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In this paper, the binary Bell polynomials are applied to succinctly construct bilinear
formulism, bilinear Bäcklund transformations, Lax pairs, and Darboux covariant
Lax pairs for the (2+1)-dimensional breaking soliton equation. An extra auxiliary
variable is introduced to get the bilinear formulism. The infinitely local conservation
laws of the equation are found by virtue of its Lax equation and a generalized Miura
transformation. All conserved densities and fluxes are given with explicit recursion
formulas. C© 2011 American Institute of Physics. [doi:10.1063/1.3545804]

I. INTRODUCTION

As well-known, investigation of integrability for a nonlinear equation can be regarded as a pretest
and the first step of its exact solvability. There are many significant properties, such as Lax pairs,
infinite conservation laws, infinite symmetries, Hamiltonian structure, Painlevé test, and bilinear
Bäcklund transformation that can characterize integrability of nonlinear equations. Such work may
pave a way for explicitly constructing their exact solutions in the future. Yet, the construction
of bilinear Bäcklund transformation by using Hirota method is not as one would wish. It relies
on a particular skill in using appropriate exchange formulas which are connected with the linear
representation of the system.1–4 However, in recent years Lambert and co-workers have proposed
a procedure to obtain parameter families of bilinear Bäcklund transformation for soliton equations
in a lucid and systematic way based on the use of Bell polynomials.5–7 The Bell polynomials are
found to play an important role in the characterization of bilinearizable equations. As a consequence,
bilinear Bäcklund transformation with single field can be linearized into corresponding Lax pairs.
Their method provides a short way to bilinear Bäcklund transformation and Lax pairs of nonlinear
equations, which establishes a deep relation between integrability of a nonlinear equation and the
Bell polynomials.

In this paper, we extend the binary Bell polynomial approach to construct bilinear formulism,
bilinear Bäcklund transformations, Lax pairs, and Darboux covariant Lax pairs of the following
(2+1)-dimensional breaking soliton equation

uxt + uxxxy − 4ux uxy − 2uxx uy = 0, (1.1)

which was first presented by Calogero and Degasperis.8, 9 The similar equation

uxt + uxxxy + 4ux uxy + 4uxx uy = 0 (1.2)

was studied by Bogoyavlenskii, where overlapping solutions were generated.10, 11 Equations (1.1) and
(1.2) are typical so-called breaking soliton equations to describe the (2+1)-dimensional interaction
of a Riemann wave propagating along the y axis with a long wave along the x axis. In recent
years, a large number of papers have been focusing on Painlevé property, dromion-like structures,
and various exact solutions of these two equations.12–26 But their integrability, to the best of our
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knowledge, have not been studied in detail except to previous little work, as seen, e.g., in Refs. 8–10
and 27–30. In addition, the study on conservation laws of (2+1)-dimensional equations has been
still less in contrast with the (1+1)-dimensional case. The existence of infinitely local conservation
laws can be considered as one of the many remarkable properties that deemed to characterize soliton
equations. The more conservation laws one finds the closer one gets to the complete solution. A
conservation law of a higher dimensional system is, by definition, an equation in divergence form

divF = ∂x1F1 + · · · + ∂xmFm = 0, (1.3)

where vector function F(x, u, ux, . . .) = (F1, . . . , Fm) depending on x = (x1, . . . , xm), u = u(x) and
its derivations. The vector function F is called conserved flux since Eq. (1.3) implies that a net flow
of F through any (m − 1)-dimensional closed surface � in the m-dimensional space ∂� is zero
according to the Gauss formula, namely∫

�

F · ndx =
∫
∂�

divFdS = 0.

Physically a conservation law means that the rate of change of F1inside any spatial domain must
equal the (F2, · · · , Fm) through the surface of the domain.

Here we shall employ binary Bell polynomials to systematically construct bilinear representa-
tion, Bäcklund transformation, Lax pair, and Darboux covariant Lax pair of Eq. (1.1). The infinitely
local conservation laws of the equation will be constructed through its Lax equation and a general-
ized Miura transformation. In Sec. II, we briefly present necessary notations on multidimensional
binary Bell polynomials. These results will then be applied to construct the bilinear representation,
Bäcklund transformation, Lax pair, Darboux covariant Lax pair, and infinite conservation laws to
Eq. (1.1) in Secs. III– VI, respectively.

