R(K,L)

(
r(K,L)I2 + I1

)
,

which implies that K is a parallelogram with sides parallel to I1 and I2.
Similarly, we have

L =
1

1− r(K,L)/R(K,L)

( 1

R(K,L)
I1 + I2

)
,

which implies that L is also a parallelogram with sides parallel to I1
and I2. q.e.d.
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Proof of Proposition 4.1. Suppose K and L are at a dilation position,
and |K| = |L|. Note that the set {hK = 0} = {hL = 0} is of measure
0, whenever the respective measure is VK or VL. If VK = VL, then, by
Lemma 4.2, we have

1

2

∫
S1

hLdSK =

∫
S1

hL
hK

dVK

=

∫
S1

hL
hK

dVL

≤
1

2

∫
S1

hKdSL

=
1

2

∫
S1

hLdSK .

Then, there is equality in (4.2), and hence K = L or K and L are
parallelograms with parallel sides and |K| = |L|. This implies (4.1).

By Theorem 1 and the fact that |K| = |L|, if (4.1) holds, then either
K and L are parallelograms with parallel sides or K = L, which implies
VK = VL. q.e.d.

There might be a direct proof of this equivalence that works without
the help of Lemma 4.2, and then it might be a new approach to consider
the uniqueness of the logarithmic Minkowski problem.

5. Properties of dilation position and equivalence of (1.9)

and (1.10)

In this section, we prove several properties of dilation position, and
show the equivalence of (1.9) and (1.10).

The following lemma is a useful tool when dealing with the dilation
position.

Lemma 5.1. Let K,L ∈ Kn.
(i) Suppose r(K,L)L is the biggest homothetic copy of L contained in
K. Then, there are u1, u2, ..., un+1 ∈ Sn−1 with o ∈ [u1, u2, ..., un+1],
such that

hK(ui) = r(K,L)hL(ui),

for i = 1, 2, ..., n + 1. Here u1, u2, ..., un+1 may be distinct or not. Fur-
thermore, there are xi ∈ ∂K ∩ ∂

(
r(K,L)L

)
, so that

hK(ui) = r(K,L)hL(ui) = xi · ui,

for i = 1, 2, ..., n + 1.

(ii) Suppose there is an s > 0 so that sL ⊂ K, and there are u1, u2, ...,
un+1 ∈ Sn−1 with o ∈ [u1, u2, ..., un+1], such that

hK(ui) = shL(ui),
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for i = 1, 2, ..., n + 1. Then, sL is the biggest homothetic copy of L
contained in K, i.e., s = r(K,L).

Proof. (i) See [35, Page 414], it is easy to conclude that o ∈ conv{u ∈
Sn−1 : hK(u) = r(K,L)hL(u)}. Then, by Carathéodory’s theorem (see
[35, Theorem 1.1.4]), o is the convex combination of n+1 or fewer points
of the set {u ∈ Sn−1 : hK(u) = r(K,L)hL(u)}, which implies the first
result.

Then, there are x1, x2, ..., xn+1 ∈ ∂
(
r(K,L)L

)
, so that

xi · ui = r(K,L)hL(ui),

for i = 1, 2, ..., n+1. Since r(K,L)L ⊂ K, we see that xi ∈ K. This and
xi · ui = hK(ui) imply xi ∈ ∂K.

(ii) Suppose sL ⊂ K, and there are u1, u2, ..., un+1 ∈ Sn−1 with
o ∈ [u1, u2, ..., un+1], such that

hK(ui) = shL(ui),

for i = 1, 2, ..., n + 1. If there is an s′ > s, and a t ∈ Rn, so that
s′L+ t ⊂ K, then

(5.1) s′hL(ui) + t · ui ≤ hK(ui) = shL(ui),

for i = 1, 2, ..., n + 1. Since o ∈ [u1, u2, ..., un+1], there are λi ∈ [0, 1], so

that
n+1∑
i=1

λi = 1 and

n+1∑
i=1

λiui = o.

This and (5.1) together with the sub-additivity of support function give

0 = (s′ − s)hL(0) ≤ (s′ − s)
n+1∑
i=1

λihL(ui) ≤ −t ·
n+1∑
i=1

λiui = 0.

Then, hL(ui) = 0 for i = 1, 2, ..., n+1. Since o ∈ [u1, u2, ..., un+1], L will
not contain an interior point, a contradiction.

Thus, sL is the biggest homothetic copy of L contained in K. q.e.d.

The next lemma is important.

Lemma 5.2. Let K,L ∈ Kn with o ∈ K∩L. Suppose K and L are at
a dilation position. If s > 0, then K and L+ sK are also at a dilation
position.

Proof. Set r = r(K,L) and R = R(K,L). Since K and L are at a
dilation position. we have

rL ⊂ K ⊂ RL.
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Then it is trivial that

r

1 + sr
(L+ sK) ⊂ K ⊂

R

1 + sR
(L+ sK).

We remain to show that r(K,L+sK) = r/(1+sr) and R(K,L+sK) =
R/(1 + sR). If there is a bigger homothetic copy of L + sK contained
in K, i.e.,

r′(L+ sK) + t0 ⊂ K,

with r′ > r/(1 + sr) and t0 ∈ Rn, then

r′hL(u) + t0 · u ≤ (1− sr′)hK(u) for all u ∈ Sn−1.

The case 1 − sr′ ≤ 0 is impossible, because hK ≥ 0, L has an interior
point and t0 is a fixed point. So 1− sr′ > 0. Then a bigger homothetic
copy of L will be contained in K, because r′/(1 − sr′) > r. This is a
contradiction. Thus r(K,L+ sK) = r/(1 + sr).

If there is a smaller homothetic copy of L+ sK containing K, i.e.,

R′(L+ sK) + t1 ⊃ K,

with 0 < R′ < R/(1 + sR) and t1 ∈ Rn, then

R′hL(u) + t1 · u ≥ (1− sR′)hK(u) for all u ∈ Sn−1.

Since 0 < R′ < R/(1+sR), we have (1−sR′)R > R′ > 0, and hence (1−
sR′) > 0. Then R′/(1−sR′) < R, and (R′/(1−sR′))L+(1/(1−sR′))t1
contains K, a contradiction. Therefore, R(K,L + sK) = R/(1 + sR),
and we complete the proof of this lemma. q.e.d.

The following lemma is needed, and is natural.

Lemma 5.3. Let K,L ∈ Kn with o ∈ K ∩ L. If K and L are at a
dilation position, then (1 − λ) ·K +o λ · L and K are also at a dilation
position, for each λ ∈ [0, 1].

Proof. Set r = r(K,L), R = R(K,L), and Qλ = (1−λ)·K+oλ·L. By
Lemma 5.1, there are u1, u2, ..., un+1 ∈ Sn−1 with o ∈ [u1, u2, ..., un+1],
and there are x1, x2, ..., xn+1 ∈ ∂K ∩ ∂

(
r(K,L)L

)
, so that

xi · ui = rhL(ui),

for i = 1, 2, ..., n + 1.
Since rL ⊂ K ⊂ RL, we have

R−λhK ≤ h1−λK hλL ≤ r−λhK .

