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Abstract Observations provide increasingly strong evidence that the universe is

accelerating. This revolutionary advance in cosmological observations confronts the-

oretical cosmology with a tremendous challenge, which it has so far failed to meet.

Explanations of cosmic acceleration within the framework of general relativity are

plagued by difficulties. General relativistic models are nearly all based on a dark

energy field with fine-tuned, unnatural properties. There is a great variety of models,

but all share one feature in common—an inability to account for the gravitational

properties of the vacuum energy. Speculative ideas from string theory may hold some

promise, but it is fair to say that no convincing model has yet been proposed. An

alternative to dark energy is that gravity itself may behave differently from general

relativity on the largest scales, in such a way as to produce acceleration. The alternative

approach of modified gravity (or dark gravity) provides a new angle on the problem,

but also faces serious difficulties, including in all known cases severe fine-tuning and

the problem of explaining why the vacuum energy does not gravitate. The lack of an

adequate theoretical framework for the late-time acceleration of the universe repre-

sents a deep crisis for theory—but also an exciting challenge for theorists. It seems

likely that an entirely new paradigm is required to resolve this crisis.
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1 Introduction

The current “standard model” of cosmology is the inflationary cold dark matter model

with cosmological constant, usually called LCDM, which is based on general rela-

tivity and particle physics (i.e. the Standard Model and its minimal supersymmetric

extensions). This model provides an excellent fit to the wealth of high-precision obser-

vational data, on the basis of a remarkably small number of cosmological parameters

[1,2]. In particular, independent data sets from cosmic microwave background (CMB)

anisotropies, galaxy surveys and supernova luminosities, lead to a consistent set of

best-fit model parameters—which represents a triumph for LCDM.

The standard model is remarkably successful, but we know that its theoretical

foundation, general relativity, breaks down at high enough energies, usually taken to

be at the Planck scale,

E � Mp ∼ 1016 TeV. (1)

The LCDM model can only provide limited insight into the very early universe. Indeed,

the crucial role played by inflation belies the fact that inflation remains an effective

theory without yet a basis in fundamental theory. A quantum gravity theory will be

able to probe higher energies and earlier times, and should provide a consistent basis

for inflation, or an alternative that replaces inflation within the standard cosmological

model (for recent work in different directions, see, e.g. Refs. [3–8]).

An even bigger theoretical problem than inflation is that of the late-time acceleration

in the expansion of the universe [9–17]. In terms of the fundamental energy density

parameters, the data indicates that the present cosmic energy budget is given by

ΩΛ ≡
Λ

3H2
0

≈ 0.75, Ωm ≡
8πGρm0

3H2
0

≈ 0.25, ΩK ≡
−K

H2
0

≈ 0, (2)

Ωr ≡
8πGρr0

3H2
0

≈ 8 × 10−5. (3)

Here H0 is the present value of the Hubble parameter, Λ is the cosmological constant,

K is spatial curvature, ρm0 is the present matter density and ρr0 is the present radiation

density. G is Newton’s constant. The Friedman equation is

(

ȧ

a

)2

≡ H2 =
8πG

3
(ρm + ρr ) +

Λ

3
−

K

a2

= H2
0

[

Ωm(1 + z)3 + Ωr (1 + z)4 + ΩΛ + ΩK (1 + z)2
]

, (4)

where a denotes the scale factor which is related to the cosmological redshift by

z = a−1 − 1. We normalize the present value of the scale factor to a0 = 1. Together

with the energy conservation equation this implies

ä

a
= −

4πG

3
(ρm + 2ρr ) +

Λ

3
. (5)
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Dark energy and dark gravity

The observations, which together with Eq. (4) lead to the values given in Eq. (2),

produce via Eq. (5) the dramatic conclusion that the universe is currently accelerating,

ä0 > 0. (6)

This conclusion holds only if the universe is (nearly) homogeneous and isotropic,

i.e. a Friedmann–Lemaître model. In this case the distance to a given redshift z, and

the time elapsed since that redshift, are tightly related via the only free function of this

geometry, a(t). If the universe instead is isotropic around us but not homogeneous,

i.e. if it resembles a Tolman–Bondi–Lemaître solution with our galaxy cluster at the

centre, then this tight relation between distance and time for a given redshift would be

lost and present data would not necessarily imply acceleration. This point is discussed

in detail in the contribution by Enqvist [18]. Of course isotropy without homogeneity

violates the Copernican principle as it puts us in the centre of the Universe. However,

it has to be stressed that up to now observations of homogeneity are very limited,

unlike isotropy, which is firmly established. Homogeneity is usually inferred from

isotropy together with the Copernican principle. With future data, it will in principle

be possible to distinguish observationally an isotropic but inhomogeneous universe

from an isotropic and homogeneous universe (see, e.g. [19]). In the following, we

disregard this possibility and assume that the Copernican principle applies.

The data also indicate that the universe is currently (nearly) spatially flat,

|ΩK | ≪ 1. (7)

It is common to assume that this implies K = 0 and to use inflation as a motivation.

However, inflation does not imply K = 0, but only ΩK → 0. In the late universe, the

distinction may be negligible. But in the very early universe, a non-zero curvature can

have significant effects (see, e.g. [20]). In fact, if curvature is small but non-vanishing,

neglecting it in the analysis of Supernova data can sometimes induce surprisingly large

errors, as discussed in the contribution by Hlozek et al. [21].

These results are illustrated in Fig. 1 (taken from [22,23]). A detailed discussion

of the experimental aspects of the late-time acceleration is given in the contributions

by Leibundgut [24], Nichol [25] and Sarkar [26].

The simplest option is probably a cosmological constant, i.e. the LCDM model.

Even though the cosmological constant can be considered as simply an additional

gravitational constant (in addition to Newton’s constant), a cosmological constant

enters the Einstein equations in exactly the same way as a contribution from the vacuum

energy, i.e. via a Lorentz-invariant energy–momentum tensor T vac
µν = −(Λ/8πG)gµν .

The only observable signature of both a cosmological constant and vacuum energy

is their effect on spacetime—and so a vacuum energy and a classical cosmological

constant cannot be distinguished by observation. Therefore the “classical” notion of

the cosmological constant is effectively physically indistinguishable from a quantum

vacuum energy.

Even though the absolute value of vacuum energy cannot be calculated within

quantum field theory, changes in the vacuum energy (e.g. during a phase transition)

can be calculated, and they do have a physical effect—for example, on the energy
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Fig. 1 Observational constraints in the (Ωm , ΩΛ) plane: joint constraints (left) (from [22]); recent com-

pilation of supernova constraints (right) (from [23]). The line ΩK = Ωm + ΩΛ − 1 = 0 is also indicated

levels of atoms (Lamb shift), which is well known and well measured. Furthermore,

differences of vacuum energy in different locations, e.g. between or on one side of two

large metallic plates, have been calculated and their effect, the Casimir force, is well

measured [27,28]. Hence, there is no doubt about the reality of vacuum energy. For

a field theory with cutoff energy scale E , the vacuum energy density scales with the

cutoff as ρvac ∼ E4, corresponding to a cosmological constant Λvac = ρvac/(8πG).

If E = Mp, this yields a renormalization of the “cosmological constant” of about

Λvac ∼ 1038GeV2, whereas the measured effective cosmological constant is the sum

of the “bare” cosmological constant and the contribution from renormalization,

Λeff = Λvac + Λ ≃ 10−83 GeV2. (8)

Hence a cancellation of about 120 orders of magnitude is required. This is called the

fine tuning or size problem of dark energy: a cancellation is needed to arrive at a result

which is many orders of magnitude smaller than each of the terms.1 It is possible that

the quantum vacuum energy is much smaller than the Planck scale. But even if we set

it to the lowest possible SUSY scale, Esusy ∼ 1TeV, arguing that at higher energies

vacuum energy exactly cancels due to supersymmetry, the required cancellation is

still about 60 orders of magnitude. These issues are discussed in the contributions by

Padmanabhan [29] and Bousso [30].

A reasonable attitude towards this open problem is the hope that quantum gravity

will explain this cancellation. But then it is much more likely that we shall obtain

1 In quantum field theory we actually have to add to the cut-off term Λvac ≃ E4
c /M2

pl
the unmeasureable

“bare” cosmological constant. In this sense, the cosmological constant problem is a fine tuning between the

unobservable “bare” cosmological constant and the term coming from the cut-off scale.
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directly Λvac + Λ = 0 and not Λvac + Λ ≃ 3ρm(t0)/(8πG). This unexpected obser-

vational result leads to a second problem, the coincidence problem: given that

ρΛ =
Λeff

8πG
= constant, while ρm ∝ (1 + z)3, (9)

why is ρΛ of the order of the present matter density ρm(t0)? It was completely negli-

gible in most of the past and will entirely dominate in the future.

Instead of a cosmological constant, one may also introduce a scalar field or some

other contribution to the energy–momentum tensor which has an equation of state

w < −1/3. Such a component is called “dark energy”. So far, no consistent model of

dark energy has been proposed which can yield a convincing or natural explanation

of either of these problems. A variety of such models is discussed in the contribution

by Linder [31].

Alternatively, it is possible that there is no dark energy field, but instead the late-

time acceleration is a signal of a gravitational effect. Within the framework of general

relativity, this requires that the impact of inhomogeneities somehow acts to produce

acceleration, or the appearance of acceleration (within a Friedman–Lemaître inter-

pretation). One possibility is the Tolman–Bondi–Lemaître model discussed in this

volume [18]. Another possibility is that the “backreaction” of inhomogeneities on the

background, treated via non-linear averaging, produces effective acceleration. This is

discussed in the contribution by Buchert [32].

