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Abstract: To date, when considering the dynamics of water conveying multi-walled carbon nanopar-
ticles (MWCNT) through a vertical Cleveland Z-staggered cavity where entropy generation plays
a significant role, nothing is known about the increasing Reynold number, Hartmann number, and
Darcy number when constant conduction occurs at both sides, but at different temperatures. The
system-governing equations were solved using suitable models and the Galerkin Finite Element
Method (GFEM). Based on the outcome of the simulation, it is worth noting that increasing the
Reynold number causes the inertial force to be enhanced. The velocity of incompressible Darcy-
Forchheimer flow at the middle vertical Cleveland Z-staggered cavity declines with a higher Reynold
number. Enhancement in the Hartman number causes the velocity at the center of the vertical
Cleveland Z-staggered cavity to be reduced due to the associated Lorentz force, which is absent when
Ha = 0 and highly significant when Ha = 30. As the Reynold number grows, the Bejan number de-
clines at various levels of the Hartmann number, but increases at multiple levels of the Darcy number.

Keywords: Darcy-Forchheimer flow; MWCNT-water nanofluid; vertical Cleveland Z-staggered
cavity; entropy generation

1. Background Information

Nanofluids are fluids containing nano-sized particles in the base fluid-like substance
such as oils, polymer solutions, biofluids, water, and lubricants. Nanofluids have re-
cently been exposed by Choi and Eastman [1], Slimani et al. [2], Medebber et al. [3],
Bendrer et al. [4], Zadeh et al. [5], and Aissa et al. [6] as a liquid substance capable to revo-
lutionary heat transfer in several technical and industrial applications, such as domestic
freezers, fuel cells, industrial mechanical processes, energy storage systems, and atomic
reactors. Recently, Sahmeh et al. [7], Hussain et al. [8], and Muhammad et al. [9] used
aqueous solutions to study various types of nanoparticles. Tlili et al. [10] have recently
developed hybrid nanofluids and remarked on the higher heat transfer rates as compared
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to nanofluids. A hybrid nanofluid is a suspension of two types of nanoparticles in a base
fluid. Microelectronics, propulsion, heat exchangers, military manufacturing, grinding,
solar water heating, acoustics, transportation, and naval structures are all examples of
hybrid nanofluid uses. Thanaa Elnaqeeb et al. [11] demonstrated a colloidal mixing of
three different nanoparticles in ternary hybrid nanofluids. The viscosity of the five ternary
hybrid nanofluid variants increases as the concentration rises. It was reported that when
suction is small, the temperature distribution across ternary hybrid nanofluids is at a maxi-
mum. Heat transmission across the ternary-hybrid nanofluids with the density of a small
nanoparticle is minimal because it is connected with greater levels of convective heating of
ternary-hybrid nanofluids and generates a more significant heat transfer rate; an increase
in the rate of convectively heating the wall is a factor capable of raising the temperature
distribution; see Animasaun et al. [12].

Scrutinization of fluid dynamics in various cavities has recently been an impactful
topic among scientists and technologists due to the enhancement of thermal performance
in different thermal types of equipment. For instance, understanding the significance
of fin attachment and the introduction of nanoparticles are two ways of controlling the
heat transfer rate. Although, the research methodology for solving the coupled nonlinear
governing equation is a severe challenge. Mansour et al. [13] realized that the heat trans-
mission rate increased when the aspect ratio of a C-shaped cavity filled with nanofluids
was reduced. In a study on Casson fluid flow due to double-diffusive natural convection in
staggered cavities, Hussain et al. [14] discovered that when entropy creation is significant,
the overall entropy output increases with increasing the Casson number. Zhang et al. [15]
explored a cavity with a high-temperature L-shaped source using Fortran code based on
the control volume approach and a simple algorithm. The smallest value of the Bejan
number was found at a magnetic field of 15◦. A change in the magnetic field can cause a
change in Nusselt number of up to 53% and a change in produced entropy of up to 34%.
Hosseinzadeh et al. [16] investigated heat transmission optimization in a hybrid nanofluid
composed of MoS2–TiO2 nanoparticles in the center of an octagon with an elliptical cavity.
The convective flow and the average Nusselt number fall as the Hartman number increases
due to Lorentz forces and electrical vortices that resist fluid flow. The heat transfer rate
in this environment deteriorates. Entropy analysis of Williamson nanofluid, unsteady
nanofluid, and electrothermal couple stress nanofluid flow have been explained explicitly
by Mandal and Shit [17–19]. Furthermore, increasing the parameter for quantifying the
levels of thermal radiation from 0 to 0.8 reduces the average Nusselt number by 4.2%.