By the definition (1.8),

Qλ =
⋂

u∈Sn−1

{x ∈ Rn : x · u ≤ hK(u)1−λhL(u)
λ},

we have

(5.2) R−λK ⊂ Qλ ⊂ r−λK.
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Now xi ∈ K ∩
(
r(K,L)L

)
implies r−λxi · u ≤ hK(u)1−λhL(u)

λ, which

means r−λxi ∈ Qλ for i = 1, 2, ..., n + 1. This and the fact xi · ui =
rhL(ui) = hK(ui) give

hQλ
(ui) ≥ r−λxi · ui = hK(ui)

1−λhL(ui)
λ ≥ hQλ

(ui),

for i = 1, 2, ..., n + 1. Since o ∈ [u1, u2, ..., un+1], by Lemma 5.1, we see
that rλQλ is the biggest homothetic copy of Qλ contained in K.

Similarly, noticing that R−1K is the biggest homothetic copy of K
contained in L, we deduce that R−λK is the biggest homothetic copy
of K contained in Qλ. Therefore, (1− λ) ·K +o λ · L and K are also at
a dilation position. q.e.d.

Lemma 5.4. Let K,L ∈ Kn with o ∈ K ∩ L. If K and L are at a
dilation position, then

lim
λ→0+

|(1− λ) ·K +o λ · L| − |K|

λ
= n

∫
Sn−1

log
hL
hK

dVK .

Note: the set {hK = 0} = {hL = 0} is of measure 0, with respect to
the measure VK . The proof of this lemma is just an examination of the
proof of [27, Lemma 1], as long as (1 − λ) ·K +o λ · L → K as λ → 0,
which is guaranteed by Lemma 2.2. So we omit it here.

The following lemma shows the equivalence of the log-Brunn-Min-
kowski inequality (1.9) and the log-Minkowski inequality (1.10).

Lemma 5.5. The log-Brunn-Minkowski inequality (1.9) and the log-
Minkowski inequality (1.10) are equivalent.

With the aid of Lemmas 5.3 and 5.4, we are able to use the idea in [6]
to prove this lemma. For the sake of completeness we present the proof
here.

Proof. Let K,L ∈ K2 with o ∈ K ∩ L, and suppose K and L are at
a dilation position. Set Qλ = (1− λ) ·K +o λ · L, for λ ∈ [0, 1].

First suppose that we have the log-Minkowski inequality (1.10) for
each pair of convex bodies at a dilation position. Now Lemma 5.3 tells
us Qλ and K are at a dilation position, and Qλ and L are also at a
dilation position. Then the set {hK = 0} = {hL = 0} = {hQλ

= 0} is of

measure 0, with respect to VQλ
. By this, and the fact that hQλ

= h1−λK hλL
a.e. with respect to SQλ

, we know that hQλ
= h1−λK hλL a.e. with respect

to VQλ
. Then, we have

0 =
1

|Qλ|

∫
S1

log
h1−λK hλL
hQλ

dVQλ

= (1− λ)
1

|Qλ|

∫
S1

log
hK
hQλ

dVQλ
+ λ

1

|Qλ|

∫
S1

log
hL
hQλ

dVQλ

≥ (1− λ)
1

2
log

|K|

|Qλ|
+ λ

1

2
log

|L|

|Qλ|
(5.3)
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=
1

2
log

|K|1−λ|L|λ

|Qλ|
.

This gives the log-Brunn-Minkowski inequality (1.9).
Suppose now that we have the log-Brunn-Minkowski inequality (1.9)

for K,L and λ ∈ [0, 1]. Lemma 5.4 shows

(5.4) lim
λ→0+

|Qλ| − |K|

λ
= 2

∫
Sn−1

log
hL
hK

dVK .

The log-Brunn-Minkowski inequality (1.9) says that λ �→ log |Qλ| is a
concave function, and hence

lim
λ→0+

log |Qλ| − log |K|

λ
≥ log |Q1| − log |Q0| = log |L| − log |K|.

This and (5.4) yield the log-Minkowski inequality (1.10). q.e.d.

6. The general log-Minkowski inequality under an

assumption

From now on, we shall make use of the notations of RK , rK , and FK .
Let K ∈ K2 with o ∈ K. We always set

RK = max
u∈S1

hK(u) and rK = min
u∈S1

hK(u).

In addition, suppose |K| = 1. Define FK as a set of planar convex bodies
by

FK := {Q ∈ K2 : Q and K are at a dilation position, and |Q| = 1}.

Consider the minimization problem,

(6.1) inf

∫
S1

log hQdVK , Q ∈ FK .

By the argument after Theorem 2, even for the case o ∈ ∂K ∩ ∂L, the
integral in (6.1) is well defined.

Our main purpose in this section is to establish the following version
of the general log-Minkowski inequality.

Theorem 6.1. Let K ∈ K2
o. Suppose the cone-volume measure VK

satisfies the strict subspace concentration inequality. If K and L are at
a dilation position, then

(6.2)

∫
S1

log
hL
hK

dVK ≥
|K|

2
log

|L|

|K|
.

Equality holds if and only if K and L are dilates.

The following lemma shows that the set FK is closed.

Lemma 6.2. Let K ∈ K2 with o ∈ K. Suppose Lk ∈ FK , and Lk →
L0 with respect to the Hausdorff distance as k →∞. Then L0 ∈ FK .
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Proof. Since |Lk| = 1, and the volume is continuous with respect to
the Hausdorff distance, we have |L0| = 1. It remains to prove that K
and L0 are at a dilation position.

By Lemma 5.1, there are 3 sequences of vectors {ui,k} ⊂ S1, i =
1, 2, 3, such that o ∈ [u1,k, u2,k, u3,k], and

(6.3) R(Lk,K)hK(ui,k) = hLk
(ui,k),

for i = 1, 2, 3 and k ∈ N. Since S1 is compact, and a subsequence of
{Lk} is always convergent, we may assume that

(6.4) lim
k→∞

ui,k =: ui ∈ S1,

for i = 1, 2, 3. Then o ∈ [u1, u2, u3]. This and the fact that K contains
an interior point show that there is a ui satisfying hK(ui) 
= 0. We may
assume

(6.5) hK(u1) 
= 0.

This and (6.4) imply hK(u1,k) 
= 0 for sufficiently large k.
Now, from (6.3), (6.5) and Lk → L0, it follows that {R(Lk,K)}

converges to an R0 > 0, and

R0 := lim
k→∞

R(Lk,K) = lim
k→∞

hLk
(u1,k)

hK(u1,k)
=

hL0
(u1)

hK(u1)
.

