
DARD: Distributed Adaptive Routing for Datacenter Networks

Xin Wu

Dept. of Computer Science, Duke University

Durham, USA

xinwu@cs.duke.edu

Xiaowei Yang

Dept. of Computer Science, Duke University

Durham, USA

xwy@cs.duke.edu

Abstract—Datacenter networks typically have many paths
connecting each host pair to achieve high bisection band-
width for arbitrary communication patterns. Fully utilizing
the bisection bandwidth may require flows between the same
source and destination pair to take different paths. However,
existing routing protocols have little support for load-sensitive
adaptive routing. We propose DARD, a Distributed Adaptive
Routing architecture for Datacenter networks. DARD allows
each end host to move traffic from overloaded paths to
underloaded paths without central coordination. We use an
OpenFlow implementation and simulations to show that DARD
can effectively use a datacenter network’s bisection bandwidth
under both static and dynamic traffic patterns. It outperforms
previous solutions based on random path selection by 10%,
and performs similarly to previous work that assigns flows to
paths using a centralized controller. We use competitive game
theory to show that DARD’s path selection algorithm makes
progress in every step and converges to a Nash equilibrium
in finite steps. Our evaluation results suggest that DARD can
achieve a close-to-optimal solution in practice.

Keywords-Distributed Adaptive Routing; Datacenter.

I. INTRODUCTION

Datacenter network applications, e.g., MapReduce and

network storage, often demand high intra-cluster band-

width [1]. The components of an application cannot always

be placed on machines close to each other for two main

reasons. First, applications may share common services,

e.g., DNS, search, and storage. These services are not

necessarily placed in nearby machines. Second, the auto-

scaling feature offered by a datacenter network [2], [3]

allows an application to create dynamic instances when its

workload increases. Where those instances will be placed

depends on machine availability, and is not guaranteed to

be close to the application’s other instances.

Therefore, it is important for a datacenter network to have

high bisection bandwidth to avoid hot spots between any pair

of hosts. To achieve this goal, today’s datacenter networks

often use commodity Ethernet switches to form multi-rooted

tree topologies [4] (e.g., fat-tree [5] or Clos topology [6])

that have multiple equal-cost paths connecting any host pair.

A flow (a flow refers to a TCP connection in this paper) can

use an alternative path if one path is overloaded.

However, legacy transport protocols such as TCP lack the

ability to dynamically select paths based on traffic load. At

a high-level view, there are two types of mechanisms to the

explore path diversities in datacenters: centralized dynamic

path selection, and distributed traffic-oblivious load balanc-

ing. A representative example of centralized path selection

is Hedera [1], which uses a central controller to compute an

optimal flow-to-path assignment based on dynamic traffic

load. Equal-Cost-Multi-Path forwarding (ECMP) [7] and

VL2 [6] are examples of traffic-oblivious load balancing.

With ECMP, routers hash flows based on flow identifiers to

multiple equal-cost next hops. VL2 [6] uses edge switches to

forward a flow to a randomly selected core switch to achieve

valiant load balancing.

Both of these two design paradigms improve the available

bisection bandwidth. Yet each has its limitations. A central-

ized path selection approach can reach near-optimal flow

allocation. However, it introduces a potential scaling bottle-

neck and a centralized point of failure. When a datacenter

scales to a large size, the control traffic sent to and from

the controller may congest the link connecting the controller

and the rest of the network. Distributed traffic-oblivious load

balancing scales well to large datacenter networks, but may

still create hot spots, as their flow assignment algorithms do

not consider dynamic traffic load.

In this paper, we aim to combine the best of both worlds,

designing a datacenter routing system that is both scalable

and able to balance dynamic traffic among multiple paths. To

this end, we propose DARD, a lightweight and distributed

routing system that enables end hosts to select paths based

on dynamic traffic patterns. This design paradigm has two

main advantages. First, a distributed design can be more

robust and scale better than a centralized approach. Second,

placing the path selection logic at an end system facilitates

deployment, as it does not require special hardware to

replace commodity switches.

A key design challenge DARD faces is how to achieve

dynamic distributed load balancing with low overhead. In

DARD, no end system or router has a global view of the

network. Each end system can only select a path based on

its local knowledge, thereby making it difficult to achieve

close-to-optimal load balancing. To address this challenge,

DARD uses a selfish path selection algorithm that provably

converges to a Nash equilibrium in finite steps (Appendix B).

Our experimental evaluation shows that the equilibrium’s

gap to the optimal solution is small. To facilitate path

selection, DARD uses hierarchical addressing to represent

an end-to-end path with a pair of source and destination

addresses.

We have implemented a DARD prototype on DeterLab [8]

and ns-2 simulator. We use static traffic patterns to show

DARD converges to a stable state in two to three control

intervals. We use dynamic traffic patterns to show the

bisection bandwidth DARD achieves is larger than ECMP,

VL2 and TeXCP and is slightly smaller than the bisection

bandwidth achieved by centralized scheduling.

The rest of this paper is organized as follows. Sec-

tion II introduces background knowledge and discusses

related work. Section III describes DARD’s design goals and

system components. In Section IV, we introduce the system

implementation details. We evaluate DARD in Section V.

Section VI concludes our work.

II. BACKGROUND AND RELATED WORK

A. Datacenter Topologies

Recent proposals [5], [6], [9] suggest to use multi-rooted

tree topologies to build datacenter networks. Figure 1 shows

a 3-stage multi-rooted tree topology. The topology has three

vertical layers: Top-of-Rack (ToR), aggregation, and core. A

pod is a management unit. It represents a replicable building

block consisting of a number of servers and switches that

share the same power and management infrastructure.

