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Abstract An analysis of the mixed convective flow of viscous fluids induced by a
nonlinear inclined stretching surface is addressed. Heat and mass transfer phenomena
are analyzed with additional effects of heat generation/absorption and activation energy,
respectively. The nonlinear Darcy-Forchheimer relation is deliberated. The dimensionless
problem is obtained through appropriate transformations. Convergent series solutions are
obtained by utilizing an optimal homotopic analysis method (OHAM). Graphs depicting
the consequence of influential variables on physical quantities are presented. Enhancement
in the velocity is observed through the local mixed convection parameter while an opposite
trend of the concentration field is noted for the chemical reaction rate parameter.
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1 Introduction

The fluid flow through a porous space and objects of different shapes embedded in the
porous space has recently attracted the attention of researchers. Its applications can be found
in diversified disciplines such as nuclear engineering, bioengineering, mechanical engineering,
geothermal physics, civil engineering, and applied mathematics. Geothermal energy utilization,
solidification of casting, blood flow in lungs or in arteries, buried electrical cables, pollutants
dispersion in aquifers, porous heat pipes, chemical catalytic connectors are some processes
which involve the fluid flow through a porous space. Darcy’s law is extensively used to
interpret the flow filling the porous space. Darcy’s law becomes invalid for effects of high
velocity and turbulence in the porous space. The second-order polynomial function was
introduced in the momentum equation by Forchheimer[1] to account for the effects of inertia
on apparent permeability. Muskat[2] named it as the Forchheimer factor. Several studies
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considered the flow through a porous space by using the Darcy-Forchheimer relation in different
geometries. Few of them are reported here. The Darcy-Forchheimer flow about an isothermal
vertical flat plate with thermophoresis was analyzed by Seddeek[3]. Sadiq and Hayat[4]

illustrated the Darcy-Forchheimer flow over a stretching surface. Bakar et al.[5] interpreted
the Darcy-Forchheimer flow over a shrinking surface. Hayat et al.[6] extended the work by
considering homogeneous-heterogeneous reactions and Cattaneo-Christov heat flux. The flow
of nanofluids in a vertical rectangular duct was examined by Umavathi et al.[7]. They used
the Darcy-Brinkman-Forchheimer relation for the flow through a porous space. Chakraborty et
al.[8] discussed the Darcy-Forchheimer flow over an inclined porous plate. Seth et al.[9] provided
the Darcy-Forchheimer flow over an inclined stretchable sheet. Soret and Dufour effects were
also considered. The rotating flow of carbon nanotubes through a porous space was interpreted
by Shah et al.[10]. Saif et al.[11] presented the flow of nanofluids through a porous space. The
disturbance in the flow was generated by a curved stretching sheet. Rasool et al.[12] provided the
Darcy-Forchheimer flow of nanofluids induced by a nonlinear stretching sheet. Sadiq et al.[13]

analyzed the Darcy-Forchheimer flow over a rotating disk. Sheikholeslami et al.[14] presented
the non-Darcy flow within the porous enclosure. A similar trend of the flow field was observed
for the flow through a porous space in different geometries.

The mixed convective flow is prominent in various natural, engineering, and industrial
processes. Applications of the mixed convective flow include different temperature atmospheric
flows, lubrication grooves, lakes and reservoirs, and manufacturing of nuclear plants. For
a thermal equipment which requires a high temperature to operate, the relation between
temperature and concentration-dependent density becomes nonlinear. This nonlinear relation
strongly affects the flow characteristics[15–21]. Heat and mass transfer over a moving surface can
be prominent in manufacturing processes such as cooling towers, hot rolling, continuos casting,
hot extrusion, crystal growth, and wire drawing. Vajravelu[22] provided numerical solutions for
the flow over a nonlinear stretching surface. Thumma et al.[23] studied the flow of nanofluids
induced by a nonlinear inclined stretching sheet. Magnetic field and heat generation/absorption
were also considered. The chemically reactive flow of nanofluids induced by a porous stretchable
sheet was analyzed by Jain et al.[24]. Gupta et al.[25] considered magnetohydrodynamic (MHD)
and thermal radiation in the flow over an inclined stretchable sheet. Ghadikolaeia et al.[26]

illustrated the nonlinear thermal radiation and Joule heating effects in the flow induced by an
inclined stretching sheet. Gholinia et al.[27] presented the numerical investigation of the free
convective flow induced by an inclined stretching sheet. Thriveni and Mahanthesh[28] analyzed
heat transport of hybrid nanofluids in an annulus. Recent investigations on heat transfer in the
presence of heat generation/absorption can be consulted in Refs. [29]–[33].

