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Miguel Zumalacárreguic,e

aInstituto de F́ısica Fundamental, Consejo Superior de Investigaciones Cient́ıficas, c/. Ser-
rano 121, E–28006, Madrid, Spain
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Abstract. The possibility of linking inflation and late cosmic accelerated expansion using
the α-attractor models has received increasing attention due to their physical motivation. In
the early universe, α-attractors provide an inflationary mechanism compatible with Planck
satellite CMB observations and predictive for future gravitational wave CMB modes. Addi-
tionally α-attractors can be written as quintessence models with a potential that connects a
power law regime with a plateau or uplifted exponential, allowing a late cosmic accelerated
expansion that can mimic behavior near a cosmological constant. In this paper we study
a generalized dark energy α-attractor model. We thoroughly investigate its phenomenol-
ogy, including the role of all model parameters and the possibility of large-scale tachyonic
instability clustering. We verify the relation that 1 + w ∼ 1/α (while the gravitational
wave power r ∼ α) so these models predict that a signature should appear in either the
primordial B-modes or in late time deviation from a cosmological constant. We constrain the
model parameters with current datasets, including the cosmic microwave background (Planck
2015 angular power spectrum, polarization and lensing), baryon acoustic oscillations (BOSS
DR12) and supernovae (Pantheon compressed). Our results show that expansion histories
close to a cosmological constant exist in large regions of the parameter space, not requiring
a fine-tuning of the parameters or initial conditions.
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1 Introduction

In the last few years, different inflationary models were realized to yield similar values for the
primordial scalar perturbation ratio, ns, and the gravitational wave tensor to scalar ratio, r,
for a wide range of inflation potentials. These models predict that for N e-folds of inflation,
up to leading order [1],

ns = 1− 2N−1 and r = 12αN−2 , (1.1)

being compatible with WMAP [2] and Planck [3] cosmic microwave background (CMB)
observations. The reason why all of them have similar predictions is a second order pole in
the kinetic coefficient of the Einstein frame Lagrangian; i.e. with no coupling to the Ricci
scalar and a non-canonical kinetic coefficient for the scalar [1]:

L =
√−g

[

1

2
M2
PR− α

(1− ϕ2/6)2
1

2
(∂ϕ)2 − αf2

(

ϕ√
6

)]

, (1.2)

whereMP is the Planck mass, α is a parameter and αf2 is the potential function dependent on
the field ϕ which is measured in MP units. This Lagrangian is obtained from an inflationary
multifield Lagrangian with a locally conformal transformation symmetry, once the extra
degree of freedom associated to this symmetry is gauge fixed and the potential function f is
required to be real [4].

The field redefinition φ =
√
6α arctanh(ϕ/

√
6) makes the scalar field’s kinetic coefficient

canonical, allowing to write the theory as a quintessence model

L =
√−g

[

1

2
M2
PR− 1

2
(∂φ)2 − αf2(x)

]

, (1.3)

where x = tanh(φ/
√
6α). Now, the field space is expanded in the connected region of ϕ since

this transformation pushes the limits of the original field, ϕ ∈ (−
√
6,
√
6), towards ±∞ in

the transformed field, φ ∈ (−∞,∞).
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In the dark energy context, α-attractors have been gaining attention due to their pos-
sibility for linking both inflationary and present accelerated expansions. In the same way as
their predictions in inflation are in good agreement with the latest cosmological observations,
as quintessence models they can also produce a late accelerated expansion compatible with
present measurements. Their potential connects power law scalar field potentials near the
minimum x = 0 to a cosmological constant, in the form of a plateau as x → ∞. A series of
works based on this idea have appeared recently. The connection of both cosmological epochs
is studied in Ref. [5], where a particular potential with two plateau regimes allows both in-
flation and a near cosmological constant expansion. This work was extended in Ref. [6] by
computing the reheating era and setting constraints on the model parameter space (see also
[7, 8]).

Concentrating on late time acceleration and the α-attractors as dark energy, Ref. [9]
related these models to the thawing and freezing classes of dark energy and generalized the
two most common forms of the potential to a unified form, which we will use here. Other
works have also examined the dark energy applications, e.g. [10, 11].

Other investigations include the use of α-attractors for dark matter [12], and the relation
of α-attractors with f(R) gravity, extending the original connection of α-attractors with
Starobinsky R2 gravity [13], e.g. [14, 15].

We focus here on testing the α-attractor dark energy model against different cosmolog-
ical observations and physical understanding of the constraints on the parameter space. We
use the generalized potential of Ref. [9] and allow the initial field value to vary, since fixing it
restricts the phenomenology and can bias the results. Furthermore, we will thoroughly inves-
tigate the dependence of the model on each parameter and its initial value conditions showing
that cosmological constant-like solutions are generic and do not require any fine-tuning of
the model parameters and initial conditions. In addition, we will investigate the tachyonic
instabilities noted in Ref. [9] to see if there is any signatures of interesting phenomenology,
such as clustering dark energy, and if they can cause an observable imprint.

In Section 2, we briefly review the model proposed in Ref. [9] and carefully examine the
theory dependence on each parameter (Sections 2.1 and 2.2). We investigate in Section 2.3
how the observables change with the model parameters, including a quantitative assessment
of the tachyonic instability phenomenon in terms of an observable signature. In Section 3
the model is confronted against observational data from CMB Planck 2015 [16], baryon
acoustic oscillation (BAO) DR12 [17], and the supernove Type Ia distances in terms of
binned E(z) = H(z)/H0 [18]. Section 3.1 describes these datasets and why we chose them,
while in section 3.2 we present the priors to be used in the Bayesian study of the next two
subsections. In section 3.3, we compare the Starobinsky form of the potential with ΛCDM,
leaving just one parameter (the scaling α itself) free in order to assess if this form, and the
Starobinsky value α = 1 is favored. In Section 3.4 we then free every parameter to obtain
the full α-attractor generalized model posterior distribution. We conclude in Section 4.