Figure 1. A multi-rooted tree topology for a datacenter network.

We design DARD to work for arbitrary multi-rooted tree

topologies. But for ease of exposition, we mostly use the

fat-tree topology [5] to illustrate DARD’s design.

In this paper, we use the term elephant flow to refer to a

continuous TCP connection larger than a threshold defined

as the number of transferred bytes. We discuss how to choose

this threshold in Section III.

B. Related work

Related work falls into three broad categories: adaptive

path selection in datacenters, end host based multipath

transmission, and traffic engineering protocols.

Adaptive path selection: Adaptive path selection mech-

anisms [1], [6], [7] can be further divided into centralized

and distributed approaches. Hedera [1] adopts a centralized

approach in the granularity of a flow. In Hedera, edge

switches detect and report elephant flows to a centralized

controller. The controller calculates a path arrangement and

periodically updates switches’ routing tables. Hedera can

almost fully utilize a network’s bisection bandwidth, but

a recent data center traffic measurement suggests that this

centralized approach needs parallelism route computation to

support dynamic traffic patterns [10].

An ECMP-enabled switch [7] is configured with multiple

next hops for a given destination and forwards a packet

according to a hash of selected fields of the packet header.

Since packets of the same flow share the same hash value,

they take the same path and maintain the packet order.

However, multiple large flows can collide on their hash

values and congest an output port [1].

VL2 [6], on the other hand, places the path selection logic

at edge switches. An edge switch first forwards a flow to a

randomly selected core switch, which then forwards the flow

to the destination. As a result, multiple elephant flows can

still get collided on the same core switch.

DARD differs from ECMP and VL2 in two key aspects.

First, its path selection algorithm is load sensitive, in which

flows are shifted from overloaded paths to underloaded

paths. Second, it places the path selection logic at end

systems to facilitate deployment. A datacenter network can

deploy DARD by upgrading its end system’s software stack

instead of updating switches.

Multi-path Transmission: Multipath TCP

(MPTCP) [11] enables an end host to simultaneously

use multiple paths to improve its throughput. Different from

MPTCP, DARD is transparent to applications since it is

implemented as a path selection module under the transport

layer (Section III).

Traffic Engineering Protocols: Traffic engineering pro-

tocols such as TeXCP [12] are originally designed for ISP

networks, and has the potential to be adopted by datacenter

networks. However, TeXCP forward traffic along different

paths in the granularity of a packet rather than a flow, which

can cause TCP reordering problem.

III. DARD DESIGN

In this section, we first highlight the system design goals.

Then we present the design overview and details in the

following sub-sections.

A. Design Goals

DARD’s essential goal is to effectively utilize a dat-

acenter’s bisection bandwidth with practically deployable

mechanisms and limited control overhead.

1. Efficiently utilizing the bisection bandwidth: We aim

to take advantage of the multiple paths to fully utilize the

bisection bandwidth. Meanwhile we desire to prevent any

systematic risk that can cause packet reordering

2. Fairness among elephant flows: We aim to provide

fairness among elephant flows so that concurrent elephant

flows can evenly share the available bisection bandwidth. We

focus our work on elephant flows mainly because elephant

flows occupy a significant fraction of the total bandwidth

(more than 90% of bytes are in the 1% of the largest

flows [6]).

3. Lightweight and scalable: We aim to design a

lightweight and scalable system. We desire to avoid a

centralized scaling bottleneck and minimize the amount of

control traffic and computation

4. Practically deployable: We aim to make DARD

compatible with existing datacenter infrastructures so that it

can be deployed without significant modifications or upgrade

of existing infrastructures.

B. Overview

Figure 2. DARD has three components. The Elephant Flow De-
tector detects elephant flows. The Path State Monitor periodically
queries the traffic load on each path. The Path Selector moves flows
from overloaded paths to underloaded paths.

Figure 2 shows DARD’s system components. A switch in

DARD has only two functions: (1) it forwards packets to

the next hop according to a pre-configured routing table; (2)

it tracks the Switch State (SS, Section III-D) and replies to

end systems’ Switch State Request (SSR).

An end system has three components as shown in Fig-

ure 2. The Elephant Flow Detector monitors all the output

flows and treats one flow as an elephant once its size

grows beyond a threshold. We use 100KB as the threshold

because more than 85% of flows in a datacenter are less

than 100 KB [6]. The Path State Monitor sends SSR to the

switches and assembles the SS replies into Path State (PS,

Section III-D), which indicates the load on each path. Based

on the path states and the elephant flow traffic demand,

the Path Selector periodically assigns flows from overloaded

paths to underloaded paths.

The rest of this section presents DARD’s design details,

including enabling end hosts to select paths using hierar-

chical addressing (Section III-C), Scalably monitoring path

states (Section III-D) and adaptively assign flows to different

paths (Section III-E).

C. Addressing and Routing

To fully utilize the bisection bandwidth and, at the same

time, to prevent retransmissions caused by packet reordering,

we allow a flow to take different paths in its life cycle.

However, one flow can use only one path at any given time.

A datacenter network is usually constructed as a multi-

rooted tree. In Figure 3, all the devices highlighted by

the solid circles form a tree with its root core1. This

strictly hierarchical structure facilitates adaptive routing via

some customized addressing rules [5]. We borrow the idea

from NIRA [13] to split an end-to-end path into uphill

and downhill segments and to encode a path in the source

and destination addresses. In DARD, each of the core

switches obtains a unique prefix and recursively allocates

non-overlapping subdivisions of the prefix to its sub-trees.

