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The equation of state parameter is a significant method for characterizing dark energy models.
We investigate the evolution of the equation of state parameter with redshift using a Bayesian
analysis of recent observational datasets (the Cosmic Chronometer data (CC) and Pantheon sam-
ples). The Chevallier-Polarski-Linder parametrization of the effective equation of state parameter,

ωe f f = ω0 + ωa

(
z

1+z

)
, where ω0 and ωa are free constants, is confined to the Weyl type f (Q, T)

gravity, where Q represents the non-metricity and T is the trace of the energy-momentum tensor.
We observe the evolution of the deceleration parameter q, the density parameter ρ, the pressure
p, and the effective equation of state parameter ω. The cosmic data limit for ω does not exclude
the possibility of ω < −1. It is seen that the parameter ω shows a transition from deceleration to
acceleration, as well as a shift from ω > −1 to ω < −1.
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I. INTRODUCTION

Observations evidenced by astronomical probes like
type Ia supernovae [1–3], cosmic microwave back-
ground radiation [4, 5], and large-scale structure [6, 7]
reveal that the universe transitioned from an early de-
celeration to a recent acceleration phase. Finding the re-
sponsible candidate for the late-time cosmic accelerated
expansion is one of the most sensitive issues in modern
cosmology. Our universe is dominated by an unknown
form of energy termed as “dark energy” (DE) [8–10]. Al-
though the incorporation of DE, such as the cosmolog-
ical constant, has proven extremely effective, it is hin-
dered by theoretical issues of fine-tuning and cosmic co-
incidence [11, 12].
An alternative approach to dark energy is to modify the
gravitational part of the Einstein-Hilbert action, called
the modified theory of gravity. If we acknowledge the
geometrical character of gravity as argued by the equiv-
alence principle, it is necessary to investigate how grav-
ity can be geometrized in an equivalent manner. When
a flat spacetime with metric but asymmetric connections
is considered, an equivalent description of general rel-
ativity (GR) emerges. This work aims at the symmet-
ric teleparallel representation of GR, which is built on
an equally flat spacetime and attributes gravity to non-
metricity Q [13]. In the context of proper Weyl geome-
try, we consider the extension of the f (Q) gravity [14–
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17], i.e. the f (Q, T) gravity [18–22], where Q is the non-
metricity and T is the trace of energy-momentum ten-
sor. The cosmic implications of the Weyl type f (Q, T)
gravity have been analyzed and considered as an alter-
native for describing cosmological early and late phases
of evolution [23–26]. In the framework of the proper
Weyl geometry, the scalar non-metricity Q is wholly de-
termined by the magnitude of the Weyl vector wλ. For
the flat geometry constraint, the total scalar curvature
vanishes in the Weyl geometry and adds this condition
to the gravitational action via a Lagrangian multiplier,
λ. Recently, the Weyl gravity has seen a resurgence in
order to solve the dark energy, dark matter issues, and
the inflation mentioned in [27].
Although multiple observations have confirmed the
presence of DE, its nature remains a mystery to us. The
condition to accelerate the expansion is ω < − 1

3 , as de-
fined by the equation of state parameter. To understand
the gravity or dynamics of the universe, the physics un-
derpinning DE determines the equation of state [28–30].
As a result, this work brings together the parametrized
EoS and the modified Weyl type f (Q, T) gravity.
In the literature, one can find many different EoS
parametrizations. One of the simplest and earli-
est parametrizations presented by Chevallier-Polarski-
Linder is the so-called CPL parametrization [31]. The
CPL parametrization is the Taylor expansion of ω with
respect to the scale factor a up to the first order as
ω(a) = ω0 + ωa(1 − a) and consequently in terms of
redshift as ω(z) = ω0 + ωa(