A more radical version is the “dark gravity” approach, the idea that gravity itself

is weakened on large-scales, i.e. that there is an “infrared” modification to general

relativity that accounts for the late-time acceleration. Specific classes of models which

modify gravity are discussed in the contributions by Capozziello and Francaviglia [33]

and by Koyama [34]. Schematically, we are modifying the geometric side of the field

equations,

Gµν + Gdark
µν = 8πGTµν, (10)

rather than the matter side,

Gµν = 8πG
(

Tµν + T dark
µν

)

, (11)

as in the general relativity approach. Modified gravity represents an intriguing possi-

bility for resolving the theoretical crisis posed by late-time acceleration. However, it

turns out to be extremely difficult to modify general relativity at low energies in cos-

mology, without violating the low-energy solar system constraints, or without intro-

ducing ghosts and other instabilities into the theory. Up to now, there is no convincing

alternative to the general relativity dark energy models—which themselves are not

convincing.

The plan of the remainder of this paper is as follows. In Sect. 2 we discuss constraints

which one may formulate for a dark energy or modified gravity (dark gravity) theory

from basic theoretical requirements. In Sect. 3 we discuss models that address the

dark energy problem within general relativity. In Sect. 4 we present modified gravity
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models. The ideas outlined in Sects. 3 and 4 are discussed in more detail in the specific

contributions of this issue which are devoted to them. In Sect. 5 we conclude.

2 Constraining effective theories

The theories of both dark matter and dark energy often have very unusual Lagrangians

that cannot be quantized in the usual way, e.g. because they have non-standard kinetic

terms. We then simply call them “effective low energy theories” of some unspecified

high energy theory which we do not elaborate. In this section, we want to point out a

few properties which we nevertheless can require of low energy effective theories. We

first enumerate the properties which we can require from a good basic physical theory

at the classical and at the quantum level. We then discuss which of these requirements

are inherited by low energy effective descriptions.

2.1 Fundamental physical theories

Here we give a minimal list of properties which we require from a fundamental physical

theory. Of course, all the points enumerated below are open for discussion, but at least

we should be aware of what we lose when we let go of them.

In our list we start with very basic requirements which become more strict as we

go on. Even though some theorists would be able to live without one or several of

the criteria discussed here, we think they are all very well founded. Furthermore, all

known current physical theories, including string- and M-theory, do respect them.

1. A physical theory allows a mathematical description

This is the basic idea of theoretical physics. It may well be wrong at some stage,

but it has been a working hypothesis for all of what we call theoretical physics.

If it has limitations these may well be called the limitations of theoretical physics

itself.

2. A physical theory allows a Lagrangian formulation

Fundamental physical theories have a Lagrangian formulation. This requirement is

of course much stronger than the previous one. But it has been extremely successful

in the past and was the guiding principle for the entire development of quantum

field theory and string theory in the twentieth century. If we drop it, anything

goes. We can then just say the evolution of the scale factor of the universe obeys

a(t) = At1/2 + Bt2/3 + C exp(t/t0), call this our physical theory and fit the four

parameters A, B, C and t0 from cosmological data. Of course something like this

does not deserve the name “theory”; it is simply a fit to the data.

Nevertheless sometimes fits of this kind are taken more seriously then they should

be. Some “varying speed of light theories” without Lagrangian formulation leave

us more or less free to specify the evolution of the speed of light during the expan-

sion history of the universe. However, if we introduce a Lagrangian formulation,

we realize that most of these theories are simply some variant of scalar tensor

theories of gravity, which are of course well defined and have been studied in

great detail.
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If we want to keep deep physical insights like Nöther’s theorem, which relates

symmetries to conservation laws, we need to require a Lagrangian formulation

for a physical theory. A basic ingredient of a Lagrangian physical theory is that

every physical degree of freedom has a kinetic term which consists (usually)

of first order time derivatives and may also have a “potential term” which does

not involve derivatives. In the Lagrangian formulation of a fundamental physical

theory, we do not allow for external, arbitrarily given functions. Every function

has to be a degree of freedom of the theory so that its evolution is determined

self-consistently via the Lagrangian equations of motion, which are of first or

second order. It is possible that the Lagrangian contains also higher than first

order derivatives, but such theories are strongly constrained by the problem of

ghosts which we mention below, and by the fact that the corresponding equations

of motion are usually described by an unbounded Hamiltonian, i.e. the system

is unstable (Ostrogradski’s theorem [35,36]). For example, for the gravitational

Lagrangian in four dimensions, this means that we may only allow for a function

depending on R and its derivatives, where R is the Riemann curvature scalar.

3. Lorentz invariance

We also want to require that the theory be Lorentz invariant. Note that this re-

quirement is much stronger than demanding simply “covariance”. It requires that

there be no “absolute element” in the theory apart from true constants. Lorentz

covariance can always be achieved by rewriting the equations. As an example, let

us consider a Lagrangian given in flat space by (∂tφ)2 − (∂xφ)2. This is clearly

not Lorentz invariant. However, we can trivially write this term in the covariant

form αµν∂ν∂µφ, by setting (αµν) = diag(1,−1, 0, 0). Something like this should

of course not be allowed in a fundamental theory. A term of the form αµν∂ν∂µφ

is only allowed if αµν is itself a dynamical field of the theory. This is what we

mean by requiring that the theory is not allowed to contain “absolute elements”,

i.e. it is Lorentz invariant and not simply covariant.

4. Ghosts

Ghosts are fields whose kinetic term has the wrong sign. Such a field, instead of

slowing down when it climbs up a potential, is speeding up. This unstable situation

leads to severe problems when we want to quantize it, and it is generally accepted

that one cannot make sense of such a theory, at least at the quantum level. This

is not surprising, since quantization usually is understood as defining excitations

above some ground state, and a theory with a ghost has no well defined ground

state. Its kinetic energy has the wrong sign and the larger φ̇2 is, the lower is the

energy.

5. Tachyons

These are degrees of freedom that have a negative mass squared, m2 < 0. Using

again the simple scalar field example, this means that the second derivative of

the potential about the “vacuum value” (φ = 0 with ∂φV (0) = 0) is negative,

∂2
φV (0) < 0. In general, this need not mean that the theory makes no sense, but

rather that φ = 0 is a bad choice for expanding around, since it is a maximum

rather than a minimum of the potential and therefore an unstable equilibrium.

This means also that the theory cannot be quantized around the classical solution

φ = 0, but it may become a good quantum theory by a simple shift, φ → φ − φ0,
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where φ0 is the minimum of the potential. If the potential of a fundamental scalar

field has no minimum but only a maximum, the situation is more severe. Then the

theory is truly unstable.

The last two problems, together with the Ostrogradski instability that appears

in theories with higher derivatives, can be summarized in the requirement that

a meaningful theory needs to have an energy functional which is bounded from

below.

6. Superluminal motion and causality

A fundamental physical theory which does respect Lorentz invariance must not

allow for superluminal motions. If this condition is not satisfied, we can construct

closed curves along which a signal can propagate, in the following way.

Consider modes of a field φ which can propagate faster than the speed of light, with

velocities v1 > 1 and v2 > 1. Consider a reference frame R and a frame R′ that

is boosted with respect to R by a velocity v in the direction x , and which coincide

at the origin, q0 (see Fig. 2). We choose v such that 1/v1 < v < 1. An observer

in R now sends a signal from q0, whose coordinates are (t, x) = (0, 0) = (t ′, x ′),
with signal speed v1 in the direction x . At time t1 this signal arrives at event q1,

with coordinates (t1, x1) in the R-frame, where x1 = v1t1. There it is received

by an observer who is at rest with respect to R′, and who returns the signal with

speed v′
2 in the direction −x to event q2 = (t2, 0) (see Fig. 2). We want to show

that for an appropriate choice of v′
2, the time t2 becomes negative.

We denote positions and times in the boosted frame R′ with a prime. We then have

x ′
2 − x ′

1 = v′
2(t

′
2 − t ′1). Applying the usual formulas for Lorentz transformations,

we find that 0 = x2 = γ (x ′
2 + vt ′2) and t2 = γ −1t ′2. On the other hand, we

have x ′
1 = γ (x1 − vt1) = γ (v1 − v)t1 and t ′1 = γ (t1 − vx1) = γ (1 − vv1)t1.

Note that, since we require vv1 > 1, it follows that t ′1 is negative. A signal which

is travelling at a speed greater than 1/v in the frame R is moving towards the

past in the frame R′. With respect to this frame, the event (t ′1, x ′
1) at which the

signal has reached x ′
1, is earlier than the event (0, 0) when it left the position 0.

With respect to the frame R the situation is opposite: the signal left 0 before it

reached x1, t1 > 0. The same happens if we now send back a signal to 0 in

R′ with a velocity |v′
2| > 1/v. This signal will travel backwards in time t with

respect to R, and will arrive before the time t1 when it was emitted. To achieve

∆t ′ = t ′2 − t ′1 = γ (∆t − v∆x) = γ (1 − vv2)∆t > 0, and at the same time

∆t < 0, we need vv2 > 1, hence v2 > 1/v. As is evident from Fig. 2, v2,

which is the inverse of the slope of the straight line connecting q2 and q1, must be

smaller than v1, which is the inverse of the slope from q0 to q1. Hence we need

1/v1 < 1/v2 < v < 1. For more details see [37].

