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Abstract

Abductive reasoning is a well established field of Artificial Intelligence widely applied to
different problem domains not least cognitive robotics and planning. It has been used to ab-
duce high-level descriptions of the world from robot sense data, using rules that tell us what
sense data would be generated by certain objects and events of the robots world, subject to
certain constraints on their co-occurrence. It has also been used to abduce actions that might
result in a desired goal state of the world, using descriptions of the normal effects of these
actions, subject to constraints on the action combinations. We can generalise these applica-
tions to a multi-agent context. Several robots can collaboratively try to abduce an agreed
higher-level description of the state of the world from their separate sense data consistent
with their collective constraints on the abduced description. Similarly, multi-agent planning
can be accomplished by the abduction of the actions of a collective plan where each agent
uses its own description of the effect of its actions within the plan, such that the constraints
on the actions of all the participating agents are satisfied.

To address this class of problems, we need to generalise the single agent abductive rea-
soning algorithm to a distributed abductive inference algortihm. In addition, if we want to
investigate applications in which the set of collaborating robots/agents is open, we need an
algorithm that allows agents to join or leave the collaborating group whilst a particular infer-
ence is under way, but which still produces sound abductive inferences. This paper describes
such a distributed abductive reasoning system, which we call DARE, and its implementation
in the multi-threaded Qu-Prolog variant of Prolog. We prove the soundness of the algorithm
it uses and we discuss its completeness in relation to non-distributed abductive reasoning.

We illustrate the use of the algorithm with a multi-agent meeting scheduling example.
The task is open in that the actual agents who need to attend is not determined in advance.
Each individual agent has its own constraints on the possible meeting time and concerning
which other agents must or must attend the meeting, if it attends. The algorithm selects the
agents to attend and ensures that the constraints of each of the attending agents are satisfied.

Keywords: Abduction, distributed inference, multi-thread Prolog.

1 Introduction and Motivation

Abduction is a powerful inference mechanism which generates conditional proofs, the conditions
being abduced assumptions, which together with a given knowledge base, will imply the conclusion
of the proof. The abduced conditions can be viewed as an answer, or as an explanation, in the
context of the knowledge base, of the conclusion. It is a general knowledge based problem solving
method with a wide range of applications [19]. Abductive logic programming [15] is a special case
in which the knowledge base is a logic program paired with a set of consistency constraints, queries
that must never succeed, that constrain the assumptions that can be abduced. It has been used
in cognitive robotics [22] for abducing higher level descriptions of the world from sense data, for
planning [24], where action events are abduced that will result in a desired described state of the
world using a knowledge base which is an event calculus [23] formulation of the effect of actions
on fluent features of the world.

The focus of this paper is distributed abduction where knowledge and constraints are dis-
tributed over a group of agents that co-operate to produce the proof. Each agent has its own
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knowledge base and consistency constraints. The abduced conditions for the collective proof may
come from different agents but they must satisfy the relevant consistency constraints of all the
agents who have contributed to the abductive proof. We call this subset of the agents in the group,
who have contributed, the proof cluster. Moreover, because we have in mind applications where
the group of agents is open, where agents can join and leave the group at will, we have developed
a distributed abductive inference algorithm, DARE, that can opportunistically make use of new
agents that arrive whilst a proof is in progress, dynamically extending the current proof cluster. It
can also recover if an agent that has been contributing leaves the group, dynamically reducing the
current cluster and discarding any sub-proofs to which the agent may have contributed. DARE
has much in common with ALIAS [7], which inspired this work. Both DARE and ALIAS are
distributed extensions of the Kakas and Mancarella abductive algorithm [16, 15] for a single logic
program knowledge base. However, there are significant differences between DARE and ALIAS.
In general terms, the openness of the DARE architecture builds upon the directory mechanism
that allows helpers agents to be recruited on-the-fly as and when they join the agents group. In
contrast, in the ALIAS systems the knowledge about agents’ abilities is predefined as part of the
background knowledge of an agent using the LAILA [8] language. Because of this dynamic feature
of the system, the DARE abductive algorithm uses a more elaborate global consistency check
whereby new agents can be “recruited” for the consistency to be maintained within a cluster.
More details on the comparison between the two systems are given in the related work section.

Distributed abduction has been used to simulate medical diagnosis [6], where expertise is
distributed over network of experts, and for knowledge base integration [3]. It has the potential
to be used for multi-robot collaborative interpretation of the sense data they separately gather to
arrive at an agreed higher level partial description of a shared environment, and for the essentially
similar application of arriving at a mutually agreed higher level interpretation of the separate
readings of a network of sensors. It can be used for multi-agent planning [18], or the scheduling of
a common activity that satisfies the separate constraints, on participation, of all the agents who
will participate.

We will illustrate our DARE algorithm using a multi-agent meeting scheduling example. It
is the problem of finding the names of a subset of agents from an open group of agents who can
attend a meeting together and the time of that meeting. The problem is posed as a conjecture
to conditionally prove that there is a time at which some subset of the people, where each is a
representative of a particular interest group with particular expertise, can meet. The abduced
conditions are the names of the people who can attend. Each person is represented by an agent
that has knowledge about that person’s current commitments and their constraints about which
other people they are not prepared to meet. These constraints are used to filter out unacceptable
combinations of abduced names of attendees. Although quite simple, the application illustrates the
dynamic nature of the algorithm. At any moment in time the current cluster of agents collaborating
in trying to find the abductive proof are the putative attendees. This subset changes not only as
a result of their respective constraints but also because agents can leave and join the wider group
of available agents, and hence the current proof cluster, whilst the proof is in progress.

This paper describes and illustrates the use of the DARE algorithm and its implementation in
a multi-threaded distributed Prolog, Qu-Prolog [9]. Each agent in the open group of all the agents
that may participate in an abductive proof is implemented as a separate Qu-Prolog process that
can be distributed over a network of hosts. Each Qu-Prolog process comprises multiple-threads
allowing it to be participating in multiple abductive proofs at the same time. Communication
between threads in the different agent processes uses a network demon, Pedro [20]. This supports
both direct communication between remote threads using thread identifiers similar to email ad-
dresses, as well as publish and subscribe communication based on subscriptions that are restricted
Prolog queries to be applied to messages posted to Pedro with no specified destination. Agents
join and leave the group by posting register and unregister messages to Pedro. The registration
includes the identifier of the agent and is used by other agents to send messages directly to that
agent. Agents are recruited into a particular proof cluster as a result of subscriptions and adver-
tisements posted to Pedro. The agents lodge subscriptions for predicates of conditions used in
their rules for which they may need sub-proof help from other agents. The advertisements give the
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predicates for the conditions about which they are willing to try to find abductive proofs. These
may make use of sub-proofs executed by other agents in the group, that are recruited by this agent
into the current cluster. The advertised predicates are their public predicates. The inter-agent
communication uses KQML performatives [11].

The structure of the rest of the paper is as follows. In Section 2 we explain the Kakas and Man-
carella algorithm for single agent abductive proof. In Section 3 we illustrate our distributed DARE
abductive proof algorithm using the scheduling example before formally describing the algorithm.
In Section 4 we give an overview of the DARE architecture and its Qu-Prolog implementation. In
section 5, we give an evaluation of the DARE system whilst in Section 6 we compare it with the
ALIAS [7] and other distributed or multi-agent reasoning systems. The paper concludes with a
summary and discussion of future work.

2 Background

This section summarises the basic notation and terminology used throughout the paper and re-
calls the notion of abduction, illustrating through an example the Kakas and Mancarella (KM)
abductive proof procedure [15, 16] of which the DARE algorithm, given in Section 3, is a proper
extension.

2.1 Notation and Terminology

A term is either a constant, a variable or a function F (t1, . . . , tn) where F is a n-ary function
symbol (with n ≥ 1) and ti is a term. An atomic formula (or atom in brief) is a proposition or an
n-ary predicate P followed by an n-tuple of terms. A positive literal is an atom φ, and a negative
literal is a negated atom, written as not φ, where not is the negation as failure operator. A literal
is either a positive or negative atom. A clause is either a rule, φ ← φ1, . . . , φn, a fact (or literal)
φ, or a denial ← φ1, . . . , φm, where φ is an atom and φi are literals. In the case of a rule φ is
also called the head literal and φi are called the body literals. A clause is definite if all its body
literals are positive. A clause is ground if it contains no variables. A goal is a set {ψ1, . . . , ψn}
of literals, denoted as ← ψ1, . . . , ψn and an empty goal is the empty denial []. A logic program
is a set of clauses. A definite logic program is a program in which all clauses are definite. A
normal logic program is one in which clauses are not necessarily definite. They can be of the form
φ← φ1, . . . , φn, notψ1, . . . , notψm where φ is the head atom, φi are positive body literals and not
ψj are negative body literals.

In general, a model I of a normal logic program, Π, is a set of ground atoms such that, for
each ground instance G of a clause in Π, I satisfies the head of G whenever it satisfies the body.
A model I is minimal if it does not strictly include any other model. Definite programs always
have a unique minimal model. Normal programs may have instead one, none, or several minimal
models. It is usual to identify a certain subset of these models, called stable models, as the possible
meanings of a program [13]. Given a normal logic program Π, the reduct of Π with respect to I,
denoted ΠI , is the program obtained from the ground instances of Π by removing all clauses with
a negative literal notφ in its body where φ ∈ I and removing all negative literals from the bodies
of the remaining clauses. Clearly ΠI is a definite logic program and as such has a unique minimal
(Herbrand) model. If the model of ΠI coincides with I then I is said to be a stable model of Π as
formalised in Definition 1 [13].