Activation energy is an amount of energy necessary for a chemical system with potential
reactants to yield a chemical reaction. Activation energy is determined by the Arrhenius
equation which describes the change in rate constants with temperature. A mass transfer
phenomenon with chemical reaction is used in geothermal engineering, chemical engineering,
mechano-chemistry, oil and water emulsions, and deterioration of materials. There is a complex
relation between chemical reactions and mass transfer. This relation can be scrutinized for both
fluid flow and mass transfer through fabrication and digestion of reactant species at different
rates. Hsiao[34] provided the numerical analysis for manufacturing efficiency of a thermal
extrusion system by utilizing an improved method of controlling parameters. Majeed et al.[35]

analyzed the collective effects of binary chemical reaction and activation energy in the fluid flow
with the second-order momentum slip condition. Khan et al.[36] discussed the effect of nonlinear
thermal radiation along with activation energy. They observed an increase in concentration of
species due to the higher activation energy parameter. Dhlamini et al.[37] extended the work by
considering mixed convection. They noted an enhancement in concentration of chemical species
by the use of heated plate. Irfan et al.[38] utilized nonlinear mixed convection for the flow of
Carreau fluids. The concentration of species can be more enhanced by the nonlinear variation
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of density than the linear variation.
In view of the aforementioned studies, it is analyzed that the combined impact of nonlinear

mixed convection and activation energy past a nonlinear inclined stretching surface has not
been studied yet. Fluids filling the porous space with the Darcy-Forchheimer expression are
also considered. Heat transfer aspects are considered in presence of heat generation/absorption.
Such investigation is useful in high-temperature polymeric mixtures, aerosol technique, and
solar collector which operates at moderate to high temperatures. The nonlinear system of
equations is obtained through suitable transformations. Analytical solutions are computed by
the optimal homotopy analysis method (OHAM)[39–49]. Aspects of emerging parameters are
physically illustrated. Graphs are portrayed for the effects of emerging parameters on physical
quantities.

2 Model development

We consider the two-dimensional, incompressible, mixed convective flow of viscous fluids
induced by a nonlinear stretching sheet. The surface is inclined at an acute angle ξ. Viscous
fluids filling the porous media are specified by the Darcy-Forchheimer relation. Impacts of
activation energy and heat generation/absorption are also considered. The Cartesian coordinate
framework is adopted such that the surface is lined up in the x- and y-directions normal to
the surface. Surface deforms continuously in the x-direction with a nonlinear velocity Uw =
axn (a > 0, n � 0). Using boundary-layer and Boussinesq approximation, the resulting problems
are obtained as follows[16,38]:

∂u

∂x
+

∂v

∂y
= 0, (1)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
− ν

K
u − Fu2 + g(β0(T − T∞) + β1(T − T∞)2

+ β2(C − C∞) + β3(C − C∞)2) cos ξ, (2)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
+

Q0

(ρcp)
(T − T∞), (3)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− k2

r (C − C∞)
( T

T∞

)m

exp
(−E∗

k∗T

)
, (4)

{
u = Uw(x) = axn, v = 0, T = Tw, C = Cw at y = 0,

u → 0, T → T∞, C → C∞ as y → ∞.
(5)

Here, u and v depict the velocity components along the x- and y-directions, F = C∗
b

K∗1/2 is
the nonlinear inertia coefficient of the porous space, g is the gravity, C∗

b represents the drag
coefficient, β0, β1, β2, and β3 are the first-order and second-order expansions of thermal and
solutal coefficients, respectively, kr is the chemical reaction constant, k∗ is the Boltzmann
constant, and E∗ is the activation energy.

Select[20] ⎧⎪⎪⎪⎨⎪⎪⎪⎩
u = axnf ′(ζ), v =

√
aν(n + 1)

2
x

n−1
2

(
f(ζ) +

n − 1
n + 1

ζf ′(ζ)
)
,

θ(ζ) =
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Tw − T∞

, φ =
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, ζ = y

√
a(n + 1)

2ν
x

n−1
2 .