By this hierarchical prefix allocation, each network device

receives multiple IP addresses, each of which represents the

device’s position in one of the trees.

As shown in Figure 3, we use corei to refer to the ith
core, aggrij to refer to the jth aggregation switch in the

ith pod. We follow the same rule to interpret ToRij for

the top of rack switches and Eij for the end hosts. We

use the device names prefixed with letter P and delimited

by colons to illustrate how prefixes are allocated along the

hierarchies. The first core is allocated with prefix Pcore1.
It then allocates non-overlapping prefixes Pcore1.Paggr11
and Pcore1.Paggr21 to two of its sub-trees. The sub-tree

rooted from aggr11 will further allocate four prefixes to

lower hierarchies.

For a general multi-rooted tree topology, the datacenter

operators can generate a similar addressing schema and

allocate the prefixes along the topology hierarchies. In case

more IP addresses are assigned to one network cards, we

propose to use IP alias to configure multiple IP addresses to

one network interface. The latest operating systems support

a large number of IP alias to associate with one network

interface, e.g., Linux kernel 2.6 sets the limit to be 256K IP

alias per interface [14]. Windows NT 4.0 has no limitation

on the number of IP addresses per interface [15].

One nice property of this hierarchical addressing is that

one address uniquely encodes the sequence of upper-level

switches that allocate that address, e.g., in Figure 3, E11’s

address Pcore1.Paggr11.PToR11.PE11 uniquely encodes

the address allocation sequence core1 → aggr11 → ToR11.

A source and destination address pair can further uniquely

identify a path, e.g., in Figure 3, we can use the source

and destination pair highlighted by dotted circles to uniquely

encode the dotted path from E11 to E21 through core1. We

call the partial path encoded by source address the uphill

path and the partial path encoded by destination address

the downhill path. To move a flow to a different path,

Figure 3. DARD’s addressing and routing. E11’s address Pcore1.Paggr11.PToR11.PE11 encodes the uphill path ToR11-aggr11-core1.
E21’s address Pcore1.Paggr21.PToR21.PE21 encodes the downhill path core1-aggr21-ToR21.

we can simply use different source and destination address

combinations without dynamically reconfiguring the routing

tables.

To forward a packet, each switch stores a downhill table

and an uphill table. The uphill table keeps the entries for the

upstream switch prefixes and the downhill table keeps the

entries for the downstream switch prefixes. Table I shows the

switch aggr11’s downhill and uphill table. The port indexes

are marked in Figure 3. When a packet arrives, a switch

first looks up the destination address in the downhill table

using the longest prefix matching algorithm. If a match is

found, the packet will be forwarded to the corresponding

downstream switch. Otherwise, the switch will look up the

source address in the uphill table to forward the packet to

the corresponding upstream switch. A core switch only has

the downhill table. In fact, the downhill-uphill-looking-up

is not necessary for a fat-tree topology, since a core switch

in a fat-tree uniquely determines the entire path. However,

not all the multi-rooted trees share the same property, e.g.,

a Clos network.

downhill table

Prefixes Port
Pcore1.Paggr11.PToR11 1
Pcore1.Paggr11.PToR12 2
Pcore2.Paggr11.PToR11 1
Pcore2.Paggr11.PToR12 2

uphill table

Prefixes Port
Pcore1 3
Pcore2 4

Table I
aggr11’S DOWNHILL AND UPHILL ROUTING TABLES.

Each network component in DARD is also assigned a lo-

cation independent IP address, ID, which uniquely identifies

the component and is used for making TCP connections. The

mapping from IDs to underlying IP addresses is maintained

by a DNS system and cached locally. To deliver a packet,

the source encapsulates the packet with a proper source

and destination address pair. Switches in the middle will

forward the packet according to the encapsulated packet

header. When the packet arrives at the destination, it will

be decapsulated and passed to upper layer protocols.

D. Path State Monitoring

To achieve load-sensitive path selection at an end host,

DARD informs every end host with the link loads. Each end

host will accordingly select paths for its outbound elephant

flows. Because on-demand active probing has the capability

of limiting the control traffic, we choose to let DARD’s

Path State Monitor to actively probe for link loads rather

than to passively receive link load updates. This section first

describes a straw man design of the Path State Monitor.

Then we discuss how to improve it.

We use Cl to note the output link l’s capacity. Nl denotes

the number of elephant flows on the link. We define link l’s

Fair Share Sl = Cl/Nl for the bandwidth each elephant flow

will get if they fairly share that link (Sl = 0, if Nl = 0).
Output link l’s Link State (LSl) is defined as a triple [Cl,

Nl, Sl]. A switch r’s Switch State (SSr) is defined as {LSl,

l is r’s output link}. A path p refers to a set of links that

connect a source and destination ToR switch pair. If link l
has the smallest Sl among all the links on path p, we use

LSl to represent p’s Path State (PSp).

In the straw man design, each switch tracks its Switch

State locally. An end host’s Path State Monitor periodically

sends the Switch State Requests (SSR) to every switch and

assembles the Switch State Replies into the Path States,

which indicate the load on each path. This straw man design

requires every switch to have a customized flow counter and

the capability of replying to SSR. These two functions are

already supported by OpenFlow enabled switches [16].