Definition 1 A model I of a normal logic program Π is a stable model if I is a minimal (Her-
brand) model of ΠI , where ΠI is the definite program ΠI = {φ← φ1, . . . , φn|φ← φ1, . . . , φn, notψ1,
. . . , notψm is the ground instance of a clause in Π and I does not satisfy any of the ψi}

A normal logic program is said to be stratified if no negative recursion, that is recursion “through”
negation, is used in the program [2]. For example, the program Π = {p ← not q, q ← r} is
stratified, whereas the program Π = {p← not p} is not stratified. A program is said to be locally
stratified if its instantiated program is stratified. Results in [13] have shown that locally stratified
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programs accept a unique stable model.

Within the context of this paper, agents are represented as normal logic programs that include
a (non-empty) set of rules, called knowledge base of the agent, and a (possibly empty) set of
denials, called integrity constraints of the agent. Agents that collaborate to prove a given goal
form a cluster. For example, if agent A1 asks agent A2 to help with proving a sub-goal G1 of a
given goal G, then A1 and A2 are within the same cluster. Note that, in principle, a cluster may
well be the entire group of agents currently present in the system, but in the applications that we
have in mind it is often a proper subset of the group.

2.2 Abductive Reasoning

Abduction is the process of reasoning from effects to possible causes. In essence, it is concerned
with the construction of explanations, ∆, for a set of goals, G, with respect to a knowledge base
T and integrity constraints IC. Relative to the given knowledge base, the set of explanation
∆ must cover the goals G, while being consistent with the integrity constraints IC. Abductive
explanations are usually restricted to ground literals of some predefined set of predicates, A, called
abducible predicates. When negative conditions are used in the knowledge base T and/or in the
integrity constraints IC, negative literals of non-abducible predicates are also hypothesized as part
of an abductive explanation to maintain the consistency of the explanation with the IC during
its computation. For clarity, positive (or negative) literals with abducible predicates are referred
to as base abducibles and negative literals with non-abducible predicates as non-base abducibles.
In the case of theories expressed as normal logic programs with negative conditions, abductive
explanations are usually composed of ground instances of based and/or non-base abducibles [15,
16]. Throughout the paper, the term abducible refers to both a base and non-base abducible.
The abductive notion of entailment is typically not classical but based on some canonical model
semantics such as the stable model semantics. To provide a formal definition of an abductive task
we need to define the concepts of coverage and consistency used above. In general, given a normal
logic program Π, called a knowledge base, a set of ground literals G, a set of denial clauses IC,
and a set of predicates A, an abductive reasoning task is to find a set of ground literals ∆, of
abducibles, such that G and IC are satisfied in the canonical model of Π ∪∆. In this paper, we
assume Π to be a locally stratified program for which the canonical model is the unique stable
model of Π ∪ ∆. So, coverage and consistency simply mean that Π ∪ ∆ |= G and Π ∪ ∆ |= IC,
where |= is the notion of entailment under the stable model semantics. The idea is that the
given knowledge base Π represents an incomplete knowledge where the abducible predicates are
not defined but are assumable; and the goal G denotes an existentially quantified (or ground)
query which must be made to succeed by adding a set ∆ of abducibles to the knowledge base Π
subject to the constraints in IC. Intuitively, abducible predicates are incomplete information in
the knowledge base and can be used at any time (when a goal is provided) to partially complete
the knowledge base. The abductive reasoning setting is formalised in Definition 2 below, which
defines the notions of abductive context and abductive explanation.

Definition 2 (Abductive context, Abductive explanation)
An abductive context is a four-tuple AC = 〈Π, G, IC,A〉 where Π is a normal logic program, G
is a set of ground literals, IC is a set of denial clauses, and A is a set of predicates, such that
Π |= IC. Now, let  LA denote the set of all ground literals with predicates in A and negative
ground literals of predicates not in A but that appear negated in Π and IC. Then an abductive
explanation of AC is a set ∆ ⊆  LA of ground literals such that Π ∪∆ |= G and Π ∪∆ |= IC.

A number of abductive proof procedures and their extensions have been proposed over the years.
One of the most influential is the KM procedure [15, 16]. This is reviewed in the rest of this section
and illustrated with an example as it provides the basis for the DARE distributed abductive
algorithm given in Section 3. The KM proof procedure is composed of two phases, an abductive
derivation and a consistency derivation that interleave with each other. Each abducible generated
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during the first phase is temporarily added to a set of abducibles that have already been generated
during the proof. But this addition is only made permanent if the second phase confirms that
the entire new set of abducibles is consistent, relative to the program Π with the given integrity
constraints IC. Let G be a set of literals that we want to prove, which we write as ← G1 . . . , Gn.
The abductive proof procedure succeeds if its top-down procedure can prove G, i.e. reduces it
to � (empty list of literals) via a set of rules, and with a set ∆ of abducibles collected along
the procedure. To illustrate how the KM abductive proof procedure works, a simple single-agent
scheduling problem example is considered.

Example 2.1 This simple single-agent scheduling problem is about finding the names of people,
within a given organisation, that can attend a meeting and the day in the week of that meeting.
Let AC = 〈Π, G, IC,A〉 be the abductive context defined below. The knowledge base contains

Π =



conveneMeeting(X)← studentCanAttend(X), tutorCanAttend(X), not weekend(X)
studentCanAttend(X)← studentName(dan), free(dan,X)
studentCanAttend(X)← studentName(ben), free(ben,X)
tutorCanAttend(X)← tutorName(pat), free(pat,X)
free(dan,monday)
free(ben,tuesday)
free(pat,monday)
free(pat,tuesday)
weekend(saturday)
weekend(sunday)

G =
{

conveneMeeting(X)
}

IC =
{
← tutorName(pat), studentName(dan)

}
A =

{
tutorName, studentName

}
The program Π states that a meeting can be convened for a day X, different from Saturday and
Sunday, provided that a tutor and a student can attend the meeting on that day. The other rules
and facts in Π together state that student Dan can attend on Monday, student Ben can attend on
Tuesday and tutor Pat can attend both Monday and Tuesday. The integrity constraint, however,
specifies that Pat and Dan cannot both attend the meeting. Hence the only consistent abductive
answer for the given goal is for X bound to Tuesday and both Pat and Ben to attend the meeting.

The abductive algorithm takes in input the above abductive context and starts an abductive
derivation process to prove the goal

G0 =← conveneMeeting(X)

with initially an empty set ∆0 = ∅ of abduced assumptions.
This derivation is essentially a standard SLDNF-resolution, i.e. reasoning backwards for a refuta-
tion, but collecting any required abductive assumption along the process. Given G0, the SLDNF
resolution process unifies it with the head of the first rule in Π and collects the body literals of
this rule as new queries to prove. The new goal is then

G1 =← studentCanAttend(X), tutorCanAttend(X), not weekend(X)

and ∆1 = ∆0.

The first literal studentCanAttend(X) is then removed from G1 and the SLDNF resolution pro-
cess starts again on the new single-literal query←studentCanAttend(X). This literal unifies with
the head of the second rule in Π, and so the body literals of this second rule are added in front of
current list of remaining literals to proved so giving the new goal

G2 =← studentName(dan), free(dan,X), tutorCanAttend(X), not weekend(X)
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and ∆2 = ∆1.

At this point the next single-literal query is ← studentName(dan) for which the knowledge base
Π is incomplete (does not have any information about this predicate). But in the given ab-
ductive context this is an abducible predicate, so the abductive derivation instead of failing to
prove this query, which is what standard SLDNF resolution would do in this case, adds the lit-
eral studentName(dan) temporarily to ∆3 and a consistency derivation is activated with the
temporary set ∆

′
= ∆3 ∪ {studentName(dan)} of abduced predicates. If the consistency deriva-

tion is successful then the abductive derivation process continues its proof on the remaining goal
G4 =← free(dan,X), tutorCanAttend(X), not weekend(X) and the set ∆4 of abducibles given
by ∆

′
possibly extended with assumptions accumulated during the consistency derivation1.

The consistency derivation takes the new temporary set ∆
′

of abduced predicates and con-
siders all the integrity constraints that include the newly abduced predicate studentname(dan).
In our example, there is only one such constraint. The resolution with the abduced predicate
gives the literal tutorName(pat), which has to fail for the constraint to be satisfied. The lit-
eral tutorName(pat) is itself abducible but not included in ∆

′
, so it cannot be proved and the

consistency derivation succeeds.
The abductive derivation can then continue its proof with

∆4 = {studentName(dan)} and G4 =← free(dan,X), tutorCanAttend(X), not weekend(X).

Continuing the SLDNF resolution proof, the variable X gets unified with monday, the proof
of tutorCanAttend(monday) generates a new set of temporary abduced predicates ∆

′
= ∆4 ∪

{tutorName(pat)}. But, this time the consistency derivation on the newly abduced predicate
tutorName(pat) fails because together with the predicate studentName(dan) previously abduced
would violate the integrity constraint. At this point, the failure of the consistency derivation
causes the current abductive derivation to fail, and since there is no other rule in Π for proving
tutorCanAttend(monday), the abductive derivation backtracks to the previous branching point
of its proof, which is where the goal was

G1 =← studentCanAttend(X), tutorCanAttend(X), not weekend(X)

and ∆1 = ∆0 = ∅
in order to find another way to prove studentCanAttend(X). This corresponds to choosing the
second rule for this predicate and start the abductive derivation again. Continuing in a similar
way, it is easy to see that the answer to the initial goal G0 =← conveneMeeting(X) is

∆ = {studentName(ben), tutorName(pat)} with unification X = tuesday. •

The above example run covers, however, only a few of the possible cases that can arise during the
abductive and consistency derivations. The full KM proof procedure can be found in [15, 16].