z
1+z ). Notice that although

the CPL is a well-behaved parametrization at early (z→
∞) and present (z = 0) epochs, it diverges at future time
(z = −1). This parameter behaves well at high redshifts
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and is a good approximation for DE slow roll scalar field
models [29, 32]. As a result, utilizing observational data
to constrain the two-parameter CPL EoS in the Weyl
type f (Q, T) gravity is intriguing. We use the Cosmic
Chronometer (CC) Hubble data, the Pantheon samples
(SNe Ia) and the BAO data for this purpose. We notice
that the current best fit for the EoS (ω) is less than -1, im-
plying phantom dark energy and an increase in energy
density with time.
The outline is as follows: In section II, we discuss
the Weyl-type f (Q, T) gravity formalism. In section
III, we obtained the expression for the Hubble param-
eter using the two-parameter equation of state in the
Friedmann-Lemaitre-Robertson-Walker (FLRW) frame-
work. In Section IV, we constrain the model parameters
using the Hubble data, the Pantheon data, and the com-
bination (Hz+ Pantheon and BAO+ Hz+ Pantheon) by
the MCMC technique. We analyze the behavior of cos-
mological parameters in section V. Lastly, in section VI,
the obtained results are discussed.

II. OVERVIEW OF WEYL TYPE f (Q, T) GRAVITY

However, we have adapted to the conventional for-
mulation of GR in which gravity is linked to spacetime
curvature. There are two different ways to formalize GR
in flat spacetime: torsion or non-metricity. A formu-
lation of GR in flat, torsionless spacetime is symmetric
teleparallel gravity.
In 1918, Weyl suggested a novel geometry by proposing
a relationship with the feature that under parallel vec-
tor transport, both the orientation and magnitude of a
vector change [33]. In a Weyl geometry, the connection
is no longer metric compatible. Furthermore, the Weyl
connection in terms of a new vector field known as the
Weyl vector field is given as

Γ̃λ
µν ≡ Γλ

µν + gµνwλ − δλ
µ wν − δλ

ν wµ. (1)

which results in ∇̃λgµν = 2wλgµν.
The Weyl type f (Q, T) gravity is described by the action
[23]

S =
∫

d4x
√
−g
[

κ2 f (Q, T)− 1
4

WµνWµν − 1
2

M2wµwµ+

λ
(

R + 6∇αwα − 6wαwα
)
+ Lm

]
, (2)

with κ2 = 1
16πG . Here, f (Q, T) is an arbitrary func-

tion of the nonmetricity, and the trace of the energy-
momentum tensor. The particle’s mass to the vector

field is denoted by M, and g = det(gµν). The scalar non-
metricity is defined as

Q ≡ −gµν
(

Lα
βνLβ

να − Lα
βαLβ

µν

)
, (3)

where Lλ
µν is the deformation tensor read as

Lλ
µν = −1

2
gλγ

(
Qµγν + Qνγµ −Qγµν

)
. (4)

We define the nonmetricity tensor Qαµν as the covariant
derivative of the metric tensor with respect to Γ̃λ

µν,

Qαµν ≡ ∇̃αgµν = ∂αgµν − Γ̃ρ
αµgρν − Γ̃ρ

ανgρµ = 2wαgµν.
(5)

Plugging Eq. (4) in Eq. (3), we acquire the important
relation

Q = −6w2. (6)

Further, the generalized proca equation by varying the
action (2) with respect to vector field is

∇νWµν −
(

M2 + 12κ2 fQ + 12λ
)

wµ = 6∇µλ. (7)

Comparing equation (7) with the standard Proca equa-
tion, we obtaine the effective dynamical mass of the vec-
tor field as

M2
e f f = M2 + 12κ2 fQ + 12λ. (8)

The generalised field equations obtained by varying
the action (2) with respect to the metric tensor are

1
2

(
Tµν + Sµν

)
− κ2 fT

(
Tµν + Θµν

)
= −κ2

2
gµν f

− 6k2 fQwµwν + λ
(

Rµν − 6wµwν + 3gµν∇ρwρ
)

+ 3gµνwρ∇ρλ− 6w(µ∇ν)λ + gµν�λ−∇µ∇νλ, (9)

in which

fT ≡
∂ f (Q, T)

∂T
, fQ ≡

∂ f (Q, T)
∂Q

. (10)

Also, the definition of Tµν and Θµν is

Tµν ≡ −
2√−g

δ(
√−gLm)

δgµν , (11)