In the straw man design, The control traffic in every

control interval can be estimated using formula (1), where

pkt size refers to the sum of request and response packet

Figure 4. The set of switches a source sends SSRs to.

Algorithm 1 Selfish Path Selection

1: max S = maximum Sl in P.PV ;

2: max i = max S’s index in P.PV ;

3: min S = minimum Sl in P.PV ,

whose corresponding element in P.FV > 0;
4: min i = min S’s index in P.PV ;

5: if max i 6= min i then
6: estimation = P.PV [max i].Cl

P.PV [max i].Nl+1
7: if estimation−min S > δ then

8: move one elephant flow from path min i to path

max i.
9: end if

10: end if

sizes. The amount of control traffic is bounded by the

topology size.

num of servers× num of switches× pkt size (1)

We further improve the straw man design by decreasing

the control traffic. There are two intuitions for the optimiza-

tions. First, if an end host is not sending any elephant flow,

it is not necessary to monitor the path state. Second, an end

host does not have to query every switch for the path states.

As shown in Figure 4, E21 is sending elephant flows to

E31. The switches highlighted by the dotted circles are the

ones E21 needs to send SSR to, since the rest switches are

not on any path. We do not highlight ToR31, because it is

the last hop switch to the destination. Based on these two

observations, each end host only needs to send SSRs to the

switches on the paths to the elephant flows’ destinations.

E. Path Selection

As shown in Figure 2, a Path Selector running on an end

host takes the detected elephant flows and Path States as the

input and periodically moves flows from overloaded paths

to underloaded paths.

Given an elephant flow’s elastic traffic demand and small

delays in datacenters, elephant TCP flows tend to fully and

fairly utilize their bottlenecks. As a result, moving one flow

from a path with small Fair Share (defined in Section III-D)

to a path with large Fair Share will push both the small

and large Fair Shares toward the middle and thus improve

fairness. Based on this observation, we propose DARD’s

path selection algorithm, whose high level idea is to enable

every end host to selfishly increase the minimum Fair Share

they observe. The Algorithm Selfish Path Selection illustrates

one iteration of the path selection process.

In DARD, every source and destination pair maintains two

vectors: the Path State Vector (PV), whose ith item is the

Path State of the ith path (the triple [Cl, Nl, Sl] defined in

Section III-D), and the Flow Vector (FV), whose ith item

is the number of elephant flows the source is sending along

the ith path. Line 6 estimates the Fair Share of the max ith
path if another elephant flow is moved to it. The δ in line 7

is a positive threshold to decide whether to move a flow.

If we set δ to 0, line 7 makes sure this algorithm will not

decrease the global minimum Fair Share. If we set δ to

be larger than 0, the algorithm will converge as soon as

the estimation being close enough to the current minimum

Fair Share. In general, a small δ will evenly split elephant

flows among different paths and a large δ will accelerate the

algorithm’s convergence.

Load-sensitive routing protocols can lead to oscillations

and instability [17]. Figure 5 shows an example. There are

three source and destination pairs, (E1, E2), (E3, E4) and

(E5, E6). Each of the pairs has two paths and two elephant

flows. The source in each pair will run DARD independently

without knowing the other two’s behaviors. In the beginning,

the shared path, (link switch1-switch2), has no elephant

flows on it. As a result, the three sources will move flows to

it and increase the number of elephant flows on the shared

path to three. This will further cause the three sources to

move flows off from the shared paths. The three sources

repeat this process and cause permanent oscillation and

bandwidth under-utilization.

Figure 5. Path oscillation example.

The reason for path oscillation is different sources syn-

chronously move flows to under-utilized paths. To prevent

this oscillation, DARD adds a random time slot to the inter-

val between two adjacent flow movements. The evaluation in

Section V-C3 shows this simple solution can prevents path

oscillation very well.

IV. IMPLEMENTATION

To test DARD’s performance and to show DARD is

practically deployable, we implemented a prototype and

deployed it in the fat-tree topology in DeterLab [8], as shown

in Figure 3. We also implemented a simulator on ns-2 to

evaluate DARD’s performance on different topologies.

A. Test Bed

We set up a fat-tree topology using 4-port PCs acting

as the switches and configure IP addresses according to

Section III-C. All PCs run the Ubuntu 10.04 LTS standard

image. All switches run OpenFlow 1.0. An OpenFlow en-

abled switch maintains per flow and per port statistics and

allows us to customize the forwarding table

We implement a NOX [18] component to configure all

switches’ flow tables during their initialization. This com-

ponent allocates the downhill table to flow table 0 and the

uphill table to flow table 1 to enforce a higher priority for

the downhill table. All entries are permanent. Each link’s

bandwidth is 100Mbps.

The Elephant Flow Detector leverages the TCPTrack [19]

at each end host to reports an elephant flow if a TCP con-

nection grows beyond 100KB [6]. The Path State Monitor

tracks the Fair Share of all the equal-cost paths connecting

the source and destination ToR switches. It queries switches

for their states using the aggregate flow statistics interfaces

provided by OpenFlow infrastructure [20]. The query in-

terval is set to 1 second. This interval causes acceptable

amount of control traffic as shown in Section V-C4. We leave

exploring the impact of varying this interval to our future

work. The δ in the Selfish Path Selection algorithm is set to

10Mbps. This number is a tradeoff between maximizing the

minimum flow throughput and fast convergence. The flow

movement interval is 5 seconds plus a random time from

[0s, 5s]. On the one hand, this conservative interval setting

limits the frequency of flow movement, and on the other

hand, it also prevents an elephant flow from being delivered

even without the chance to be moved to a less congested

path, because a significant amount of elephant flows last for

more than 10s [4]. We use the Linux IP-in-IP tunneling as

the encapsulation/decapsulation module. All the mappings

from IDs to underlying IP addresses are kept at end hosts.