Example 2.1 shows a very simple snapshot of a scheduling problem. In a real context, the knowl-
edge base would be much bigger and the computation cost much higher if expressed as a single
agent process. A distributed representation of the knowledge base among personal agents, namely
an agent process that has knowledge about the person’s commitments and their constraints, would
instead allow for more efficient computations. Alternative abductive computations for a given goal
(e.g. for the literal studentName(X)) could, in such a multi-agent context, be fired in parallel. So
in case of failure of an abductive derivation, alternative abductive answers, already computed in
parallel, can be directly fetched and used to continue a proof. To this aim, the KM abductive proof
procedure would need to be extended to allow for abductive derivations over distributed knowl-
edge and consistency derivations over distributed integrity constraints. This is where this paper
provides a novel contribution. In the next section, a distributed abductive inference algorithm is
presented and illustrated in detail using a multi-agent re-formulation of the above example. The
soundness of the algorithm is also proved.

1This is because one of the main features of KM proof procedure is that the abductive and consistency derivation
can interleave with each other.
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3 Collaborative Abductive Reasoning

This section presents a distributed abductive inference algorithm, referred to as the DARE algo-
rithm, that computes abductive derivations by integrating local (i.e. agent-based) explanations
to sub-goals, computed by individual agents, whilst preserving the consistency of the combined
answer within the context of the proof cluster (i.e. set of agents involved in the proof). The al-
gorithm extends the KM abductive proof procedure illustrated in the previous section so to allow
abductive derivations over multiple agents (Ai), equipped with individual knowledge base Πi and
integrity constraints ICi, and consistency derivations over the integrity constraints of the agents
involved in the computation. The abductive computation of the DARE algorithm is cluster-based:
its aim is to identify a set of missing information ∆ that is consistent with the integrity constraints
of the agents in a given proof cluster, and that together with the knowledge base of these agents
explain a given (set of) goals. A proof cluster is formed dynamically during the reasoning process
as and when agent specific knowledge and related integrity constraints are needed during an ab-
ductive (resp. consistency) derivation. Within the context of this paper, the existence of a shared
predicate ontology among agents is assumed, which includes a given set A of abducible predicates.
Predicates in the shared ontology are considered to be “global” over the agents, whereas those
not in the shared ontology are assumed to be renamed uniquely with respect to each agent that
defines them. It is also assumed that agents share the same set A of abducible predicates. As in the
KM proof procedure, these include positive (resp. negative) literals with abducible predicates (i.e.
base abducibles) and negative literals with non-abducible predicates (i.e. non-base abducibles).
The knowledge of each agent (Ai) is represented as a stratified logic program (Πi).

3.1 An overview

Within the DARE system, each agent is capable of performing local abductive reasoning to explain
(sub-)goals using its own knowledge base and integrity constraints; it can communicate with other
agents to ask for help in explaining information that is outside the realm of its own knowledge.
The knowledge base of a given agent can in fact use in its rules predicates that are defined in other
agents. Incompleteness of information is therefore not only related to abducible predicates but
also to positive non-abducible predicates. Whereas for the first type of information, an agent is
allowed to make assumption in order to continue its proof, for the case of positive non-abducible
predicates, an agent can ask for help to any agent who has advertised that predicate to be part
of its reasoning capability. Note that not all information of an agent needs necessarily to be
public. To preserve a certain level of encapsulation of information, an agent has the ability,
via the KQML advertise performative, to announce the information (or predicates) that it will
provide proof for. Advertised predicates must be part of the pre-defined shared ontology, and
not necessarily all predicates in the shared ontology have to be advertised. Together with the
knowledge base, an agent has also its own integrity constraints. These are always kept private
and never exported to other agents. Given the encapsulation of the integrity constraints and the
fact that agents collaborate to compute a (global) abductive answers, a natural question is then
how can the DARE system guarantee consistency of the abductive answer with respect to the
constraints of the other agents involved in the proof. A local consistency check on locally abduced
assumptions is clearly not sufficient to assure that such assumptions would be consistent with the
integrity constraints of any other agent that can subsequently join an abductive proof. A more
sophisticated process for checking consistency is therefore needed. Before defining our DARE
algorithm, we formalise the notions of distributed abductive context and distributed explanation
as a generalisation of the notions of abductive context and abductive explanation given in the
previous section to the case of cluster of agents.

Definition 3 (Distributed Abductive Context)
Let A1, . . . , An be a group of agents and let Πi and ICi be the normal logic program and set of denial
clauses that define the background knowledge and integrity constraints of agent Ai, respectively,
for each 1 ≤ i ≤ n. A distributed abductive context is the tuple DAC = 〈{Πi}, G, {ICi}, Ainit,A〉
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where G is a conjunction of literals, Ainit is the agent in the group that receives the top level goal
G, i ranges from 1 to n, and A is a set of predicates, such that Πi |= ICi, for each 1 ≤ i ≤ n

As explained in Section 4, a distributed abductive context can evolve as agents may join or leave
the current group, but it is assumed that agent Ainit belongs to the context at all time. This is
formally defined as follows.

Definition 4 (Evolved Abductive Context)
Let DAC = 〈{Πi}, G, {ICi}, Ainit,A〉 be a distributed abductive context with respect to the group
A1, . . . , An of agents. An evolved abductive context is the tuple DAC

′
= 〈{Π′

j}, G, {IC
′

j}, Ainit,A〉
with respect to a group of agents A

′

1, . . . , A
′

m, with Ainit belonging to the group and 1 ≤ j ≤ m.

In an evolved abductive context DAC
′
, the group of agents does not need to be the same as that

of the starting context DAC, with the exception of the initial agent Ainit. Within the scope of this
paper it is also assumed that the program Π and the integrity constraints IC of an agent do not
evolve.

Definition 5 (Distributed Explanation)
Let DAC be a distributed abductive context, let C = {A1, . . . , Ak} be a cluster of agents and let Ac

be the abducible predicates that appear in the agents in C. Now, let  LA denote the set of all ground
literals with predicates in Ac and negative ground literals with non-abducible predicates that appear
in

⋃
1≤j≤k(Πj ∪ ICj). Then an abductive explanation of DAC with respect to the cluster C is a

set of ground literals ∆ ⊆  LA for which there exists a ground instance Gθ of the goal G such that

(
⋃

1≤j≤k Πj) ∪∆ |= Gθ and
(
⋃

1≤j≤k Πj) ∪∆ |=
⋃

1≤j≤k IC
∆
i

where IC∆
i is the set of integrity constraints in Ai whose abducibles unify with a literal in ∆.

The DARE algorithm uses two main phases, called respectively global abductive derivation (GAD)
and global consistency derivation (GCD) to compute an abductive explanation.

The global abductive derivation is the “top-level” reasoning process that initially takes in input
a (set of) goal(s) G and an agent A in the system and starts a derivation process for proving G.
This derivation takes one literal L at a time from G and tries to abductively prove it. If L is
defined in A, the global abductive derivation proceeds locally as a standard SLDNF resolution
(step (2) of GAD). If L is not defined in A and it is a positive non abducible predicate, other
agents, among those able to prove it, are invoked for help (step (3) of GAD). Whenever a new
agent joins an abductive derivation, a global consistency check is performed to make sure that
its addition to the proof cluster does not violate the current set of assumed abducibles (step (1)
of GAD). If L is a ground base abducible and Lc (i.e. the complement of L) has already been
assumed in ∆, then the current global abductive derivation fails and backtracks to any earlier
branching point (if any) in the proof (step (4) of GAD). If L is a ground base abducible already
included in ∆ then the global abductive derivation continues its abductive proof on the remaining
literals in the given initial goal G (see step (5) of GAD). This is also the case for L non-base ground
abducible already assumed in ∆. But, if the literal L to prove is a ground base abducible not yet
assumed, then it can be temporarily added to the set ∆ and checked for consistency (step (6) of
GAD). This is the point where in the standard KM proof procedure the abductive derivation calls
a consistency derivation. In the DARE algorithm, this corresponds to passing the newly extended
set of assumptions {L}∪∆ to all the agents in the current proof cluster to make sure that this new
set of assumptions is still consistency with their integrity constraints. If the literal L to prove is a
non-base ground abducible not included in ∆, then the current agent A can temporarily add it to
∆ and check for consistency first locally (i.e. whether it can actually prove the complement of this
literal), and then globally over the proof cluster to verify that the integrity constraints of the agents
collaborating in the proof are still consistent with the newly extended set of assumptions {L}∪∆
(step (7) of GAD). The overall process of the distributed abductive derivation is diagrammatically
represented in Figure 1.