II. MULTIDIMENSIONAL BINARY BELL POLYNOMIALS

The main tool used in this paper is a class of generalized multidimensional binary Bell polyno-
mials. To make our presentation easy to understand and self-contained, we first fix some necessary
notations on the Bell polynomials, for details refer, for instance, to Lambert and Gilson’s work.5–7

Let us start with original standard Bell polynomials.

Definition 1: Assume that r > 0 denote a constant integer; n ≥ 0 denote an arbitrary integer;
and x, t denote independent variables; then the polynomials about variables x and t

ξn(x, t) ≡ exp(−t xr )∂n
x exp(t xr ) (2.1)

is called classical Bell polynomials or Hermite-Bell polynomials, which was originally introduced
by Bell.30

For r = 2, the Bell polynomials ξn(x, t) is exactly Hermite polynomials. The first few lowest
order Bell Polynomials are

ξ0(x, t) = 1, ξ1(x, t) = r t xr−1, ξ2(x, t) = r2t2x2r−2 + r (r − 1)t xr−2,

ξ3(x, t) = r3t3x3r−3 + 3r2(r − 1)t2x2r−3 + r (r − 1)(r − 2)t xr−3.

In general,

ξn(x, t) = n!
n∑

j=a

t j xr j−n

j!

b∑
l=0

(−1)l

(
j
l

)(
r ( j − l)

n

)
,

where a = n − [n(r − 1)/r ] and b = [(rh − n)/r ] denote the greatest integer in their brackets.
Next, we consider general generalization of the Bell polynomials (2.1).
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Definition 2: Let nk ≥ 0, k = 1, · · · , � denote arbitrary integers, f = f (x1, · · · , x�) be a C∞

multivariable function, then

Yn1x1,···,n�x�
( f ) ≡ exp(− f )∂n1

x1
· · · ∂n�

x�
exp( f ) (2.2)

are polynomials in the partial derivatives of f with respect to x1, · · · , x�, which we call multidimen-
sional Bell polynomials (generalized Bell polynomials or Y -polynomials).

For the special case f = f (x, t), the associated two-dimensional Bell polynomials defined by
(2.2) read

Yx ( f ) = fx , Y2x ( f ) = f2x + f 2
x , Y3x ( f ) = f3x + 3 fx f2x + f 3

x ,

Yx,t ( f ) = fx,t + fx ft , Y2x,t ( f ) = f2x,t + f2x ft + 2 fx,t fx + f 2
x ft , · · · .

For the special case n1 = n, n2 = 0, f = f (x, t) = t xr with the constant integer r > 0, then
the multidimensional Bell polynomials (2.2) exactly reduces the classical Bell polynomials (2.1)

Ynx ( f ) = exp(−t xr )∂n
x exp(t xr ) = ξn(x, t).

This implies that the multidimensional Bell polynomials (2.2) is a generalization of the classical
Bell polynomials (2.1).

Definition 3: Based on the use of above Bell polynomials (2.2), the multidimensional binary
Bell polynomials ( Y-polynomials) can be defined as follows:

Yn1x1,···,n�x�
(v,w) = Yn1x1,···,n�x�

( f ) |
fr1 x1 ,···,r�x�=

⎧⎪⎨
⎪⎩

vr1x1,···,r�x�
, r1 + · · · + r� is odd,

wr1x1,···,r�x�
, r1 + · · · + r� is even,

which is a multivariable polynomials with respect to all partial derivatives vr1x1,···,r�x�
(r1 + · · · +

r� odd) and wr1x1,···,r�x�
(r1 + · · · + r� even), rk = 0, · · · , nk, k = 0, · · · , �.

The binary Bell polynomials also inherits the easily recognizable partial structure of the Bell
polynomials. The first few lowest order binary Bell Polynomials are

Yx (v) = vx , Y2x (v,w) = w2x + v2
x ,Yx,t (v,w) = wxt + vxvt .

Y3x (v,w) = v3x + 3vxw2x + v3
x , . . . . (2.3)

Theorem 1: (Ref. 5) The link between binary Bell polynomials Yn1x1,···,n�x�
(v,w) and the

standard Hirota bilinear equation Dn1
x1

· · · Dn�
x�

F · G can be given by an identity

Yn1x1,···,n�x�
(v = ln F/G, w = ln FG) = (FG)−1 Dn1

x1
· · · Dn�

x�
F · G, (2.4)

in which n1 + n2 + · · · + n� ≥ 1, and operators Dx1 , · · · , Dx�
are classical Hirota’s bilinear oper-

ators defined by

Dn1
x1

· · · Dn�

x�
F · G = (∂x1 − ∂x ′

1
)n1 · · · (∂x�

− ∂x ′
�
)n� F(x1, · · · , x�)G(x ′

1, · · · , x ′
�)|x ′

1=x1,···,x ′
�=x�

.