Then, Lk ⊂ R(Lk,K)K and (6.3) show that

L0 ⊂ R0K,

and

R0hK(ui) = hL0
(ui),

for i = 1, 2, 3. Since o ∈ [u1, u2, u3], it follows from Lemma 5.1 that
(1/R0)L0 is the biggest homothetic copy of L0 contained in K.

Similarly, we have that {r(Lk,K)} converges to a number r0 > 0, and
r0K is the biggest homothetic copy of K contained in L0. Therefore, K
and L0 are at a dilation position. q.e.d.

Lemma 6.3. Let K ∈ K2 with |K| = 1 and o ∈ K. If L0 ∈ FK is a
minimizer of the problem (6.1), then either L0 = K or L0 and K are
parallelograms with parallel sides.

Proof. By Lemma 5.2, (L0 + sK)/|L0 + sK|
1

2 ∈ FK , and by the
assumption that L0 is a minimizer of the problem (6.1), we have∫

S1

log
hL0

+ shK

|L0 + sK|
1

2

dVK −

∫
S1

log hL0
dVK ≥ 0,

for all s > 0. Then, recalling |K| = 1, we have

(6.6)

∫
S1

[log(hL0
+ shK)− log hL0

]dVK ≥
1

2
log |L0 + sK|
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It is clear that (log(hL0
+ shK)− log hL0

)/s→ hK/hL0
a.e. as s→ 0+,

and |(log(hL0
+ shK) − log hL0

)/s| is dominated by hK/hL0
, which is

integrable on S1 with respect to the measure VK . By the dominated
convergence theorem, we know that the right derivative of the left side
of (6.6) equals ∫

S1

hK
hL0

dVK .

One the other hand, by (2.2), we have

lim
s→0+

|L0 + sK| − |L0|

s
= 2V (L0,K) = 2V (K,L0) =

∫
S1

hL0
dSK .

Thus, by taking right derivatives of both sides of (6.6) at s = 0, we have∫
S1

hK
hL0

dVK ≥
1

2

∫
S1

hL0
dSK .

But Lemma 4.2 tells us∫
S1

hK
hL0

dVK ≤
1

2

∫
S1

hL0
dSK .

Then, equality holds in (4.2). This and |K| = |L0| = 1 show that either
L0 = K or L0 and K are parallelograms with parallel sides. q.e.d.

Lemma 6.4. Let K ∈ K2
o. Suppose K and L are at a dilation posi-

tion. Then, there exists a u1 ∈ S1 such that

(6.7) r(L,K) =
hL(u1)

hK(u1)
≤

hL(−u1)

hK(−u1)
≤ 2cK · r(L,K).

Here cK = RK/rK is a constant depending only on K.

Proof. By Lemma 5.1, there are unit vectors v1, v2, v3 (they may be
distinct or not) such that o ∈ [v1, v2, v3] and

hL(v1)

hK(v1)
=

hL(v2)

hK(v2)
=

hL(v3)

hK(v3)
= r(L,K).

Then, there are λ1, λ2, λ3 ∈ [0, 1], so that λ1 + λ2 + λ3 = 1 and
3∑

i=1
λivi = o. Then, there exists a λi ≥

1
3 , say, λ1. It follows that

(6.8)
λ2

λ1
+

λ3

λ1
=

1− λ1

λ1
≤ 2.

We may write

−v1 =
λ2

λ1
v2 +

λ3

λ1
v3.

Then, by the sub-additivity of support functions and (6.8), we have

hL(−v1)

hK(−v1)
≤

λ2

λ1
hL(v2) +

λ3

λ1
hL(v3)

rK
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= r(L,K)
λ2

λ1
hK(v2) +

λ3

λ1
hK(v3)

rK
≤ 2cK · r(L,K).

Let u1 = v1 and we are done. q.e.d.

Lemma 6.5. Let K ∈ K2
o. Suppose its cone-volume measure VK satis-

fies the strict subspace concentration inequality. Let {Lk} be a sequence
of planar convex bodies in FK . If {Lk} is not bounded, then the sequence∫

S1

log hLk
dVK

is not bounded from above.

Proof. Since K ∈ K2
o is fixed, from (2.3) and (2.4), and the facts that

{Lk} is unbounded and |Lk| = 1, it is easy to see that

lim inf
k→∞

r(Lk,K) = 0, and lim sup
k→∞

R(Lk,K) = +∞.

Therefore, there is a subsequence (also denoted by {Lk}) satisfying

(6.9) lim
k→∞

r(Lk,K) = 0, and lim
k→∞

R(Lk,K) = +∞.

By Lemma 6.4, there is a sequence {u1,k} ⊂ S1 satisfying

(6.10) r(Lk,K) =
hLk

(u1,k)

hK(u1,k)
≤

hLk
(−u1,k)

hK(−u1,k)
≤ 2cK · r(Lk,K),

where cK = RK/rK depends only on the convex body K. For each
u1,k ∈ S1, denote by u2,k ∈ S1 the unit vector that rotates u1,k clockwise
by 90◦.

Since S1 is compact, {u1,k} has a convergent subsequence. Thus, we
may assume {u1,k} itself is convergent, and

(6.11) lim
k→∞

u1,k = u1 ∈ S1.

Since a subsequence of {Lk} will also satisfy (6.9), we have found a
subsequence satisfying all of (6.9), (6.10), and (6.11). It follows that
lim
k→∞

u2,k = u2 ∈ S1, where u2 is the unit vector that rotates u1 clockwise

by 90◦.
Set h±1,k = hLk

(±u1,k), and h±2,k = hLk
(±u2,k). Clearly, (6.10)

implies that

(6.12) min{h1,k, h−1,k} ≥ c0(h1,k + h−1,k),

where c0 is a constant depending only on the convex body K.
Then, by (6.10) and (6.9), we have

(6.13) lim
k→∞

h1,k = lim
k→∞

h−1,k = 0.
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From Lemma 5.1 we know that there are unit vectors v1,k and v2,k such
that

hLk
(v1,k)

hK(v1,k)
=

hLk
(v2,k)

hK(v2,k)
= R(Lk,K),

with v1,k · u2,k ≥ 0 and v2,k · u2,k ≤ 0. This implies

lim
k→∞

hLk
(v1,k) = lim

k→∞
R(Lk,K)hK(v1,k) ≥ rK lim

k→∞
R(Lk,K) = +∞.

From (6.9) and (6.10) we conclude that v1,k ·u2,k > 0 and v2,k ·u2,k < 0
for all sufficiently large k. If v1,k · u1,k ≥ 0, then we write v1,k = (v1,k ·
u1,k)u1,k + (v1,k · u2,k)u2,k. By the subadditivity of support functions,
we have

h2,k = hLk
(u2,k) ≥

hLk
(v1,k)− (v1,k · u1,k)hLk

(u1,k)

v1,k · u2,k
≥

1

2
hLk

(v1,k),

for all sufficiently large k. The last inequality holds because
lim
k→∞

hLk
(u1,k) = 0 and lim

k→∞
hLk

(v1,k) = +∞. Then, we have

(6.14) h2,k ≥
1

2
hLk

(v1,k) =
1

2
R(Lk,K)hK(v1,k) ≥

1

2
rKR(Lk,K),

for all sufficiently large k. Similarly, when v1,k · (−u1,k) ≥ 0, we also
have (6.14).