The loop generated in this way is not “causal” since both the trajectory from q0 to

q1 and the one from q1 to q2 are spacelike. So we cannot speak of the formation

of closed causal loops, but it is nevertheless a closed loop along which a signal

can propagate and which therefore enables the construction of a time machine,

leading to the usual problems with causality and entropy.

It is well known that in relativity events with spacelike separation, like q0 and q1

or q1 and q2, have no well defined chronology. Depending on the reference frame,

one of them is earlier than the other. Therefore superluminal motion leads to the
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q2

q0

v1

v2
x

xí

t’

t

q1

Fig. 2 The frame R′ with coordinates (t ′, x ′) moves with speed v in the x-direction. A signal is sent with

velocity v1 from q0 to q1 in the frame R. Since v1 > 1/v, this signal travels backward in time with respect to

frame R′. Then a signal is sent with speed v2 from q1 to q2. Since |v2| > 1/v, this signal, which is sent for-

ward in time in frame R′, travels backward in time with respect to R and can arrive at an event q2 with t2 < 0

possibility of time machines. Hence superluminal motion is not compatible with

the equivalence of all inertial frames. Once we allow for superluminal motion, but

still require that signals can only be sent forward in time, an event, like q2 lying

in the past of q1 in frame R can be reached with a signal emitted in frame R′, but

it cannot be reached if the signal is emitted from a source in R.

In a reference frame which moves with v = 1/v1 with respect to R, a mode

which propagates with velocity v1 in R, has infinite velocity. This means that the

propagation equation for this mode is no longer hyperbolic, but is elliptic, i.e. it

has become a constraint equation. In this frame the evolution of the mode in the

forward light cone of a small patch can no longer be determined by knowing the

field values (and their first derivatives) in the small patch; the mode equation is

non-local. In all reference frames moving with a velocity v > 1/v1 with respect

to R, there exist two directions in which modes with propagation velocity v1 obey

elliptic equations of motion. Hence the Cauchy problem is not well posed in these

frames. This nullifies the equivalence of all reference frames.

At first sight one might think that a Lorentz invariant Lagrangian will automati-

cally forbid superluminal motions. But the situation is not so simple. Already in

the 1960s Velo and Zwanziger [38,39] discovered that generic Lorentz invariant

higher spin theories, s ≥ 1, lead to superluminal motion. While the equations

are manifestly Lorentz invariant, their characteristics in general do not coincide

with the light cone and can very well be spacelike. There are exceptions to this

rule, among which are Yang Mills theories for spin 1 and the linearized Einstein

equations for spin 2.
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One may object to this restriction, on the grounds that general relativity, which

is certainly a theory that is acceptable (at least at the classical level), can lead to

closed causal curves, even though it does not admit superluminal motion. Several

solutions of general relativity with closed causal curves have been constructed

in the past, see, e.g. Refs. [40–42]. But these constructions usually need infinite

energy, as in Ref. [41], with two infinitely long straight cosmic strings, or they

have to violate the dominant energy condition, as in Ref. [40], where wormholes

are used, or the closed causal curve is hidden behind an event horizon, as in

Ref. [42], where an ordinary closed circle in space is converted into a causal

curve by moving it behind a horizon which is such that the corresponding angular

coordinate becomes timelike. Nevertheless, the possibility of closed causal curves

in general relativity under certain conditions does remain a worry, see, e.g. [43].

The situation is somewhat different if superluminal motion is only possible in a

background which breaks Lorentz-invariance. Then one has in principle a pre-

ferred frame and one can specify that perturbations should always propagate with

the Green’s function that corresponds to the retarded Green’s function in this

frame [44]. Nevertheless, one has to accept that there will be boosted frames rela-

tive to which the Cauchy problem for the superluminal modes is not well defined.

The physics experienced by an observer in such a frame is most unusual (to say

the least).

Causality of a theory is intimately related to the analyticity properties of the

S-matrix of scattering, without which perturbative quantum theory does not make

sense. Furthermore, we require the S matrix to be unitary. Important consequences

of these basic requirements are the Kramers Kronig dispersion relations, which

are a result of the analyticity properties and hence of causality, and the optical

theorem, which is a result of unitarity. The analyticity properties have many further

important consequences, such as the Froissart bound, which implies that the total

cross section converges at high energy [45,46].

2.2 Low energy effective theories

The concept of low energy effective theories is extremely useful in physics. As one

of the most prominent examples, consider superconductivity. It would be impossible

to describe this phenomenon by using full quantum electrodynamics with a typical

energy scale of MeV, where the energy scale of superconductivity is milli-eV and less.

However, many aspects of superconductivity can be successfully described with the

Ginzburg–Landau theory of a complex scalar field. Microscopically, this scalar field

is to be identified with a Cooper pair of two electrons, but this is irrelevant for many

aspects of superconductivity.

Another example is weak interaction and four-Fermi theory. The latter is a good

approximation to weak interactions at energy scales far below the Z -boson mass. Most

physicists also regard the standard model of particle physics as a low energy effective

theory which is valid below some high energy scale beyond which new degrees of

freedom become relevant, be this supersymmetry, GUT or string theory.
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Fig. 3 The four Fermi interaction is the sum over all “virtual” W and Z boson exchanges. At low energy

mainly the “tree” graph contributes

We now want to investigate which of the properties in the previous section may be

lost if we “integrate out” high energy excitations and consider only processes which

take place at energies below some cutoff scale Ec. We cannot completely ignore all

particles with masses above Ec, since in the low energy quantum theory they can still

be produced “virtually”, i.e. for a time shorter than 1/Ec. This is not relevant for the

initial and final states of a scattering process, but plays a role in the interaction. As an

example we consider four-Fermi theory. The vertex in the four fermion interaction is

obtained by integration over W and Z exchanges, shown in Fig. 3. Even though the

final states of this theory contain only electrons and neutrinos, the virtual presence of

massive W ’s and Z ’s is vital for the interaction between them.

Coming back to our list in the previous section, we certainly want to keep the first

point—a mathematical description. But the Lagrangian formulation will also survive

if we proceed in a consistent way by simply integrating out the high energy degrees

of freedom.

What about higher order derivatives in the Lagrangian? To address this question

let us briefly repeat the basic argument of Ostrogradski’s theorem simply for a (1-

dimensional) point particle with time dependent position q(t). If the Lagrangian de-

pends only on q and q̇ , the requirement δS = 0 results in the ordinary Euler Lagrange

equation,

d

dt

∂L

∂ q̇
−

∂L

∂q
= 0. (12)

We can now introduce the canonical coordinates q and p ≡ ∂L
∂q̇

. The Hamiltonian is

then given by the Legendre transform of L in the variable q̇ ,

H(q, p) = pq̇ − L , (13)

and the Euler–Lagrange equation implies the canonical equations

q̇ =
∂ H

∂p
, ṗ = −

∂ H

∂q
. (14)

This procedure is well defined if the Lagrangian is non-degenerate, i.e. if the equation

p ≡ ∂L
∂q̇

can be solved for q̇(q, p). Locally, this is equivalent to ∂2 L
∂q̇2 
= 0. We assume

the system to be autonomous (no external time dependence). Then H = E is an
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integral of motion, the energy of a solution, and the system is called stable if H is

bounded from below. If H is not bounded from below, interactions of the system with,

e.g. radiation will lead to an enormous production of radiation (massless particles) by

driving the system to lower and lower energy.

If L depends also on q̈ , i.e. L(q, q̇, q̈), the variational principle yields

d2

dt2

∂L

∂ q̈
−

d

dt

∂L

∂ q̇
+

∂L

∂q
= 0. (15)

This is a fourth order differential equation and its solutions depend on four initial

data, q(0), q̇(0), q̈(0) and
...
q (0). A Hamiltonian formulation will now require four

canonical variables, which can be chosen as

q1 ≡ q, q2 ≡ q̇, and p1 ≡
∂L

∂q̇
−

d

dt

∂L

∂ q̈
, p2 ≡

∂L

∂ q̈
. (16)

The Hamiltonian obtained by Legendre transforming the Lagrangian with respect to

the coordinates q̇ ≡ q2 and q̈ yields

H(q1, q2, p1, p2) = p1q2 + p2q̈(q1, q2, p2) − L (q1, q2, q̈(q1, q2, p2)) . (17)

This procedure is well defined if the Lagrangian is non-degenerate in the sense that

p2 ≡ ∂L/∂q̈ can be inverted to determine q̈ . Locally this requires ∂2L/∂ q̈2 
= 0.

It is easy to check that the canonical equations are satisfied and H is an integral of

motion. But since the Lagrangian is only a function of three and not four variables, p1

is not needed to express q̈ in terms of the canonical variables. It appears only linearly

in the term p1q2 and therefore H cannot be bounded from below; i.e. the system is

unstable. Of course it is possible to find well behaved solutions of this system, since

for a given solution energy is conserved. But as soon as the system is interacting,

e.g. with a harmonic oscillator, it will lower its energy and produce more and more

oscillating modes.

This is especially serious when one quantizes the system. The vacuum is exponen-

tially unstable to simultaneous production of modes of positive and negative energy.