2 The model

We will work on the generalized α-attractor potential from [9]. In the language of equation
1.3, V (φ) = αf2(x) is the field potential and, in this case, is given by

V (x) = αc2
xp

(1 + x)2n
= αc22−2n(1− y)p(1 + y)2n−p , (2.1)
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Figure 1: Generalized α-attractor potential for different values of n, fixing p = 2. For n > 2,
there is a maximum. The maximum strengthens with n if the potential is normalized to its
asymptotic amplitude.

with c, p, n constant parameters and y ≡ e−2φ/
√
6α. The case α = 1, n = 1, p = 2 corresponds

to the Starobinsky model [19–21], working in natural units, i.e. reduced Planck massMP = 1
and speed of light, c = 1. We will work on a flat geometry motivated by inflation. Figure 1
shows the potential for different values of n using the variable ψ ≡ φ/

√
α, the scaled scalar

field, since it is actually what determines the value of V (x). Note how n controls the transition
from the flat plateau to the monomial-shaped minimum.

Let us briefly summarize the potential properties before studying thoroughly the de-
pendence on each parameter. The potential interpolates from a power law potential with
index p to a cosmological constant fixed value, basically an uplifted (negative) exponential
potential, for positive values of the field:

V (|ψ| ≪
√
6) ≈ αc26−p/2 ψp , (2.2)

V (ψ ≫
√
6) ≈ αc2 2−2n

[

1− 2(p− n) e−2ψ/
√
6
]

−−−−→
ψ→∞

αc2

22n
. (2.3)

We see that the amount of dark energy in the Universe will be determined by the potential
amplitude, αc2, whose characteristic scale will depend on n as ultimate responsible of the
height of the plateau — for a model with p = 2 , α = 1 and n = 0, 3, 5, the amplitude
αc2 ∼ 10−7, 10−6, 10−5Mpc−2, respectively. Note there is no true cosmological constant:
the potential is zero at the minimum.

The α-attractor potential has a maximum at xmax = p/(2n− p) given n > p [9]. Fields
starting (from rest) at x > xmax will roll towards infinity and the asymptotic constant
potential, i.e. a de Sitter solution, while asymptotically freezing. On the other hand, for
x < xmax the field would roll toward the origin along the plateau and eventually (possibly
in the future) down toward the zero minimum. However, if it rolls too far off the plateau
the kinetic energy rises, forcing the equation of state w far from −1 and it would not be a
viable dark energy model today. Therefore we are not concerned with fields rolling past the
minimum and so only need to deal with positive field values. Fields with x < xmax basically
act like thawing models; they depart from a cosmological constant like behavior.

So far we have talked about the known properties of this model, already studied in Ref.
[9]. Now, we will start our detailed study on its dependence on each parameter. We will
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vary α, n and p. The parameter c is fixed by the closure relation 1 =
∑

iΩi, where Ωi is
the fractional energy density, i.e. the ratio of the energy density of component i (e.g. matter,
dark energy, radiation) to the critical density. To solve the field evolution

φ̈+ 3Hφ̇+ Vφ = 0 , (2.4)

where Vφ = dV/dφ, we also need to specify the initial value of the field φini and its velocity
φ̇ini. For a field starting on the nearly flat plateau (and if it starts off the plateau it is not
using the α-attractor characteristics) the Hubble friction will freeze the field at early times
(we start at zini = 1014 in the radiation era) and so we take φ̇ini = 0. Thus φini is the only
further parameter. To solve the coupled differential equations that govern the cosmological
history we use the hi class Boltzmann code1 [22, 23].

2.1 Dependence on the scaling of the potential (α)

We start our study on the effect of the different parameters varying the simplest one: the
scaling α. This has close connections with the underlying particle physics (e.g. supergravity or
conformal field theory model). Note that α scales the field value and the potential amplitude,
but cannot be removed by a field redefinition since it does not appear in the kinetic terms
φ̇2/2.

Generally, larger values of α bring the model closer to ΛCDM, as the potential dominates
more over the kinetic energy and the plateau is stretched out longer for a given value of ψ.
We can make this more quantitative by employing the flow formalism for a thawing field [24],

1 + w =
4

27

(

Vφ
V

)2

ΩDE +O(V,φφ) (2.5)

Since for fields on the plateau, Vφ/V ∼ 1/
√
α, then 1 + w ∼ 1/α. We have numerically

checked this relation holds until quite recent times and plotted (1 + w0)α in Figure 2. Note
that in the quintessential inflation model of Ref. [7] they also find 1 + w ∼ 1/α, while the
CMB tensor to scalar ratio r ∼ α so a physics signature is present either in r (if α is large)
or w (if α is small). In addition, we can see that for thawing models the field evolution
(ψini − ψ0) ∼ 1/α, where ψ0 is the value today. This relation comes from

(φ0 − φini) =

∫ 0

ini
dt φ̇ ≈

∫ 0

ini
dt

√

ρDE(1 + w) . (2.6)

Since the dark energy density changes little for thawing models, one can see that
√
α(ψini −

ψ0) ∼
√
1 + w0 [25]. Effectively, Figure 2 shows that for viable models (those with w0 < −0.8)

these relations hold quite well.
Note the initial value of the field plays an important role, with fields with high initial

values mimicking the results of a cosmological constant. That is, w0 ≈ −1 and ψini−ψ0 ≈ 0.
This is seen in Figure 2. Note that when p > n (here p = 2, n = 1), the potential does not
have a maximum and the field will always roll down towards ψ = 0. However, sufficiently
large initial fields stay on the plateau nearly frozen for the whole evolution history of the
Universe. For initial values of the field closer to ψ = 0, the parameter α determines when the
field starts rolling down and, as a consequence, how fast it moves and how far the equation of

1http://hiclass-code.net
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Figure 2: The dynamical quantities (1 + w0)α and (ψini − ψ0)α are nearly independent of
α for values of ψini that deliver 1 + w0 < −0.8 (marked by black dots). Other parameters
are fixed to p = 2 and n = 1, with c fixed by the density closure relation.

state parameter is from the cosmological constant solution. Larger α’s slow the field down,
keeping it closer to cosmological constant behavior.