Sowmya et al. [20] investigated the transport of iron(ii) oxide and silver nanoparticles
through water in a rectangular box with two heated fins on the bottom wall, where buoy-
ancy and Lorentz forces are essential. Furthermore, when the Rayleigh number increases,
so does the intensity of the velocity profile and streamlined function. Basak et al. [21]
evaluated lid-driven mixed convection in a square chamber with four different heating
temperatures. A GFEM with a penalty factor was used to simulate the nonlinear gov-
erning equations in the investigation. It is noteworthy that cooled walls, linear heating,
and uniform heating affect average and local Nusselt numbers at various divisions. Fur-
thermore, heat transmission was demonstrated to vary according to Darcy and Prandtl
numbers (Da and Pr), whereas Reynolds numbers (Re) ranged between 10 and 102. The
Darcy–Forchheimer–Brinkman confined domain boundary value problems are theoretical
models for the flow of viscous incompressible fluids in porous cavities. Numerous issues
of this type have been studied throughout history, but most notably in recent years, each
with its technique, system, boundary condition, domain, and function space. However, the
Darcy–Forchheimer flow of an mwcnt-water nanofluid in a vertical Cleveland Z-staggered
cavity subject to entropy generation and continuous conduction on both sides has yet
to be investigated. It is essential to know how the velocity, temperature, and entropy
generation vary at different levels of Reynold number at different temperatures. What
is/are the cause(s) of enhancement in the Hartman number on the velocity at the center of
the vertical Cleveland Z-staggered cavity? In fact, due to an increasing Reynold number, it
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is necessary to determine the nature of variation in the: (a) Bejan number at different levels
of Hartmann number; (b) maximum stream function value at different levels of Hartmann
number; (c) Nusselt number at different levels of Hartmann number; (d) Nusselt number
at different levels of Darcy number; (e) Bejan number at different levels of Darcy number;
and (f) maximum stream function value at different levels of Darcy number.

2. Research Methodology: Mathematical Formulation

A two-dimensional staggered cavity with a length of L and width of W, as shown
in Figure 1, where L and H are of equal size, was considered as the starting step for the
research study. It was assumed that L1 and H1 are on an equal footing. At an angle of
90◦, a B-intensity magnetic field was applied to the vertical Cleveland Z-staggered cavity.
Constant conduction (Cc) and low temperature (Tc) was considered to impact a portion
of the right wall of the length of H. Meanwhile, constant conduction (Ch) and the hot
temperature were considered to influence the left wall (length of H) (Th). The top and
lower walls of the vertical Cleveland Z-staggered cavity, as well as the rest of these walls,
are adiabatic in nature.

Figure 1. Illustration of 2D Darcy-Forchheimer flow through a vertical Cleveland Z-staggered cavity.

2.1. Formulation of the Governing Equation

With the aim of providing answers to the research questions mentioned above, the
Darcy–Forchheimer flow of water conveying multi-walled carbon nanoparticles through
a vertical Cleveland Z-staggered cavity due to the ratio of buoyancy forces to flow shear
forces was examined. Multi-walled carbon nanoparticles were considered due to their
elongated cylindrical shape made of sp2 carbon; see Kukovecz et al. [22] for synthesis
methods, as well as chemical and physical properties of multi-walled carbon nanotubes.
The transport phenomenon is described as 2D, uniform, steady-state, incompressible, and
laminar flow, where the cavity’s aspect ratio is AR = L1/L. The porous media is considered
as homogenous and isotropic. Based on the preceding assumptions, the dimensionless
forms of the X-momentum, Y-momentum, and the energy equation are:

∂U
∂X

+
∂V
∂V

= 0, (1)

1
ε2 U

∂U
∂X

+
1
ε2 V

∂U
∂Y

= − ∂P
∂X

+
1

Re · ε

[
∂2U
∂X2 +

∂2U
∂Y2

]
− 1

ReDa
U − 1.75√

150ε3Da
U
√

U2 + V2, (2)
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1
ε2 U ∂V

∂X + 1
ε2 V ∂V

∂Y = − ∂P
∂Y + 1

Re ·ε

[
∂2V
∂X2 +

∂2V
∂Y2

]
− 1

ReDa
V−

1.75√
150ε3Da

V
√

U2 + V2 + Riθ − σn f
σf

ρ f
ρn f

Ha2

Re
V,

(3)