In the particular case when F = G, the formula (2.4) becomes

F−2 Dn1
x1

· · · Dn�

x�
G · G = Yn1x1,···,n�x�

(0, q = 2 ln G)

=
{

0, n1 + · · · + n� is odd,

Pn1x1,···,n�x�
(q), n1 + · · · + n� is even,

(2.5)

in which the P-polynomials can be characterized by an equally recognizable even part partitional
structure

P2x (q) = q2x , Px,t (q) = qxt , P4x (q) = q4x + 3q2
2x , P6x (q) = q6x + 15q2x q4x + 15q3

2x , . . . .

(2.6)
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The formulae (2.6) and (2.5) will prove particularly useful in connecting nonlinear equations with
their corresponding bilinear equations. This means that once a nonlinear equation is expressible as
a linear combination of P-polynomials, then it can be transformed into a linear equation.

Theorem 2: (Ref. 5) The binary Bell polynomials Yn1x1,···,n�x�
(v,w) can be separated into

P-polynomials and Y -polynomials

(FG)−1 Dn1
x1

· · · Dn�

x�
F · G = Yn1x1,···,n�x�

(v,w)|v=ln FG,w = ln FG

= Yn1x1,···,n�x�
(v, v + q, )|v=ln F/G,q=2 ln G (2.7)

=
∑

n1+···+n�=even

n1∑
r1=0

· · ·
n�∑

r�=0

�∏
i=1

(
ni

ri

)
Pr1x1,···,r�x�

(q)Y(n1−r1)x1,···,(n�−r�)x�
(v).

The key property of the multidimensional Bell polynomials

Yn1x1,···,n�x�
(v)|v=ln ψ = ψn1x1,···,n�x�

/ψ, (2.8)

implies that the binary Bell polynomials Yn1x1,···,n�x�
(v,w) can still be linearized by means of the

Hopf-Cole transformation v = ln ψ , that is, ψ = F/G. The formulae (2.7) and (2.8) will then
provide the shortest way to the associated Lax system of nonlinear equations.

III. BILINEAR REPRESENTATION

In this section, we will see that an extra auxiliary variable is asked to get bilinear representation
of Eq. (1.1), which is more difficult than Eq. (1.2).24 In order to detect the existence of linearizable
representation of Eq. (1.1), we introduce a potential field q by setting

u = cqx (3.1)

with c being free constant to be the appropriate choice such that Eq. (1.1) connect with P-
polynomials. Substituting transformation (3.1) into Eq. (1.1), we can write the resulting equation in
the form

q2x,t + 2

3
q4x,y − 2c(q2x q2x,y + qxyq3x ) + 1

3
q4x,y − 2cq2x q2x,y = 0, (3.2)

where we will see that such decomposition is necessary to get bilinear form of Eq. (1.1). Further
integrating Eq. (3.2) with respect to x yields

E(q) ≡ qx,t + 2

3
(q3x,y + 3q2x qxy) + 1

3
∂−1

x ∂y(q4x + 3q2
2x ) = 0, (3.3)

if we set c = −1 according to the formula (2.4).
In order to write Eq. (3.3) in local bilinear form, we should eliminate effect of the integration

∂−1
x . To this end, we introduce an auxiliary variable z and impose a subsidiary constraint condition

q4x + 3q2
2x + qxz = 0, (3.4)

on account of which, Eq. (3.3) becomes

qx,t + 2

3
(q3x,y + 3q2x qxy) − 1

3
qyz = 0. (3.5)

Now according to the formula (2.4), Eqs. (3.3) and (3.4) are then cast into a pair of equations in the
form of P-polynomials

P4x (q) + Pxz(q) = 0, Px,t (q) + 2

3
P3x,y(q) − 1

3
Pyz(q) = 0. (3.6)

Finally, according to the property (2.3), under the change of dependent variable

q = 2 ln G ⇐⇒ u = cqx = −2(ln G)x ,
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Eq. (3.6) produces the bilinear representation of the breaking soliton equation (1.1) as follows:

(D4
x + Dx Dz)G · G = 0, (Dx Dt + 2

3
Dy D3

x − 1

3
Dy Dz)G · G = 0. (3.7)

This equation is easy to be solved for multisoliton solutions by using Hirota’s bilinear method. For
example, the regular one-soliton-like solution reads

u = ktanh
kx + 3ly + lk2t

2
,

where k and l are two constants. The multisoliton solution are omitted here since exactly solving
Eq. (1.1) is not our main purpose in this paper.