Of course one cannot simply “cut away” the negative energy solutions without violat-

ing unitarity. And even if the theory under consideration is only a low energy effective

theory, it should at least be “unitary at low energy”.

It is clear that introducing even higher derivatives only worsens the situation, since

the degree of the Euler–Lagrange equation is enhanced by 2 with each new degree

of freedom. Hence if the Lagrangian has degree 2 + n, there are n + 1 pairs of

canonical variables needed to describe the Hamiltonian, and of these only n + 2 are

needed to invert the Lagrangian. Hence n momenta appear only linearly in the terms

p j q̇ j (q1, . . . , qn+1, pn+1), and the Hamiltonian has n unstable directions.

In this argument, it does not at all matter whether the degrees of freedom we are

discussing are fundamental or only low energy effective degrees of freedom. Even

if we modify the Hamiltonian at high energies, the instability, which is a low energy
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problem, will not disappear. There are only two ways out of the Ostrogradski insta-

bility: Firstly, if the necessary condition that L be non-degenerate is not satisfied. The

second possibility is via constraints. In a system with m constraints, one can in princi-

ple eliminate m variables. Hence if a 2 + n order system has n constraints one might

be able to eliminate all the unstable directions. In practice, this has to be studied on a

case by case basis.

An important example for the dark energy problem is modified gravity Lagrangians

of the form

L =
√

−g f (R, Rµν Rµν, CµναβCµναβ). (18)

Here Rµν is the Ricci tensor, Cµναβ is the Weyl tensor and f (x1, x2, x3) is an arbi-

trary (at least three times differentiable) function. Since the curvature tensors contain

second derivatives of the metric, the resulting equations of motion will in general

be fourth order and Ostrogradski’s theorem applies. The usual Hamiltonian formu-

lation of general relativity leads to six independent metric components gi j which all

acquire higher derivative terms. There is actually only one way out, which is the case

∂2 f = ∂3 f = 0, i.e. f may only depend on R.2 The reason is that in the Riemann

scalar R, only a single component of the metric contains second derivatives. In this

case, the consequent new degree of freedom can be fixed completely by the g00 con-

straint, so that the only instability in f (R) theories is the usual one associated with

gravitational collapse (see [36]).

Therefore, the only acceptable generalizations of the Einstein–Hilbert action of

general relativity are f (R) theories, reviewed in the contribution [33].

If the Ostradgradski theorem does not apply, we have still no guarantee that the

theory has no ghosts or that the potential energy is bounded from below (no “serious”

tachyon). The limitation from the Ostragradski theorem, but also the ghost and tachyon

problem, can be cast in the requirement that the theory needs to have an energy

functional which is bounded from below. This condition can certainly not disappear

in a consistent low energy version of a fundamental theory which satisfies it.

Like ghosts, the Ostrogradski instability can in principle be cured by adding a term

∝ (Φ/m)2(∇ϕ)2 to an unstable mode ϕ, where Φ is a very heavy particle with mass

M ≫ m, which has been neglected in the low energy approximation of the theory.

However, this means that the full low energy theory actually must contain a term

(M/m)2(∇ϕ)2. Consequences worked out within the low energy theory neglecting

this term can in general not be trusted. Only a detailed case by case analysis can

then reveal which low energy results still apply and which ones are modified by the

coupling to the massive field Φ.

Furthermore, the high energy cut-off will be given by some mass scale, i.e. some

Lorentz invariant energy scale of the theory, and therefore the effective low energy

2 Another (trivial) possibility is the addition of a Gauss Bonnet term, LG B = √−g
(

R2 − 4Rµν Rµν+

Rµνσρ Rµνσρ
)

, which in four dimensions contributes only a surface term and does not enter the equations

of motion. However, such a term becomes interesting in scalar–tensor theories of gravity where one may

consider a contribution of the form φLG B to the Lagrangian.
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theory should also admit a Lorentz invariant Lagrangian. Lorentz invariance is not a

high energy phenomenon which can simply be lost at low energies.

What about superluminal motion and causality? We do not want to require certain

properties of the S matrix of the low energy theory, since the latter may not have a

meaningful perturbative quantum theory; like the four-Fermi theory, it may not be

renormalizable. Furthermore, one can argue that in cosmology we do have a preferred

frame, the cosmological frame, hence Lorentz-invariance is broken and we can simply

demand that all superluminal modes of a field propagate forward in cosmic time. Then

no closed signal curves are possible.

But this last argument is very dangerous. Clearly, most solutions of a Lagrangian

theory do break several or most of the symmetries of the Lagrangian spontaneously.

But when applying a Lorentz transformation to a solution, we produce a new solution

that, from the point of view of the Lagrangian, has the same right of existence. If some

modes of a field propagate with superluminal speed, this means that their character-

istics are spacelike. The condition that the mode has to travel forward in time with

respect to a certain frame implies that one has to use the retarded Green’s function

in this frame. Since spacelike distances have no frame-independent chronology, for

spacelike characteristics this is a frame-dependent statement. Depending on the frame

of reference, a given mode can represent a normal propagating degree of freedom, or

it can satisfy an elliptic equation, a constraint.

Furthermore, to make sure that the mode propagates forward with respect to one

fixed reference frame, one would have to use sometimes the retarded, sometimes the

advanced and sometimes a mixture of both functions, depending on the frame of

reference. In a cosmological setting this can be done in a consistent way, but it is far

from clear that such a prescription can be unambiguously implemented for generic

low energy solutions. Indeed in Ref. [47] a solution is sketched that would not allow

this, so that closed signal curves are again possible.

Therefore, we feel that Lorentz invariant low energy effective Lagrangians which

allow for superluminal propagation of certain modes, have to be rejected. Nevertheless,

this case is not as clear-cut and there are opposing opinions in the literature, e.g. [44].

With the advent of the “landscape” [48,49], physicists have begun to consider

anthropic arguments to justify their theory, whenever it fits the data. Even though the

existence of life on earth is an experimental fact, we consider this argument weak,

nearly tantamount to giving up physics: “Things are like they are since otherwise we

would not be here”. We nevertheless find it important to inquire also from a purely

theoretical point of view, whether really “anything goes” for effective theories. In

the following sections we shall come back to the basic requirements which we have

outlined in this section.

3 General relativistic approaches

The “standard” general relativistic interpretation of dark energy is based on the cos-

mological constant as vacuum energy:

Gµν = 8πG
[

Tµν + T vac
µν

]

, T vac
µν = −

Λeff

8πG
gµν, (19)
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where the vacuum energy–momentum tensor is Lorentz invariant. This approach faces

the problem of accounting for the incredibly small and highly fine-tuned value of the

vacuum energy, as summarized in Eq. (8).

String theory provides a tantalizing possibility in the form of the “landscape” of

vacua [48,49]. There appears to be a vast number of vacua admitted by string theory,

with a broad range of vacuum energies above and below zero. This is discussed in

the contribution by Bousso [30]. The idea is that our observable region of the uni-

verse corresponds to a particular small positive vacuum energy, whereas other regions

with greatly different vacuum energies will look entirely different. This multitude of

regions forms in some sense a “multiverse”. This is an interesting idea, but it is highly

speculative, and it is not clear how much of it will survive the further development of

string theory and cosmology.

An alternative view of LCDM is the interpretation of Λ as a classical geometric

constant (see, e.g. Ref. [50]), on a par with Newton’s constant G. Thus the field

equations are interpreted in the geometrical way,

Gµν + Λgµν = 8πGTµν . (20)

In this approach, the small and fine-tuned value of Λ is no more of a mystery than

the host of other fine-tunings in the constants of nature. For example, more than a 2%

change in the strength of the strong interaction means that no atoms beyond hydrogen

can form, so that stars and galaxies would not emerge. However, this classical approach

to Λ does not evade the vacuum energy problem—it simply shifts that problem to “why

does the vacuum not gravitate?” The idea is that particle physics and quantum gravity

will somehow discover a cancellation or symmetry mechanism to explain why ρvac =
0. This would be a simpler solution than that indicated by the string landscape approach,

and would evade the disturbing anthropic aspects of that approach. Nevertheless, it is

not evident, whether this distinction between Λ and ρvac is really a physical statement,

or a purely theoretical statement that cannot be tested by any experiments.

Within general relativity, various alternatives to LCDM have been investigated.

3.1 Dynamical dark energy: quintessence

Here we replace the constant Λ/8πG by the energy density of a scalar field ϕ, with

Lagrangian

Lϕ =
1

2
gµν∂µϕ∂νϕ + V (ϕ), (21)

so that in a cosmological setting,

ρϕ =
1

2
ϕ̇2 + V (ϕ), pϕ =

1

2
ϕ̇2 − V (ϕ), (22)

ϕ̈ + 3H ϕ̇ + V ′(ϕ) = 0, (23)

H2 +
K

a2
=

8πG

3

(

ρr + ρm + ρϕ

)

. (24)
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The field rolls down its potential and the dark energy density varies through the history

of the universe. “Tracker” potentials have been found for which the field energy density

follows that of the dominant matter component. This offers the possibility of solving

or alleviating the fine tuning problem of the resulting cosmological constant. Although

these models are insensitive to initial conditions, they do require a strong fine-tuning of

the parameters of the Lagrangian to secure recent dominance of the field, and hence

do not evade the coincidence problem. More generally, the quintessence potential,

somewhat like the inflaton potential, remains arbitrary, until and unless fundamental

physics selects a potential. There is currently no natural choice of potential.