B. Simulator

To evaluate DARD’s performance in larger topologies,

we build a DARD simulator on ns-2, which captures the

system’s packet level behavior. A link’s bandwidth is 1Gbps
and its delay is 0.01ms. The queue size is set to be the delay-
bandwidth product. TCP New Reno is used as the transport

protocol. We use the same settings as the test bed for the

rest of the parameters.

V. EVALUATION

This section describes the evaluation of DARD using De-

terLab test bed and ns-2 simulation. We focus this evaluation

on four aspects. (1) Can DARD fully utilize the bisection

bandwidth? (2) How fast can DARD converge to a stable

state? (3) Will DARD’s distributed algorithm cause any path

oscillation? (4) How much is DARD’s control overhead?

A. Traffic Patterns

Due to the absence of commercial datacenter network

traces, we use the three traffic patterns introduced in [5]

for both our test bed and simulation evaluations. (1) Stride,
where an end host with index Eij sends elephant flows to

the end host with index Ekj , i 6= k. This traffic pattern

emulates the extreme case where the traffic stresses out

the links between the core and the aggregation layers. (2)
Staggered(PToR,PPod), where an end host sends elephant

flows to another end host connecting to the same ToR switch

with probability PToR, to any other end host in the same pod

with probability PPod and to the end hosts in different pods

with probability 1− PToR − PPod. In our evaluation PToR

is 0.5 and PPod is 0.3. This traffic pattern emulates the case

where an application’s instances are close to each other and

the most traffic is in the same pod or even under the same

ToR switch. (3) Random, where an end host sends elephant

flows to any other end host in the topology with a uniform

probability.

The above three traffic patterns can be either static or

dynamic. The static traffic refers to a number of permanent

elephant flows. The dynamic traffic means the elephant flows

start at different times and transfer large files of different

sizes. According to [4], we set the elephant flow inter-arrival

time to be 75ms and the file size to be uniformly distributed

between 100MB and 1GB.

B. Test Bed Results

The purpose of the test bed evaluation is to prove DARD

is readily deployable and can fully utilize the bisection

bandwidth in practice. We use the static traffic patterns

and constantly measure the incoming bandwidth at every

end host. The experiment lasts for one minute. We use the

results from the middle 40 seconds to calculate the average

bisection bandwidth.

We also implement a static hash-based ECMP and a

modified version of flow-level VLB in the test bed. In the

ECMP implementation, a flow is forwarded according to a

hash of the source and destination’s IP addresses and TCP

ports. In the flow-level VLB implementation, we randomly

picks a core every 10 seconds for an elephant flow to prevent

long term collisions. This 10s interval is set roughly the

same as DARD’s control interval for a fair comparison. We

note this implementation as periodical VLB (pVLB). We will

compare DARD and other mechanisms besides ECMP and

pVLB in the simulation.

Figure 6 shows the comparison of DARD, ECMP and

pVLB’s bisection bandwidths under different static traffic

patterns. DARD outperforms both ECMP and pVLB. We

also observe that the bisection bandwidth gap between

DARD and the other two approaches increases in the order

of staggered, random and stride. This is because flows

through the core have more path diversities than the flows

inside a pod. Compared with ECMP and pVLB, DARD’s

strategic path selection reaches a better flow allocation than

simply relying on randomness.

Figure 6. DARD, ECMP and pVLB’s bisection bandwidths
under different static traffic patterns. Measured on test bed.

We also compare DARD and ECMP’s large file transfer

times under dynamic traffic patterns. We vary each source-

destination pair’s flow generating rate from 1 to 10 per

second. Each elephant flow is a TCP connection transferring

a 128MB file. We use a fixed file length because we need

to differentiate whether finishing a flow earlier is caused

by a better path selection algorithm or a smaller file. The

experiment lasts for five minutes. We track the start and the

end time of every elephant flow and calculate the average

file transfer times for both DARD and ECMP.

Figure 7 shows DARD’s average file transfer time im-

provement over ECMP vs. the flow generating rate under

different traffic patterns. For the stride traffic, DARD outper-

forms ECMP because DARD moves flows from overloaded

paths to underloaded ones and increases the minimum flow

throughput in every step. We find random and staggered

traffic share an interesting pattern. When the flow gener-

ating rate is low, ECMP and DARD have almost the same

performance because the bandwidth is over-provided. As the

flow generating rate increases, cross-pod flows congest the

switch-to-switch links, in which case DARD can reallocate

the flows sharing the same bottleneck and improves the av-

erage file transfer time. When flow generating rate becomes

even higher, the host-switch links are occupied by flows

within the same pod and thus become the bottlenecks, in

which case no path selection algorithm can bypass them. The

comparison of DARD and pVLB follows a similar pattern.

1 2 3 4 5 6 7 8 9 10

0%

5%

10%

15%

20%

Flow generating rate for
each src−dst pair (number_of_flows / s)

Im
p
ro

v
e
m

e
n
t
o
f
a
v
e
ra

g
e

fi
le

 t
ra

n
s
fe

r
ti
m

e

 staggered
random
stride

Figure 7. File transfer improvement. Measured on test bed.