The case with p < n has a maximum that causes a different phenomenology depending
on the relative size of ψini and ψmax so that any field starting at high values (ψini > ψmax)
would roll towards the de Sitter attractor. This case will be studied in detail in Section 2.2
and is shown in Figure 4.

Finally, the potential amplitude αc2, responsible for the amount of dark energy in the
Universe, which is kept fixed, needs to be adjusted to compensate the loss that comes from
the evolving part of the potential, V/αc2. This is shown in the rightmost panel of Figure 2.
It is fairly insensitive to ψini, especially for large ψini where the field stays nearly frozen. As
Eq. (2.3) shows, once the amplitude is accounted for, the remaining form of the potential is
insensitive to α, so the curves all lie together.

Thus, models will be close to ΛCDM if they either have large α (recall 1 + w0 ∼ 1/α)
or large ψini. Since allowing them to get larger and larger will give the same physical results,
in Section 3.2 we pay careful attention to priors for the Monte Carlo analysis.

2.2 Dependence on the shape of the potential (p and n)

In this section we will study how the exponents, p and n, change the field evolution history.
We treat them together because, leaving aside the low and high ψ regimes, where the po-
tential is governed by, respectively, p and n separately (Equations 2.3 and 2.2), in the most
interesting, intermediate ψ values it is their relative size that matters most.

For completeness, recall that p governs the low ψ regime (equation 2.2) as V ∝ ψp, and
the slope of the potential (for a given n) in the transition between the plateau and the power
law regime. The field evolution will be faster and earlier with larger p. Nevertheless, this
prescription is only valid in the low-ψ regime and in the case p > n. The case with n > p,
which will be analyzed later, is different because of the appearance of a maximum, whose size,
position and steepness is determined by their relative size. The only different case is p = 0
because it is the only configuration that exclusively allows the field to grow towards the de
Sitter attractor, since the potential is monotonically decreasing. This analysis is confirmed
by numerical solution of the evolution equations, as seen for α = 1 and n = 1, in Figure 3.

The exponent n, instead, fixes the asymptotic behavior of V (ψ) as V → αc22−2n (equa-
tion 2.3) having a direct impact on the potential amplitude. This means that for a fixed
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Figure 3: The values of w0, ψ0/ψini − 1 and αc2 are plotted vs ψini for various values of
p, for a fiducial model with α = 1 and n = 1. Except for p = 0, for which the potential
(equation 2.1) is monotonically decreasing, the exponent p determines the low-ψ shape of the
potential. For p ≥ n, the steepness grows with p, making the field evolve faster (and earlier).
The potential amplitude αc2 varies to compensate for the field evolution in order to preserve
the same present dark energy density. Note that viable models with w0 < −0.8 need small p
or high ψini.

amount of present dark energy density, the value of αc2 must be modified in order to correct
the deficit caused by n; thus it shifts up or down as seen in Figure 4.

We can also use figure 4 to study the interdependence of both exponents in the interme-
diate ψ values since p = 2 and n ranges from 0 to 5 so that there are solutions with (p < n)
and without (p > n) a potential maximum. In the later case, the potential plateau is slightly
inclined towards V = 0 and the transition regime that connects it with the power law regime
is steeper as p − n grows. This expression also governs the size, slope and position of the
maximum when n > p. On the one hand, its position is given by xmax = p/(2n− p), so that
increasing n shifts the potential maximum toward ψ = 0. Quantitatively, for the studied
cases with n = 3, 4, 5, the maximum is located at ψmax = 1.35, 0.85, 0.63 . On the other
hand, fixing the dark energy content makes the peak higher and steeper: for n = 3, 4, 5
the ratio of the potential maximum to its asymptotic value is Vmax/V∞ = 1.40, 2.84, 6.87,
respectively.

Thus, fields starting at ψini > ψmax roll down toward ∞ with a velocity dependent
on its proximity to the maximum. While fields with ψini ≫ ψmax remains almost frozen
(w0 ∼ −1) on the plateau, those with ψini ∼ ψ∗ (ψ∗ is the inflection point at ψ > ψmax),
where the slope is maximal, speed up, departing from the cosmological constant solution
(w0 grows). For ψini closer to ψmax the field feels a weaker force and its evolution is slower
(w0 decreases), having as a limit case, ψini = ψmax, where the field remains frozen for the
whole evolution history of the Universe (w = −1). Starting at ψini < ψmax the field rolls
down again, but this time toward ψ = 0. The closer to the minimum it starts, the faster it
evolves (w0 grows quickly). Note that the shift in the maximum reduces the available space
at ψini < ψmax as n grows, e.g. giving the shift of the minimum to the left in Figure 4.

2.3 Model Predictions and Observables

Now we will focus on the phenomenological predictions of the model given by equation 2.1.
Besides the effects on the background expansion, in Ref. [9] it was suggested that, as a
consequence of having m2 = V ′′ < 0 near the edge of the plateau, one might find some
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Figure 4: As Figure 3 but varying with respect to n, with a fiducial model α = 1 and
p = 2. All curves end at the lowest value that gives ΩDE ∼ 0.7 today. The relative size
of n respect to p changes the potential slope on the plateau: the closer they are, the less
pronounced the slope is. This means that as n goes to p = 2, the field rolls down later and
slower. The potential amplitude αc2 varies to compensate for the amplitude reduction 2−2n

in Equation 2.3 in order to preserve the same present dark energy density. Note that viable
models with w0 < −0.8 need n ≈ p or high ψini.

interesting phenomenology, such as clustering dark energy. The field perturbations δφk in
momentum space becomes [26]

δφ̈k + 3Hδφ̇k +

(

k2

a2
−m2

)

δφk = 4φ̇kΦ̇− 2V,φΦ , (2.7)

in standard Newtonian gauge notation, where the metric perturbations Φ = Ψ.
Since perturbations start growing significantly at horizon entering, we will just consider

k > H modes. In addition, equation 2.7 tell us that the mass term must be |m2| & k2/a2

in order to change the perturbation growth, bounding the scales sensitive to the imaginary
mass to

|m2|
H2

&
k2

a2H2
> 1 . (2.8)

Given that the field starts evolving at late times (z ∼ O(1)−O(10)) and that the field’s mass
will not be extremely high, the affected wavenumber will be k ≈ 10−3Mpc−1, i.e. much larger
scales than where precision clustering data lies. In addition, late time evolution implies that
perturbations will not have much time to grow.