In a similar way, we have

(6.15) h−2,k ≥
1

2
hLk

(v2,k) =
1

2
R(Lk,K)hK(v2,k) ≥

1

2
rKR(Lk,K),

for all sufficiently large k, and then

lim
k→∞

h2,k = lim
k→∞

h−2,k = +∞.

From (2.3), (6.14) and (6.15), it is obvious that for all sufficiently
large k,

(6.16) min{h2,k, h−2,k} ≥ c1(h2,k + h−2,k),

where c1 is a constant depending only on the convex body K.
For δ ∈ (0, 25 ), let Uδ be the neighborhood of {±u1} on S1 defined by

Uδ := {u ∈ S1 : |u · u1| > 1− δ}.

Let
V 1
δ := {u ∈ S1 : |u · u1| ≤ 1− δ and u · u2 ≥ 0},

and
V 2
δ := {u ∈ S1 : |u · u1| ≤ 1− δ and u · u2 ≤ 0}.

Then, Vδ := V 1
δ ∪ V 2

δ is the complement of Uδ.
Since VK satisfies the strict subspace concentration inequality,

VK({±u1}) <
1
2 . When δ is decreasing, the Uδ are also decreasing (with

respect to set inclusion) and have a limit of {±u1},

lim
δ→0+

VK(Uδ) = VK({±u1}).
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Then, there is a δ0 ∈ (0, 25) such that

VK(Uδ0) <
1

2
,

and then,

VK(Vδ0) = VK(S1)− VK(Uδ0) >
1

2
.

By (6.11), we have |ui,k − ui| < δ0 for all sufficiently large k, where
i = 1, 2. Note that |u · u1|

2 + |u · u2|
2 = 1. Thus, for u ∈ V 1

δ0
, we have

u · u2 ≥ (1− (1− δ0)
2)

1

2 > 2δ0,

where the last inequality follows from the fact that δ0 < 2
5 . This shows

that

u · u2,k = u · u2 − u · (u2 − u2,k)

≥ u · u2 − |u2,k − u2|

≥ 2δ0 − δ0

= δ0,(6.17)

for all sufficiently large k. For u ∈ V 2
δ0
, we have

u · (−u2) ≥ (1− (1− δ0)
2)

1

2 > 2δ0,

which shows that

u · (−u2,k) = u · (−u2)− u · (u2,k − u2)

≥ u · (−u2)− |u2,k − u2|

≥ 2δ0 − δ0

= δ0,(6.18)

for all sufficiently large k.
By (6.10), for u ∈ Uδ0 and sufficiently large k, we have

(6.19) hLk
(u) ≥

1

cK
hLk

(u1,k)
hK(u)

hK(u1,k)
≥

1

c2K
min{h1,k, h−1,k}.

Let xk ∈ Lk and yk ∈ Lk be such that

hLk
(u2,k) = xk · u2,k, and hLk

(−u2,k) = yk · (−u2,k).

By (6.17) and (6.13), for u ∈ V 1
δ0

and sufficiently large k, we have

hLk
(u) ≥ xk ·

(
(u · u2,k)u2,k + (u · u1,k)u1,k

)
≥ δ0hLk

(u2,k)−max{h1,k, h−1,k}

≥
δ0
2
h2,k

≥
δ0
2
min{h2,k, h−2,k}.(6.20)
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By (6.18) and (6.13), for u ∈ V 2
δ0

and sufficiently large k, we have

hLk
(u) ≥ yk ·

(
(u · (−u2,k))(−u2,k) + (u · u1,k)u1,k

)
≥ δ0hLk

(−u2,k)−max{h1,k, h−1,k}

≥
δ0
2
h−2,k

≥
δ0
2
min{h2,k, h−2,k}.(6.21)

Therefore, by (6.19), (6.20), (6.21), and then (6.12), (6.16), we have∫
S1

log hLk
(u)dVK(u) ≥ VK(Uδ0) log

(
1

c2K
min{h1,k, h−1,k}

)
+ VK(Vδ0) log

(
δ0
2
min{h2,k, h−2,k}

)
≥ VK(Uδ0) log

(
c0
c2K

(h1,k + h−1,k)

)
+ VK(Vδ0) log

(
δ0
2
(h2,k + h−2,k)

)
≥ (VK(Vδ0)− VK(Uδ0)) log(h2,k + h−2,k)

+ VK(Uδ0) log[(h1,k + h−1,k)(h2,k + h−2,k)]

+ VK(Uδ0) log

(
c0
c2K

)
+ VK(Vδ0) log

(
δ0
2

)
.(6.22)

Since Lk is contained in the parallelogram⋂
i=1,2

{x : x · ui,k ≤ hi,k, and x · u−i,k ≤ h−i,k},

we deduce

(h1,k + h−1,k)(h2,k + h−2,k) ≥ |Lk| = 1.

This and (6.22) together with the fact lim
k→∞

(h2,k + h−2,k) = +∞ imply

the desired result. q.e.d.

Proof of Theorem 6.1. Firstly, assume |K| = |L| = 1. Let {Lk} be a
minimizing sequence of the minimization problem (6.1), i.e., a sequence
of bodies in FK so that

∫
S1 log hLk

dVK tends to the infimum (which
may be −∞).

By Lemma 6.5, {Lk} is bounded, since otherwise
∫
S1 log hLk

dVK will
be unbounded from above, which is contradictory to the fact that {Lk}
is a minimizing sequence. Then there is a subsequence of {Lk} converg-
ing to L0, and Lemma 6.2 implies L0 ∈ FK . Thus, L0 is a minimizer of
the problem (6.1). The fact that VK satisfies the strict subspace con-
centration inequality implies that K is not a parallelogram. Thus, by
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Lemma 6.3, we deduce L0 = K. Then, we have∫
S1

log
hL
hK

dVK ≥

∫
S1

log
hK
hK

dVK = 0.

Secondly, for arbitrary K and L, notice that V
K/|K|

1

2

= VK/|K| and

L/|L|
1

2 ∈ F
K/|K|

1

2

. By the argument above, we have

∫
S1

log
h
L/|L|

1

2

h
K/|K|

1

2

dV
K/|K|

1

2

≥ 0,

which implies the inequality (6.2).
If K and L are dilates, then it is easy to see that the equality in (6.2)

holds.
If there is equality in (6.2), then the convex body L/|L|

1

2 must be a

minimizer of the problem (6.1) for K/|K|
1

2 . From Lemma 6.3 and the
fact K is not a parallelogram, it follows immediately that K and L are
dilates. q.e.d.

For the case that K is a parallelogram (not necessarily o-symmetric)
with o in its interior, we can also use a similar method and consider
several cases to prove that the inequality (6.2) holds. However, such a
proof will be complicated, and it can be replaced by the approximation
lemmas in the next section. So we omit it.

