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1 Introduction

Uncovering the nature of cosmic dark matter (DM) remains one of the major goals in
particle physics. Recent advances in low-threshold detectors (e.g. skipper charge-coupled
devices [1], transition edge sensors [2–5], microwave kinetic inductance detectors [6] and
quantum evaporation of helium atoms [7]) coupled with new theoretical investigations of
various small-gap materials (e.g. O(eV)-gap semiconductor crystals [8–21], O(meV)-gap
superconductors [22–24] and Dirac materials [25–28]) have opened up new possibilities in
the pursuit of this goal, well beyond the scope of conventional searches based on nuclear
recoils. In a direct detection experiment, DM may leave its trace not only via scattering
off the target ions or electrons, but also via absorption if it is bosonic and has a mass that
matches the difference between energy levels in the target system [14–16, 24–27, 29–40]. In
this work, we focus on processes where the absorption of a bosonic DM drives electronic
excitations, i.e. transitions between electronic states.

It has been widely appreciated that, for several well-motivated bosonic DM models,
the absorption process is closely related to that of photon absorption, and the rate can be
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expressed in terms of the target material’s optical properties, i.e. the (complex) conduc-
tivity or dielectric function. In fact, most studies on DM absorption so far have utilized
this feature to make rate predictions by simply rescaling optical data. This approach is
obviously attractive because it saves the labor of first-principles calculations, which can
be technically challenging or resource-intensive, and because one can often make quick
comparisons between target materials based on existing data.

Nevertheless, this data-driven approach has important limitations. First of all, conduc-
tivity/dielectric data are not always readily available, especially for newly proposed, more
exotic materials, in which case one has to resort to first-principles calculations and/or
semi-analytic modeling (this is the case, e.g. for Dirac materials studied in several recent
works [25–28]). Meanwhile, and more importantly, the question of whether DM absorption
for a particular model can be simply related to photon absorption is a nontrivial one, and
explicit calculations are needed to establish the answer.

It is the purpose of this work to revisit the calculation of DM absorption via electronic
excitations. We critically examine the question above by carefully working out the match-
ing between relativistic Lagrangians for DM-electron interactions and non-relativistic (NR)
effective field theories (EFTs) (section 2), and computing in-medium self-energies to fully
account for mixing and screening effects (section 3). This is a slightly different strategy
than several previous calculations: by matching onto a NR EFT from the beginning in-
stead of taking the NR limit of a relativistic calculation in the end, the power counting
relevant for the absorption process becomes more transparent; also, the cryogenic nature
of direct detection experiments allows us to perform the in-medium calculation in the zero-
temperature limit and avoid the complications of thermal field theory. We will carry out
the calculation for three widely-studied bosonic DM candidates:

• Vector (e.g. dark photon) DM, which can be produced, for example, by inflation-
ary fluctuations [41], by parent particle decays or coherent oscillations after reheat-
ing [42–45], or from a network of cosmic strings [46]. In this case, since the DM
couples to electrons via the same vector current ψ̄γµψ as the photon does, its ab-
sorption rate is trivially a rescaling of the photon absorption rate.

• Pseudoscalar (e.g. axion-like particle) DM, which can be produced, for example, via
the misalignment mechanism [47–49], from the decays of topological defects [50–52],
or by a variety of other mechanisms (see e.g. refs. [53–57]). While not immediately
obvious (since the DM couples to a different current, ψ̄iγ5ψ, than the photon does),
it has been well-known that also in this case, there is a simple relation between DM
and photon absorption [29]. We will recover this result in the NR EFT calculation. It
is worth noting that the dominant contribution to NR pseudoscalar DM absorption
actually comes from an operator generated at the next-to-leading order (NLO) in the
1/me expansion, because the leading order (LO) operator suffers a suppression by
the DM’s momentum q.