C. Simulation Results

We also compare DARD with Hedera, TeXCP and

MPTCP in our simulation. We implement both the demand-

estimation and the simulated annealing algorithm described

in Hedera and set its scheduling interval to 5 seconds [1]. In

the TeXCP implementation each ToR switch pair maintains

the utilizations for all the available paths by periodically

probing (We decrease the default probe interval to 10ms

given datacenter’s small RTT). We do not implement the

flowlet [21] mechanisms in the simulator. As a result,

each ToR switch schedules traffic at packet level. We

use MPTCP’s ns-2 implementation [22] to compare with

DARD. Each MPTCP connection uses all the simple paths

connecting the source and destination pair.

1) Performance Improvement: We use static traffic pat-

tern on a fat-tree with 1024 hosts to evaluate whether

DARD can fully utilize the bisection bandwidth in a larger

topology. Figure 8 shows the result. DARD achieves higher

bisection bandwidth than both ECMP and pVLB under all

the three traffic patterns. As a centralized method, Hedera

slightly outperforms DARD under stride and random traffic

patterns. However, Hedera achieves less bisection bandwidth

than DARD under staggered traffic pattern. This is because

current Hedera only schedules the flows going through the

cores. When intra-pod traffic is dominant, Hedera degrades

to ECMP.

Even though TeXCP reaches similar bisection bandwidth

as DARD, we observe TeXCP’s medium retransmission rate

is 3% while DARD’s this number is less than 1%. TeXCP’s

high retransmission rate shows packet level scheduling in

datacenter network does cause reordering problems.

MPTCP has comparable bisection bandwidth as DARD.

However, it achieves less bisection bandwidth than Hedera.

We suspect this is because the current MPTCP’s ns-2
implementation does not support flow level retransmission.

Thus, lost packets are always retransmitted along the same

path regardless how congested the path is. We leave a

comprehensive comparison between DARD and MPTCP as

our future work.

Figure 8. Bisection bandwidth under different static traffic
patterns. Simulated on fat-tree with 1024 end hosts.

2) Convergence Speed: DARD is provable to converge

to a Nash equilibrium (Appendix B). However, if the con-

vergence takes a significant amount of time, the network

will be underutilized during the convergence process. As

a result, we measure how fast can DARD converge to a

stable state, in which every flows stops changing paths. We

use the static traffic patterns on a fat-tree with 1024 hosts.

For each source and destination pair, we vary the number

of elephant flows from 1 to 64. We start these elephant

flows simultaneously and track the time when all the flows

stop changing paths. Figure 9 show the CDF of DARD’s

convergence time. DARD converges in less than 25s for

more than 80% of the cases. Given DARD’s control interval

at each end host is roughly 10s, the entire system converges

in less than three control intervals. DARD converges faster

under staggered traffic pattern, because its dominant intra-

pod flows have less path diversity.

10 15 20 25
0

25%

50%

75%

100%

Convergence time (s)

C
D

F

staggered
random
stride

Figure 9. DARD converges to a stable state in 2 or 3 control
intervals given static traffic patterns.

3) Stability: DARD adds a random span of time to the

control interval to prevent path oscillation. This section

evaluates the effects of this simple mechanism.

We use dynamic random traffic pattern on a fat-tree with

128 end hosts. Because a core’s output link is usually the

bottleneck for a inter-pod elephant flow [1], we track this

bottleneck link utilization at the core. Figure 10 shows the

link utilizations on the 8 output ports of the first core switch.

As we can see, after the initial oscillation the link utilizations

stabilize afterward.

0 50 100 150 200
70%

80%

90%

100%

Time (s)

L
in

k
 u

ti
liz

a
ti
o
n

Figure 10. The first core switch’s output port utilizations under
dynamic random traffic pattern.

However we cannot simply conclude that DARD does not

cause path oscillations, because the link utilization misses

single flow’s behavior. We first disable the random time

added to the control interval and log every single flow’s path

selection history. We find even though the link utilizations

are stable, certain flows are constantly moved between two

paths, e.g., one 512MB elephant flow are moved between

two paths 23 times in its life cycle. This indicates path

oscillation exists in load-sensitive adaptive routing.

After many attempts, we choose to add a random span of

time to the control interval to address this path oscillation

problem. Figure 11 shows the CDF of how many times flows

change their paths in their life cycles. For the staggered

traffic, around 90% of the flows stick to their original paths.

This indicates when most of the flows are within the same

pod or even the same ToR switch, the bottleneck is most

likely located at the host-switch links, in which case few

path diversities exist. On the other hand, for the stride traffic,

where all flows are inter-pod, around 50% of the flows do

not change their paths. Another 50% change their paths for

less than 4 times. This small number of path changing times

indicates that DARD is stable.

0 2 4 6 8
50%

70%

90%

Path switch times

C
D

F

staggered

random

stride

Figure 11. CDF of the times that flows change their paths under
dynamic traffic patterns.

4) Control Overhead: To evaluate DARD’s communica-

tion overhead, we trace the control messages for both DARD

and Hedera on a fat-tree with 128 hosts under static random

traffic pattern. DARD’s communication overhead is mainly

caused by the periodical probes, including both queries

from hosts and replies from switches. This communication

overhead is bounded by the size of the topology, because all

pair probing is the worst case. On the other hand, Hedera’s

communication overhead is proportional to the number of

elephant flows, since the ToR switches report every detected

elephant flow to the centralized controller.

Figure 12 shows how much of the bandwidth is taken by

control messages given different number of elephant flows.