Θµν = gαβ
δTαβ

δgµν
= gµνLm − 2Tµν − 2gαβ δ2Lm

δgµνδgαβ
. (12)
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Here, Sµν is the re-scaled energy momentum tensor of
the free Proca field given by

Sµν = −1
4

gµνWρσWρσ +WµρWρ
ν −

1
2

M2gµνwρwρ + M2wµwν,
(13)

and

Wµν = ∇νwµ −∇µwν. (14)

It is also noted that the expression for the divergence
of the matter energy-momentum tensor in the Weyl-type
f (Q, T) theory is given by [23]

∇µTµν =
κ2

1 + 2κ2 fT

[
2∇ν( fTLm)− fT∇νT − 2Tµν∇µ fT

]
As a result, the above equation shows that the matter
energy-momentum tensor is not conserved in the Weyl-
type f (Q, T) theory. The non-conservation of the mat-
ter energy-momentum tensor can be interpreted physi-
cally as indicating the presence of an extra force acting
on massive test particles, causing the motion to be non-
geodesic. From a physical perspective, it indicates the
amount of energy that enters or leaves a specified vol-
ume of a physical system. Moreover, the non-vanishing
right-hand side of the energy-momentum tensor indi-
cates the transfer processes or particle production in the
system. One can note that the energy-momentum ten-
sor becomes conserved in the absence of fT terms in the
above equation [14].

III. THE COSMOLOGICAL MODEL

Let us consider that the universe is described by ho-
mogeneous, isotropic and spatially flat FLRW line ele-
ment as

ds2 = −dt2 + a2(t)δijdxidxj, (15)

where a(t) is the cosmic scale factor.
Assuming the vector field wµ as wµ =

[
ψ(t), 0, 0, 0

]
[23]

implying w2 = wµwµ = −ψ2(t), and Q = −6w2 =
6ψ2(t).
The energy momentum tensor for the perfect fluid is de-
fined as:

Tµν =
(
ρ + p

)
uµuν + pgµν, (16)

where p and ρ are the pressure and the matter energy
density, respectively. The four velocity vector uµ is such
that uµuµ = −1. Thus implies Tµ

ν = diag
(
−ρ, p, p, p

)
,

and Θµ
ν = δ

µ
ν p− 2Tµ

ν = diag
(
2ρ + p,−p,−p,−p

)
.

The flat space constraint and the generalized Proca
equation in cosmological case can be represented as

ψ̇ = Ḣ + 2H2 + ψ2 − 3Hψ, (17)

λ̇ =

(
−1

6
M2 − 2κ2 fQ − 2λ

)
ψ = −1

6
M2

e f f ψ, (18)

∂iλ = 0. (19)

From equation (9) and using given metric (15) the ob-
tained generalized Friedmann equations are,

κ2 fT
(
ρ + p

)
+

1
2

ρ =
κ2

2
f −

(
6κ2 fQ +

1
4

M2
)

ψ2

− 3λ
(

ψ2 − H2
)
− 3λ̇

(
ψ− H

)
, (20)

− 1
2

p =
κ2

2
f +

M2ψ2

4
+ λ

(
3ψ2 + 3H2 + 2Ḣ

)
+
(
3ψ + 2H

)
λ̇ + λ̈. (21)

For our investigation, we consider the functional form
f (Q, T) = αQ + β

6κ2 T, where α and β are model param-
eters. This particular functional form of f (Q, T) is moti-
vated, for instance, in reference [23]. For certain choice
of model parameters, this model is basically equivalent
to ΛCDM model for certain redshift range.

Using this form, we rewrite the field equations (20)
and (21) as

−
(

β

4
+

1
2

)
ρ+

β

4
p = 3ακ2ψ2 +

M2ψ2

4
+ 3κ2

(
ψ2 − H2

)
,

(22)

−
(

β

4
+

1
2

)
p+

β

4
ρ = 3ακ2ψ2 +

M2ψ2

4
+ κ2

(
3ψ2 + 3H2 + 2Ḣ

)
.