(6)
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Then, Eq. (1) is identically justified, and Eqs. (2)–(5) yield(
f ′′′ − 2

n + 1
λf ′

)
+ ff ′′ − 2

n + 1
(n + Fr) f ′2 +

2
n + 1

Ri(θ + α1θ
2) cos ξ

+
2

n + 1
RiN

∗(φ + α1φ
2) cos ξ = 0, (7)

1
Pr

θ′′ +
2

n + 1
δθ + fθ′ = 0, (8)

1
Sc

φ′′ + fφ′ − 2
n + 1

Λ(1 + Λ∗θ)m exp
( −E

1 + Λ∗θ

)
φ = 0, (9){

f = 0, f ′ = 1, θ = 1, φ = 1 at ζ = 0,

f ′ → 0, θ → 0, φ → 0 as ζ → ∞.
(10)

In the above expressions, λ depicts the local porosity parameter, Ri is the local mixed convection
parameter, Fr is the Forchheimer number, α1 is the nonlinear density-temperature parameter,
α2 is the nonlinear density-concentration parameter, N∗ is the Buoyancy ratio parameter,
δ is the local heat generation/absorption coefficient, Pr is the Prandtl number, Λ∗ is the
temperature difference variable, E is the activation energy parameter, Λ is the local reaction
rate parameter, and Sc represents the Schmidt number. Here, one has⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ =
ν

Kaxn−1
, Fr =

Cb

K1/2 , Ri =
gβ0(Tw − T∞)

a2x2n−1
, α1 =

β1(Tw − T∞)
β0

,
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β3(Cw − C∞)

β2
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β0(Tw − T∞)

, δ =
Q0

(ρcp) axn−1
, P r =

ν

α
,

E =
E∗

k∗T∞
, Λ∗ =

Tw − T∞
T∞

, Λ =
k2
r

axn−1
, Sc =

ν

D
.

(11)

The skin friction coefficient and local heat and mass transfer rates are⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

CfxRe1/2
x =

(n + 1
2

)1/2

f ′′(0),

NuxRe−1/2
x = −

(n + 1
2

)1/2

θ′(0),

ShxRe−1/2
x = −

(n + 1
2

)1/2

φ′(0),

(12)

in which Rex = axn+1

ν is the local Reynolds number.

3 Solutions by the OHAM

Auxiliary linear operators and appropriate initial deformations for OHAM solutions are

Lf =
d3

dζ3
− d

dζ
, Lθ =

d2

dζ2
− 1, Lφ =

d2

dζ2
− 1, (13)

f0(ζ) = 1 − e−ζ , θ0(ζ) = e−ζ , φ0(ζ) = e−ζ (14)

with characteristics{
Lf(J̃∗∗∗

1 + J̃∗∗∗
2 eζ + J̃∗∗∗

3 e−ζ) = 0, Lθ(J̃∗∗∗
4 + J̃∗∗∗

5 eζ) = 0,

Lφ(J̃∗∗∗
6 eζ + J̃∗∗∗

7 e−ζ) = 0.
(15)

Here, J̃∗∗∗
j (j = 1, 2, · · · , 7) represent arbitrary constants.
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4 Solution convergence

The solution expressions consist of �̂f , �̂θ, and �̂φ which play an essential role in convergent
series solutions. The concept of minimization is utilized for obtaining optimal data of �̂f , �̂θ,
and �̂φ. The average squared residual errors as recommended by Liao[39] are given as

εf
m =

1
k + 1

k∑
i=0

(
Nf

( m∑
j=0

f̂(ζ),
m∑

j=0

θ̂(ζ),
m∑

j=0

φ̂(ζ)
)

ζ=iδζ

)2

, (16)

εθ
m =

1
k + 1

k∑
i=0

(
Nθ(

m∑
j=0

f̂(ζ),
m∑

j=0

θ̂(ζ))ζ=iδζ

)2

, (17)

εφ
m =

1
k + 1

k∑
i=0

(
Nφ(

m∑
j=0

f̂(ζ),
m∑

j=0

θ̂(ζ),
m∑

j=0

φ̂(ζ))ζ=iδζ

)2

, (18)

εt
m = εf

m + εθ
m + εφ

m, (19)

where εt
m depicts the total squared residual error, δζ = 0.5, and k = 20. The optimal data of

convergence control variables for n = 0.5 and n = 1.5 yield �̂f = −1.350 58, �̂θ = −1.377 47,
�̂φ = −1.313 62 and �̂f = −0.701 359, �̂θ = −1.371 73, �̂φ = −1.338 06, while the total averaged
squared residual errors for n = 0.5 and n = 1.5 are εt

m = 3.89 × 10−3 and εt
m = 3.59 × 10−3,

respectively. Plots for the total residual error for n = 0.5 and n = 1.5 are portrayed in Figs. 1
and 2. Tables 1 and 2 are arranged for numerical values of the individual average squared
residual error at n = 0.5 and n = 1.5, respectively. A decreasing trend of the average squared
residual error is noted for higher-order deformations.