8



Figure 1: Global Abductive Derivation

Whereas the global abductive derivation succeeds when the given set G of goals has been
reduced to the empty set of literals (as all of its literals have been abductively proved), the global
consistency phase takes in input the current set of assumptions ∆ as its goal, and checks it for
consistency with respect to the integrity constraints of all the agents in the current cluster. In
essence this means considering one element L in ∆, choosing one agent A in the cluster, and
resolve L with the integrity constraints in A, if at least one of these integrity constraints fails,
then the global derivation fails. Otherwise, the consistency check passes to the next agent in the
cluster, and so on through the entire cluster and for each literal in the given set ∆ of abduced
information. The global consistency process uses two additional supporting derivations, a local
abductive derivation and a local consistency derivation. The resolution of the chosen literal L with
the integrity constraints of the particular agent A in the cluster is handled by that agent via a local
abductive derivation but with SLDNF resolution applied only between L and its integrity costraints
instead of L and its rules (see step (1) of GCD and setp (4) of the local abductive derivation). While
checking the consistency of L with its constraints the agent Amay make further assumptions which
need themselves to be checked for consistency over the cluster. A round of consistency checks over
the cluster terminates when all the agents have been considered once. If at the end of a round
no additional assumptions have been made during the local abductive derivations then the global
consistency check terminates successfully. Of course, the global consistency derivation fails as soon
as a round of consistency checks does not finish as the initial set of assumption ∆ does not satisfy
the integrity constraints in one of the agents in the cluster. The GCD process is diagrammatically
represented in Figure 2.

Figure 2: Global Consistency Derivation

At the beginning of a GCD, an agent A from the cluster is chosen which starts a local abductive
derivation taking as goal the current set ∆ that has to be checked for consistency and an empty set
of temporary assumptions. The first literal L is then resolved with all the integrity constraints in
A that contain L. The set of resolvents is then passed to a local consistency derivation in A. These
become must-fail goals. The local consistency derivation proceeds in a similar way as described
in Section 2 for the KM proof procedure. The main difference in this case is step (5). When the
literal L to fail is a not assumed non-base ground abducible, a global abductive derivation is called
with goal Lc. In this case, although the global abductive derivation is activated from within the
context of a consistency check that is cluster-based, agents outside the cluster can be invoked for
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help. This can be seen as a form of collaborative reasoning for constraint satisfaction, whereby
a current cluster of agents can dynamically expland to include agents with reasoning capabiities
that enable successful termination of local consistency checks that would otherwise fail.

This brings us to the following main features of the DARE algorithm. Firstly, clusters can
expand during both global abductive and global consistency derivations. This expansion occurs in
particular cases: in the global abductive derivation when positive non abducible literals need to be
proved and the current agent either fails to do so or does not have reasoning capability (i.e. rules)
for that type of information whereas other agents in the group do. These other agents can then
take part to the derivation process by joining the current cluster, provided that their integrity
constraints do not contradict the current set ∆ of assumptions; and in the local consistency
derivation, on the other hand, the task of “failing a non-based abducible” is, in a sense, similar
to the task of succeeding a positive non-abducible predicate2. The local consistency derivation
behaves in a similar way as the global abductive derivation case. If the current agent cannot fail
a non-base abducible, it can ask agents outside the cluster to help proving the complement of
such an abducible in the attempt to successfully complete its local consistency check. The second
feature of this algorithm is negation as failure. Its semantics is strictly related to the concept of
cluster. Successfully proving a negative non abducible predicate for a given cluster C means that
all the agents in C are not able to prove its complement. Negation as failure has therefore, in
this case, the same meaning as in [10] but with respect to a background knowledge given only by
that of the agents in the cluster. On the other hand, successful failure of proving a negative non
abducible predicate means finding an agent in the system who is able to prove the non abducible
predicate. This reflects the standard concept that failing to prove a negated literal is in essence
equivalent to finding a proof for its complement.

3.1.1 The DARE algorithm

This section first illustrates our distributed abductive inference algorithm via the example of
meeting scheduler and then gives its formal definition together with an informal proof of its
soundness. Building upon the initial example given in Section 2 let us consider now the case of
a scheduling problem among a certain number of agents. The initial group of agents includes
a convener, a tutor, a lecturer, several students, a nursery and a timetabler. The Convener is
the agent responsable for organising the meeting. A second lecturer (A8 below) may join during
the execution. The student, lecturer and tutor agents are equipped with various local rules that
define when they may attend meetings and integrity constraints to specify who they are (not)
prepared to meet with. The shared ontology includes all predicates with the exception of free,
day, tired, teaching, teachingJuniors and teachingSeniors, which are uniquely renamed
with the index of the agent that defines them. All shared predicates are advertised, and the base
abducible predicates are studentName, lecturerName and tutorName (as it was also the case in
the previous single-agent example).

The distributed abductive context of our example is the tuple DAC = 〈{Πi}, G, {ICi}, A1,A〉
where the knowledge base Πi and integrity constraints ICi of the agent Ai, for 1 ≤ i ≤ 8, are as
defined below, the goal G is ←conveneMeeting(T), and the set of abducible predicates is given
by A = {studentName, lecturerName, tutorName}.

A1 (Convener)

Π1 =

8<:
conveneMeeting(T)← day1(T),

studentCanAttend(T), tutorCanAttend(T), lecturerCanAttend(T).
day1(tuesday). day1(wednesday). day1(thursday). day1(friday).

A2 (Tutor)

Π2 =


tutorCanAttend(T)← tutorName(pat), free2(T).
free2(X)← nursery(X).

IC2 =


← tutorName(pat), studentName(dan)
← tutorName(pat), lecturerName(joe)

ff
2Recall that a non-base abducible is a negated non-abducible predicate.
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A3 (Student)

Π3 =


studentCanAttend(T)← studentName(ben), free3(T).
free3(monday). free3(thursday). free3(friday).

A4 (Student)

Π4 =


studentCanAttend(T)← studentName(dan), free4(T).
free4(monday). free4(wednesday).

A5 (Nursery)
Π5 =

˘
nursery(wednesday). nursery(friday).

A6 (Lecturer)
Π6 =

˘
lecturerCanAttend(T)← lecturerName(joe), freeFromTeaching(T,joe).

A7 (Timetabler)

Π7 =

8>><>>:
freeFromTeaching(T,X)← not teaching7(T,X).

teaching7(T,X)← teachingJuniors7(T,X).

teaching7(T,X)← teachingSeniors7(T,X).

teachingSeniors7(thursday,joe). teachingJuniors7(wednesday,rob).

A8 (Lecturer)

Π8 =


lecturerCanAttend(T)← lecturerName(rob), not tired8(T), freeFromTeaching(T,rob).
tired8(thursday).

Typically, the convener is the agent that makes the initial query ←conveneMeeting(T) with an
empty set ∆ of assumptions and a cluster consisting of only himself (i.e C1 = {A1}). A solution
to this query will include a cluster C of the agents contributing to the computation, an instance
value for T , and an abductive explanation ∆ of the given DAC with respect to the cluster C. If
the only available agents are A1 . . . A7, then the above DAC has no solution, since the tutor Pat
does not wish to meet with the lecturer Joe, and the abductive context does not include any other
lecturer. If A8 joins the group then a possible solution is
∆ = {lecturerName(rob), tutorName(pat), studentName(ben)}
for the unification T= friday, and the cluster C = {A1, A2, A3, A5, A7, A8}. The tutor Pat is
only willing to work with Rob and Ben. The only common free day for Pat and Ben is Friday and
Rob can also meet on Friday. This solution is calculated by the DARE algorithm in the following
way.

1. Agent 1 (A1) can prove day1(tuesday) but not studentCanAttend(tuesday). Therefore
it applies step 3 of the GAD and recruits agents A3 and A4 who then carry out their own
step 1 of GCD. In this moment of the proof, there are not yet any abduced atoms, so step
1 in each of these agents succeeds trivially, and two different clusters C1 = {A1, A3} and
C2 = {A1, A4} are formed.

2. Student agent A3 (resp. A4) starts its GAD process, matching studentCanAttend(tuesday)
to the head of one of its program clauses to derive the subgoal studentName(ben) (resp.
studentName(dan)), to which step 6 of the GAD is applied. For example, agent A3 adds
studentName(ben) to ∆ and attempts a GCD, which requires each agent in its cluster, C1,
to check that the abduced atom does not violate any integrity constraint of the agents in C1

(i.e. A1 and A3). This is clearly the case as neither agent in C1 has integrity constraints.
Similarly for agent A4 except that studentName(dan) is abduced.

3. The student agents A3 and A4 continue independently their GAD on their next sub-goal
free3(tuesday) and free4(tuesday) respectively. Neither student agent can succeed this
subgoal, so A1 backtracks and request help for studentCanAttend(wednesday). This time
A4 succeeds and returns ∆ = {studentName(dan)} after a successful GCD.

4. Agent A1 continues its GAD with the current set ∆ = {studentName(dan)} of abducibles.
It requests help from A2 to prove the subgoal tutorCanAttend(wednesday). A2 temporarily
abduces tutorName(pat) and activates a GCD which fails because of the first IC of A2.
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5. Agent 1 again backtracks and solves day1(thursday), which leads to A3 succeeding with
∆ = {studentName(ben)}. A similar computation as before follows, but using this time
A2. This results in the new abducible not lecturerName(joe) being added to ∆, so far
given by {studentName(ben), tutorName(pat)}, for the second IC of A2 to be satisfied.
Unfortunately, the free2(thursday) sub-goal of A2 will fail.

6. Agent 1 backtracks yet again and solves the sub-goal day1(friday). This time A2 succeeds
to show tutorCanAttend(friday), with the set ∆ = {studentName(ben), tutorName(pat),
not lecturerName(joe)} of abducibles and cluster C = {A1, A2, A3, A5}.