As a consequence, observing some effect requires a sufficiently large negative mass
squared. We have computed the present value of the mass squared term for each model
studied in the previous section, and plotted it in figure 5. One can read from it that mod-
els with exponents n < p have only two regions, separated by the inflection point in the
transition zone, so that m2 < 0 is expected for high ψini and m2 > 0 at low ψini. On the
contrary, as n > p implies the appearance of a maximum, the region with m2 < 0 is bounded
by the inflection points. It is important to remark that, given that n makes the maximum
steeper as it grows, high n can give rise to sufficiently negative m2, which, in theory, could be
potentially noticeable. Nevertheless, for the sensible models studied here, with no extreme
exponents, and compatible with the dark energy density observations, which in the end fixes
the potential amplitude, we have found that all models have a similar perturbation growth,
just varying a little bit close to the present.
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Figure 5: The mass squared m2/H2
0 can go negative, as is standard for hilltop models,

but general not deeply (relative to H2) or for long. When n < p, there are two regions,
delimited by the inflection point in the transition between the power law regime and the
plateau, where the mass squared is positive or negative, respectively. On the contrary, if
n > p, the appearance of a maximum means that m2 < 0 is bounded around it by the two
inflection points. As commented in section 2.2, n has a great impact on the relative size of
the maximum respect to the plateau, making it also the parameter with greatest impact on
m2.
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Figure 6: Redshift evolution is shown of the mass squared relative to the k2/a2 term (left),
the normalized field perturbation (middle), and the normalized density perturbation for the
model α = 1, ψini = 0.542, p = 2 and n = 5, the extreme model with m2

0/H
2
0 ≈ −20.

The vertical dashed line marks the redshift when |m2|/H2 = 1 and the horizontal one shows
|δρk/ρ| = 1. k is in units of Mpc−1. Recall that the mode with k = 10−4Mpc−1 has not yet
entered in the horizon. Dark energy density perturbation modes are negligible with respect to
its background value during almost the whole evolution history even for this extreme model.

Figure 6 illustrates that even the extreme model with with m2/H2
0 ∼ −20 (that indeed

has unviable equation of state w(a) ≈ −0.74 − 1.9(1 − a)) shows that perturbations have
little effect on the dark energy density or field value for the cosmic history up to the present.

Similarly, the growth function of matter perturbations (figure 7) does not show a sig-
nificant change with respect to ΛCDM. Since the dark energy equation of state only deviates
appreciably from −1 at low redshift, the growth factor is close to that of ΛCDM until recently.
Only those models that roll significantly, falling off the plateau show more than percent level
deviations.

In those cases, the matter power spectrum as shown in figure 8 is lowered as well,

– 8 –



0 1 2 3 4 5
z

3.0

2.5

2.0

1.5

1.0

0.5

0.0
D

/D
CD

M
 [%

]

= 1
= 5
= 10
= 10000
CDM

0 1 2 3 4 5
z

15.0

12.5

10.0

7.5

5.0

2.5

0.0

D
/D

CD
M
 [%

]

p= 0
p= 1
p= 2
p= 3

CDM

0 1 2 3 4 5
z

8

6

4

2

0

D
/D

CD
M
 [%

]

n= 0
n= 1
n= 2
n= 3
n= 4
n= 5

CDM

Figure 7: The matter density perturbation growth factorD is shown as the relative deviation
from ΛCDM for different models varying α, p and n, using α = 1, p = 2, n = 1 and ψini = 1.5
as the base model. The more the field moves, the more thawing, allowing dark energy to
dominate earlier, suppressing matter growth. By contrast, the case with n = 3 has the field
frozen for ψini > 1 and so w0 ≈ −1 (see the left panel of figure 4). Higher ψini would freeze
most models in the plateau, decreasing deviations from ΛCDM.

yielding relative differences up to a few percent. Similarly the CMB temperature angular
power spectrum (figure 9) departs from ΛCDM. Such deviations can be compared with
experimental data letting us rule some models out. In particular, the larger differences at
high multipoles are due to the geometric shift in the distance to recombination, anticipating
that CMB and BAO galaxy distances will be important to take into account.

Distances are integrals over the Hubble parameter, i.e.

DA =
1

1 + z

∫ z

0

dz′

H(z′)
, (2.9)

for the flat universe we consider. While the Hubble parameter should have its largest devi-
ation from from ΛCDM at low redshift, as an integral the distance has increasing deviation
with redshift. These quantities are shown in figure 10 and figure 11. Thus we expect that
both z < 3 measures, e.g. from supernovae and BAO, and high redshift measures from the
CMB, will play important roles in constraints.

3 Observational constraints

In this section we will compare the α-attractor model (equation 2.1) with recent observations.
In section 3.1 we will explain the choice of datasets based on the knowledge acquired in
previous sections. Then, in section 3.2, we will impose some appropriate and sensible priors
which will be needed in the study of the posterior distributions of two iconic cases: that with
the exponents of the Starobinsky model (p = 2, n = 1) but with the scaling allowed to be
free, and that with all the parameters freed. We will see that a large portion of the parameter
space is ruled out, favoring models close to ΛCDM.