(23)
Using the relation ∇λgµν = −wλgµν and w1 = ψ(t), we
obtained ψ(t) = −6H(t). Further simplifying Eq.(22)
and (23), we get

p = −

36

(
18

β + 3
(α + 1) +

3M̃2

2
(

β + 3
))+

18
2β + 3

H2

−
18
(

β + 2
)(

2β + 3
) (

β + 3
) Ḣ, (24)

and

ρ =

(
−9
(
11β + 24

)
(24α + 25)

4
(

β + 2
) (

β + 3
) +

29β + 72
2
(
2β + 3

) (
β + 2

))H2

− 9β

2
(
2β + 3

) (
β + 3

) Ḣ. (25)
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where M̃2 = M2/κ2, M̃ is the mass of the Weyl vec-
tor field, indicating the strengths of the Weyl geometry-
matter coupling. In this case, we have assumed M̃ =
0.95 [23].
The effective equation of state ω = p

ρ becomes

ω =
−aH2 − bḢ
cH2 − dḢ

, (26)

where the coefficients a, b, c, and d are as follows

a =
18

2β + 3
+ 36

(
18(α + 1)

β + 3
+

3M̃2

2(β + 3)

)
, (27)

b =
18(β + 2)

(2β + 3)(β + 3)
, (28)

c =
29β + 72

2(2β + 3)(β + 2)
− 9(24α + 25)(11β + 24)

4(β + 2)(β + 3)
, (29)

d =
9β

2(2β + 3)(β + 3)
. (30)

The derivative of the Hubble parameter with respect to
time can be written in the form of

Ḣ =
dH
dt

= − (1 + z) H(z)
dH
dz

. (31)

We need one more ansatz to get the solution to
H. In this work, a parameterization of the effective
equation of state is assumed. We consider the widely
used Chevallier-Polarski-Linder (CPL) parametric form
of equation of state parameter ω in terms of redshift z
[31, 32]

ω(z) = ω0 + ωa

(
z

1 + z

)
, (32)

where ω0 and ωa are constants. The CPL parameteriza-
tion can be thought of as the Taylor series expansion of
ω up to the first order with respect to the scale factor a.
It can be seen that (ω0, ωa) = (−1, 0), simplifies the ef-
fective equation of state to the ΛCDM model, and it also
converges for large redshifts. The CPL parametric form
has various advantages, including a manageable two-
dimensional space, excellent accuracy in reconstructing
numerous scalar field equations of state and the result-
ing distance-redshift relations, and high sensitivity to
observational data [32, 34, 35].
From equation (26), (31), and (32), we have the following
differential equation:

dH
dz

= −

(
a + ω0 c +

(
z

z+1

)
ωa c

)
(1 + z)

(
ω0 d− b +

(
z

z+1

)
ωa d

)H(z). (33)

Solving equation (33) yields the solution

H(z) = H0(z+ 1)−
c
d

(
d(ω0 z + ω0 + ωa z)− b(z + 1)

dω0 − b

)l

,

(34)
where l = − ad+bc

d(d(ω0+ωa)−b) and H(0) = H0.

The deceleration parameter q defined as q = −1− Ḣ
H2 is

obtained as follows

q (z) = −1− a(1 + z) + c(ω0 + ω0 z + ωa z)
−b(1 + z) + d(ω0 + ω0 z + ωa z)

. (35)

IV. OBSERVATIONAL DATA

In this section, we will go over the cosmological data
that was utilized in this investigation. We employ var-
ious contemporary observational data to constrain the
model parameters in H(z) using the MCMC technique.
We focus on data relevant to the expansion history of
the universe, i.e., those characterizing distance-redshift
relation. We will specifically use the data from the early-
type galaxies (direct Hubble parameter measurements)
and the type Ia supernovae (Pantheon samples) span-
ning Supernova Legacy Survey (SNLS), Sloan Digital
Sky Survey (SDSS), Hubble Space Telescope (HST) sur-
vey, Panoramic Survey Telescope and Rapid Response
System (Pan-STARRS1). In the following context, for
simplicity, we denote the model parameters ω0 = m and
ωa = n.