7. Approximation process

We say a convex body K is strictly convex, if its boundary does not
contain a line segment. If K ∈ K2

o is strictly convex, then it is easy to
see that its cone-volume measure VK always satisfies the strict subspace
concentration inequality.

Given a pair of convex bodies that are at a dilation position. The
main goal of this section is to construct a new pair of convex bodies,
so that one of them is strictly convex, and that they satisfy some other
desired properties. Before this, we give a lemma concerning concave
functions. A concave function f is called strictly concave on an interval
[a, b], if

f((1− t)x+ ty) > (1− t)f(x) + tf(y),

for t ∈ (0, 1), x, y ∈ [a, b], and x 
= y.

Lemma 7.1. Let f1, f2 be nonnegative concave functions defined on
[b1, b2].
(i) Suppose f2 > f1 on [b1, b2]. Then, there is a strictly concave function
g defined on [b1, b2] so that g(b1) = f1(b1), g(b2) = f2(b2), and f1 ≤ g ≤
f2.
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(ii) Let b1 < b0 < b2. Suppose f2 > f1 on [b1, b2], and

(7.1) f2(x) >
b2 − x

b2 − b0
f2(b0) +

x− b0
b2 − b0

f2(b2),

for b0 < x < b2. Then, there is a strictly concave function g defined
on [b1, b2] so that g(b1) = f1(b1), g(b0) = f2(b0), g(b2) = f2(b2), and
f1 ≤ g ≤ f2.

Proof. (i) Since f1 is concave and f2(b2) > f1(b2), there exists a
x0 ∈ [b1, b2) such that the line through the point (b2, f2(b2)) supports
the graph of f1(x) at (x0, f1(x0)). Let

f1(x) =

{
f1(x), x ∈ [b1, x0],

f1(x0) +
f2(b2)−f1(x0)

b2−x0
(x− x0), x ∈ [x0, b2].

Then, it is clear that f1(x) is concave on [b1, b2], f1(b1) = f1(b1),
f1(b2) = f2(b2), and f1 < f2 on [b1, b2).

Since f2 is concave, its left derivative f l
2 is decreasing, and it satisfies

f l
2(b2) ≤

f2(b2)− f2(x0)

b2 − x0
<

f2(b2)− f1(x0)

b2 − x0
.

From the fact that f l
2 is left-continuous, it follows that there exists an

η with 0 < η < min{ b2−b12 , b2 − x0}, such that

f l
2(x) <

f2(b2)− f1(x0)

b2 − x0

for all x ∈ [b2 − η, b2]. Thus, when

0 < c <
1

b2 − b1

(
f2(b2)− f1(x0)

b2 − x0
− f l

2(b2 − η)

)
,

and

c <
4

(b2 − b1)2
min

x∈[b1,b2−η]

(
f2(x)− f1(x)

)
,

we have

(7.2)
f2(b2)− f1(x0)

b2 − x0
− c · (2x− b2 − b1) > f l

2(x)

for all x ∈ [b2 − η, b2], and

(7.3) c ·
(b2 − b1)

2

4
< f2(x)− f1(x)

for all x ∈ [b1, b2 − η].

Let g(x) = f1(x)+ c · [ (b2−b1)
2

4 − (x− b2+b1
2 )2]. Then (7.2) and the fact

g(x) = g1(b2)−
∫ a

x
gl1(t)dt imply that g < f2 on [b2 − η, b2); (7.3) shows

that g1 < f2 on [b1, b2−η]. Therefore, g(x) is a strictly concave function
on [b1, b2] satisfying g(b1) = f1(b1), g(b2) = f2(b2), and f1 ≤ g ≤ f2 on
[b1, b2].
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(ii) By the argument in (i), there is a strictly concave function g1
on [b1, b0], with g1(b1) = f1(b1), g1(b0) = f2(b0), and f1 ≤ g1 ≤ f2 on
[b1, b0].

Set a0 := (b0 + b2)/2. Define a function f2 on [b0, b2] by

f2(x) =

{
a0−x
a0−b0

f(b0) +
x−b0
b0−a0

f(a0), x ∈ [b0, a0],
b2−x
b2−a0

f(a0) +
x−a0
b2−a0

f(b2), x ∈ [a0, b2].

Then, f2 ≤ f2 on [b0, b2].

For x ∈ [b0, b2], let

G(x) =
b2 − x

b2 − b0
f(b0) +

x− b0
b2 − b0

f(b2) + c0 ·

[
(b2 − b0)

2

4
− (x− a0)

2

]
.

From (7.1), it follows that b2−x
b2−b0

f(b0) +
x−b0
b2−b0

f(b2) < f2(x) for x ∈

(b0, b2). It is easy to choose a sufficiently small and positive constant c0,
so that G(x) ≤ f2 ≤ f2 on [b0, b2]. Let

g(x) =

{
g1(x), x ∈ [b1, b0],
G(x), x ∈ [b0, b2].

Then, g(x) is the desired function.
To prove that g is strictly concave, suppose x ∈ [b1, b0], y ∈ [b0, b2],

and t ∈ [0, 1]. We may assume (1 − t)x + ty ∈ [b1, b0], since the case
(1− t)x+ ty ∈ [b0, b2] is similar. Then, there exists a t ≤ t0 ≤ 1, so that
b0 = (1−t0)x+t0y. It follows that (1−t)x+ty = ((t0−t)/t0)x+(t/t0)b0.
Then, we have

g((1 − t)x+ ty) = g1

(
t0 − t

t0
x+

t

t0
b0

)
>

(
1−

t

t0

)
g1(x) +

t

t0
f2(b0)

≥

(
1−

t

t0

)
g1(x) +

t

t0
[(1− t0)f2(x) + t0f2(y)]

>

(
1−

t

t0

)
g1(x) + (

t

t0
− t)g(x) + tg(y)

= (1− t)g(x) + tg(y).

q.e.d.

Let u ∈ S1. We shall make use of the notion of exposed face (also
called support set) F (K,u) of a convex body K. That is,

F (K,u) := K ∩ {x ∈ R2 : x · u = hK(u)}.

Lemma 7.2. Let K,L ∈ K2
o. Suppose K and L are not dilates, and

they are at a dilation position. Then, for each ε > 0, there are convex
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bodies Kε, Lε ∈ K
2
o so that Kε is strictly convex,

dH(Kε,K), dH(Lε, L) < c1ε,

and Kε and Lε are at a dilation position. Here c1 is a constant depending
only on K and L.

Proof. Set r = r(L,K), R = R(L,K), and B = B2. Since K and L
are not dilates, we have r < R. By Lemma 5.1, there are ui, vi ∈ S1, xi ∈
∂K ∩ ∂(1

r
L) and yi ∈ ∂K ∩ ∂( 1

R
L), so that o ∈ [u1, u2, u3] ∩ [v1, v2, v3],

(7.4) hL(ui) = rhK(ui) = rxi ·ui, and hL(vi) = RhK(vi) = Ryi ·vi,

for i = 1, 2, 3. Here u1, u2, u3 may be distinct or not, and so is the triple
v1, v2, v3. We will give three reasonable assumptions.