IV. BÄCKLUND TRANSFORMATION AND LAX PAIR

Next, we search for the bilinear Bäcklund transformation and Lax pair of the breaking soliton
equation (1.1). Let

q = 2 ln G, q ′ = 2 ln F

be two different solutions of Eq. (3.3), respectively. On introducing two new variables

w = (q ′ + q)/2 = ln(FG), v = (q ′ − q)/2 = ln(F/G), (4.1)

we associate the two-field condition

E(q ′) − E(q) = E(w + v) − E(w − v)

= 2vxt + 2v3x,y + 4w2xvx,y + 4wx,yv2x + 4∂−1
x (w2xv2x,y + w2x,yv2x ) (4.2)

= 2∂x [Yt (v) + Y2x,y(v,w)] + R(v,w) = 0

with

R(v,w) = −2∂x [(w2x + v2
x )vy] + 4w2xvxy − 4w2x,yvx + 4∂−1

x (w2xv2x,y + w2x,yv2x ).

This two-field condition can be regarded as the natural ansatz for a bilinear Bäcklund transformation
and may produce the required transformation under appropriate additional constraints.

In order to decouple the two-field condition (4.2) into a pair of constraints, we impose such a
constraint which enable us to express R(v,w) as the form of x-derivative of Y-polynomials. The
simplest possible choice of such constraint may be

Y2x (v,w) = w2x + v2
x = λ, (4.3)

on account of which, directly computing the R(v,w), we find that

R(v,w) = 2λvxy + 4w2xvxy − 4w2x,yvx − 4v2
xvxy = 6λvxy, (4.4)

where we have used the relations w2x,y = −2vxvxy and w2x = λ − v2
x .

Then, combining the relations (4.2)–(4.4), we deduce a coupled system of Y-polynomials

Y2x (v,w) − λ = 0,

∂xYt (v) + ∂x [Y2x,y(v,w) + 3λYy(v)] = 0, (4.5)

where we prefer the second equation in the conserved form without integration with respect to x ,
which is useful to construct conservation laws later. By application of the identity (2.4), the system
(4.5) immediately leads to the bilinear Bäcklund transformation

(D2
x − λ)F · G = 0,

(Dt + Dy D2
x + 3λDy − μ)F · G = 0,

where we have integrated the second equation in the system (4.5) with respect to x , and μ = μ(t) is
an arbitrary function.
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By transformation v = ln ψ , it follows from the formulae (2.7) and (2.8) that

Yt (v) = ψt/ψ, Yy(v) = ψy/ψ,Y2x (v,w) = q2x + ψ2x/ψ,

Y2x,y(v,w) = 2qxyψx/ψ + q2xψy/ψ + ψ2x,y/ψ,

on account of which, the system (4.5) is then linearized into a system with double parameters λ

and μ

L1ψ ≡ (∂2
x + q2x )ψ = λψ, (4.6)

ψt + L2ψ ≡ [∂t + ∂y∂
2
x + 2qxy∂x + (q2x + 3λ)∂y]ψ = μψ, (4.7)

or equivalently,

L1ψ = (∂2
x + q2x )ψ = λψ,

ψt + L2ψ = (∂t + 2qxy∂x + 4λ∂y + λy − q2x,y)ψ = μψ,

where we have used Eq. (4.6) to get the second equation, and allow the y and t dependence of λ.
It is easy to check that, for the following equations:

L1ψ = λψ, ψt + Ł2ψ = μψ, λt ≡ f (λ) = −4λλy, (4.8)

their integrability condition

0 = L1,t − f (L1) − [L1, L2]

= −(λt + 4λλy) + q2x,t + q4x,y + 4q2x q2x,y + q3x qxy, (4.9)

exactly gives the breaking soliton equation (1.1) by replacing −qx by u and using the nonisospectral
condition

λt + 4λλy = 0. (4.10)

Starting from the Lax pair (4.8), the Darboux transformation and soliton-like solutions of the
breaking soliton equation (1.1) can be established, here we omit them without consideration.