Fig. 1 Total residual error when n = 0.5 Fig. 2 Total residual error when n = 1.5

Table 1 Individual averaged squared residual errors when n = 0.5[6]

m εf
m εθ

m εφ
m

2 1.05×10−4 3.38×10−3 4.04×10−4

6 3.20×10−5 9.14×10−4 3.54×10−5

10 1.93×10−5 4.93×10−4 9.57×10−6

14 1.36×10−5 3.23×10−4 3.81×10−6

16 1.18×10−5 2.73×10−4 2.63×10−6
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Table 2 Individual averaged squared residual errors when n = 1.5[6]

m εf
m εθ

m εφ
m

2 1.34×10−4 2.72×10−3 8.55×10−4

6 2.48×10−5 7.20×10−4 1.40×10−4

10 2.03×10−5 3.84×10−4 5.63×10−5

14 1.79×10−5 3.06×10−4 4.02×10−5

16 1.43×10−5 2.12×10−4 2.34×10−5

5 Discussion

This section intends to inspect the contribution of the local porosity parameter λ,
the local Forchheimer number Fr, the local mixed convection parameter Ri, the nonlinear
density-temperature parameter α1, the nonlinear density-concentration parameter α2, the
inclination angle ξ, the Buoyancy ratio parameter N∗, the local heat generation/absorption
coefficient δ, the Prandtl number Pr, the activation energy parameter E, the temperature
difference parameter Λ∗, the local reaction rate parameter Λ, and the Schmidt number Sc on
the velocity f ′(ζ), thermal θ(ζ) and concentration φ(ζ) fields. The computations have been
done for distinct values of 0 � λ � 1.2, 0 � Fr � 1.4, 0 � Ri � 0.9, 0 � α1 � 12, 0 � α2 � 12,
0 � ξ � π

2 , 0 � N∗ � 2.0,−0.3 � δ � 0.3, 0.7 � Pr � 1.4, 0 � E � 3, 1 � Λ∗ � 4, 0 � m � 3,

0�Λ � 1.5, and 0.5 � Sc � 1.5[6,38]. The curves of f ′(ζ) for λ estimations are deliberated
in Fig. 3. Here, f ′(ζ) lowers for higher λ. Physically, the presence of the porous space creates
resistance in the smooth movement of fluid particles, which consequently declines the velocity
field. Figure 4 portrays the significant impact of Fr on f ′(ζ). Reduction in f ′(ζ) is noticed for
larger Fr. Figure 5 shows the salient features of Ri on f ′(ζ). Higher estimation of Ri predicts
a strong buoyancy force within the fluid flow which intensifies the velocity for both n = 0.5
and n = 1.5. The variation of f ′(ζ) via α1 and α2 is pointed out in Figs. 6 and 7, respectively.
Clearly, f ′(ζ) enhances for increasing values of α1 and α2. They signify the relative impact
of thermal and solutal buoyancy forces on viscous hydrodynamic forces, respectively. Thus,
the velocity increases due to the enhancement of buoyancy forces[28]. Figure 8 is analyzed for
the role of N∗ on f ′(ζ). An enhancement in f ′(ζ) is observed for larger N∗ for both n = 0.5
and n = 1.5. N∗ > 1 corresponds to the situation when solutal buoyancy forces exceed thermal
buoyancy forces, N∗ < 1 when solutal buoyancy forces are less than thermal buoyancy forces,
and N∗ = 1 when both the buoyancy forces are of the same magnitudes. Figure 9 presents the
consequences of ξ on f ′(ζ). It describes that f ′(ζ) reduces for higher ξ. Attributes of δ against
θ(ζ) are declared in Fig. 10. It is investigated that an enhancement in δ yields stronger θ(ζ) and a
larger related layer thickness for both n = 0.5 and n = 1.5. It is due to the increase in buoyancy
forces for heat generation which influences the flow rate. This enhancement in the flow rate
causes stronger θ(ζ). θ(ζ) against Pr is sketched in Fig. 11. Pr possesses a converse relation
with the thermal diffusivity. The less thermal diffusivity is noted for higher Pr which reduces
the fluid temperature. Aspects of E on φ(ζ) are displayed in Fig. 12. An increment in E gives
rise to stronger φ(ζ) and a larger associated layer thickness. Physically, higher E represents
the decrease in the modified Arrhenius function which pushes the generative chemical reaction.
The impact of Λ∗ on φ(ζ) is plotted in Fig. 13. Larger Λ∗ indicates the decrease in φ(ζ) and the
related layer thickness for both n = 0.5 and n = 1.5. From Fig. 14, it is recognized that larger m
produces weaker φ(ζ) and a smaller associated layer thickness. Figure 15 is sketched to examine
the variation in φ(ζ) for Λ. An increase in Λ leads to the destructive chemical reaction that
dissolves the liquid species more effectively which causes weaker φ(ζ). The role of Sc on φ(ζ) is
pointed out in Fig. 16. Clearly, both φ(ζ) and the corresponding layer thickness are reduced for
higher Sc. Figures 17 and 18 characterize the consequences of α1, α2, and ξ on the skin friction
coefficient CfxRe