3.1 Data sets

We will use the Planck 2015 observations [16], BAO DR12 [17] and the measurements of
E(z) = H(z)/H0, obtained using the latest SN Ia at z > 1.5 [18, 27]. The reason we choose
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from ΛCDM for different models varying α, p and n, using α = 1, p = 2, n = 1 and ψini = 1.5
as the base model. Apart from having different amplitude for low l, the spectrum is shifted
in angular scale with respect to that of ΛCDM.

these observations is that Planck sets high redshift constraints, although it also take into
account the lower redshift effects through integration, BAO does at low redshift, where we
have found the largest differences, and E(z) imposes direct constraints in the expansion rate
up to z = 1.5.

In general, CMB observations are used because CMB is affected by the expansion rate,
the matter components and inflationary conditions (a good summary of reasons is found
in section 2 of [16]), allowing the constriction of the cosmological parameters. Indeed, for
models close to ΛCDM it allows precise evaluation of them. Furthermore, since deviations
from ΛCDM on the power spectrum rise up to few percents (figures 8 and 9), Planck and
BAO likelihoods could be sensitive to them. BAO set low redshift constraints on H and
DM = (1 + z)DA, where the models’ greatest differences with respect to ΛCDM are found.
We have chosen the latest released dataset, BAO DR12 [17], which covers z . 0.7. We have
not used Lyman-α BAO measurements, even though they go much deeper in redshift, because
they are in tension with Planck and low redshift BAO measurements [28, 29]. For instance,
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models varying α, p and n, using α = 1, p = 2, n = 1 and ψini = 1.5 as the base model.

in ΛCDM the discrepancy is approximately 2σ, and our model is phenomenologically too
close to ΛCDM to avoid the tension. Lastly, further control on the expansion rate is given by
the estimates of E(z) up to z = 1.5 using the SN Ia distance observations at z > 1.5 [18, 27].

We used the full temperature, polarization and lensing power spectra from Planck
2015 [16]. The main signatures of the model are changes on the cosmological background (at
least for models close to a cosmological constant) which can be tested by the Planck com-
pressed likelihood (Table 4 in Ref. [16]). Including the full Planck data allows us to explore
potential degeneracies with other cosmological parameters (As, ns, τreio, · · · ) and take into
account effects in the perturbation growth (i.e. ISW effect). The difference between the full
and compress Planck likelihoods is negligible for most of the common parameters, with the
largest deviation below 1σ for H0 and Ωcdmh

2, where h = H0/(100Mpc−1km s−1).
BAO DR12 measurements [17] are independent of Planck’s and are in good agreement

with them. Since the most deviating cases are ruled out from the acoustic scale, we can
just consider the background quantities and use the consensus BAO-only values suggested
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in the paper. We have taken them from its electronic archive2. Let us note that the actual
variables that BAO can measure are DM (z)/rd and H(z)rd, which take into account changes
in the cosmological parameters and in the pre-recombination energy density era. Since rd is
the sound horizon at drag epoch (zd), rd =

∫∞
zd
dz cs(z)/H(z), with cs the speed of sound,

and our models are nearly identical to ΛCDM at high redshift, the BAO data informs us of
deviations in DM = (1 + z)DA, i.e. the comoving distance and H.

Finally, E(z) constraints [18] compress the information of a thousand SN Ia distances
from the unreleased Pantheon dataset and Hubble Space Telescope, including 15 new dis-
covered supernova at redshift z > 1.5. Their measurements are thought to be precise and
unbiased estimates of E(z) as long as the expansion rate does not vary much nor have local-
ized features between the specific chosen redshifts, as for our model. Their only assumptions
were flatness, not mandatory but convenient, and continuity and smoothness of E(z) in order
to parametrize its inverse by its values at different specific redshifts. They used those points
to interpolate and recover the whole function, necessary to compute the luminosity distance
(equation 2.9), which they could compare against their selection of well-calibrated SN data.

3.2 MCMC setup

The posterior distribution of the α-attractor model (equation 2.1) which will be shown in
next section has been obtained by sampling the parameter space with a Markov chain Monte
Carlo (MCMC) method. In particular, we made use of MontePython [30] and CosmoHammer
[31] which embeds emcee [32], an implementation of the Goodman and Weare affine invariant
ensemble sampler [33]. We chose this algorithm instead of the traditional Metropolis-Hasting
to avoid acceptance rate and convergence problems since affine invariant sampling methods
are uniformly effective over all the convex bodies with same space dimension and regardless of
their shape [33]. In addition, CosmoHammer parallelization allows much faster computations.

The priors are summarized in table 1. Since the parameters for viable models do not
vary over much more than an order of magnitude, and no particular values are preferred,
a uniform prior is reasonable. This matches well with the MontePython implementation of
CosmoHammer which does not allow informative or unbounded priors. As we have seen in
section 2, sufficiently high values of the scaling α or the initial field ψini all yield ΛCDM-like
universes. Also, the exponents, p and n, just under the condition of being close to each other,
no matter how high they were, yield more ΛCDM-like results provided that the field had not
started rolling off the plateau too early, i.e. the viable set of models. There is therefore no
point in allowing a large range of such high values, which all give essentially ΛCDM. Therefore
we bound their space to prevent walkers3 wasting time in the infinite ΛCDM regime, although
we set the bounds large enough to be able to explore all the interesting phenomenology of the
model. Finally, in order to accelerate the convergence, we fixed c with the closure relation
1 =

∑

iΩi, using a bijection method.

3.3 Starobinsky form vs ΛCDM

Before studying the full general model posterior distribution, we want to focus on the more
constrained case with exponents p = 2 and n = 1, the one which reduces to the Starobinsky
potential when the scaling α = 1. Increasing the parameter space in stages will let us

2https://data.sdss.org/sas/dr12/boss/papers/clustering/ALAM_ET_AL_2016_consensus_and_

individual_Gaussian_constraints.tar.gz
3A walker is the equivalent of a chain in a Metropolis-Hasting algorithm, in Goodman-Weare terminology.