(A1) Assume yj /∈ F (K, vi) for yi 
= yj.
Otherwise, suppose y2 ∈ F (K, v1) with y1 
= y2. This and the fact

o ∈ [v1, v2, v3] imply that −v3 must be a normal vector at y2. Letting
y′1 = y2 and v′1 = v′2 = −v3, we will consider the points {y′1, y2, y3} and
vectors {v′1, v

′
2, v3}. Note: there does not exist the case that y1 = y3 ∈

F (K, v1) and v1 = v2 = −v3, since otherwise K will not contain an
interior point. Therefore, the assumption (A1) is not a restriction of
generality.

(A2) Similarly, assume xj /∈ F (K,ui) for xi 
= xj.

(A3) Suppose {i, j, k} = {1, 2, 3}. If yi = yj, assume vi = vj = −vk; if
xi = xj , assume ui = uj = −uk.

Otherwise, suppose y1 = y2, and v1 
= v2. Since o ∈ [v1, v2, v3], then
−v3 must be a normal vector at y1. Letting v′1 = v′2 = −v3, we will
consider the points {y1, y2, y3} and vectors {v′1, v

′
2, v3}. Clearly, the as-

sumption (A1) will be preserved. The discussion for xi is similar.

Next, we use two procedures to construct the desired bodies. In fact,
Procedure 1 is to make the new body K1

ε satisfy that F (K1
ε , vi) contains

only one point, for i = 1, 2, 3.

Procedure 1. Let K1
ε and L1

ε be defined by

(7.5) K1
ε = [K, (1 + ε)y1, (1 + ε)y2, (1 + ε)y3],

and

(7.6) L1
ε = L ∩

R

1 + ε
K1

ε .

Thus, for ε < R
r
− 1, we have

rK1
ε ⊂ L1

ε ⊂
R

1 + ε
K1

ε .
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It can be seen that (1+ ε)yi ∈ ∂K1
ε ∩∂(1+ε

R
L1
ε ), and xi ∈ ∂K1

ε ∩∂(1
r
L1
ε).

Since K1
ε ⊂ (1 + ε)K, we see that

hK(vi) ≤ (1 + ε)hK(vi) = (1 + ε)yi · vi.

This, together with (1 + ε)yi ∈ K1
ε , gives

hK1
ε
(vi) = (1 + ε)yi · vi.

Then, by 1+ε
R

L1
ε ⊂ K1

ε and (1 + ε)yi ∈
1+ε
R

L1
ε , we deduce that

1 + ε

R
hL1

ε
(vi) = (1 + ε)yi · vi = hK1

ε
(vi).

Since o ∈ [v1, v2, v3], by
1+ε
R

L1
ε ⊂ K1

ε and Lemma 5.1, we know that
1+ε
R

L1
ε is the biggest homothetic copy of L1

ε contained in K1
ε .

Recall that for ε < R
r
− 1, we have xi ∈ K1

ε ⊂
1
r
L1
ε ⊂

1
r
L. Thus

xi · ui ≤ hK1
ε
(ui) ≤

1

r
hL1

ε
(ui) ≤

1

r
hL(ui) = xi · ui.

It follows that

rhK1
ε
(ui) = hL(ui).

Thus, by o ∈ [u1, u2, u3], rK
1
ε ⊂ L1

ε and Lemma 5.1, we know that rK1
ε

is the biggest homothetic copy of K1
ε contained in L1

ε . Therefore K
1
ε and

L1
ε are at a dilation position, for ε < R

r
− 1.

From (7.5), it follows that

(7.7) K ⊂ K1
ε ⊂ (1 + ε)K ⊂ K + εRKB.

(7.5) and (7.6) give

(7.8) L ⊂ (1+ ε)

(
L ∩

R

1 + ε
Kε

)
= (1+ ε)L1

ε ⊂ L1
ε + εL ⊂ L1

ε + εRLB.

Now (7.7) implies dH(K1
ε ,K) < RKε, and (7.8) implies dH(L1

ε , L) <
RLε. Therefore, we have

(7.9) dH(K1
ε ,K) < c2ε, and dH(L1

ε , L) < c2ε,

where c2 = max{RK , RL}.
By (7.5), a point p in K1

ε can be written as

p =

k∑
i=1

λizi,

with λi ∈ [0, 1],
k∑

i=1
λi = 1, and zi ∈ K ∪ (1 + ε){y1, y2, y3}. Since we

have assumed yi · vj < hK(vj) for yi 
= yj, it follows that F (K1
ε , vi) =

{(1 + ε)yi} for i = 1, 2, 3.
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Procedure 2. Set Rε = R/(1+ε). From Procedure 1, we see that Rε =
R(L1

ε ,K
1
ε ), and r = r(L1

ε ,K
1
ε ). Let K2

ε = K1
ε + ε

Rε
B, K3

ε = K1
ε + ε

r
B,

and Lε = L1
ε + εB. For i = 1, 2, 3, define H−

i by

H−
i =

{
x ∈ R2 : x · vi ≤ (1 + ε)yi · vi +

ε

Rε

}
.

Then (1 + ε)yi +
ε
Rε

vi is the unique point in F (K2
ε , vi), for i = 1, 2, 3.

Since F (K1
ε , vi) = {(1 + ε)yi}, we know that xj · vi < hK1

ε
(vi). Let

η = min
i,j∈{1,2,3}

hK(vi)− xj · vi
1/r − 1/R

.

When ε < η, we have

xi +
1

r
εui ∈ ∂K3

ε ∩ int(H−
1 ∩H−

2 ∩H−
3 ),

for i = 1, 2, 3. Now we are able to construct the desired convex body.
Notice the assumption (A3). When ε is sufficiently small, the half-

spaces H−
1 ,H−

2 ,H−
3 divide ∂K3

ε into 3 parts (they may be distinct or
not), and we denote them by ∂12, ∂23 and ∂31. Here ∂ij = ∂K3

ε ∩H
−
i ∩H

−
j .

Clearly, when ε is sufficiently small, ∂ij has nonempty relative interior.
In fact, we only need to construct the boundary parts of the new

convex body. Our aim is to get new boundary parts ∂′ij satisfying:

(B1) the support line that supports K3
ε at xi +

ε
r
ui also supports ∂′12 ∪

∂′23 ∪ ∂′31 at xi +
ε
r
ui;

(B2) the support line that supports K2
ε at (1+ε)yi+

ε
Rε

vi also supports

∂′12 ∪ ∂′23 ∪ ∂′31 at (1 + ε)yi +
ε
Rε

vi;

(B3) ∂′12 ∪ ∂′23 ∪ ∂′31 is the boundary of the new convex body Kε =
[∂′12, ∂

′
23, ∂

′
31], and Kε is strictly convex.