7. Agent 1 requests now help for its sub-goal lecturerCanAttend(friday) and A6 starts
a new GAD. Note that when performing step 1 (on joining the cluster) of its GAD, the
corresponding GCD succeeds, but in step 4 it fails since not lecturerName(joe) is in ∆.
The top-level goal fails as there are not more solutions for day1(T) in A1.

8. Suppose now that Agent 8 joins the group before the failure. A1 will notice this and request
its help to solve lecturerCanAttend(friday). As part of a derivation, A8 adds to ∆ the
abduced atom lecturerName(rob) giving ∆ = { lecturerName(rob), studentName(ben),
tutorName(pat), not lecturerName(joe)}, which does not violate any integrity constraints
of any agents in the current cluster C = {A1, A2, A3, A5, A8}. A8 continues then and applies
step 7 (of its GAD) to solve not tired8(friday). This requires adding not tired8(friday)
to ∆ and checking that tired8(friday) is not provable by any agent in the cluster, which
in this case succeeds trivially since the predicate tired8 is local to just agent 8.

9. Agent 8 next solves the subgoal freefromTeaching(friday,rob) by recruiting agent A7.
This gives then set of assumptions
∆ = {studentName(ben), tutorName(pat), not lecturerName(joe), lecturerName(rob),
not tired8(friday)} and the binding T = friday which are returned to A1. The first
GAD process is thus terminated.

Suppose now that Pat has no integrity constraints and Dan will only attend the meeting if Rob
does. This can be expressed as an integrity constraint for Dan (i.e. inA4) by← studentName(dan),
not lecturerName(rob). When studentName(dan) is abduced as part of solving the sub-goal
studentCanAttend(wednesday) in A4, the GCD will require not lecturerName(rob) to fail,
which means the query lecturerName(rob) to succeed. Since lectureName is an abducible
predicate lecturerName(rob) will succeed by being added to ∆. At some point in the GAD
of the top-level goal, the sub-goal lecturerCanAttend(wednesday) will succeed by abducing
lecturerName(joe). If this enriched set of abducibles were not desirable (i.e. only the name
of agents involved in the proof should be part of the scheduling solution) an additional integrity
constraint ← lecturerName(X), lecturerName(Y), not X=Y could be added to agent A1 to
capture that at most one lecturer should attend. In this case since a GCD goes always through all
the agents in the current cluster, the GCD initiated by the the GAD in agent A6 on the sub-goal
lecturerName(joe) would fail when checking agent A1, and be forced to backtrack to find an-
other solution for lecturerCanAttend(wednesday). Since this is impossible, further backtracking
would be performed eventually finding Rob as the solution with T bound to Friday.

The full algorithm is defined below. In the following, ∆ is the set of ground abducibles that
are collected during the proof and C the set of agents in the cluster formed during the proof.
The output of a successful DARE computation is a final set ∆ and associated cluster C of the
final distributed abductive context 〈{Πi}, G, {ICi}, Ainit,A〉. The algorithm starts with the agent
Ainit performing a global abductive derivation for the query G with ∆ = ∅ and C = ∅. The first
step in this abductive derivation will add agent Ainit to the cluster.
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Global Abductive Derivation

Let A be the current agent, ∆ be the current set of abduced literals, C be the current cluster
and G the current goal (← L1, . . . , Lk). If G is (reduced to) the empty goal [] then the global
abductive derivation succeeds and ∆ and C are returned. Otherwise, G

′
is obtained by removing

a literal L from G, and ∆′ and C′ are obtained while applying one of the following rules:

1. If A /∈ C: if there exists a global consistency check on ∆ with C′′
= A ∪ C, and ∆′ and C

′

are obtained after the global consistency derivation, then A continues the global abductive
derivation on G with ∆′ and C′.

2. If L is a non-abducible: if a rule whose head can match with L exists in A, and the instan-
tiated body is B, then A continues the global abductive derivation on B ∪G′3 with ∆′ = ∆
and C′ = C.

3. If L is a non-abducible and the previous rule does not apply, then if there exists a global
abductive derivation on ← L with ∆ and C by a helper agent H (whether in the group or in
the current cluster), and ∆′ and C′ (the first rule and this rule together imply that H ∈ C′)
are obtained after the derivation, then A continues the global abductive derivation on G′

with ∆′ and C′.

4. If L is a ground abducible and L∗ is in ∆, the derivation fails.

5. If L is a ground abducible and L is in ∆, then the current agent continues the global
abductive derivation on G′ with ∆′ = ∆ and C′ = C.

6. If L is a ground base abducible and neither L nor Lc is in ∆, if there exists a global
consistency derivation on {L} ∪ ∆ with C, and ∆′ and C

′
are obtained after the global

consistency derivation, then the current agent continues the global abductive derivation on
G′ with ∆′ and C′

.

7. If L is a non-base ground abducible and L /∈ ∆ then if there exists a local consistency
derivation on {← Lc} with ∆′′ = ∆∪{L} and C by A, and if there exists a global consistency
derivation on ∆′′′ with C′′′

, where ∆′′′ and C
′′′

are obtained after the local consistency
derivation, then A continues the global abductive derivation on G′ with ∆′ and C′

, where
∆′ and C

′
are obtained after the global consistency derivation.

Global Consistency Derivation

The global consistency derivation, as indicated by its name, is to make sure the current ∆ is
consistent among the agent in the current cluster C. The global consistency derivation consists of
one or more consecutive consistency check rounds. The agents in C are labeled as A1, . . . , An. For
each consistency check round:

1. Let ∆0 be the input to A1.

2. ∆k−1 is passed to Ak. If there exists a local abductive derivation on G = ∆k−1 and ∆ = []
by Ak, and ∆k and Ck are obtained after the derivation:

• If k < n, then ∆k is passed to Ak+1 with cluster C = Ck

• If k = n, then the current consistency round succeeds.

If one consistency check round succeeds and ∆0 = ∆n, then the global consistency derivation
succeeds and ∆n. If one consistency check round succeeds but ∆0 ⊂ ∆n, then start another
consistency check round on ∆n.

3Note that the concepts of goal as a set of literals and goal as its denial representation are used interchangeably
here.
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Local Abductive Derivation

The local abductive derivation of an agent A is to make sure that the passed in goal (a set of
abducibles) does not violate any integrity constraint of A. Since the goal contains only abducibles,
the local abductive derivation by A can be simulated as an operation such that A “re-abduces”
one abducible from the goal, and checks its related local integrity constraints. If a local abductive
derivation succeeds, the obtained new set of abducibles will contain the original goal and will be
consistent with the integrity constraints of A. Formally, let A be the current agent and ∆ be the
current set of abducibles, and C be the current cluster. The local abductive derivation succeeds
if G is empty, and ∆ will be returned with its associated cluster. Otherwise, G′ is obtained by
removing a literal L from G, and ∆′ is obtained while applying one of the following rules:

1. If L is a ground abducible and Lc ∈ ∆, the derivation fails.

2. If L is a ground abducible and L ∈ ∆, then A continues the local abductive derivation on
G′ with ∆′ = ∆ and C

′
= C.

3. If L is a ground abducible and L /∈ ∆ and Lc /∈ ∆. Let I be the set of integrity constraints
containing L, and I ′ be the set obtained by removing L from each constraint in I. If there
exists a successful local consistency derivation on I ′ with ∆ ∪ {L} and C, and ∆′ and C

′

are obtained after the local consistency derivation, then A continues the local abductive
derivation on G′ with ∆′ and C

′
.

Local Consistency Derivation

In the local consistency check, let A be the current agent and C be the current cluster. Let F be
the set of goals to be checked for consistency (i.e. must-fail goals). The local consistency check
succeeds if F is empty, and fails if F contains []. Otherwise, let F ′ ∪G = F and G′ is obtained
by removing a literal L from G, ∆′ and C

′
are obtained while applying one of the following rules:

1. If L is a non-abducible: Let S be the set of all the instantiated non-empty bodies of the
rules in the (local) agent whose heads can match with L, A continues the local consistency
derivation on S ∪ F ′ with ∆′ = Lc ∪∆ and C

′
= C.

2. If L is a ground abducible and L ∈ ∆, then A continues the local consistency derivation on
F ′ ∪ {G′} with ∆′ = ∆ and C

′
= C.

3. If L is a ground abducible and Lc ∈ ∆, then A continues the local consistency derivation
with F ′ and ∆′ = ∆ and C

′
= C.

4. If L is a ground base abducible and L /∈ ∆ and Lc /∈ ∆, then A continues the consistency
derivation with F ′ and ∆′ = ∆ ∪ LC and C

′
= C.

5. If L is non-base ground abducible and L /∈ ∆, if there exists a successful global abductive
derivation on ← Lc with ∆ and C, then A continues the local consistency derivation on F ′

with ∆′ and C
′
where ∆′ and C

′
are obtained from the global abductive derivation.