Note their dynamics are different, though.
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Parameter Range

H0 [40, 90]
Ωbh

2 [0, 0.04]
Ωcdmh

2 [0, 0.3]

φ̇ini {0}
ψini [0, 3.5]
α [0, 10]
p [0, 10]
n [0, 10]

c Fixed by 1 =
∑

iΩi

Table 1: Priors used in the MCMC posterior inference. H0 units are [km s−1Mpc−1] and c
is obtained by a bijection method.

understand more easily how the model behaves, letting us check our understanding of its
dependence on α and ψini. Furthermore, the scaling acts as an interpolation between the
ΛCDM (high ψini or α) and Starobinsky models (α = 1).

After studying the autocorrelation times, we decided to use 10 walkers per varied pa-
rameter, i.e. 230 walkers in total, and run 1400 iterations, from which we discarded the first
1000 as burn in. Fewer iterations would have sufficed since the slowest autocorrelation func-
tion crosses 0 around 400, but we took a conservative approach given the low time cost. To
analyze convergence we used the MontePython [30] internal routine which puts all chains
together, ordered by iteration step, splits the resulting chain in three and calculates the
Gelman-Rubin test.

The posterior distributions are shown in figure 12 while the quantitative results are in
table 2. The first thing to note is that the cosmological parameters are in good agreement
with ΛCDM Planck 2015 results [34]. This is related to the fact that our model has a preferred
ΛCDM-like regime. In fact, we see that their posterior distribution is unaffected by α and
almost any ψini. The ψini posterior distribution, however, has a lower boundary which sets
ψini > 1.27 at 95.4% confidence level. This value is altered by the parameters range choice,
as we will see in next section, and cannot be understood as a general condition. The α-ψini
figure confirms what we said in section 2.1: the lower α and ψini regime is disfavored as a
consequence of the fact that a faster evolution of the field yields, for models that match the
present dark energy density, a less negative equation of state, which is in tension with data.
On the contrary, large α and ψini freeze the field evolution getting it closer to w = −1, which
the data prefer.

The dark energy equation of state parameters w0 and wa confirm our previous comments.
Their values are close to w = −1, regardless of the particular value of α and ψini. Again, the
reason why this happens is that a large value of either one of them can give w ≈ −1 (see for
instance the α = 104 case in figure 2).

The correlation between w0 and wa follows the typical pattern of thawing fields. In
figure 13a, we have plotted the w0 − wa posterior distribution over a random sample of
2 × 104 points colored as a function of the value of the present field mass. Those models
with greatest probability follow the thawing relation wa ≈ −1.6(1 + w0) [25]. This leads
to tight constraints on wa. A more subtle effect is the correlation between the equation of
state parameters and the field mass, which makes lower mass squared field models be located
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Parameter best-fit best-fit with α = 1 95% limits

Ωcdmh
2 0.1199 0.1192 0.1187± 0.0023

H0 67.8 68.0 68.1+1.1
−1.0

102Ωbh
2 2.216 2.226 2.221+0.039

−0.040

10−9As 2.12 2.12 2.14+0.10
−0.090

ns 0.9592 0.9652 0.9644+0.0088
−0.0089

τreio 0.063 0.058 0.068+0.024
−0.023

ψini 2.61 2.82 > 1.27
α 3.78 1.00 —
107c2 1.45 5.32 < 5.5

w0 −0.998 −0.995 −1 ≤ w0 < −0.974
wa −0.0029 −0.0081 0 > wa > −0.0413

m2
0/H

2
0 −0.09 −0.28 −0.12+0.19

−0.25

χ2
min/2 5642.099 5646.458 —

Table 2: Parameter best fit values and 95% confidence limit for the p = 2, n = 1 Starobinsky
form, allowing α to vary. The α = 1 column corresponds to the pure Starobinsky model. H0

units are km s−1Mpc−1 and Mpc−2 for c2. Note that α is unbounded at 95% CL (see figure
12).

under those with higher mass squared for the same w0. Recall that negative mass squared
tends to occur for low α models, which also have greater deviations from w = −1.

The amplitude parameter c, which we have obtained by requiring 1 =
∑

iΩi, does not
vary much; basically to get Ωde,0 ∼ 1, one requires c2 . H2

0 , hence c
2 ∼ 10−7Mpc−2. This

will change once we let n vary since n affects the height of the plateau and c must compensate
any change on the potential to obtain the correct dark energy density. Finally, the present
field mass squared, m2

0/H
2
0 , is preferably negative, with 95% CL region (m2

0/H
2
0 )95%CL ∈

(−0.37, 0.07). The reason why most solutions are tachyonic is the absence of a maximum
in the potencial. In this configuration, the regime with moderate slope, where the field can
slow-roll, is found close to the plateau and has V ′′ < 0. However, the V ′′ > 0 regime is
that described by a power law and, consequently, the field is quickly speed up. In spite of
tachyonic solutions being natural they are not large enough as to play an observable role,
given the small effect of even m2/H2

0 ≈ −20 in section 2.3.
Before moving to full model we note that the best-fit Starobinsky form model has

α = 3.78, well inside the 68% confidence level region, in contrast to the Starobinsky model
(α = 1), which lies on the 95% CL region. In fact, although the χ2

min difference is relatively
small, for one more parameter, the Akaike Information Criterion [35], AIC = χ2 +2k, where
k is the number of model parameters, tells us that the Starobinsky case is disfavored over
the general one (AICBF −AICα=1 ,BF = −6.7). The Shchwartz information criterion (BIC =
χ2 + k log(N), where N is the number of data degrees of freedom) [36], however, is more
lenient over the α = 1 case as it takes into account the size of the data sample. In this case,
|∆BIC| ∼ 10−1, which does not select any model as preferred. It is important to remark
that, in both cases, one finds that data prefers ΛCDM-like cosmologies, described by their
equations of state which are almost w = −1 (w0 = 0.998 , 0.995, respectively).
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Figure 12: Posterior distributions for the Starobinsky form allowing α to vary, with p = 2,
n = 1. The contours show the 68.3%, 95.5%, and 99.7% confidence levels, with darker colors
for more probable results. The quantitative results are summarized in table 2.