Without loss of generality, we study ∂12. Define the body K4
ε by

K4
ε := K3

ε ∩H−
1 ∩H−

2 ∩H−
3 .

There may be the following three cases.

Case 1. ∂12 contains precisely one point in {x1+
ε
r
u1, x2+

ε
r
u2, x3+

ε
r
u3}.

Case 2. ∂12 contains precisely two points in {x1 +
ε
r
u1, x2 +

ε
r
u2, x3 +

ε
r
u3}.

Case 3. ∂12 does not contain a point in {x1 +
ε
r
u1, x2 +

ε
r
u2, x3 +

ε
r
u3}.

In Case 1, assume x1 + ε
r
u1 ∈ ∂12. Denote by v′1 the unit vector

perpendicular to v1 such that(
x1 +

ε

r
u1

)
· v′1 > (1 + ε)y1 · v

′
1.
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For the direction v′1, consider the overgraph functions f(K2
ε ; ·) and

f(K4
ε ; ·). Denote by p1 the projection of (1 + ε)y1 +

ε
Rε

v1 on l(ov1) (the

line through o and v1). Denote by p2 the projection of x1 + ε
r
u1 on

l(ov1). Since o ∈ [v1, v2, v3], by the definition of K2
ε and K3

ε , we see that
f(K2

ε ; ·) < f(K3
ε ; ·) on [p1, p2]. Then, it follows immediately from (i) of

Lemma 7.1 that there is a boundary part ∂l
12 through (1 + ε)y1 +

ε
Rε

v1
and x1 +

ε
r
u1. Similarly, we get a boundary part ∂r

12 through x1 +
ε
r
u1

and (1+ε)y2+
ε
Rε

v2. Then, ∂
′
12 = ∂l

12∪∂
r
12 is the desired boundary part.

In Case 2, assume x1 +
ε
r
u1, x2 +

ε
r
u2 ∈ ∂12. Consider the overgraph

functions of K2
ε and K4

ε with respect to the direction v′1, where v
′
1 is the

same as in Case 1. The assumption (A2) implies that [x1 +
ε
r
u1, x2 +

ε
r
u2] � ∂K3

ε . Then the functions f(K2
ε ; ·) and f(K4

ε ; ·) satisfy all the

conditions in (ii) of Lemma 7.1. Then there is a boundary part ∂l
12

through (1+ε)y1+
ε
Rε

v1, x1+
ε
r
u1 and x2+

ε
r
u2, (1+ε)y2+

ε
Rε

v2. Similar to

Case 1, we get a boundary part ∂r
12 through x2+

ε
r
u2 and (1+ε)y2+

ε
Rε

v2.

Then, ∂′12 = ∂l
12 ∪ ∂r

12 is the desired boundary part.
In Case 3, choose a point z0 ∈ ∂ij\{(1+ ε)yi+

ε
Rε

vi, (1+ ε)yj +
ε
Rε

vj}.
By using the same method as in Case 1, we get a desired boundary part
through (1 + ε)y1 +

ε
Rε

v1, z0, (1 + ε)y2 +
ε
Rε

v2.

Then, we get the boundary parts ∂′12, ∂
′
23, ∂

′
31. From our construction,

it is obvious that they satisfy (B1), (B2) and (B3). Recall that Kε =
[∂′12, ∂

′
23, ∂

′
31] and Lε = L1

ε + εB. Now (B1), (B2), and Lemma 5.1
guarantee that Kε and Lε are at a dilation position. By (7.9), we have

dH(Lε, L) ≤ dH(Lε, L
1
ε) + dH(L1

ε , L) < (1 + c2)ε.

It is also easy to see that

K2
ε ⊂ Kε ⊂ K3

ε .

From this, K2
ε = K1

ε + ε
Rε

B, K3
ε = K1

ε + ε
r
B, and (7.9), we deduce

dH(Kε,K) ≤ dH(Kε,K
1
ε ) + dH(K1

ε ,K) <

(
1

r
+ c2

)
ε.

Then we finished the proof of this lemma, provided c1 = max{1, 1
r
}+c2.
q.e.d.

Lemma 7.3. Let K,L be planar convex bodies with o ∈ ∂K ∩ ∂L.
Suppose K and L are not dilates, and they are at a dilation position.
Then, for each ε > 0, there are convex bodies Kε, Lε ∈ K

2
o so that Kε

and Lε are at a dilation position, and

dH(Kε,K), dH(Lε, L) < ε.

Proof. Set r = r(L,K), R = R(L,K), and B = B2. By Lemma 5.1,
there are ui, vi ∈ S1, xi ∈ ∂K ∩ ∂(1

r
L) and yi ∈ ∂K ∩ ∂( 1

R
L), so that
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o ∈ [u1, u2, u3] ∩ [v1, v2, v3],
(7.10)

hL(ui) = rhK(ui) = rxi · ui, and hL(vi) = RhK(vi) = Ryi · vi,

for i = 1, 2, 3. Here u1, u2, u3 may be distinct or not, and so is the triple
v1, v2, v3.

We shall use the same assumptions (A1), (A2) and (A3) as in the
proof of Lemma 7.2, with the same reason. In addition, we should give
the following assumption.

(A4) If o 
= xi, assume o /∈ F (K,ui); if o 
= yi, assume o /∈ F (K, vi).
Otherwise, suppose o 
= x1 and o ∈ F (K,u1) (the discussion of the

case o 
= yi is similar). Since L ⊂ RK, and o ∈ ∂(RK) ∩ ∂L, we see
that u1 is also a normal vector of L at o. Then, we can replace x1 by
o. That is, consider {o, x2, x3} with normal vectors {u1, u2, u3}. Thus,
this assumption is not a restriction of generality.

We will consider two cases.
Case 1. o /∈ {x1, x2, x3} ∩ {y1, y2, y3}.

If o /∈ {y1, y2, y3}, then, by (A4), we deduce hK(vi) > 0, for i =
1, 2, 3. This enables us to use Procedure 1 and Procedure 2 in the proof
of Lemma 7.2 directly to construct the desired bodies Kε and Lε. It is
just an examination of the method there, so we omit it. After Procedure
2, it is clear that the resulting bodies Kε and Lε satisfy

1
R
εB ⊂ Kε and

εB ⊂ Lε, thus they contain o in their interiors.
If o /∈ {x1, x2, x3}, then, by (A4), we deduce hL(ui) > 0, for i =

1, 2, 3. By changing the position of K and L, we can also use Procedure
1 and Procedure 2 in the proof of Lemma 7.2 to construct the desired
bodies.

Case 2. o ∈ {x1, x2, x3}∩{y1, y2, y3}. Assume without loss of generality
that

(7.11) x1 = y1 = o.