In conclusion, there is no compelling reason as yet to choose quintessence above

the LCDM model of dark energy. Quintessence models do not seem more natural,

better motivated or less contrived than LCDM. Nevertheless, they are a viable pos-

sibility and computations are straightforward. Therefore, they remain an interesting

target for observations to shoot at. More details and references can be found in the

contribution [31].

3.2 Dynamical dark energy: more general models

It is possible to couple quintessence to cold dark matter, so that the energy conservation

equations become

ϕ̇
[

ϕ̈ + 3H ϕ̇ + V ′(ϕ)
]

= J, (25)

ρ̇m + 3Hρm = −J, (26)

where J is the energy exchange [51,52].

Another possibility is a scalar field with non-standard kinetic term in the Lagrangian,

for example,

Lϕ = F(ϕ, X) + V (ϕ), where X ≡
1

2
gµν∂µϕ∂νϕ. (27)

The standard Lagrangian has F(ϕ, X) = X . Some of the non-standard F models may

be ruled out on theoretical grounds. An example is provided by “phantom” fields, with

negative kinetic energy density (ghosts), F(ϕ, X) = −X . They have w < −1, so that

their energy density grows with expansion. This bizarre behaviour is reflected in the

instability of the quantum vacuum for phantom fields.

Another example is “k-essence” fields [53], which have F(ϕ, X) = ϕ−2 f (X).

These theories have no ghosts, and they can produce late-time acceleration. The sound

speed of the field fluctuations for the Lagrangian in Eq. (27) is

c2
s =

F,X

F,X + 2X F,X X

. (28)

For a standard Lagrangian, c2
s = 1. But for the class of F that produce accelerating

k-essence models, it turns out that there is always an epoch during which c2
s > 1,
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so that these models may be ruled out according to our causality requirement. They

violate standard causality [54,55].

For models not ruled out on theoretical grounds, there is the same general problem as

with quintessence, i.e. that no model is better motivated than LCDM, none is selected

by fundamental physics and any choice of model is more or less arbitrary. Quintessence

then appears to at least have the advantage of simplicity—although LCDM has the

same advantage over quintessence.

When investigating generic dark energy models we always have to keep in mind

that since both dark energy and dark matter are only detected gravitationally, we can

only measure the total energy momentum tensor of the dark component,

T dark
µν = T de

µν + T dm
µν . (29)

Hence, if we have no information on the equation of state of dark energy, there is a

degeneracy between the dark energy equation of state w(t) and Ωdm. Without addi-

tional assumptions, we cannot measure either of them [56]. This degeneracy becomes

even worse if we allow for interactions between dark matter and dark energy.

3.3 Dark energy as a non-linear effect from structure

As structure forms and the matter density perturbation becomes non-linear, there are

two questions that are posed: (1) what is the back-reaction effect of this non-linear

process on the background cosmology?; (2) how do we perform a covariant and gauge-

invariant averaging over the inhomogeneous universe to arrive at the correct FRW

background? The simplistic answers to these questions are: (1) the effect is negligible

since it occurs on scales too small to be cosmologically relevant; (2) in light of this,

the background is independent of structure formation, i.e. it is the same as in the linear

regime. A quantitative analysis is needed to fully resolve both issues. However, this

is very complicated because it involves the non-linear features of general relativity in

an essential way.

There have been claims that these simplistic answers are wrong, and that, on the

contrary, the effects are large enough mimic an accelerating universe. This would

indeed be a dramatic and satisfying resolution of the coincidence problem, without

the need for any dark energy field. Of course, the problem of why the vacuum does

not gravitate would remain. This issue is discussed in the contribution [32].

However, these claims have been disputed, and it is fair to say that there is as yet no

convincing demonstration that acceleration could emerge naturally from non-linear

effects of structure formation; see Refs. [57–72] for some claims and counter-claims.

We should however note the possibility that backreaction/averaging effects could be

significant, even if they do not lead to acceleration.

It might also be possible that the universe around us resembles more a spheri-

cally symmetric but inhomogeneous solution of Einstein’s equation, a Tolman–Bondi–

Lemaître universe, than a Friedmann–Lemaître universe. In this case, what appears as

cosmic acceleration to us can be explained within simple matter models which only

contain dust. However, this would imply that we are situated very close to the centre
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of a huge (nearly) spherical structure. Apart from violating the Copernican principle,

this poses another fine tuning problem. This idea is discussed in the contribution [18].

4 The modified gravity approach: dark gravity

Late-time acceleration from non-linear effects of structure formation is an attempt,

within general relativity, to solve the coincidence problem without a dark energy field.

The modified gravity approach shares the assumption that there is no dark energy field,

but generates the acceleration via “dark gravity”, i.e. a weakening of gravity on the

largest scales, due to a modification of general relativity itself.

Could the late-time acceleration of the universe be a gravitational effect? (Note that

this would also not remove the problem of explaining why the vacuum energy does

not gravitate.) A historical precedent is provided by attempts to explain the anomalous

precession of Mercury’s perihelion by a “dark planet”, named Vulcan. In the end, it

was discovered that a modification to Newtonian gravity was needed.

As we have argued in Sect. 2, a consistent modification of general relativity re-

quires a covariant formulation of the field equations in the general case, i.e. including

inhomogeneities and anisotropies. It is not sufficient to propose ad hoc modifications

of the Friedman equation, of the form

f (H2) =
8πG

3
ρ or H2 =

8πG

3
g(ρ), (30)

for some functions f or g. Apart from the fundamental problems outlined in Sect. 2,

such a relation allows us to compute the supernova distance/redshift relation using

this equation—but we cannot compute the density perturbations without knowing the

covariant parent theory that leads to such a modified Friedman equation. And we also

cannot compute the solar system predictions.

It is very difficult to produce infrared corrections to general relativity that meet all

the minimum requirements:

– Theoretical consistency in the sense discussed in Sect. 2.

– Late-time acceleration consistent with supernova data.

– A matter-dominated era with an evolution of the scale factor a that is consistent

with the requirements of structure formation.

– Density perturbations that are consistent with the observed matter power spectrum,

CMB anisotropies and weak lensing power spectrum.

– Stable static spherical solutions for stars and vacuum, and consistency with terres-

trial and solar system observational constraints.

– Consistency with binary pulsar period data.

4.1 Scalar–tensor theories

General relativity has a unique status as a theory where gravity is mediated by a

massless spin-2 particle, and the field equations are second order. If we introduce
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modifications to the Einstein–Hilbert action of the general form

∫

d4x
√

−g R →
∫

d4x
√

−g f (R, Rµν Rµν, CµναβCµναβ), (31)

then the field equations become fourth-order, and gravity is carried also by massless

spin-0 and spin-1 fields. In order to avoid the Ostrogradski instability discussed in

Sect. 2, we impose f = f (R), and we assume f ′′(R) 
= 0. However, it turns out

to be extremely difficult for this simplified class of modified theories to pass the

observational and theoretical tests. An example is [73]

f (R) = R −
µ

R
. (32)

For |µ| ∼ H4
0 , this model achieves late-time acceleration as the µ/R term starts to

dominate. But the model suffers from non-linear matter instabilities and violation of

solar system constraints [74–76].

Variations of f (R) theories have been introduced to evade these problems

[77–79]. These are based on a “chameleon” mechanism to alter the modification of

general relativity across the boundary between a massive body and its vacuum exterior.

Although such mechanisms may be successful, the models look increasingly unnatural

and contrived—and suffer from very strong fine-tuning.

All f (R) theories lead to just one fourth order equation [36]. The corresponding

additional degree of freedom can be interpreted as a scalar field and in this sense, f (R)

theories are mathematically equivalent to scalar–tensor theories via

ψ ≡ f ′(R), U (ψ) ≡ ψ − f (R(ψ)), (33)

L =
1

16πG

√
−g [ψ R + U (ψ)] . (34)

This Lagrangian can be conformally transformed into ordinary gravity with a scalar

field, i.e. a quintessence model, via the transformation

g̃µν = ψgµν, ϕ =
√

3

4πG
ln ψ. (35)

In terms of g̃µν and ϕ the Lagrangian then becomes a standard scalar field Lagrangian,

√
−g f (R) =

√

g̃

[

R̃ +
1

2
g̃µν∂µϕ∂νϕ + V (ϕ)

]

, (36)

where

V (ϕ) =
1

16πG

U (ψ(ϕ))

ψ(ϕ)2
. (37)
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This example shows that modifying gravity (dark gravity) or modifying the energy

momentum tensor (dark energy) can be seen as a different description of the same

physics. Only the coupling of the scalar fieldϕ to ordinary matter, shows that this theory

originates from a scalar–tensor theory of gravity—and this non-standard coupling

reflects the fact that gravity is also mediated by a spin-0 degree of freedom, in contrast

to general relativity with a standard scalar field.

More general scalar–tensor theories [80–83], which may be motivated via low-

energy string theory, have an action of the form

∫

d4x
√

−g

[

F(ψ)R +
1

2
gµν∂µψ∂νψ + U (ψ)

]

, (38)

where ψ is the spin-0 field supplementing the spin-2 graviton. In the context of late-

time acceleration, these models are also known as “extended quintessence”. Scalar–

tensor theories contain two functions, F and U . This additional freedom allows for

greater flexibility in meeting the observational and theoretical constraints. However,

the price we pay is additional complexity—and arbitrariness. The f (R) theories have

one arbitrary function, and here there are two, F(ψ) and U (ψ). There is no preferred

choice of these functions from fundamental theory.