3.4 Analysis of the full posterior distribution

Finally, we will study the general case with free exponents p and n, as well as α. It will collect
all the dependencies we have been describing and let us find the full posterior distribution
for the dark energy model proposed by Ref. [9], an α-attractor quintessential model with
potential given by equation 2.1.

For this case the number of walkers per parameter was maintained in 10, giving a total
of 250 walkers, the sample iterations were increased to 2500, with 1000 burn in iterations to
be discarded, and 1500 iterations to be stored. The extra degrees of freedom had a direct
impact on convergence, making it much slower. As before, we checked the autocorrelation
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Figure 13: The w0–wa joint posterior distribution is shown for the Starobinsky form (left)
and full generalized α-attractor (right) dark energy models (equation 2.1) over a random
sample of 2 × 104 points colored depending on their present field mass. The dashed grey
diagonal line represents the usual w0−wa relation for thawing models (w0 < −0.8) described
in reference [25].

time and computed the Gelman-Rubin test with MontePython [30].
The results are written in table 3. In figure 14 we have plotted the marginalized posterior

distribution of the model parameters and the present mass field, leaving aside the cosmological
parameters because of their similarities with the results in previous section, represented in
figure 12. Note that the α− ψini plot continues to show that ψini and the kinetic coefficient
α cannot be simultaneously small. Apart from that, all the parameter subspaces tell us
something new. For example, the high exponent p disfavors the lower ψini regime. As we
said in section 2.2, higher p makes the low ψini regime steeper, making the field roll faster
and changing the expansion rate too much to match the observations. Higher n, changing
more the amplitude of the plateau, do not have as strong an effect on the ψini range, but
does allow for much lower c; note that n ∼ 5 in the middle of its range can suppress c2 by a
factor 2−2n ∼ 1000.

However, we see that actually it is the difference p− n that mostly matters (see equa-
tion 2.3 and section 2.2), with a strong correlation in the p vs n plane. The mean posterior,
with the 95.4% CL values, is p− n = −0.4+6.4

−5.2. Of course, higher values of ψini and α make
the constraint on p−n weaker as they freeze the field so there is less sensitivity to the shape
of the potential.

The m2
0/H

2
0 distribution is also slightly broader, thanks to the possibility of having a

maximum which bounds the region where V ′′ < 0, and makes V ′′ > 0 at the plateau. As we
know that slow-roll solutions are mainly placed in those regimes, the 95% CL is symmetric
around 0, |m2

0/H
2
0 |95%CL ∼ 1. Similarly, freeing the exponents allows the w0−wa distribution

(figure 13) to expand, while continues following the thawing solution, even better than before
since allowing p ≈ n can give flatter plateaus.

It is important to note that introducing two new parameters has just slightly improved
the χ2 (χ2

full/2 = 5641.276 ≃ 5642.098 = χ2
np ,fixed/2). This makes the Akaike Information

Criterion (|∆AIC| = 2.4) prefer the simpler model with fixed exponents. The Schwartz
criterion is more strict in this case (|∆BIC| O(10)), completely rejecting the more complex
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Parameter best-fit mean ± 95% limits

Ωcdmh
2 0.1186 0.1183+0.0024

−0.0022

H0 68.3 68.2+1.0
−1.1

102Ωbh
2 2.224 2.221± 0.038

10−9As 2.15 2.14+0.10
−0.098

ns 0.9640 0.9649+0.0081
−0.0087

τreio 0.070 0.067+0.026
−0.025

ψini 1.401 > 0.955
α 8.530 —
103c2 3.44× 10−3 < 3.89
p 3.140 —
n 4.233 —

p− n −1.1 0.4+6.4
−5.2

w0 −1.000 −1 ≤ w0 < −0.951
wa −0.0006 0 > wa > −0.0789

m2
0/H

2
0 −0.19 −0.2+1.2

−1.1

− lnLmin = 5641.276

Table 3: Best fit model for the full potential 2.1. H0 units are km s−1Mpc−1 and Mpc−2 for
c2. Note that α, p and n are unbounded (see figure 14).

case. This result is a consequence of the limited phenomenology available in this model, which
is mainly described by how much and how fast the field changes, which can be controlled
by just α and ψini. Furthermore, the data prefers ΛCDM which is recovered by high α or
ψini. Indeed, the best fit model is almost indistinguishable from ΛCDM, having (w0, wa) =
(−1.000,−0.0006).

3.5 Future observational data sets

Future experiments will be able to test in more detail the expansion histories of the α-
attractors models studied in this paper that differ more subtly from the ΛCDM cosmological
constant predictions. Using BAO measurements, we will have additional empirical infor-
mation on the Hubble parameter H(z) and the angular distance determinations DA. From
SN Ia we will obtain distance luminosity determinations DL at various redshifts.

The Dark Energy Spectroscopic Instrument (DESI) will be a highly constraining BAO
experiment. DESI will use four target classes from redshift z> 0.5 to z< 4 [37]. Those include
Luminous Red Galaxies (LRGs), Emission Line Galaxies (ELGs), QSO and Lyman–alpha
QSOs. In addition to the BAO measurements, this experiment will be able to discriminate
models through growth rate of structure, with a precision comparable to that from weak
lensing, through the redshift–space–distortions (RSD) method, which requires a very good
sampling of the large scale structure. The Euclid satellite will also give highly accurate
measurements for z & 1 [38].

The WFIRST satellite will measure the expansion history of the Universe using super-
novae. WFIRST will obtain thousands of well observed SN Ia and it is possible that it will
observe SNe Ia identified by other telescopes such as the Large Synoptic Survey Telescope
(LSST) [39]. The growth of structure of the Universe will be also obtained by WFIRST.
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Figure 14: Posterior distribution for the generalized α-attractor dark energy model with
potential 2.1. The contours show the confidence levels up to 99.7% CL, with darker colors
for more probable results. The quantitative results are summarized in table 3.

These are all very powerful cosmological tools to discriminate between the candidates
studied here against other physical models of dark energy.