A. Hubble data

The Hubble parameter estimates for early-type galax-
ies with passive evolution have been yielded by predict-
ing their differential evolution. Compilations of such
data are known as cosmic chronometers (CC) [36, 37].
We employ a sample of CC covering the redshift range
0 < z < 1.97. We examine the constraints on model
parameters by the χ2 estimator as follows:

χ2
Hub = ∑

i

(
H(θs, zi)− Hobs(zi)

)2

σ2
Hub(zi)

(36)

where σ2
Hub(zi) is the standard error on the measured

values of Hobs(zi), and θs is the cosmological back-
ground parameter space.

B. Pantheon data

The Pantheon compilation [38] is one of the most re-
cent type Ia supernovae (SNeIa) data compilations. We
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consider the set of 1048 SNe, which covers the redshift
range 0.01 < z < 2.26, and define the χ2 as

χ2
SN = µSNC−1µT

SN , (37)

where µSN = µi − µth(θs, zi) and µi = µB,i − M. Here,
µB,i is the apparent maximum magnitude for redshift zi,
M is the hyper-parameter that quantifies uncertainties
of various origins. It is used instead of free parameters
α, β in the perspective of the ”BEAMS” with Bias Cor-
rections method [39]. The theoretical distance modulus
is given as

µth = 5log

(
dL(θs, z)

Mpc

)
+ 25, (38)

and

dL(θs, z) = c(1 + z)
∫ z

0

dx
H(θs, x)

. (39)

C. BAO data

We use the collection of 6dFGS, SDSS, and Wiggle Z
surveys at various redshifts for BAO data. Here, we em-
ploy dA

Dv
and the following cosmology to establish BAO

constraints.

dA(z) = c
∫ z

0

dz′

H(z′)
, (40)

Dv(z) =

[
d2

A c z
H(z)

]1/3

, (41)

χ2 = XTC−1
BAOX. (42)

Here, dA(z) represents the comoving angular diameter
distance, and Dv is the dilation scale. X depends on
the survey considered and CBAO is the covariance ma-
trix [40].

We plot the contours of the 1 − σ and 2 − σ con-
fidence levels from the Hubble and Pantheon data in
figure 2. Also, the constraints from the combination
Hz + Pantheon and BAO + Hz + Pantheon are given in
figure 3 and 4 by minimizing χ2

Hub + χ2
SN and χ2

BAO +
χ2

Hub + χ2
SN , respectively. The error bar for the Hubble

parameter with the standard ΛCDM model is shown in
figure 1.

0.0 0.5 1.0 1.5 2.0 2.5
z

50

100

150

200

250

H(
z)

f(Q,T) model
LCDM
Data

FIG. 1: The evolution of Hubble parameter with respect to redshift z. The blue dots represent error bars, the red line
is the curve obtained for our model while the black dashed line corresponds to ΛCDM model.
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2

0

2

m

0

2

4

6

8

0 2 4 6 8 4 2 0 2
m

0 1 2 3 4
n
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Pantheon

FIG. 2: Contour of the 1− σ and 2− σ confidence levels from the Hubble and Pantheon data for the model parameters
α, β, m, and n.

TABLE I: The marginalized constraining results on model parameters α, β, ω0, and ωa are shown by using the Hubble
and Pantheon SNe Ia samples.

Dataset α β ω0 = m ωa = n
Hubble −1.06+0.018

−0.013 4.9+1.0
−1.0 −1.4+0.98

−0.98 1.03+0.49
−0.49

Pantheon −1.067+0.017
−0.015 4.8+1.2

−1.2 −1.21+0.94
−0.94 1.91+0.58

−0.58
Hz+Pantheon −1.07078+0.00054

−0.00054 5.0+0.01
−0.01 −1.0006+0.0099

−0.0099 1.927+0.01
−0.01

BAO+Hz+Pantheon −1.07574+0.00049
−0.00049 5.0003+0.0098

−0.0098 −1.008+0.01
−0.01 1.91+0.01

−0.01

V. COSMOLOGICAL PARAMETERS

The evolution of the density parameter, pressure, de-
celeration parameter, and the effective equation of state
parameter is presented below.