In summary, modifications of the Einstein–Hilbert action, which lead to fourth-

order field equations, either fail to meet the minimum requirements in the simplest

cases, or contain more complexity and arbitrary choices than quintessence models in

general relativity. Therefore, none of these models appears to be a serious competitor

to quintessence in general relativity.

4.2 Brane-world models

We turn now to a class of brane-world models whose background is no more compli-

cated than that of LCDM, offering the promise of a serious dark gravity contender.

However, there are hidden complexities and problems, as we will explain below.

An infra-red modification to general relativity can emerge within the framework

of quantum gravity, in addition to the ultraviolet modification that must arise at high

energies in the very early universe. The leading candidate for a quantum gravity theory,

string theory, is able to remove the infinities of quantum field theory and unify the

fundamental interactions, including gravity. But there is a price—the theory is only

consistent in nine space dimensions. Branes are extended objects of higher dimension

than strings, and play a fundamental role in the theory, especially D-branes, on which

open strings can end. Roughly speaking, the endpoints of open strings, which describe

the standard model particles like fermions and gauge bosons, are attached to branes,

while the closed strings of the gravitational sector can move freely in the higher-

dimensional “bulk” spacetime. Classically, this is realized via the localization of matter

and radiation fields on the brane, with gravity propagating in the bulk (see Fig. 4).

The implementation of string theory in cosmology is extremely difficult, given the

complexity of the theory. This motivates the development of phenomenology, as an

intermediary between observations and fundamental theory. (Indeed, the development
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Fig. 4 The confinement of matter to the brane, while gravity propagates in the bulk (from [84])

of inflationary cosmology has been a very valuable exercise in phenomenology.)

Brane-world cosmological models inherit key aspects of string theory, but do not

attempt to impose the full machinery of the theory. Instead, simplifications are intro-

duced in order to be able to construct cosmological models that can be used to compute

observational predictions (see [85–91] for reviews in this spirit). Cosmological data can

then be used to constrain the brane-world models, and hopefully provide constraints

on string theory, as well as pointers for the further development of string theory.

It turns out that even the simplest brane-world models are remarkably rich—and the

computation of their cosmological perturbations is complicated, and still incomplete.

A key reason for this is that the higher-dimensional graviton produces a tower of

4-dimensional massive spin-2 modes on the brane, in addition to the standard massless

spin-2 mode on the brane (or in some cases, instead of the massless mode). In the case

of some brane models, there are in addition a massless gravi-scalar and gravi-vector

which modify the dynamics.

Most brane-world models modify general relativity at high energies. The main

examples are those of Randall-Sundrum (RS) type [94,95], where a FRW brane is

embedded in an anti de Sitter bulk, with curvature radius ℓ. At low energies Hℓ ≪ 1,

the zero-mode of the graviton dominates on the brane, and general relativity is recov-

ered to a good approximation. At high energies, small scales, Hℓ ≫ 1, the massive

modes of the graviton dominate over the zero mode, and gravity on the brane behaves

increasingly 5-dimensional. On the brane, the standard conservation equation holds,

ρ̇ + 3H(ρ + p) = 0, (39)

but the Friedmann equation is modified by an ultraviolet correction:

H2 =
8πG

3
ρ

(

1 +
2πGℓ2

3
ρ

)

+
Λ

3
. (40)
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The ρ2 term is the ultraviolet correction. At low energies, this term is negligible, and

we recover H2 ∝ ρ + Λ/8πG. At high energies, gravity “leaks” off the brane and

H2 ∝ ρ2. This 5D behaviour means that a given energy density produces a greater

rate of expansion than it would in general relativity. As a consequence, inflation in the

early universe is modified in interesting ways [85–91].

By contrast, the brane-world model of Dvali–Gabadadze–Porrati [92] (DGP), which

was generalized to cosmology by Deffayet [93], modifies general relativity at late

times. This model produces “self-acceleration” of the low-energy universe due to a

weakening of gravity. Like the RS model, the DGP model is a 5-dimensional model

with infinite extra dimension. (We effectively assume that five of the extra dimensions

in the “parent” string theory may be ignored at low energies.)

The action is given by

1

16πG

⎡

⎣

1

rc

∫

bulk

d5x

√

−g(5) R(5) +
∫

brane

d4x
√

−g R

⎤

⎦ . (41)

The bulk is assumed to be 5D Minkowski spacetime. Unlike the AdS bulk of the RS

model, the Minkowski bulk has infinite volume. Consequently, there is no normaliz-

able zero-mode of the (bulk) graviton in the DGP brane-world. Gravity leaks off the

4D brane into the bulk at large scales, λ > rc, where the first term in the sum (41) dom-

inates. On small scales, gravity is effectively bound to the brane and 4D dynamics is

recovered to a good approximation, as the second term dominates. The transition from

4- to 5-D behaviour is governed by the crossover scale rc; the weak-field gravitational

potential behaves as

Ψ ∝
{

r−1 for r ≪ rc,

r−2 for r ≫ rc.
(42)

Gravity leakage at late times initiates acceleration—not due to any negative pressure

field, but due to the weakening of gravity on the brane. 4D gravity is recovered at high

energy via the lightest massive modes of the 5D graviton, effectively via an ultra-light

metastable graviton.

The energy conservation equation remains the same as in general relativity, but the

Friedman equation is modified:

ρ̇ + 3H(ρ + p) = 0, (43)

H2 −
H

rc

=
8πG

3
ρ. (44)

This shows that at early times, i.e. Hrc ≫ 1, the general relativistic Friedman equation

is recovered. By contrast, at late times in a CDM universe, with ρ ∝ a−3 → 0, we

have

H → H∞ =
1

rc

, (45)

so that expansion accelerates and is asymptotically de Sitter. Since H0 > H∞, in order

to achieve self-acceleration at late times, we require
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Fig. 5 The confidence contours for supernova data in the DGP density parameter plane. The blue (solid)

contours are for SNLS data, and the brown (dashed) contours are for the Gold data. The red (dotted) curve

defines the flat models, the black (dot-dashed) curve defines zero acceleration today, and the shaded region

contains models without a big bang. (From [96])

rc � H−1
0 , (46)

and this is confirmed by fitting supernova observations, as shown in Fig. 5. The di-

mensionless cross-over parameter is

Ωrc =
1

4(H0rc)2
, (47)

and the LCDM relation,

Ωm + ΩΛ + ΩK = 1, (48)

is modified to

Ωm + 2
√

Ωrc

√

1 − ΩK + ΩK = 1. (49)

LCDM and DGP can both account for the supernova observations, with the fine-

tuned values Λ ∼ H2
0 and rc ∼ H−1

0 respectively. The degeneracy may be broken by

observations based on structure formation, since the two models suppress the growth of

density perturbations in different ways [97,98]. The distance-based observations draw

only upon the background 4D Friedman equation (44) in DGP models—and therefore

there are quintessence models in general relativity that can produce precisely the

same supernova distances as DGP [99]. By contrast, structure formation observations
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Fig. 6 The growth factor g(a) = ∆(a)/a for LCDM (long dashed) and DGP (solid, thick), as well as for

a dark energy model with the same expansion history as DGP (solid, thick). DGP-4D (solid, thin) shows

the incorrect result in which the 5D effects are set to zero. (From [100])

require the 5D perturbations in DGP, and one cannot find equivalent quintessence

models [100]. (However, 4D general relativity models allowing for anisotropic stresses

can in principle mimick DGP [102].)

For LCDM, the analysis of density perturbations is well understood. For DGP

it is much more subtle and complicated. This is discussed in the contribution [34].

Although matter is confined to the 4D brane, gravity is fundamentally 5D, and the bulk

gravitational field responds to and back-reacts on density perturbations. The evolution

of density perturbations requires an analysis based on the 5D nature of gravity. In

particular, the 5D gravitational field produces an anisotropic stress on the 4D universe.

If one neglects this stress and all 5D effects, and simply treats the perturbations as

4D perturbations with a modified background Hubble rate—then as a consequence,

the 4D Bianchi identity on the brane is violated, i.e. ∇νGµν 
= 0, and the results are

inconsistent.

When the 5D effects are incorporated [100,101], the 4D Bianchi identity is satisfied.

The consistent modified evolution equation for density perturbations on sub-Hubble

scales is

∆̈ + 2H∆̇ = 4πG

{

1 −
(2Hrc − 1)

3[2(Hrc)2 − 2Hrc + 1]

}

ρ∆, (50)

where the term in braces encodes the 5D correction. The linear growth factor, g(a) =
∆(a)/a (i.e. normalized to the flat CDM case, ∆ ∝ a), is shown in Fig. 6.

In addition to the complexity of the cosmological perturbations, a deeper problem is

posed by the fact that the late-time asymptotic de Sitter solution in DGP cosmological

models has a ghost [103]. This ghost in the gravitational sector is more serious than

the ghost in a phantom scalar field. It is actually this ghost degree of freedom which

is responsible for acceleration in the DGP model. Nevertheless, it may still be useful

to study DGP as a toy model for dark gravity.