4 Conclusion

We have studied the α-attractor dark energy model proposed in Ref. [9], and expressed in
equation 2.1, inspired by the α-attractor class of inflationary models. It is a generalization
of the well known Starobinsky potential which correspond to the case with kinetic coefficient
α = 1 and exponents p = 2 and n = 1, with no coupling to matter since it is not obtained
from a conformal transformation but from gauge fixing the extra degree of freedom associated
to the conformal symmetry of the inflationary Lagrangian. This model is appealing because
it is able to interpolate between the two most common α-attractor forms used for inflation –
the Starobinsky model and the T-model – and also interpolate between power law potential
and ΛCDM dark energy regimes at low and high ψ, respectively. This potential also allows,
in theory, the existence of clustering dark energy due to tachyonic solutions.

We can summarize the key points of this paper in the following ideas:
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• The model is mainly described by its background evolution, which depends on the
parameters in the following way:

– At viably high ψ, it is in the thawing class, with the field excursion related to the
equation of state and the α parameter as ∆ψ ∼

√
1 + w0/

√
α and 1 + w0 ∼ 1/α

so ∆ψ ∼ 1/α.

– If p > n, the field always decreases and its speed is also inversely related to ψini.
In addition, p controls the steepness of the transition regime.

– If p < n, the field can grow towards an asymptotic de Sitter state at infinity if
ψini > ψmax. Around the inflection points, or too close to ψ = 0, the field evolution
is fast. The exponent n controls the height of the maximum, and the difference
p− n controls the characteristic scale of the uplifted exponential potential.

• The MCMC analysis showed that the ΛCDM-like regime is favored by the combined
data set of Planck 2015 [16], BAO DR12 [17] and E(z) estimation from supernovae
[18]:

– Both the initial field ψini and α are pushed to larger values, where the field lingers
on the plateau.

– The case where p ∼ n is also favored as it keeps the potential from being too steep
(the deviation from a flat plateau becomes second order in the uplifted exponential
potential).

– The tachyonic solutions compatible with the observations have a very mild insta-
bility that does not give appreciable dark energy clustering. They are, however,
as likely as non-tachyonic ones: m2

0/H
2
0 = −0.01+0.97

−0.87.

We studied the properties of the model and its dependence on the different parameters.
We saw that a better variable to understand the field evolution is ψ = φ/

√
α instead of φ.

The kinetic coefficient α (which for inflation models is intimately tied to the geometry of
the superconformal field theory space) scales the field so that it determines at what value
the field thaws. On the other hand, the reason why one has to consider both ψ and α is
that the latter appears explicitly in the potential (but not kinetic) energy, in the frame in
which the kinetic term is canonical (equation 1.3), so that different values of α yield different
universe histories. In particular, we saw that the field evolution rate is inversely related to α
– higher values of α slow it down. We showed how the initial position of the field ψini played
an important role determining how the field would evolve and had to be taken into account.
For p > n the field would always roll down but its speed would also decrease as ψini grows,
placing the field further on the plateau. On the contrary, when p < n the potential has a
maximum whose height and position is controlled by the relative size of n and p. In this
scenario, the field could roll down towards ψ = 0, where the potential behaves like a power
law potential V ∝ φp (equation 2.2) or towards ψ = ∞, a de Sitter attractor with V ∝ 2−2n

(equation 2.3), with speed dependent on the proximity to the inflection points, where the
force felt by the field is maximal. This correlates the expansion history with the field mass
squared, and with its sign (which depends on which side of the inflection point the field is
at present). In particular we have seen (figure 13) that the equation of state parameters w0

and wa are ordered so that for a given w0 the higher mass squared gives higher wa.
In section 2.3 we briefly studied how the negative mass squared could affect the observ-

ables. We saw that it would only have an effect if |m2|/H2 & k2/(a2H2) > 1 (equation 2.8),
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which greatly constrains the relevant modes, leaving just those of order k ∼ 10−3Mpc−1.
Numerically, we studied the most extreme case we had obtained, that with m2/H2

0 ∼ −20.
In this case, we saw the mass term became relevant at z ∼ 3 and that it was just today when
it reaches the same order as the mode k = 10−3Mpc−1. Therefore, the dark energy density
perturbations are not appreciably influenced by the tachyonic instability, except possibly in
the future.

For a detailed analysis we constrained the parameter space with MCMC for two α-
attractor models. We compared our theoretical predictions with current datasets of CMB
(Planck 2015 angular power spectrum, polarization and lensing [16]), BAO (BOSS DR12 [17])
and Supernovae (Pantheon + Hubble Space Telescope compressed [18, 27]). We also discussed
how to choose priors since as some parameters get large the models become insensitive to
them and indistinguishable from ΛCDM.

The results for the two models were discussed in sections 3.3 and 3.4. The first case
corresponds to the particular case where the potential is Starobinsky-like but leaving free the
α parameter; i.e. fixing p = 2 and n = 1. We saw that the preferred models are those closer
to ΛCDM and the best-fit is almost w = −1. Indeed the w0–wa behavior closely follows that
of thawing dark energy for ψini not too small, and this is bounded from below. Furthermore,
the other cosmological parameters are compatible with those from Planck 2015 for ΛCDM.

These behaviors hold for the full generalized α-attractor model, with parameters α, p,
n. The preferred region continued to be that closer to ΛCDM, and a new way of attaining
that was for p and n to be nearly the same. Even though the model had much more freedom,
the w0−wa behavior (figure 13b) still followed the thawing fit wa = −1.6(1+w0) quite well.

In closing, we would like to comment on possible future work based on this model. In
this work, we have just studied a quintessence cosmological model, leaving aside the inflation
epoch from which it is originally inspired and justified the absence of coupling to matter,
even in the Starobinsky potential. Therefore, it is sensible to think of the next work as an
investigation of the joint predictions of this generalized model over the whole history of the
Universe, from inflation to late time cosmology. This kind of work would be in the spirit
of the recent papers on the subject [5–7] and might show that this model is well suited to
address both inflation and dark energy from a common physical mechanism, linking two of
the fundamental problems in modern cosmology.
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