The soundness of the algorithm requires showing that given a distributed abductive context
DAC=〈{Πi}, G, {ICi}, Ainit,A〉, and given a successful global abductive derivation, by Ainit, of G
with a final set ∆ of abduced assumptions and a final cluster C of agents of an evolved abductive
context DAC

′
, then ∆ is an abductive explanation of DAC

′
with respect to the cluster C for the goal

G. A proof of the soundness property is given below.

Theorem 3.1 Let DAC be an initial distributed abductive context with goal G. Let ∆ be the
output of a global abductive derivation for an instance Gθ, returned by Ainit and computed by
the cluster C = {A1, . . . , An} of a final evolved abductive context DACfin such that Ainit ∈ C.
Then ∆ is an abductive explanation of DACfin with respect to C.
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Proof: The proof is by induction on the number k of agents in C. Without loss of generality it is
assumed that A1 = Ainit.

Base Case: (k = 1)
In this case the final cluster C returned by the global abductive derivation is composed of only
one agent C = {A1}. It is easy to see that in this circumstance the DARE algorithm behaves as
the KM abductive proof procedure as all computations are local to the single agent in the cluster.
A DARE abductive derivation coincides with a KM abductive derivation and the definition of
abductive explanation of the DAC with respect to a singleton cluster for a given goal is implied
to the notion of KM abductive explanation given in Definition 2. Hence, by the soundness of KM
proof procedure [16], we can conclude that ∆ is an abductive explanation of DAC with respect to
the cluster C = {A1}.

Induction Hypothesis: We assume that for any global abductive derivation that computes ∆, as
abductive solution for an instance Gθ of the goal G, with a cluster C = {A1, . . . Ak}, for k ≥ 1,
of agents in a corresponding evolved abductive context DACfin, ∆ is an abductive explanation of
DACfinwith respect to the cluster C.

Inductive Step: (k + 1)
Let us assume that ∆ has been computed by a GAD with a cluster C = {A1, . . . , Ak+1}. We
need to show that ∆ is an abductive explanation of DACfinwith respect to this cluster C of k + 1
agents. The underlying idea is to show that any cluster C of k+ 1 agents, satisfying the condition
of DACfin, can be reduced to a cluster C+ = {A+

1 , . . . , A
+
k } of k agents such that their respective

background knowledge Π+
1 = Π1 ∪ {Πk+1, and Π+

j = Πj , for 1 < j ≤ k, and integrity constraint
IC+

1 = IC1 ∪ ICk+1 and IC+
j = ICj , for 1 < j ≤ k. Of course ∆ is still an abductive solution

for the given goal instance Gθ. So by inductive hypothesis we could say that ∆ is an abductive
explanation of the abductive context DACfinwith respect to the cluster C+, and since the cluster
C+ is equivalent to the cluster C = {A1, . . . , Ak+1}, ∆ is an abductive explanation of DACfinwith
respect to the cluster C. The knowledge bases Π+

j , for 2 ≤ j ≤ k, are consistent with the
integrity constraints IC+

j as agents A+
j are the same as agents Aj , for 2 ≤ j ≤ k. This is also

the case for agent A+
1 , namely Π1 ∪ Πk+1 |= IC∆

1 ∪ IC∆
k+1, since Ak+1 belongs to the cluster

and step (1) of the global abductive derivation guarantees consistency of the integrity constraints
IC∆

1 ∪IC∆
k+1 with respect to Π1∪Πk+1. Hence, given the GAD that has computed ∆ with cluster

C = {A1, . . . , Ak+1}, there exists an exactly equal GAD that computes ∆ but with respect to the
cluster C+ = {A+

1 , A2, . . . , Ak}, and ∆ can be computed again as abductive solution for the goal
instance Gθ but using a cluster of only k agents.

4 DARE Implementation Architecture

This section describes the architecture and main features of the DARE system. This is an open
distributed abductive inference system that supports collaborative proof of a query given to or
internally generated by any agent in the system. Each agent is equipped with its own logic
program knowledge base with associated integrity constraints. The agents in the system can
dynamically change during a particular inference process. This can result in the agents involved
in the proof, the current proof cluster, to change. DARE is therefore an open distributed abductive
inference system. As shown in Section 3, its distributed abductive algorithm is flexible enough
to guarantee the soundness of the proof process despite this key dynamic feature. The agents
can have overlapping or disjoint knowledge base. Two knowledge bases are disjoint if they do
not share the same definition for a predicate. The system assumes the communication between
agents to be safe and reliable, namely the messages sent between two agents cannot be lost or
corrupted, and each agent is rational and trusted by the others. As its main purpose is to support
coordinating collaborative reasoning, the handling of various network attacks or fatal network
failures is currently not been considered. In its current form, the system does not allow for the
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possibility of malicious agents interfering in the collaboration between other agents.

4.1 Architecture Overview

As mentioned already, the DARE system comprises of an open group of agents. A query can be
submitted to any of the agents, Ai say, in the group, and the abductive answer, if any, is returned by
that same agent. The reasoning process starts within agent Ai. It tries to construct an abductive
answer using only its own knowledge (i.e logic program Πi). But during its abductive reasoning
process, it can “ask for help” from other agents in the group. Each query answer returned by the
agent is associated with the cluster of agents that have contributed to its proof. The main features
of the DARE architecture are its high level inter-agent communication, the internal concurrency
of the agents and the parallel search for alternative abductive proofs. The agents are internally
concurrent because they comprise several distinct time-shared threads of computation that co-
ordinate via internal thread-to-thread messages and a shared blackboard. The parallelism arises
because the agents can be distributed over a network of host computers allowing the different
agents requested to help with a sub-proof to search for sub-proofs in parallel. These two features
are explained and illustrated below.

4.2 Inter-Agent Communication

Inter-agent communication is via asynchronous message-passing, using KQML [11] performatives.
The messages are communicated between the agents using a communications demon, Pedro[20].
This will route messages with a specified agent destination to that agent. An agent identity has
the form agentName@host4. A thread named Th within an agent has an identity of the form
Th:agentName@host. Messages can be addressed either to the agent or to a specific thread within
the agent. If the former, the message is sent to the initial agent thread, else it will be routed
directly to the named thread within the agent. All threads have their own message buffer of
received unread messages. Pedro will also forward messages posted to it without a specified
agent destination using lodged message pattern subscriptions. We use this to give some of the
functionality of a KQML matchmaker[17]. When an agent is launched it first connects to the Pedro
demon. Its name agentName and host name host are recorded by Pedro so that Pedro can route
to the agent all messages addressed to agentName@host, or to a thread Th:agentName@host5.
The agent then posts a register message to Pedro containing its identity to inform the existing
DARE agents of its arrival. This is its entry into the DARE group of agents. This message will be
forwarded to all DARE agents because they will have subscribed for such register messages. The
agent then lodges a subscription with Pedro for both register and unregister messages, so that
it will become aware of new agents that join afterwards, and when an agent leaves. It then posts
advertise messages to Pedro announcing the predicates for which it is willing to offer abductive
proofs and it lodges subscriptions for advertisements posted by other (usually new) agents that
mention predicates for which it may require proof help.

Notice there is one key difference between Pedro and a standard KQML matchmaker. The
latter will remember avertisements as well as subscriptions for advertisements, whereas Pedro only
remembers the subscriptions. This means that whenever an agent receives a register message
it must send its advertisements directly to the new agent. Each agent maintains its own ”yellow
pages” directory of other agents in the DARE group. For each such agent it stores the agent
identity and the predicates it has advertised (and not yet unadvertised).

4Only one agent with a given name can connect to Pedro from each host but agents with the same name can
connect from different hosts.

5The connection to Pedro opens a TCP/IP connection for communication between Pedro and the Qu-Prolog
process which is the agent, and is time-slice executing all of the agent’s threads. Messages for the agent, or a
thread within the agent, are sent down this TCP/IP connection and Qu-Prolog automatically inserts it into the
appropriate thread message buffer.
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4.3 Internal Architecture of Agents

Each agent has its own knowledge base, which is a normal logic program and a set of integrity
constraints as defined in Section 3. Each is also equipped with the abductive algorithm described
in Section 3. The agents are linked in an acquaintance network by means of the local ”yellow
pages” directories within each agent. Using its directory an agent can find suitable helper agents
and request them to provide it with subproofs, as the need arises. When asked for such help, the
helper agent will return the computed abductive answers (if any) to the requesting agent, one at
a time.

Each agent can be involved in several proofs at the same time. They are multi-threaded and
multi-tasking. Specifically, each agent has: a Coordinator Thread (CT) for handling proof requests,
a Directory Thread (DT) for maintaining the ”yellow pages” directory, a number of Worker Threads
(WT) managing different proof tasks concurrently and independently, each of which is linked to
a Reasoning thread (RT). In addition, there can be several Broker threads (BT) spawned by the
RTs to outsource the finding of abductive proofs of certain conditions.

WT RT

BT1

BT2

WT1 RT

CT

WT1
CT

WT2

Agent 1

Agent 3

CT

blackboard

blackboard

Shared Memory Access / Update
Multiple Request+Reply Rounds
Single Request+Reply Round 

Single Request/Reply
Thread Creation

CT: Coordinator Thread
DT: Directory Thread
WT: Worker Thread
RT: Reasoning Thread
BT: Broker Thread

Agent 2

Advertisement Message

DT

directory

Local Directory Update / Lookup

Figure 3: Agent Internal Architecture

In summary, the architecture of each agent supports three main functionalities: maintaining
the directory, handling incoming proof requests and requesting help from other agents. These are
described in detail in what follows.

Maintaining the Local Directory

The DT is a persistent thread responsible for maintaining the agent’s ”yellow pages” directory.
The following tasks are performed by the DT:

1. It starts by performing the initialisation interaction with the Pedro server described above:
connection, and the posting of the agent’s register, subscription and advertisement
messages. Messages forwarded by Pedro because of one of the subscriptions will be sent to
the DT thread.