With the increase of the number of elephant flows, there are

three stages. In the first stage, DARD’s control messages

take less bandwidth than Hedera’s. The reason is mainly

because DARD has a smaller control message size (Hedera’s

control message payload is either 80 or 72 Bytes, while

DARD’s is either 48 or 32 bytes). In the second stage,

DARD’s control messages take slightly more bandwidth.

That is because one new elephant flow introduces more

control messages in DARD than that in Hedera. In the third

stage, DARD’s probe traffic is eventually bounded by the

topology size. However, Hedera’s communication overhead

increases proportionally to the number of elephant flows.

0 1K 2K 3K 4K 5K
0

100

200

300

400

Peak number of elephant flows

C
o
n
tr

o
l
o
v
e
rh

e
a
d
 (

M
B

/s
)

DARD

Simulated Annealing

Figure 12. DARD and Hedera’s communication overhead.

VI. CONCLUSION

This paper proposes DARD, a readily deployable,

lightweight and distributed adaptive routing system for dat-

acenter networks. DARD allows each end host to selfishly

move elephant flows from overloaded paths to underloaded

paths. Our analysis shows that DARD converges to a Nash

equilibrium in finite steps. Test bed emulation and ns-2
simulation show the bisection bandwidth DARD achieves

is larger than the distributed traffic-oblivious load balancing

and comparable to the centralized scheduling.

APPENDIX

A. EXPLANATION OF THE OBJECTIVE

We assume TCP is the dominant transport protocol in dat-

acenter, which tries to achieve max-min fairness if combined

with fair queuing. Each end host moves flows from over-

loaded paths to underloaded ones to increase its observed

minimum Fair Share. This section explains given max-min

fair bandwidth allocation, the global minimum Fair Share

is the lower bound of the global minimum flow throughput,

thus increasing the minimum Fair Share actually increases

the global minimum flow throughput.

Theorem 1. Given max-min fair bandwidth allocation, the

global minimum Fair Share is the lower bound of global

minimum flow throughput.

First we define a bottleneck link according to [23]. A

link l is a bottleneck for a flow f if and only if (a) link l is
fully utilized, and (b) flow f has the maximum throughput

among all the flows using link l.
A link li’s Fair Share Si is defined as Ci/Ni, where Ci is

the link capacity and Ni is the number of elephant flows via

the link. We assume link l0 has the minimum Fair Share S0.

Flow f has the minimum throughput, min tput. Link lf is

flow f ’s bottleneck. Theorem 1 claims min tput ≥ S0. We

prove this theorem using contradiction.

According to the bottleneck definition, min tput is

the maximum flow rate on link lf , and thus Cf/Nf ≤
min tput. Suppose min tput < S0, we get

Cf/Nf < S0 (A1)

which is conflict with S0 being the minimum Fair Share.

As a result, the minimum Fair Share is the lower bound of

the global minimum flow throughput.

In DARD, every end host tries to increase its observed

minimum Fair Share in each round, thus the global min-

imum Fair Share keeps increasing, so does the global

minimum flow throughput.

B. CONVERGENCE PROOF

We now formalize DARD’s selfish path selection algo-

rithm as a congestion game [24] and prove it converges to

a Nash equilibrium in finite steps.

We use pf to represent a set of paths that can deliver

flow f . A Strategy s = [pf1i1 , p
f2
i2
, . . . , p

f|F |

i|F |
] is a collection

of paths, in which pfkik , the ikth path in pfk , is currently

delivering flow fk.
Given a strategy s, a link lj’s Link State LSj(s) is

a triple (Cj , Nj , Sj). A path p’s Path State PSp(s) is

represented by the Link State, which has the smallest Fair

Share along that path. The System State SysS(s) is the

Link State with the smallest Fair Share in the network. A

Flow State FSf (s) is the corresponding path state, i.e.,

FSf (s) = PSp(s), flow f is running on path p.

Notation s−k refers to the strategy s without pfkik , i.e.

[pf1i1 , . . . , p
fk−1

ik−1
, p

fk+1

ik+1
, . . . , p

f|F |

i|F |
]. (s−k, p

fk
i
k′
) refers to the

strategy [pf1i1 , . . . , p
fk−1

ik−1
, pfki

k′
, p

fk+1

ik+1
, . . . , p

f|F |

i|F |
]. Flow fk is

locally optimal in strategy s if

FSfk(s).S ≥ FSfk(s−k, p
fk
i
k′
).S (B1)

for all pfki
k′

∈ pfk . A Nash equilibrium is a state where all

flows are locally optimal. A strategy s∗ is global optimal
if for any strategy s, SysS(s∗).S ≥ SysS(s).S.

Theorem 2. If there is no synchronized flow scheduling,

Algorithm Selfish Path Selection increases the minimum Fair

Share in every step and converges to a Nash equilibrium

in finite steps. The global optimal strategy is also a Nash

equilibrium strategy.

A strategy s’s Strategy Vector SV (s) is in the form of

[v0(s), v1(s), v2(s),. . .], where vk(s) is the number of

links whose Fair Share is in [kδ, (k + 1)δ). The δ is the

positive parameter in the selfish path selection algorithm.