U
∂θ

∂X
+ V

∂θ

∂Y
=

1
Re · Pr

[
∂2θ

∂X2 +
∂2θ

∂Y2

]
+

Ra f

RaERe · Pr
. (4)

The equations mentioned above are produced by introducing the dimensionless
variables listed below:

X =
x
H

, Y =
y
H

, U =
u
H

, V =
v
H

, θ =
T − Tc

Th − Tc
, P =

p
ρU2

0
, α =

kx

ρCp
. (5)

The emerged dimensionless parameters (i.e., Darcy number Da, Prandtl number Pr,
Reynold number Re, Rayleigh number associated with the staggered fluid in cavity Ra f ,
Rayleigh number associated with the entropy generation RaE, and Bejan number Be) are
defined as:

Da =
K

H2 , Pr =
v
α , Re =

U0 H
v , Ra f =

gβqm′H5

vαkx
, Ha = LB

√
σn f
µn f

.RaE = gβ(Th−Tc)H3

vα ,

Be =
∫

SHTdXdY∫
STdXdY = SHT

ST
, Gr =

gβH3(Tk−Tc)
v2 , Ri = Gr

ReRe

(6)

The thermo-physical characteristics of the water conveying multi-walled carbon
nanoparticles presented in Table 1 are defined as:

ρhnf = (1− φ)ρ f + φρp, (ρβ)hnf = (1− φ)(ρβ) f + φ(ρβ)p, µhnf(1− ϕ)2.5 = µb f(
ρCp

)
hnf = (1− φ)

(
ρCp

)
f + φ

(
ρCp

)
p, khnf

k f
=

knp+(n−1)k f−(n−1)(k f−knp)ϕ

knp+(n−1)k f +(k f−knp)ϕ
,

αhnf = khnf
(ρCp)hnf

.

(7)

Table 1. Nanoparticles and base fluid thermo-physical properties as per Bendrer et al. [23].

Pure Water Mwcnt

ρ (kg/m3) 997.1 2100

Cp (J/kg k) 4179 710

k (W/m k) 0.613 2000

σ (S/m) 5.5 × 10−6 1.9 × 10−4

The dimensionless boundary conditions associated with Equations (1)–(4) for the
hot wall:

U = 0, V = 0, θ = 1, (8)

for the cold wall:
U = 0, V = 0, θ = 0, (9)

for the moving wall:
∂θ

∂Y
= 0, U = 1, V = 0, (10)

for the stationary adiabatic walls:

∂θ

∂Y
= 0, U = 0, V = 0, (11)
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The mean and local Nusselt numbers are of the form:

Num =
∫ 1

0
NudY Nu = − ∂θ

∂X
. (12)

The expression in the model to account for the amount of entropy that was produced
during the irreversible process associated with the dynamics in the staggered cavity is:

ST =
kn f
k f

[(
∂θ
∂X

)2
+
(

∂θ
∂Y

)2
]
+

µn f
µ f

x
{

2
[(

∂U
∂X

)2
+ 2
(

∂V
∂Y

)2
]
+
(

∂U
∂Y + ∂V

∂X

)2
+ χHa2 σn f

σf

(
U2 + V2)} (13)

whereas,

x =
µ f T0

k f

(
uw

Th − Tc

)2
(14)

ST = SHT + SFF + SMF (15)

where the entropy production due to heat transfer irreversibility, SHT, magnetic field, SMF,
and fluid friction irreversibility, SFF, are defined as:

SHT =
kn f
k f

[(
∂θ
∂X

)2
+
(

∂θ
∂Y

)2
]

, SFF =
µn f
µ f

χ

{
2
[(

∂U
∂X

)2
+ 2
(

∂V
∂Y

)2
]
+
(

∂U
∂Y + ∂V

∂X

)2
}

,

SMF = χHa2 σn f
σf

(
U2 + V2) (16)

2.2. Solution Methodology and Validation

The solution starts with a basis function Mi and its coefficients Ni to be determined in