V. DARBOUX COVARIANT LAX PAIR

In this section, based on the assumption that the parameter λ is independent of variables x, y,

and t , we present a kind of Darboux covariant Lax pair whose form is invariant under a certain gauge
transformation. Let us go back to the breaking soliton equation (1.1) and the associated Lax pair
(4.6)–(4.7). Suppose that φ is a solution eigenvalue equation (4.6). It is well-known that the gauge
transformation

T = φ∂xφ
−1 = ∂x − σ, σ = ∂x ln φ (5.1)

map the operator L1(q) − λ onto a similar operator

T (L1(q) − λ)T −1 = L̃1(q̃) − λ,

which satisfies the covariance condition

L̃1(q̃) = L1(q̃ = q + 
q) with 
q = 2 ln φ.

But it can be verified that similar property does not hold for the evolution equation (4.7).
Next step is to find another third order operator L2,cov(q) with appropriate coefficients, such that

∂t + L2,cov(q) be mapped, by gauge transformation (5.1), onto a similar operator L̃2,cov(q̃) which
satisfies the covariance condition

L̃2,cov(q̃) = L2,cov(q̃ = q + 
q).
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Suppose that φ is a solution of the following Lax pair

L1φ = λφ, φt + L2,covφ = 0, L2,cov = 4∂y∂
2
x + b1∂x + b2∂y + b3, (5.2)

where b1, b2, and b3 are functions to be determined. It suffices that we require the transformation T
map the operator ∂t + L2,cov onto the similar one

T (∂t + L2,cov)T −1 = ∂t + L̃2,cov, L̃2,cov = 4∂y∂
2
x + b̃1∂x + b̃2∂y + b̃3, (5.3)

where b̃1, b̃2, and b̃3 satisfy the covariant condition

b̃ j = b j (q) + 
b j = b j (q + 
q), j = 1, 2, 3. (5.4)

It follows from (5.2) and (5.3) that


b1 = b̃1 − b1 = 4σy, 
b2 = b̃2 − b2 = 8σx , (5.5)


b3 = b̃3 − b3 = σ
b1 + 8σxy + b1,x , (5.6)

and σ satisfies

σt + 4σ2x,y + b̃1σx + b̃2σy + σ
b3 + b3,x = 0. (5.7)

According to the relation (5.4), it remains to determine b1, b2, and b3 in the form of polynomial
expressions in terms of derivatives of q

b j = Fj (q, qx , qy, qxy, q2x , q2y, q2x,y, . . .), j = 1, 2, 3

such that


Fj = Fj (q + 
q, qx + 
qx , qy + 
qy, · · ·) − Fj (q, qx , qy, · · ·) = 
b j (5.8)

with 
qkx,ly = 2(ln q)kx,ly, k, l = 1, 2, · · ·, and the 
b j being determined by the relations (5.5)–
(5.7).

Expanding the left hand of Eq. (5.8), we obtain


b1 = 
F1 = F1,q
q + F1,qx 
qx + F1,qy 
qy + F1,qxy 
qxy + · · · = 4σy = 2
qxy,

which implies that we can determine b1 up to a arbitrary constant c1, namely,

b1 = F1(qxy) = 2qxy + c1. (5.9)

Proceeding in the same way, we deduce the function b2 as follows

b2 = F2(q2x ) = 4q2x + c2 (5.10)

with c2 being arbitrary constant.
We see from the relation (5.6) that 
b3 contain the term b1,x = q2x,y , which should be eliminated

such that 
b3 admits the form (5.8). By means of the eigenvalue equation in (5.2), we can find the
following relation

q2x,y = −σxy − 2σσy . (5.11)

Substituting (5.9) and (5.11) into (5.6) yields


b3 = 4σσy + 8σxy + 2q2x,y = 6σxy = 3
q2x,y .

It is can verified that the third condition


F3 = F3,q
q + F3,qx 
qx + F3,qy 
qy · · · = 
b3

can be satisfied, if one chooses

b3 = F3(q2x,y) = 3q2x,y + c3, (5.12)

in which c3 is arbitrary constant.
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Setting c1 = c2 = 0, c3 = −μ in (5.9), (5.10), and (5.12), it follows from (5.2) that we find the
following Darboux covariant evolution equation

φt + L2,covφ = 0, L2,cov = 4∂y∂
2
x + 2qxy∂x + 4q2x∂y + 3q2x,y − μ,

which is in agreement with Eq. (5.7). Moreover, the relation between the operator L2,cov and the
operator L2 is given by

L2,cov = L2 + 3∂x (L1 − λ).