2. Whenever DT receives a register message from another agent, it sends its advertisements
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to that agent. If it receives an unregister message from another agent, it removes all the
advertisements for that agent from its directory.

3. It updates its local directory in response to advertise or unadvertise messages from an-
other agent, whenever they are received.

Handling Incoming Requests

As mentioned above, the incoming proof requests are handled by the co-ordinator thread, CT.
To allow multiple reasoning tasks to run simultaneously, for each accepted incoming request CT
spawns a worker thread WT. An incoming request includes the specific goal to be proven, the
identities of all agents in the current cluster, and the current ∆ of abduced conditions. If the
agent is in the current cluster, the request is always accepted. If not in the current cluster, and
the given ∆ satisfies its consistency constraints (more precisely, if a global consistency check on
∆ starting with that agent succeeds - case 1 of the global abductive derivation algorithm), the
request is accepted. If a new agent cannot accept a proof request, its CT sends an sorry message
in response to indicate that it cannot join the current cluster, given the current ∆.

A spawned WT immediately spawns a reasoning thread RT to perform the abductive reasoning
task using the DARE abductive meta-interpreter. It then sends a ready message to the client
agent. More specifically, it sends the message to the thread within the client agent that sent
the proof request. As explained below, this will be a broker thread within the client agent, and
all communication regarding the proof task is actually between the WT thread and this broker
thread.

An RT may itself seek sub-proof help from any number of other agents via Broker Threads
(BT) that it creates. It also eagerly generates all the abductive answers for the condition it is
proving and stores them in order of generation on a blackboard internal to the agent (see Figure 3)
The WT waits for and services next requests from its client agent thread. On receipt, it removes
the next result from its RT from the blackboard and sends it back to the client thread. Of course,
the WT thread must wait if the next answer has not yet been found by its RT, until it is found
and placed on the backboard. The RT informs its WT when it has explored all proof paths, and
no more answers will be found. At this point the WT will respond with an eos message to its
client when it receives a next request.

The rationale for having a producer-consumer relationship between the WT and its RT using
a blackboard as a buffer is to isolate the reasoning process from the client agent. The RT just
searches for all possible answers for its given reasoning task, adding each to the blackboard as
it is found, independently of its use by the client. There is one exception. If the WT receives a
discard message from the client thread, it erases any unused answers placed on the blackboard
by its RT and terminates the RT if it is still running. It is worth noting that after a reasoning
thread is asked to terminate, it will send a discard message to all its active broker threads (see
next section), which will in turn forward this to the WTs in the server agents that are finding
sub-proof answers for them.

Getting Help From Other Agents

As previously explained, each agent keeps a local ”yellow pages” directory regarding sub-proof
capabilities that have been advertised by other agents. This section describes in detail the inter-
actions when an agent asks for sub-proof help.

Whenever an RT decides to ask for help, it creates a BT to handle all the request-response
communications with helper agents. BT is given the goal to outsource, the identities of the agents
in the current cluster, and the current ∆. Each RT maintains the cluster set of agent identities
for the current state of its proof.

BT checks the advertisements in the agent’s ”yellow pages” directory to create a helper list.
It then sends a request to the CTs of all the agents in the helper list giving the goal, the current
∆, and the identities of all agents in the current cluster. An implicit proof contract with a helper
agent is established as soon as the BT receives from that agent a ready message, sent by the WT
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within the agent that will have been created for the proof task. BT then sends that WT a next
message to ask for its first answer. Usually it will be able to send next messages to several helper
agents. It then waits for the first proof to be returned by any of these helpers. When the helpers
are on different hosts, this is an or-parallel search for alternative proofs.

Whenever the RT wants an alternative result for an outsourced sub-goal G, (either for the first
time or during backtracking), it sends a next message to the BT handling answers for G. The BT
searches its message buffer for an answer from any helper agent. These answers will have been
inserted into its message buffer as and when they arrive, so the answers from each of the different
helper agents will be interspersed in the buffer. There are three cases:

• A tell message is found and removed containing an answer. BT extracts the answer from
the message and forwards it to the RT. BT then sends a next message to the helper agent
WT thread which sent the message, so that if there is another answer from that agent, it
can be returned and buffered in BT’s message queue.

• An eos message is found. BT removes the sender from its list of helpers. When this list
becomes empty, BT sends an eos message to its RT.

• There is no message in the buffer, but the helper list is non-empty. BT suspends until a
message arrives.

Each tell message will contain the possibly instantiated sub-goal, a possibly augmented ∆, and
a list of agent identities that should be added to the cluster set if this answer is used. This list will
be non-empty if the helper agent is a new agent not in the cluster set passed to it in the sub-proof
request, and if it has itself requested sub-proofs from agents not in the given cluster set.

Finally, each time the BT services a next request from its RT it checks to see if the local
”yellow pages” directory contains the identity of any agent not on the current helper list that has
since advertised ability to help with the sub-goal BT is handling. If so, this agent is added to
the helper list and sent a sub-goal proof request allowing this late entrant to contribute candidate
proofs.

The rationale for having a separate BT to handle the communications is to isolate the RT from
the helper agents. BT forwards answers to its RT in the order that they arrive from the different
helper agents and merges the answers. From the RT’s point of view, a BT is an internal thread
that can provide it with alternative proofs for a sub-goal as they are needed. RT can have several
different BTs active and buffering results for different sub-goals. Whenever the RT backtracks to
a sub-goal with an associated BT, it asks the BT for the next available result. If no more results
are available (i.e. the eos message is returned by the BT), RT fails that sub-goal and continues
the backtracking.

Each BT exits automatically after sending the eos to the RT. It is worth noting that a BT
can have in its buffer a maximum of one answer from each helper agent since it sends the next
request to a helper agent only after it as forwarded that helper’s previous answer to its RT.
Of course, independently the RT threads within each helper agent are finding all the answers
and caching them on their internal blackboards. In this way the DARE system keeps network
traffic to a minimum whilst still maintaining the reasoning performance since the RT can continue
its reasoning when the BT is fetching the next result. Finally, whenever an RT of an agent is
terminated by its linked WT, RT itself sends a discard message to all the BTs it has created.
Upon receiving such a message, each of these BTs will forward the discard message to all the
current helper agents.

5 Evaluation

In Section 3, the proof of the soundness of the distributed abduction algorithm was shown. Note
that the openness of the DARE system does not effect the soundness. We can allow agents to
join or leave the group and the proof cluster without effecting the soundness of the final proof. If
an agent in the current cluster leaves before the proof is complete, the DARE system will discard
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any sub-proof of a condition C provided by that agent. It will backtrack to the point where the
sub-proof of C from that agent was used to find an alternative proof. Alternative proofs may
already be waiting, as the broker will have sent requests to all agents who have advertised that
they can offer proofs for the predicate of C. The alternative proof of C may even be from an agent
that has only recently advertised it can offer proofs for the predicate of C. When an agent A joins
whilst a proof is in progress it immediately becomes available to provide extra candidate proofs for
each outsourced goal of the current partial proof that uses one of its advertised predicates. The
brokers in charge of collecting candidate proofs for these goals will immediately send out requests
for proofs to the new agent A. However, its services cannot be used for a goal C ′ that has already
been discarded on backtracking. That is, a possible overall proof that uses the knowledge of this
newly arrived agent to provide an alternative proof of C ′, will not be in the DARE search space
of possible proofs because of the late arrival of A. So, late arrival may mean a possible proof is
missed, but not that a proof that is found will be unsound.

What about the “completeness” of the DARE system? The use of depth first backtracking
search within each agent means that a proof may not be found if there is a non-terminating
proof path in the search space of the local proofs being explored within that agent. But this
is also true of a single agent abductive proof system that uses depth first backtracking search
for proofs. In fact, because sub-proofs of outsourced conditions are pursued concurrently, DARE
combines depth first backtracking search within each agent with occasional or-parallel invocation
of search for alternative proofs. Thus, suppose that a DARE agent A invokes concurrent search
for alternative proofs of a condition C by asking two helper agents A1 and A2 to try to find
proofs. These agents will internally use depth first backtracking search. Suppose that A1 has a
non-terminating branch in its search space, and because of this never returns a candidate proof.
Proofs from A2 will still be sent to A. If the knowledge embedded in A1 and A2 was instead
incorporated into A then its sequential backtracking search would not have found proofs offered
by A2 if it had started by using the knowledge of A1.

But are there proofs that we would find, even using backtracking search, if we consolidated
the knowledge of all the agents, rules are well as constraints, into one agent and applied a non-
distributed abductive proof procedure? First we must decide which agents’ knowledge we will
consolidate, since DARE handles constant change in the group of available agents. In the discussion
above, we have already seen that late arrival can effect ability to find a proof, so we will not be
able to claim that DARE will find any proof that would be found by a single agent using the
combined knowledge of the agents in the final proof cluster. We must insist that all such agents
have been available, for each of their advertised predicates, throughout the entire proof, in order
to be able to compare DARE with non-distributed abductive proof.