123



Dark energy and dark gravity

5 Conclusion

The evidence for a late-time acceleration of the universe continues to mount, as the

number of experiments and the quality of data grow—dark energy or dark gravity

appear to be an unavoidable reality of the cosmos. This revolutionary discovery by

observational cosmology, confronts theoretical cosmology with a major crisis—how

to explain the origin of the acceleration. The core of this problem may be “handed over”

to particle physics, since we require at the most fundamental level, an explanation for

why the vacuum energy either has an incredibly small and fine-tuned value, or is exactly

zero. Both options violently disagree with naive estimates of the vacuum energy.

If one accepts that the vacuum energy is indeed non-zero, then the dark energy is

described by Λ, and the LCDM model is the best current model. The cosmological

model requires completion via developments in particle physics that will explain the

value of the vacuum energy. In many ways, this is the best that we can do currently,

since the alternatives to LCDM, within and beyond general relativity, do not resolve

the vacuum energy crisis, and furthermore have no convincing theoretical motivation.

None of the contenders appears any better than LCDM.

Presently, perhaps the simplest and most appealing contender is the DGP brane-

world model. However, the simplicity of its Friedman equation is deceptive, and the

complexity of its cosmological perturbations includes the problem of its ghost.

In view of all this, it is fair to say that at the theoretical level, there is as yet no serious

challenger to LCDM. It remains worthwhile to continue investigating alternative dark

energy and dark gravity models, in order better to understand the space of possibilities,

the variety of cosmological properties, and the observational strategies needed to

distinguish them.

At the same time, it is in principle possible that cosmological observations, having

discovered dark energy/dark gravity, could rule out LCDM, by showing, to some

acceptable level of statistical confidence, that w 
= −1.

Finally, the theoretical crisis does not have only negative implications: dark

energy/dark gravity in the cosmos provides exciting challenges for theory and

observations.

Acknowledgments We thank Camille Bonvin, Chiara Caprini, Kazuya Koyama, Martin Kunz, Sanjeev

Seahra and Norbert Straumann for stimulating and illuminating discussions. This work is supported by the

Swiss National Science Foundation and the UK STFC.

References

1. Spergel, D.N., et al.: [WMAP Collaboration], Wilkinson Microwave Anisotropy Probe (WMAP) three

year results: implications for cosmology. Astrophys. J. 657, 645 (2007) [arXiv:astro-ph/0603449]

2. Percival, W.J., et al.: The shape of the SDSS DR5 galaxy power spectrum. Astrophys. J. 665, 377

(2007) [arXiv:astro-ph/0608636]

3. Henry Tye, S.H.: Brane inflation: string theory viewed from the cosmos. arXiv:hep-th/0610221

4. Kallosh, R.: On inflation in string theory. arXiv:hep-th/0702059

5. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys.

Rev. D 74, 084003 (2006) [arXiv:gr-qc/0607039]

6. Bojowald, M.: Loop quantum cosmology. Living Rev. Rel. 8,11 (2005) [arXiv:gr-qc/0601085]

123



R. Durrer, R. Maartens

7. Erickson, J.K., Gratton, S., Steinhardt, P.J., Turok, N.: Cosmic perturbations through the cyclic ages.

arXiv:hep-th/0607164

8. Brandenberger, R.H.: String gas cosmology and structure formation: a brief review. arXiv:hep-

th/0702001

9. Copeland, E.J., Sami, M., Tsujikawa, S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753

(2006) [arXiv:hep-th/0603057]

10. Perivolaropoulos, L.: Accelerating universe: observational status and theoretical implications.

arXiv:astro-ph/0601014

11. Nojiri, S., Odintsov, S.D.: Introduction to modified gravity and gravitational alternative for dark energy.

Int. J. Geom. Meth. Math. Phys. 4, 115 (2007) [arXiv:hep-th/0601213]

12. Padmanabhan, T.: Dark Energy: Mystery of the Millennium. AIP Conf. Proc. 861, 179 (2006)

[arXiv:astro-ph/0603114]

13. Straumann, N.: Dark energy: recent developments. Mod. Phys. Lett. A 21, 1083 (2006) [arXiv:hep-

ph/0604231]

14. Bludman, S.: Cosmological acceleration: dark energy or modified gravity? arXiv:astro-ph/0605198

15. Uzan, J.P.: The acceleration of the universe and the physics behind it. arXiv:astro-ph/0605313

16. Polarski, D.: Dark energy: beyond general relativity? AIP Conf. Proc. 861, 1013 (2006) [arXiv:astro-

ph/0605532]

17. Ruiz-Lapuente, P.: Dark energy, gravitation and supernovae. Class. Quant. Grav. 24, R91 (2007)

[arXiv:0704.1058]

18. Enqvist, K.: this volume

19. Goodman, J.: Geocentrism reexamined. Phys. Rev. D52, 1821 (1995) [arXiv:astro-ph/9506068]

20. Ellis, G.F.R., Maartens, R.: The emergent universe: inflationary cosmology with no singularity. Class.

Quant. Grav. 21, 223 (2004) [arXiv:gr-qc/0211082]

21. Hlozek, R., Cortes, M., Bassett, B.A., Clarkson, C.: this volume

22. Knop, R.A., et al.: [The Supernova Cosmology Project Collaboration], New constraints on ΩM , ΩΛ,

and w from an independent set of eleven high-redshift supernovae observed with HST. Astrophys. J.

598, 102 (2003) [arXiv:astro-ph/0309368]

23. Wood-Vasey, W.M. et al. Observational Constraints on the Nature of the Dark Energy: First Cosmo-

logical Results from the ESSENCE Supernova Survey. arXiv:astro-ph/0701041

24. Leibundgut, B.: this volume

25. Nichol, R.: this volume

26. Sarkar, S.: this volume

27. Bressi, G., Carugno, G., Onofrio, R., Ruoso, G.: Measurement of the Casimir force between parallel

metallic surfaces. Phys. Rev. Lett. 88, 041804 (2002)

28. Bordag, M., Mohideen, U., Mostepanenko, V.M.: New developments in the Casimir effect. Phys. Rept.

353, 1 (2001) [arXiv:quant-ph/0106045]

29. Padmanabhan, T.: this volume

30. Bousso, R.: this volume

31. Linder, E.: this volume

32. Buchert, T.: this volume

33. Capozziello, S., Francaviglia, M.: this volume

34. Koyama, K.: this volume

35. Ostrogradski, M.: Memoire Academie St. Petersbourg, Ser. VI 4, 385 (1850)

36. Woodard, R.P.: Avoiding Dark Energy with 1/R Modifications of Gravity (2006) [arXiv:astro-

ph/0601672]

37. Bonvin, C., Caprini, C., Durrer, R.: (2007) [arXiv:0706.1538]

38. Velo, G., Zwanzinger, D.: Propagation and quantization of Rarita–Schwinger waves in an external

electromagnetic potential. Phys. Rev. 186, 1337 (1969)

39. Velo, G., Zwanzinger, D.: Noncausality and other defects of interaction Lagrangians for particles with

spin one and higher. Phys. Rev. 188, 2218 (1969)

40. Morris, M.S., Thorne, K.S., Yurtsever, U.: Wormholes, time machines and the weak energy condi-

tion. Phys. Rev. Lett. 61, 1446 (1988)

41. Gott, J.R.: Closed timelike curves produced by pairs of moving cosmic strings: Exact solutions. Phys.

Rev. Lett. 66, 1126 (1991)

42. Ori, A.: Formation of closed timelike curves in a composite vacuum/dust asymptotically-flat spacetime.

Phys. Rev. D76, 044002 (2007) [arXiv:gr-qc/0701024]

123



Dark energy and dark gravity

43. Bonnor, W.B., Steadman, B.R.: Exact solutions of the Einstein–Maxwell equations with closed timelike

curves. Gen. Rel. Grav. 37, 1833 (2005)

44. Babichev, E., Mukhanov, V., Vikman, A.: k-essence, superluminal propagation, causality and emergent

geometry. (2007) [arXiv:0708.0561]

45. Froissart, M.: Asymptotic behavior and subtractions in the Mandelstam representation. Phys.

Rev. 123, 1053 (1961)

46. Itzykson, C., Zuber, J.B.: Quantum Field Theory, Chap. 5. McGraw Hill, New York (1980)

47. Adams, A., Arkani-Hamed, N., Dubovsky, S., Nicolis, A., Rattazzi, R.: Causality, analyticity and an

IR obstruction to UV completion. JHEP 0610, 014 (2006) [arXiv:hep-th/0602178]

48. Polchinski, J.: The cosmological constant and the string landscape. arXiv:hep-th/0603249

49. Bousso, R.: Precision cosmology and the landscape. arXiv:hep-th/0610211

50. Padmanabhan, T.: Why does gravity ignore the vacuum energy? Int. J. Mod. Phys. D 15, 2029 (2006)

[arXiv:gr-qc/0609012]

51. Amendola, L., Campos, G.C., Rosenfeld, R.: Consequences of dark matter-dark energy interaction on

cosmological parameters derived from SNIa data. (2006) [arXiv:astro-ph/0610806]

52. Guo, Z.K., Ohta, N., Tsujikawa, S.: Probing the coupling between dark components of the Universe.

Phys. Rev. D76, 023508 (2007) [arXiv:astro-ph/0702015]

53. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Dynamical solution to the problem of a small

cosmological constant and late-time cosmic acceleration. Phys. Rev. Lett. 85 4438 (2000) [arXiv:astro-

ph/0004134]

54. Bonvin, C., Caprini, C., Durrer, R.: A no-go theorem for k-essence dark energy. Phys. Rev. Lett. 97,

081303 (2006) [arXiv:astro-ph/0606584]