Clearly, figure 5 shows that the positive behavior of
energy density is as expected and decreases with the ex-
pansion of the universe in the present and far future.
Figure 6 depicts the negative behavior of the pressure p,

indicating the late-time cosmic acceleration of the uni-
verse. It can be seen that the Pantheon, Hz + Pantheon
and BAO + Hz + Pantheon data exhibit a different evo-
lution of pressure in the past, but negative behavior at
the present stage supports acceleration.
The deceleration parameter, a dimensionless representa-
tion of the second-order time derivative of the scale fac-
tor is presented in figure 7. For the proposed model, the
deceleration parameter shows a signature flip ranging
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1.072 1.070

1.90

1.92

1.94

1.96

n

1.02

1.00

0.98

m

4.98

5.00

5.02

= 1.07078 ± 0.00054

4.98 5.00 5.02

= 5.000 ± 0.010

1.03 1.00 0.97
m

m = 1.0006 ± 0.0099

1.90 1.92 1.94
n

n = 1.927 ± 0.010

FIG. 3: Contour of the 1− σ and 2− σ confidence levels from the combination Hz + Pantheon for the model
parameters α, β, m, and n.

from 0.55 to 0.95, which is consistent with the analysis
done in references [41, 42]. The present value of the de-
celeration parameter is q0 = −0.52+0.6

−0.8, q0 = −0.77+0.3
−0.3,

q0 = −0.78+0.05
−0.05 and q0 = −1.1+0.08

−0.08 corresponding
to the model parameters constrained by the Hubble,
Pantheon, Hz + Pantheon and BAO + Hz + Pantheon
datasets, respectively [43–45]. It clearly shows the late-
time cosmic acceleration of the universe and the decel-
eration expansion in the past.

Hubble

Pantheon

Hz+Pantheon

BAO+Hz+Pantheon

0 1 2 3 4

-1.0

-0.5

0.0

0.5

1.0

z

q

FIG. 7: The evolution of the deceleration parameter q
versus redshift z for the constrained values of model pa-
rameters.
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1.00

0.98

m

4.98

5.00

5.02

= 1.07574 ± 0.00049

4.98 5.00 5.02

= 5.0003 ± 0.0098

1.02 1.00 0.98
m

m = 1.008 ± 0.010

1.88 1.90 1.92 1.94
n

n = 1.910 ± 0.010

FIG. 4: Contour of the 1− σ and 2− σ confidence levels from the combination BAO + Hz + Pantheon for the model
parameters α, β, m, and n.

Hubble

Pantheon

Hz+Pantheon

BAO+Hz+Pantheon

0 1 2 3 4 5 6

0

50

100

150

z

ρ
/3
H
0
2

FIG. 5: The evolution of the density parameter ρ vs
redshift z for the constrained values of model

parameters.

Hubble

Pantheon

Hz+Pantheon

BAO+Hz+Pantheon

0 1 2 3 4
-10

-5

0

5

10

15

z

p

FIG. 6: The evolution of the pressure p versus redshift z
for the constrained values of model parameters.
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Hubble

Pantheon

Hz+Pantheon

BAO+Hz+Pantheon

0 1 2 3 4

-2.0

-1.5

-1.0

-0.5

0.0

0.5

z

ω

FIG. 8: The evolution of the effective equation of state
parameter ω versus redshift z for the constrained values
of model parameters.

By fitting the model to the observational data, we find
the present value of the EoS parameter corresponding
to the constrained values of the model parameters as
ω0 = −1.4+0.98