We have argued that the DARE system will even be able to find some proofs that a single
agent using depth first backtracking search would not because of DARE’s weak or-parallelism.
However, this outsourcing of sub-goals also has the potential to generate a non-terminating loop of
outsourcing requests. Consider, for instance, a group of three agents with the following knowledge:

A1 A2 A3
p ← a. p ← b. p ← c.

where all the predicates are non-abducible and all the agents have advertised the predicate p.
Imagine that A1 is asked about p. It cannot prove it so it may outsource the proof of p to A2
and A3. Clearly, A2 will not prove it either. If the selection of helpers is purely based on the
advertisement, A2 would then ask A1 and A3 about p. This is similar for A3, who would seek
help from A1 and A2 for the same goal. A loop occurs and therefore the distributed abductive
algorithm will not terminate.

Our implementation of the algorithm overcomes this problem by having an agent pass a Don-
tAsk list in addition to the sub-goal and other proof information to its helpers. The DontAsk list
contains the identifier of the current agent, and those of the agents it is asking for a sub-proof.
In the case where a helper agent fails to prove the given goal, it will not forward the goal to any
agent in the DontAsk list.
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For example, in the previous scenario, when A1 outsources the proof of p to A2 and A3, the list
DontAsk = {A1, A2, A3} is also passed to the two helpers. When A2 fails to prove p, it cannot
forward the goal to A1 and A3 even though they have made the appropriate advertisements. This
is the same for A3, who cannot forward the same goal to A1 and A2. Thus, the situation of
looping due to mutually asking for help is avoided. However, the DontAsk technique cannot avoid
the following looping situation:

A4 A5
p ← q. q ← p.

where A4 advertises p and A5 advertise q. If A4 is asked to prove p, it resolves it and sends q with
DontAsk = {A1, A4} to A5 (∆ is always empty in this scenario). A5 resolves q to p. But since
the DontAsk list only restricts the agents from whom A5 may seek help regarding its given goal q,
A5 can ask A4 for a the proof of p just with the constraint that it should not forward the sub-goal
p to the requesting agent, A5. But, A4 is again free to ask A5 for help with q, and looping occurs.
But the pair of rules, {p ← q, p ← q} will also result in a non-terminating proof within a single
agent system. In DARE, one can modify the distributed algorithm to perform iterative deepening
search with respect to outsourced proofs (e.g. by limiting the number of times the outsourcing of
sub-proofs is allowed, or by setting a timeout limit for the brokers).

The above discussion leads us to our completeness result for DARE that compares it with the
KM abductive system within a single agent.

Theorem 5.1 Let A1, . . . , An be a group of agents and let DAC = 〈{Πi}, G, {ICi}, Ainit,A〉, with
1 ≤ i ≤ n, be a distributed abductive context. Let ∆ be an abductive explanation of DAC, with
respect to a cluster C = {A1, . . . , Ak}, for k ≤ n, where all the agents in C have been in DAC,
throughout the whole proof process.

If the KM abductive proof procedure can compute such a ∆ with respect to the abductive
context 〈Π, G, IC,A〉, where Π =

⋃
Πi and IC =

⋃
ICi, for each 1 ≤ i ≤ k, then ∆ is the output

of a global abductive derivation for a goal instance Gθ, computed by the cluster C = {A1, . . . , Ak},
using the same search strategy as KM within each agent.

6 Related work

Distributed abduction

ALIAS [4, 25] inspired our work and is the only other distributed abductive system of which we
are aware. As far as we understand the ALIAS system, and its extension [5], which is coupled
with the LAILA [8] language for co-ordinating abductive reasoning amongst a group of agents,
and expressing the knowledge of each agent, these are some key differences:

• The acquaintance relation between ALIAS agents is specified in each agents’ knowledge base
by explicit annotations of sub-goals in the logic program rules which specify which other
agent or agents should be queried for proofs of that sub-goal. In DARE, the agents that can
be asked for a proof of a sub-goal are determined as and when that sub-goal needs to be
solved using a local directory of agents who have advertised the willingness and capability
to help.

• In DARE, any agent who cannot join the current proof cluster because of incompatiblity of
its knowledge base with agents already in the cluster, concerning the current ∆, is ignored.
Moreover, we only require that a proof cluster to be mutually consistent with the ∆ for the
proof. With respect to other assumptions they can have incompatible knowledge. We believe
this is not the case with ALIAS. We believe that it assumes that all the agents who might
contribute to a proof have mutually consistent logic knowledge bases.
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• When an ALIAS agent abduces a new hypothesis, it has to ask all the agents in the bunch
of co-operating agents (in our terms the cluster) to check for consistency of the augmented
∆. This is similar to the global consistency check in DARE, and may result in expansion of
the set ∆. However, in checking that each of its consistency constraints is satisfied (that as
a query it fails), an ALIAS agent A can only ask a known other agent A′ for help in trying
to show that a negated condition not C fails, where C is non-abducible, by trying to prove
C. It can do this by using a rule for C in its knowledge base that explicitly queries A′. In
DARE, a new agent can be dynamically recruited into the cluster in order to prove C, and
it may do so by expanding the ∆.

• We believe that an ALIAS bunch can only be actively pursuing one distributed inference at
a time, whereas in DARE there can be several proofs being pursued concurrently inside each
agent, which can also be simultaneously involved in quite different proof clusters.

• ALIAS does have the concept of rambling agent that can join an existing bunch. The new
agent does not join to help with a sub-goal of a proof. On joining, the new agent offers
a set of abducibles ∆′ to be added to the ∆ of the terminated proof of the bunch. This
∆′ can be viewed as a different kind of query being posed to the bunch. The new agent
is asking if its assumptions ∆′ are compatible with the current shared assumptions ∆ and
knowledge bases of the bunch. The adding of ∆′ to ∆ will trigger a global consistency check
over the enlarged bunch. This in turn may lead to an expansion of ∆′ to ∆”, in order to
satisfy all the consistency constraints. ∆” is interpreted as an ’answer’ to the query: ”are
my assumptions ∆′ ok”, of the rambling agent. This is an variant of the DARE abductive
proof process which it would be interesting to investigate.

More general distributed or multi-agent inference

Our DARE implementation language Qu-Prolog has the occurs check in its unification algorithm
and was developed explicitly for implementing sound first order inference systems. The use of its
features to implement agent based co-operative inference systems for full first order predicate logic
is illustrated in [21] and [26]. The former has each agent using a tableaux style inference system,
the latter uses an algebraic approach to resolution inference using knowledge expressed as clauses.

[14] is a co-operative agent based system for program verification which makes use of bro-
ker agents to find agents with appropriate expertise for specialised sub-proofs. [12] is a similar
approach to linking agent fronted theorem proving expertise. It links hybrid theorem provers
together using KQML messaging.

7 Discussion and Future work

This paper describes a distributed abductive reasoning (DARE) system proposing a new dis-
tributed abductive algorithm and the architecture of its multi-threaded distributed Q-Prolog im-
plementation. The (DARE) algorithm extends the (KM) abductive proof procedure by allowing
the knowledge base and integrity constraints to be distributed over a group of agents of which
a dynamically selected sub-group co-operate to produce a proof. The system is open in that it
allows new agents to join or leave the group as they wish at any time.

The abduced conditions for a collective proof can come from different agents but they are
guaranteed to be consistent with the integrity constraints of all the agents who have contributed
to the proof. Each DARE agent is multi-threaded, allowing the system to handle different queries
and perform different reasoning tasks concurrently. A soundness proof of the DARE algorithm
has also be given, completeness and termination discussed.

The reasoning agent of the system and the inference meta-interpreter for the proposed algo-
rithm have been implemented with Qu-Prolog 8. They have been tested on several Linux PC with
3.0GHz processor and 1GB RAM. In order to test the system in a harsh environment, we have
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also ported Qu-Prolog 8 to the Gumstix computers6, which have the size of a chewing gum. It
has a 400MHz processor, 64MB RAM and 16MB ROM, and it is running ARM Linux. The
Gumstix computers can connect to a 802.11 Wireless LAN with suitable expansion boards. This
allows us to explore applications of DARE whereby some agents are on Gumstix computers, with
perhaps quite simple knowledge bases. Others with larger knowledge bases and the Pedro server
can be hosted on PCs on the same Wireless LAN. This type of configuration is particularly suit-
able for applications such as multi-sensor or multi-robot co-operative sense data interpretation,
and multi-robot planning.

The current meta-interpreter implementation of the DARE algorithm presupposes that an
agent in a given cluster does local abductive reasoning whenever it has the appropriate reasoning
capability. Other agents are asked for help only when the local abductive derivation has failed. A
possible extension/variation of this meta-interpreter is to allow for lazy agents. These are agents
that even though they have appropriate reasoning capability for answering a given query, opt to
ask for help to other agents instead of undertaking their local abductive derivation. Of course
appropriate heuristics will be needed as to when an agent should/could be lazy and when not, to
guarantee progress of the computation as well as not network overloading with large number of
messages between agents.

The DARE system has several potential applications such as the illustrated multi-agent schedul-
ing and the previously mentioned multi-robot planning and collaborative interpretation of sensor
data. Future extension of this work includes the development of specialised meta-interpreters tai-
lored to the particular domains of application. We are currently developing a distributed abductive
planner, based in Event Calculus, for supporting collaborative planning in the context of multiple
robots. Because of the openness feature of the DARE system the distributed abductive planner
will allow plan repair and plan recovery to allow the computation of executable plans, even when
agents leave the system. Other applications will include the use of distributed abductive reasoning
for analysis and verification of protocols in distributed Web-services and Web-service composition.
This will provide extensions to existing non-distributed abductive reasoning application such as
[1].
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