As a result,
∑

k vk(s) is the total number of links in the

network. A small δ groups the links in a fine granularity

and increases the minimum Fair Share. A large δ improves

the convergence speed. Suppose s and s′ are two strategies,

SV (s) = [v0(s), v1(s), v2(s),. . .] and SV (s′) = [v0(s
′),

v1(s
′), v2(s

′), . . .]. We define s = s′ if vk(s) = vk(s
′) for all

k ≥ 0. s < s′ if there exists some j such that vj(s) < vj(s
′)

and ∀k < j, vk(s) ≤ vk(s
′). It is easy to show that given

three strategies s, s′ and s′′, if s ≤ s′ and s′ ≤ s′′, then
s ≤ s′′.

Given a specific network, traffic pattern and δ, there are

only finite number of Strategy Vectors. According to the

definition of ” = ” and ” < ”, we can find at least one

strategy s̃ that is the smallest, i.e., for any strategy s, s̃ ≤ s.
This s̃ has the largest minimum Fair Share or has the least

number of links with the minimum Fair Share and thus, is

the global optimal.

If one flow f selfishly changes its path and makes the

strategy change from s to s′, this action decreases the num-

ber of links with small Fair Shares and increases the number

of links with larger Fair Shares. In other words, s′ < s. This
indicates asynchronous and selfish path selection actually

increase global minimum Fair Share in every step until all

flows reach their locally optimal state. Since the number of

Strategy Vectors is finite, the steps to converge to a Nash

equilibrium is finite. Because s̃ is the smallest strategy, no

flow can have a further movement to decrease s̃, i.e every

flow is in its locally optimal state. As a result, this global

optimal state s̃ is also a Nash equilibrium.

REFERENCES

[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: dynamic flow scheduling for data center
networks,” in Proceedings of the 7th ACM/USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI), San Jose, CA, Apr. 2010.

[2] “Amazon elastic compute cloud,” http://aws.amazon.com/ec2.

[3] “Microsoft Windows Azure,” http://www.microsoft.com/
windowsazure.

[4] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and
R. Chaiken, “The nature of data center traffic: measurements
& analysis,” in IMC ’09: Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement conference.
New York, NY, USA: ACM, 2009, pp. 202–208.

[5] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable,
commodity data center network architecture,” SIGCOMM
Comput. Commun. Rev., vol. 38, no. 4, pp. 63–74, 2008.

[6] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “VL2:
a scalable and flexible data center network,” SIGCOMM
Comput. Commun. Rev., vol. 39, no. 4, pp. 51–62, 2009.

[7] C. Hopps, “Analysis of an Equal-Cost Multi-Path Algorithm,”
RFC 2992, 2000. [Online]. Available: http://www.ietf.org/
rfc/rfc2992.txt

[8] “Deter Lab,” http://www.isi.deterlab.net/.

[9] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat,
“PortLand: a scalable fault-tolerant layer 2 data center net-
work fabric,” SIGCOMM Comput. Commun. Rev., vol. 39,
no. 4, pp. 39–50, 2009.

[10] T. Benson, A. Akella, and D. A. Maltz, “Network
traffic characteristics of data centers in the wild,” in
Proceedings of the 10th annual conference on Internet
measurement, ser. IMC ’10. New York, NY, USA:
ACM, 2010, pp. 267–280. [Online]. Available: http:
//doi.acm.org/10.1145/1879141.1879175

[11] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley,
“Design, implementation and evaluation of congestion
control for multipath tcp,” in Proceedings of the 8th
USENIX conference on Networked systems design and
implementation, ser. NSDI’11. Berkeley, CA, USA: USENIX
Association, 2011, pp. 8–8. [Online]. Available: http:
//portal.acm.org/citation.cfm?id=1972457.1972468

[12] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking
the tightrope: Responsive yet stable traffic engineering,” in In
Proc. ACM SIGCOMM, 2005.

[13] X. Yang, D. Clark, and A. W. Berger, “NIRA: A New Inter-
Domain Routing Architecture,” IEEE/ACM TRANSACTIONS
ON NETWORKING, vol. 15, 2007.

[14] “IP alias limitation in linux kernel 2.6,” http://lxr.
free-electrons.com/source/net/core/dev.c#L935.

[15] “IP alias limitation in windows NT 4.0,” http://support.
microsoft.com/kb/149426.

[16] T. Greene, “Researchers show off advanced network con-
trol technology,” http://www.networkworld.com/news/2008/
102908-openflow.html.

[17] A. Khanna and J. Zinky, “The revised ARPANET routing
metric,” in Symposium proceedings on Communications
architectures & protocols, ser. SIGCOMM ’89. New York,
NY, USA: ACM, 1989, pp. 45–56. [Online]. Available:
http://doi.acm.org/10.1145/75246.75252

[18] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McK-
eown, and S. Shenker, “NOX: towards an operating system
for networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 3, pp. 105–110, 2008.

[19] “TCPTrack,” http://www.rhythm.cx/∼steve/devel/tcptrack/.

[20] “OpenFlow switch specification, version 1.0.0,” http://www.
openflowswitch.org/documents/openflow-spec-v1.0.0.pdf.

[21] S. Sinha, S. Kandula, and D. Katabi, “Harnessing TCP’s
Burstiness using Flowlet Switching,” in 3rd ACM SIGCOMM
Workshop on Hot Topics in Networks (HotNets), San Diego,
CA, November 2004.

[22] “ns-2 implementation of mptcp,” http://www.jp.nishida.org/
mptcp/.

[23] J.-Y. Boudec, “Rate adaptation, congestion control and fair-
ness: A tutorial,” 2000.

[24] C. Busch and M. Magdon-Ismail, “Atomic routing games on
maximum congestion,” Theor. Comput. Sci., vol. 410, no. 36,
pp. 3337–3347, 2009.