1/2
x . It is analyzed that CfxRe

1/2
x is lower when the increasing values of α1, α2,
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and ξ are accounted. By increasing Pr and α, the magnitude of NuxRe
−1/2
x is reduced for

both n = 0.5 and n = 1.5 (see Figs. 19 and 20). Figures 21 and 22 address the local Sherwood
number ShxRe

−1/2
x for Λ, Λ∗, and m. Clearly, the magnitude of ShxRe

−1/2
x is increased for

higher estimations of Λ, Λ∗, and m. Tables 3 and 4 are arranged for the justification of the
current results which are compared with those by Vajravelu and Sastri[15]. It is analyzed that
the current results are in good agreement with those in Ref. [15].

'

α α

ξ �/4, δ  

λ

Fig. 3 Variation of f ′(ζ) against λ (color
online)

'

α α
ξ �/4, δ

Fig. 4 Variation of f ′(ζ) against Fr (color
online)

'

α α
ξ �/4, δ

Fig. 5 Variation of f ′(ζ) against Ri (color
online)

'

α
ξ �/4, δ

α

Fig. 6 Variation of f ′(ζ) against α1 (color
online)

'

α
ξ �/4, δ

α

Fig. 7 Variation of f ′(ζ) against α2 (color
online)

'

α α
ξ �/4, δ

Fig. 8 Variation of f ′(ζ) against N∗ (color
online)
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'

α α
 δ

ξ �/6, �/3

Fig. 9 Variation of f ′(ζ) against ξ (color
online)

α α
ξ �/4, 

δθ

Fig. 10 Variation of θ(ζ) against δ (color
online)

α α
ξ �/4, δ

θ

Fig. 11 Variation of θ(ζ) against Pr (color
online)

φ

α α
ξ �/4, δ

Fig. 12 Variation of φ(ζ) against E (color
online)

α α
ξ �/4, δ

φ

Fig. 13 Variation of φ(ζ) against Λ∗ (color
online)

α α
ξ �/4, δ

φ

Fig. 14 Variation of φ(ζ) against m (color
online)

α α
ξ �/4, δ

φ

Fig. 15 Variation of φ(ζ) against Λ (color
online)

α α
ξ �/4, δ

φ

Fig. 16 Variation of φ(ζ) against Sc (color
online)
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α  
δ

ξ

α

Fig. 17 Variation of CfxRe
1/2
x against α1 and

ξ (color online)

α  
δ

ξ

α

Fig. 18 Variation of CfxRe
1/2
x against α2 and

ξ (color online)

δ

ξ

α α

Fig. 19 Variation of NuxRe
−1/2
x against δ

and ξ (color online)

ξ

α α
δ

Fig. 20 Variation of NuxRe
−1/2
x against Pr

and ξ (color online)

α α
ξ �/4, δ

Fig. 21 Variation of ShxRe
−1/2
x against Λ∗

and m (color online)

α α
ξ �/4, δ

Fig. 22 Variation of ShxRe
−1/2
x against Λ

and m (color online)

Table 3 Comparative values of −f ′′(0) for distinct values of n when Ri = α1 = α2 = N∗ = λ = Fr = 0

n
−f ′′(0)

Present Ref. [15]

1 1.000 0 1.000 0
5 1.194 5 1.194 5
10 1.234 9 1.234 8
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Table 4 Comparative values of −θ′(0) for distinct values of n when δ = 0

n Pr
−θ′(0)

Present Ref. [15]

1
0.71

0.458 6 0.459 0
5 0.439 2 0.439 4
10 0.435 7 0.435 7

1
7.0

1.888 1 1.895 3
5 1.856 1 1.861 0
10 1.845 5 1.854 1

6 Conclusions

The nonlinear mixed convective flow by a nonlinear inclined stretching surface with the
activation energy and the Darcy-Forchheimer porous space is modeled. Heat generation/
absorption is also considered. The key findings of the present analysis are outlined as follows.

(i) The velocity is an increasing function of Ri.
(ii) The improvement in the velocity is observed through α1 and α2.
(iii) The opposite trend of the velocity is noticed for N∗ and ξ.
(iv) The stronger temperature is noted for larger δ.
(v) The concentration for Λ and Λ∗ has a similar trend.
(vi) The concentration against E is enhanced.
(vii) The skin friction coefficient reduces for α1 and α2.
(viii) The variation of ξ results in augmentation of the local Nusselt number.
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