Write uθ = (cos θ, sin θ), for θ ∈ [−π, π]. Define the half-space H−
θ by

H−
θ := {x : x · uθ ≤ 0},

and denote its boundary by Hθ. Without loss of generality, assume
v1 = u0. There are θ1, θ2 with θ1 ≤ 0 ≤ θ2, so that θ1 is the minimum
in [−π, π] so that K ⊂ H−

θ1
, and θ2 is the maximum in [−π, π] so that

K ⊂ H−
θ2
.

In addition to (A3), it will be convenient to assume that

o 
= x2 and o 
= x3.

Let δ > 0. Define Kδ and Lδ as follows.
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If {x2, x3, y2, y3}∩Hθ1 
= ∅, letK
1
δ = K and L1

δ = L; if {x2, x3, y2, y3}∩
Hθ1 = ∅, let K

1
δ = K ∩H−

θ1−δ
and L1

δ = L ∩H−
θ1−δ

.

If {x2, x3, y2, y3}∩Hθ2 
= ∅, letKδ = K1
δ and Lδ = L1

δ ; if {x2, x3, y2, y3}
∩Hθ2 = ∅, let Kδ = K1

δ ∩H−
θ2+δ and Lδ = L1

δ ∩H−
θ2+δ.

Then, for sufficiently small δ > 0, the points o, x2, x3 are also in
Kδ ∩ (1

r
Lδ), and the points o, y2, y3 are also in Kδ ∩ ( 1

R
Lδ). Clearly,

lim
δ→0+

Kδ = K and lim
δ→0+

Lδ = L.

Furthermore, by the definition of Kδ and Lδ, and (A4), there are
two distinct facets (1-dimensional faces) containing o. Thus, there are
points z1δ , z

2
δ /∈ {o, y2, y3}, so that

z1δ ∈ ∂Kδ ∩ ∂

(
1

R
Lδ

)
∩ (Hθ1−δ ∪Hθ1),

and

z2δ ∈ ∂Kδ ∩ ∂

(
1

R
Lδ

)
∩ (Hθ2+δ ∪Hθ2).

Let viδ be a unit normal vector at ziδ , for i = 1, 2. Then, v1 is a positive
combination of v1δ and v2δ .

Now o ∈ [v1δ , v
2
δ , v2, v3], by Carathéodory’s theorem, there are 3 or

fewer members of them containing o in their convex hull. Denote them
by v′1, v

′
2, v

′
3, and denote the corresponding boundary points by y′1, y

′
2, y

′
3.

Then, o /∈ {y′1, y
′
2, y

′
3}. We can assume that {y′1, y

′
2, y

′
3} and {v′1, v

′
2, v

′
3}

satisfy (A1), and o /∈ {y′1, y
′
2, y

′
3} will be preserved. Then, by using

Procedure 1 and Procedure 2 in the proof of Lemma 7.2 for Kδ and Lδ,
we get the desired convex bodies. After Procedure 2, it is clear that the
resulting bodies Kε and Lε satisfy 1

R
εB ⊂ Kε and εB ⊂ Lε, thus they

contain o in their interiors. q.e.d.

Lemma 7.4. Let K,L ∈ K2
o. If K and L are at a dilation position,

then

(7.12)

∫
S1

log
hL
hK

dVK ≥
|K|

2
log

|L|

|K|

Equality holds if and only if K and L are dilates or K and L are par-
allelograms with parallel sides.

Proof. First, suppose K and L are not dilates. By Lemma 7.2, there
are Ki ∈ K

2
o, and Li ∈ K

2
o, such that Ki are strictly convex, Ki → K

and Li → L, and Ki and Li are at a dilation position. Since Ki are
strictly convex, the cone-volume measures VKi

satisfy the strict subspace
concentration inequality. Thus, by Theorem 6.1, we have∫

S1

log
hLi

hKi

dVKi
≥
|Ki|

2
log

|Li|

|Ki|
.
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SinceKi → K and Li → L, it follows that the functions log
hLi

hKi

converge

to log hL

hK
uniformly on S1, and the cone-volume measures VKi

converge

weakly to VK , then (7.12) follows.
Next, if K and L are dilates or parallelograms with parallel sides,

then it is easy to see that the equality in (7.12) holds.
Finally, suppose equality holds in (7.12). Then the convex body

L/|L|
1

2 must be a minimizer of the problem (6.1) for K/|K|
1

2 . It follows
immediately from Lemma 6.3 thatK and L are dilates or parallelograms
with parallel sides. q.e.d.

Proof of Theorem 3. If K,L ∈ K2
o, then Theorem 3 follows immedi-

ately from Lemma 7.4. Suppose o ∈ ∂K ∩ ∂L, and K and L are not
dilates. By Lemma 7.3, there are convex bodies Ki, Li ∈ K

2
o, such that

Ki → K and Li → L, and Ki and Li are at a dilation position. By
Lemma 7.4, and dVKi

= 1
2hKi

dSKi
, we have

1

2

∫
S1

(
log

hLi

hKi

)
hKi

dSKi
≥
|Ki|

2
log

|Li|

|Ki|
.

Since r(K,L)L ⊂ K ⊂ R(K,L)L, we see that hK(u) = 0 if and only if
hL(u) = 0. Define the set ω by

ω := {u ∈ S1 : hK(u) = 0} = {u ∈ S1 : hL(u) = 0},

and define (log hL(u)
hK(u))hK(u) = 0 for u ∈ ω. Then, it is easy to see from

r(L,K) ≤ hL

hK
≤ R(L,K) that the function (log hL

hK
)hK is well-defined

and continuous on S1.
Since Ki → K and Li → L, by using the same method as in the proof

of Lemma 6.2, we deduce that r(Li,Ki) → r(L,K) and R(Li,Ki) →

R(L,K). Then, log
hLi

hKi

are uniformly bounded. This, together with the

fact that hKi
→ hK uniformly, shows that (log

hLi

hKi

)hKi
→ (log hL

hK
)hK

uniformly on S1. The fact Ki → K also implies that the surface area
measures SKi

converge to SK weakly. From these facts, and the conti-
nuity of Lebesgue measure, (1.10) follows.

If K and L are dilates or parallelograms with parallel sides, then it
is easy to see that the equality in (1.10) holds.

Suppose equality holds in (1.10). Then the convex body L/|L|
1

2 must

be a minimizer of the problem (6.1) for K/|K|
1

2 . It follows immediately
from Lemma 6.3 thatK and L are dilates or parallelograms with parallel
sides. q.e.d.

Proof of Theorem 2. By Lemma 5.5 and Theorem 3, the inequality
(1.9) holds. Suppose λ ∈ (0, 1). If K and L are dilates, or they are
parallelograms with parallel sides, then it is clear that the equality in
(1.9) holds.
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If equality holds in (1.9), then, by the proof of Lemma 5.5, equality
in (5.3) holds. From the equality condition for the log-Minkowski in-
equality (1.10), it follows that either (1 − λ) ·K +o λ · L, K and L are
dilates, or they are parallelograms with parallel sides. q.e.d.
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