−0.98, ω0 = −1.21+0.94
−0.94, ω0 = −1.0006+0.0099

−0.0099
and ω0 = −1.008+0.01

−0.01, respectively [29, 46–48]. The evo-
lution of ω is plotted in figure 8. We see that ω < 0 and
crosses the -1 barrier in the redshift range 0.2− 0.4. We
have demonstrated that the EoS parameter ω evolves
from the quintessence region (ω > −1) to the phan-
tom regime (ω < −1) [49]. At low redshift, this evo-
lution of the dark energy parameter of EoS favors the
various observational data sets [50, 51]. It is fascinat-
ing that the phantom phase is twice as probable than
the quintessence phase. Furthermore, the cosmologi-
cal dynamics of the universe with such a phantom en-
ergy component possess many exciting features [52].
Detailed analyses of the Lagrangians describing phan-
tom energy reveal that in some cases, the universe with
phantom energy ends in a ”big rip,” whereas in others, it
approaches the de Sitter expansion asymptotically [53].
This is not a generic feature of the scenario but rather the
consequence of the CPL parametrization. It is clear that
the CPL parameterization is in good agreement with
ΛCDM model for Pantheon samples. Another interest-
ing point is the uncertainties associated with the value of
ω vary according to the deviations from the ΛCDM. An-
other interesting thing is H0 tension. Several attempts
to resolve this tension with new physics have relied on
extended cosmological models. According to the refer-
ences [54, 55], a phantom-like component with an effec-
tive equation of state ω ≈ −1.29 can solve the current
tension between the Planck data set and other priors in
an extended ΛCDM scenario. We observed that our ob-
tained model lies in the Phantom phase with the equa-
tion of state −1.0006 ≤ ω ≤ −1.4. As a result, our ob-
tained model may be able to alleviate some tension at

the present point.

VI. CONCLUSION

This section will discuss the results obtained in
the previous sections for the model developed in
the Weyl-type f (Q, T) gravity. The mystery of dark
energy makes it highly implausible that the universe’s
expansion is actually accelerating. Although vacuum
quantum energy can explain this dynamical effect via
the cosmological constant in GR, the aforementioned
significant and persistent problems with Λ urge alter-
native explanations.

In the present work, we have considered a newly pro-
posed Weyl-type f (Q, T) gravity, as an alternative and
effective modified theory of gravity. In the framework
of the proper Weyl geometry, the scalar non-metricity
Q is wholly determined by the magnitude of the Weyl
vector wλ. We used the linear combination of the non-
metricity Q and the trace T of the energy-momentum
tensor, i.e., f (Q, T) = αQ + β

6κ2 T, where α and β are
constants.

In section III, we used the widely used
Chevallier-Polarski-Linder (CPL) parametrization
ω(z) = ω0 + ωa

(
z

1+z

)
, where ω0 and ωa are constants

to reconstruct the effective equation of state. The CPL
parametrization is unaffected by any prior assumptions
about the nature of dark energy. Further, we confronted
the Hubble parameter with the latest observational
datasets, namely the Hubble, Pantheon, and BAO
datasets to constrain the model parameters α, β, ω0 = m
and ωa = n in table I. We have obtained the best-fit
values of the model parameters and 1 − σ and 2 − σ

confidence regions in figures. 2, 3 and 4.

The probability of CPL parametrization in the non-
phantom regime is less than in the phantom regime.
This undeniably indicates the strong tendency of obser-
vational data sets toward dark energy crossing a phan-
tom divide. It is noted that our model lies in a phantom
phase with the equation of state −1.0006 ≤ ω ≤ −1.4.
The EoS parameter evolves from the quintessence re-
gion to the phantom regime. It is clear that the con-
structed model allows for a wide range of ω values.
In the course of the universe’s evolution, the decelera-
tion parameter causes a dynamic change from deceler-
ation to acceleration. Moreover, we obtained a decel-
eration parameter in case of BAO + Hz + Pantheon as
q0 = −1.1+0.08

−0.08 which deviates from ΛCDM at 1 − σ
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level. As a result, the phantom cosmology may be ca-
pable of composing the underlying mechanism for dark
energy. According to the references [54, 55], a phantom-
like component with an effective equation of state ω ≈
−1.29 can solve the current tension between the Planck
data set and other priors in an extended ΛCDM sce-
nario. We observed that our obtained model of f (Q, T)
also lies in the phantom phase with the equation of state
−1.0006 ≤ ω ≤ −1.4. As a result, our obtained model
may be able to alleviate some tension at the present
point. The difference between the values and behav-
iors of the deceleration and equation of state parame-
ters from the ΛCDM model points to a new dark energy
alternative. The f (Q, T) theory could provide a promis-
ing explanation for the accelerated expansion of the uni-
verse and new cosmic findings.
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