55. Ellis, G., Maartens, R., MacCallum, M.: Causality and the speed of sound. arXiv:gr-qc/0703121

56. Kunz, M.: The dark degeneracy: on the number and nature of dark components. (2007) [arXiv:astro-

ph/0702615]

57. Kolb, E.W., Matarrese, S., Notari, A., Riotto, A.: Primordial inflation explains why the universe is

accelerating today. arXiv:hep-th/0503117

58. Geshnizjani, G., Chung, D.J.H., Afshordi, N.: Do large-scale inhomogeneities explain away dark

energy? Phys. Rev. D 72, 023517 (2005) [arXiv:astro-ph/0503553]

59. Hirata, C.M., Seljak, U.: Can superhorizon cosmological perturbations explain the acceleration of the

universe? Phys. Rev. D 72, 083501 (2005) [arXiv:astro-ph/0503582]

60. Flanagan, E.E.: Can superhorizon perturbations drive the acceleration of the universe? Phys. Rev. D

71, 103521 (2005) [arXiv:hep-th/0503202]

61. Rasanen, S.: Backreaction and spatial curvature in a dust universe. Class. Quant. Grav. 23, 1823 (2006)

[arXiv:astro-ph/0504005]

62. Coley, A.A., Pelavas, N., Zalaletdinov, R.M.: Cosmological solutions in macroscopic gravity. Phys.

Rev. Lett. 95, 151102 (2005) [arXiv:gr-qc/0504115]

63. Alnes, H., Amarzguioui, M., Gron, O.: Can a dust dominated universe have accelerated expansion?

JCAP 0701, 007 (2007) [arXiv:astro-ph/0506449]

64. Giovannini, M.: Gradient expansion(s) and dark energy. JCAP 0509, 009 (2005) [arXiv:astro-

ph/0506715]

65. Nambu, Y., Tanimoto, M.: Accelerating universe via spatial averaging. arXiv:gr-qc/0507057

66. Ishibashi, A., Wald, R.M.: Can the acceleration of our universe be explained by the effects of inhomo-

geneities? Class. Quant. Grav. 23, 235 (2006) [arXiv:gr-qc/0509108]

67. Buchert, T.: On globally static and stationary cosmologies with or without a cosmological constant

and the dark energy problem. Class. Quant. Grav. 23, 817 (2006) [arXiv:gr-qc/0509124]

68. Martineau, P., Brandenberger, R.: Back-reaction: a cosmological panacea. arXiv:astro-ph/0510523

69. Mansouri, R.: Illuminating the dark ages of the universe: the exact backreaction in the SFRW model

and the acceleration of the universe. arXiv:astro-ph/0601699

70. Vanderveld, R.A., Flanagan, E.E., Wasserman, I.: Mimicking dark energy with Lemaitre–Tolman–

Bondi models: weak central singularities and critical points. Phys. Rev. D 74, 023506 (2006)

[arXiv:astro-ph/0602476]

71. Moffat, J.W.: Late-time inhomogeneity and the acceleration of the universe. arXiv:astro-ph/0603777

72. Paranjape, A., Singh, T.P.: The possibility of cosmic acceleration via spatial averaging in Lemaitre–

Tolman–Bondi models. Class. Quant. Grav. 23, 6955 (2006) [arXiv:astro-ph/0605195]

73. Capozziello, S., Carloni, S., Troisi, A.: Quintessence without scalar fields. arXiv:astro-ph/0303041

74. Amendola, L., Gannouji, R., Polarski, D., Tsujikawa, S.: Conditions for the cosmological viability of

f (R) dark energy models. Phys. Rev. D75, 083504 (2007) [arXiv:gr-qc/0612180]

123



R. Durrer, R. Maartens

75. Chiba, T., Smith, T.L., Erickcek, A.L.: Solar System constraints to general f(R) gravity. Phys. Rev.

D75, 124014 (2007) [arXiv:astro-ph/0611867]

76. Dolgov, A.D., Kawasaki, M.: Can modified gravity explain accelerated cosmic expansion? Phys. Lett.

B 573, 1 (2003) [arXiv:astro-ph/0307285]

77. Hu, W., Sawicki, I.: Models of f (R) Cosmic Acceleration that Evade Solar-System Tests. (2007)

[arXiv:0705.1158v1]

78. Starobinsky, A.A.: Disappearing cosmological constant in f(R) gravity. JETP Lett. 86, 157 (2007)

[arXiv:0706.2041v2]

79. Nojiri, S., Odintsov, S.D.: Unifying inflation with LambdaCDM epoch in modified f (R) gravity

consistent with Solar System tests. Phys. Lett. B. 657, 238 (2007) [arXiv:0707.1941]

80. Boisseau, B., Esposito-Farese, G., Polarski, D., Starobinsky, A.A.: Reconstruction of a scalar–tensor

theory of gravity in an accelerating universe. Phys. Rev. Lett. 85, 2236 (2000) [arXiv:gr-qc/0001066]

81. Riazuelo, A., Uzan, J.P.: Cosmological observations in scalar–tensor quintessence. Phys. Rev. D 66,

023525 (2002) [arXiv:astro-ph/0107386]

82. Esposito-Farese, G.: Tests of scalar–tensor gravity. AIP Conf. Proc. 736, 35 (2004) [arXiv:gr-

qc/0409081]

83. Nesseris, S., Perivolaropoulos, L.: The limits of extended quintessence. Phys. Rev. D 75, 023517

(2007) [arXiv:astro-ph/0611238]

84. Cavaglia, M.: Black hole and brane production in TeV gravity: a review. Int. J. Mod. Phys. A 18, 1843

(2003) [arXiv:hep-ph/0210296]

85. Maartens, R.: Brane-world gravity. Living Rev. Rel. 7, 7 (2004) [arXiv:gr-qc/0312059]

86. Brax, P., van de Bruck, C., Davis, A.C.: Brane world cosmology. Rept. Prog. Phys. 67, 2183 (2004)

[arXiv:hep-th/0404011]

87. Sahni, V.: Cosmological surprises from braneworld models of dark energy. arXiv:astro-ph/0502032

88. Durrer, R.: Braneworlds. AIP Conf. Proc. 782, 202 (2005) [arXiv:hep-th/0507006]

89. Langlois, D.: Is our universe brany? Prog. Theor. Phys. Suppl. 163, 258 (2006) [arXiv:hep-th/0509231]

90. Lue, A.: The phenomenology of Dvali–Gabadadze–Porrati cosmologies. Phys. Rept. 423, 1 (2006)

[arXiv:astro-ph/0510068]

91. Wands, D.: Brane-world cosmology. arXiv:gr-qc/0601078

92. Dvali, G.R., Gabadadze, G., Porrati, M.: Metastable gravitons and infinite volume extra dimensions.

Phys. Lett. B 484, 112 (2000) [arXiv:hep-th/0002190]

93. Deffayet, C.: Cosmology on a brane in Minkowski bulk. Phys. Lett. B 502, 199 (2001) [arXiv:hep-

th/0010186]

94. Randall, L., Sundrum, R.: An alternative to compactification. Phys. Rev. Lett. 83, 4690 (1999)

[arXiv:hep-th/9906064]

95. Binetruy, P., Deffayet, C., Ellwanger, U., Langlois, D.: Brane cosmological evolution in a bulk with

cosmological constant. Phys. Lett. B 477, 285 (2000) [arXiv:hep-th/9910219]

96. Maartens, R., Majerotto, E.: Observational constraints on self-accelerating cosmology. Phys. Rev. D

74, 023004 (2006) [arXiv:astro-ph/0603353]

97. Lue, A., Scoccimarro, R., Starkman, G.D.: Probing Newton’s constant on vast scales: DGP gravity, cos-

mic acceleration and large scale structure. Phys. Rev. D 69, 124015 (2004) [arXiv:astro-ph/0401515]

98. Lue, A., Starkman, G.: Gravitational leakage into extra dimensions: probing dark energy using local

gravity. Phys. Rev. D 67, 064002 (2003) [arXiv:astro-ph/0212083]

99. Linder, E.V.: Cosmic growth history and expansion history. Phys. Rev. D 72, 043529 (2005)

[arXiv:astro-ph/0507263]

100. Koyama, K., Maartens, R.: Structure formation in the DGP cosmological model. JCAP 0610, 016

(2006) [arXiv:astro-ph/0511634]

101. Cardoso, A., Koyama, K., Seahra, S.S., Silva, F.P.: Cosmological perturbations in the DGP braneworld:

numeric solution. arXiv:0711.2563

102. Kunz, M., Sapone, D.: Dark energy versus modified gravity. Phys. Rev. Lett. 98, 121301 (2007)

[aXiv:astro-ph/0612452]

103. Gorbunov, D., Koyama, K., Sibiryakov, S.: More on ghosts in DGP model. Phys. Rev. D73, 044016

(2006) [arXiv:hep-th/0512097]

123


	Dark energy and dark gravity: theory overview
	Abstract
	Introduction
	Constraining effective theories
	Fundamental physical theories
	Low energy effective theories
	General relativistic approaches
	Dynamical dark energy: quintessence
	Dynamical dark energy: more general models
	Dark energy as a non-linear effect from structure
	The modified gravity approach: dark gravity
	Scalar--tensor theories
	Brane-world models
	Conclusion
	Acknowledgments