Under nonisospectral condition λt + 4λλy = 0, the integrability condition of the Darboux covariant
Lax pair (5.2) precisely give rise to Eq. (1.1) in Lax representation

[∂t + L2,cov, L1] = −(uxt + u3x,y − 4ux ux,y − 2u2x uy).

In a similar way step by step, we can obtain higher operators, which are Darboux covariant with
respect to L1, so as to produce higher order members of the breaking soliton hierarchy.

VI. INFINITE CONSERVATION LAWS

In this section, we derive the infinitely local conservation laws for breaking soliton equation
(1.1) through the Lax equation (4.9) and a generalized Miura transformation.

Let us first see the role of the nonisospectral parameter λ = λ(y, t) in the Lax equation. In fact,
the nonisospectral condition (4.10) is a conservation law

λt + (2λ2)y = 0, (6.1)

which implies that for any domain � with the boundary ∂� in space R2, the following equation hold

∂

∂t

∫
�

λkdxdy = − 4k

k + 1

∫
∂�

∂λk+1

∂y
d S,

where k is an arbitrary national number. If the function λ decreases rapidly enough as |x |, |y| → ∞,
then Eq. (6.1) has infinite conserved quantities

Ek =
∫
R2

λkdxdy.

Thus, for the Lax equation

L1,t = [L1, L2],

λ = λ(y, t) is not the eigenvalues of the operator L1, but the integrals Ek of powers which are
preserved. This property is also easyily seen from Eqs. (4.8) and (4.9). Though the Lax pair (4.8)
is explicitly related with nonisospectral parameter λ, but the right of Eq. (4.9) implies that the Lax
equation (4.9) is independent of the parameter λ. The above analysis inspires us to construct local
conservation laws of breaking soliton equation by virtue of the Lax equation (4.9), not the Lax
pair (4.8).

We introduce a new potential function

q2x = η + εηx + ε2η2, (6.2)

where ε is a constant parameter. Substituting (6.2) into the Lax equation (4.9) leads to

0 = L1,t − f (L1) − [L1, L2] = (1 + ε∂x + 2ε2η)[ηt − 4(η + ε2η2)ηy − 2(qx − εη)yηx + η2x,y],

which implies that u = −qx given by (6.2) is a solution of breaking soliton equation (1.1) if η

satisfies the following equation

ηt − 4(η + ε2η2)ηy − 2(qx − εη)yηx + η2x,y = 0. (6.3)
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However, it follows from (6.2) that

[(qx − εη)y]x = (η + ε2η2)y,

on account of which, Eq. (6.3) is then written in a divergent-type form

ηt + [2η(ε2η − qx )y]x + (η2x − η2)y = 0. (6.4)

To proceed, inserting the expansion

η =
∞∑

n=0

In(q, qx , qy · · ·)εn, (6.5)

into Eq. (6.2) and equating the coefficients for power of ε, we obtain the recursion relations for In

I0 = q2x = −ux , I1 = −I0,x = u2x ,

In = −In−1,x −
n−2∑
k=0

Ik In−2−k, n = 3, 4, . . . , (6.6)

Again substituting (6.5) into (6.4) and comparing the power of ε provides us infinite consequence
of conservation laws

In,t + Fn,x + Gn,y = 0, n = 1, 2, . . . . (6.7)

In Eq. (6.7), the conversed densities I ′
ns are given by formula (6.4), while the first fluxes F ′

ns are
given by recursion formulas explicitly

F0 = −2ux uy, F1 = 2u2x uy + 2ux uxy,

Fn = 2uy In + 2
n−1∑
k=0

Ik In−1−k,y, n = 2, 3, · · · (6.8)

and the second fluxes G ′
ns are

G0 = −u3x − u2
x , G1 = u4x + 2ux u2x ,

Gn = In,xx −
n∑

k=0

Ik In−k,y, n = 1, 2, · · · . (6.9)

We present recursion formulas (6.6), (6.8), and (6.9) for generating an infinite sequence of local
conservation laws (6.7), the first few conserved densities and associated fluxes are explicitly given.
The first equation of conservation law Eq. (6.7) is exactly the breaking soliton equation (1.1). In
conclusion, the breaking soliton equation (1.1) is completely integrable in the sense that it admits
bilinear Bäcklund transformation, Lax pair, and infinitely local conservation laws.
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