û =
n

∑
i=1

Mi Ni

such that: ∫
V

φ(Lû− P)dV = 0

foe every function

φ =
n

∑
i=1

φi Mi

where φi are arbitrary coefficients and φ must satify the boundary conditions homoge-
neously. The resulting solutions of each equation Ni yields the approximate solution of û.
The unknown functions that satisfy governing Equations (1)–(4) are subject to and associ-
ated with conditions Equations (8)–(11) and were obtained using the Galerkin-weighted
residual finite element technique suggested by Bendrer et al. [23] and Al-Kouz et al. [24].
Numerous grids were evaluated. As shown in Table 2, the observed findings convinced us
to employ an extra-fine grid with 22,414 triangular pieces in the present investigation. In
order to ensure the numerical approach used in the code is accurate, the velocity profile
is depicted and compared against the findings reported by Iwastu et al. [25], as seen in
Figure 2.

Table 2. Comparison between Nuavg for different grid resolutions.

Number of Grids

3498 8508 22,414 27,916

Re = 500 3.3784 3.3811 3.3813 3.3817
Re = 1000 3.5195 3.5230 3.5236 3.5236
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Figure 2. Validation of the code velocity profile (Comparison of a new result with that of
Iwastu et al. [25] for a limiting case).

3. Analysis and Discussion of Results

At different levels of Reynold number, as illustrated in Figure 3, minimum temper-
ature occurs near the right-hand side of the vertical Cleveland Z-staggered cavity of low
temperature. It is evident that increasing the magnitude of Reynold number causes the
pattern of variation in the temperature at the middle to further slant away from the hot side
to the cold side. It may be concluded that increasing the Reynold number causes the inertial
force to be enhanced. Consequently, increasing the inertial force affects the distribution of
heat energy from continuous conduction, but from the heated side to the cool side. The
Reynolds number determines whether a fluid flow is laminar or turbulent. Due to the
larger magnitude of inertia force, an object with a higher Reynolds number can force its way
through a flow field. The result shows that an increase in Re less than 2000 corresponds to a
larger inertia force; see Rapp [26]. The incompressible Darcy–Forchheimer flow of MWCNT-
water nanofluid in a vertical Cleveland Z-staggered cavity is observed to be affected by
increasing Reynold number as illustrated in Figure 3. For instance, the domain of maximum
velocity occurs at just two points in the domain when Re = 50. As Re = 1000, the domain
of maximum velocity enlarges at the middle of the vertical Cleveland Z-staggered cavity.
However, it is worth noting that the magnitude of the maximum velocity (vm) declined at
the middle of the vertical Cleveland Z-staggered cavity as Re → 1000 . Using the technique
of slope linear regression through the data points announced in references [27–29] shows
that the observed rate in a decrease in vm with Re is −3.74426 × 10−5. In compact form,
[Re, vm] are [50, 0.084], [100, 0.070], [400, 0.058], and [1000, 0.043].

The observation above suggests that the velocity of incompressible Darcy-Forchheimer
flow of MWCNT-water nanofluid at the middle of a vertical Cleveland Z-staggered cavity
declines with a higher Reynold number due to the enhancement of the associated inertial
force. As the magnitude of Reynold number increases, Al kouz et al. [24] once discovered
that the inadequacy of coarse meshes gradually becomes apparent. The results in Figure 4
show that the greater the Hartmann number, the more the velocity at the cavity’s center is
slowed. For instance, in the absence of the associated Lorentz force (i.e., when Ha = 0), the
outcome of this study shows the possibility of getting the velocities 0.062 and 0.040 at the
middle of the vertical Cleveland Z-staggered cavity. As the magnitude of the Hartmann
number increases (i.e., the higher the Lorentz force), the velocity at the middle reduces from
0.014 (when Ha = 10) to 0.012 (when Ha = 20), and 0.0011 when Ha = 30. Near the hot and
cold wall, the distribution of heat energy is maintained. In a study on the magnetic field
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on the peristaltic transport of blood in a non-uniform setting, Mekheimer [30] noticed that
the ratio of force to the area is an increasing property of the Hartmann number. Figure 5
reveals that the increasing Darcy number influences the velocity function. As expected,
the temperature distribution is a constant function of Darcy number. In a study on the
influence of increasing Darcy number, Marcelo [31] discovered that a larger interfacial heat
transfer area boosts energy transfer throughout the channel, resulting in a more effective
heat exchange between phases. This scientific fact supports the newly acquired results
illustrated in the third column of Figure 5. At the upper and lower bounds of the vertical
Cleveland Z-staggered cavity, the domain covered by the Bejan number enlarges as the
magnitude of Darcy number increases. Figure 6 reveals that the Bejan number decreases
with Reynold number. A higher decreasing trend in Bejan number with Reynold number
manifests when Ha = 0 (absence of Lorentz force). It is also discovered, see Figure 7, that
the Nusselt number that quantifies the heat transfer rate grows insignificantly with the
Reynold number at all levels of increasing Hartmann number.

Figure 3. Variations in the velocity, temperature distribution, and entropy generation at different
levels of Reynold number.
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Figure 4. Variations in the velocity, temperature distribution, and entropy generation at different
levels of Hartmann number.
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Figure 5. Variations in the velocity, temperature distribution, and entropy generation at different
levels of Darcy number.

Figure 6. Variation in Bejan number with Reynold number at different levels of Hartmann number.
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Figure 7. Variation in Nusselt number with Reynold number at different levels of Hartmann number.

Intensive increasing of the Nusselt number at each level of the Reynold number is
observable when the Lorentz force is infinitesimal. According to Sheikholeslami [32], as the
Reynolds number rises, the isotherms near the lid wall would get denser due to convection
enhancement. More specifically, as the Darcy number rises, the temperature gradient
across the hot wall also rises. Figure 8 reveals a decreasing pattern of the maximum
stream function value with Reynold number at different levels of Darcy number. Since the
force exerted on a charged particle moving with velocity through a magnetic field and an
electric field is perpendicular to the flow of Darcy-Forchheimer MWCNT-water through
a vertical Cleveland Z-staggered cavity, the maximum stream function value decreases
with increasing Reynold number; see Figure 8. It is worth noticing from Figure 9 that
the Nusselt number was found to be an increasing function of Reynold number at each
level of Darcy number. It is worthy to note that the rate of increase in the Nuselt number
with Reynold number is minimal when Darcy number is minimal. The isotherms get less
dense as the Lorentz forces increase. Furthermore, as the Hartmann number rises, velocity
falls. According to Kandelousi and Ganji [33], high permeability promotes robust flow
circulation in the enclosure, whereas low permeability inhibits flow circulation and results
in a weak flow. Based on the stream function value, it is clear that lowering Da from 0.1 to
0.001 inhibits flow circulation within the domain and reduces the stream function for the
fluid domain. Figures 10 and 11 reveal that the Bejan number increases while the maximum
stream function value decreases with Reynold number.

Figure 8. Variation in maximum stream function value with Reynold number at different levels of
Hartmann number.
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Figure 9. Variation in the Nusselt number with Reynold number at different levels of Darcy number.

Figure 10. Variation in the Bejan number with Reynold number at different levels of Darcy number.
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Figure 11. Variation in the maximum stream function value with Reynold number at different levels
of Darcy number.

4. Conclusions

The dynamics of Darcy–Forchheimer flow of water conveying multi-walled carbon
nanoparticles through a vertical Cleveland Z-staggered cavity subject to entropy genera-
tion and constant conduction on both sides, but at different temperature levels has been
investigated. It is worthy to conclude that:
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(a) Increasing the Reynold number causes the inertial force to be enhanced. Consequently,
increasing the inertial force affects the distribution of heat energy from constant
conduction, but from the heated side to the cool side;

(b) The velocity of incompressible Darcy–Forchheimer flow of water conveying multi-
walled carbon nanoparticles at the middle of the vertical Cleveland Z-staggered
cavity declines with a higher Reynold number due to enhancement of the associated
inertial force;

(c) Enhancement in the Hartman number causes the velocity at the center of the vertical
Cleveland Z-staggered cavity to be reduced due to the associated Lorentz force, which
is absent when Ha = 0 and highly significant when Ha = 30;

(d) The higher the Darcy number, the greater the velocity function increase, but only at
the middle of the vertical Cleveland Z-staggered cavity.

(e) As the Reynold number grows,

• the Bejan number declines at various levels of Hartmann number, but increases
at various levels of Darcy number;

• the Nusselt number increases significantly at various levels of Darcy number, but
negligibly at various levels of Hartmann number;

• The maximum stream function value diminishes at various levels of Hartmann
and Darcy numbers.

An extension of the study is to unravel the dynamics of ternary-hybrid nanofluid
through a vertical Cleveland Z-staggered cavity and is recommended for a deeper under-
standing of the effects of entropy generation, Darcy number, and Reynold number.
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