• Scalar DM, which can be produced via mechanisms similar to pseudoscalar DM men-
tioned above. It couples to the scalar current ψ̄ψ, which at LO coincides with the
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DM type Scalar (φ ψ̄ψ) Pseudoscalar (φ ψ̄iγ5ψ)

NR operators φψ†+ψ+ + 1
8m2

e
φψ†+

←→
∇ 2ψ+ − 1

2me
(∇φ) · (ψ†+Σψ+) + i

4m2
e

(∂tφ)(ψ†+Σ · ←→∇ψ+)

Related to dielectric? X 7 X X

Table 1. Summary of results for scalar and pseudoscalar DM φ coupling to electron ψ. The
effective operators at LO and NLO in the NR (1/me) expansion are shown in the second row. In
both cases, the NLO operator (underlined) gives the dominant contribution to DM absorption.
Importantly, the dominant contribution in the scalar case is not directly related to the target
material’s conductivity/dielectric function. See sections 2 and 3 for details.

temporal component of the vector current ψ̄γ0ψ. However, as we will see, the LO
operator gives a q-suppressed contribution and, as in the pseudoscalar case, the rate
is dominated by a NLO operator. Importantly, this NLO operator has a different
structure than the photon coupling, and its contribution cannot be simply related to
photon absorption, invalidating the data-driven approach.

We make the statements above on the scalar and pseudoscalar DM more concrete in table 1.
The fact that the DM absorption rate is not always relatable to the target material’s

optical properties highlights the necessity to go beyond the conventional data-driven ap-
proach. (The same can be said for DM scattering, for which the data-driven approach
based on the dielectric function that has been advocated recently [58–60] covers only a
limited set of DM interactions.) In this work, we consider two types of targets:

• Semiconductor crystals with O(eV) gaps (section 4), focusing on silicon (Si) and
germanium (Ge) that are in use in current experiments (DAMIC [61–63], EDEL-
WEISS [64–66], SENSEI [67–69], SuperCDMS [70–76]). We compute DM absorption
rates using first-principles density functional theory (DFT) calculations of electronic
band structures and wave functions, which are now publicly available [77]. The nu-
merical calculation builds upon the EXCEED-DM framework [21] and we publish the
“absorption” module of the program together with this work [78].

• Conventional (BCS) superconductors with O(meV) gaps (section 5), focusing on alu-
minum (Al) that has been proposed for direct detection [22–24]. We compute DM
absorption rates by semi-analytically modeling the electronic states near the Fermi
surface, largely following refs. [22–24].

For all the materials under study, we find good agreement between our theoretical calcu-
lation and the data-driven approach for the DM models where both are valid, i.e. vector
and pseudoscalar DM. This serves as an important validation of our calculations. In the
case of scalar DM, we show explicitly how the data-driven approach fails to reproduce the
leading contribution, and present our calculated sensitivity projections. In particular, for
Al superconductor, our revised projected reach is much more optimistic than that found
in ref. [38], although somewhat weaker than the original estimate in ref. [24].
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2 Dark matter couplings to non-relativistic electrons

Since electrons in a detector are non-relativistic, it is convenient to perform the DM ab-
sorption calculation in the framework of NR EFT (see e.g. refs. [79, 80] for reviews). In this
section, we work through the procedure of matching a relativistic theory of DM-electron
interactions onto effective operators involving the NR electron field. The total Lagrangian
of interest is

L = Lψ + Lφ + Lint . (2.1)

Here Lψ is the Standard Model part that includes the electron ψ coupling to electromag-
netism,

Lψ = ψ̄
[
iγµ(∂µ + ieAµ)−me

]
ψ , (2.2)

Lφ contains the standard kinetic and mass terms of the DM field φ, and we consider the
following DM-electron interactions:

Lint =


gφψ̄ψ (scalar DM, g = dφee

√
4πme
MPl

) ,
gφψ̄iγ5ψ ' − g

2me (∂µφ)(ψ̄γµγ5ψ) (pseudoscalar DM, g = gaee) ,
gφµψ̄γ

µψ (vector DM, g = κe) ,
(2.3)

where we have also indicated the relation between the coupling g and commonly adopted
parameters dφee, gaee, κ in the literature. Note that there are two equivalent ways of
writing the pseudoscalar coupling that are related by a field redefinition and integration
by parts (IBP).

Let us first consider Lψ. Writing the electron field in the relativistic theory as

ψ(x, t) = e−imet ψNR(x, t) . (2.4)

We obtain

Lψ = ψ†NR

[
i∂t − eA0 + iγ0γ · (∇− ieA) +

(
1− γ0

)
me

]
ψNR . (2.5)

We now define projection operators

P± ≡
1
2
(
1± γ0

)
, (2.6)

which satisfy P 2
± = P±, P+P− = P−P+ = 0 and (P±)† = P±. By using P±γ0 = γ0P± =

±P± and P±γi = γiP∓, we can rewrite eq. (2.5) as

Lψ = ψ†+(i∂t−eA0)ψ++ψ†−(i∂t−eA0+2me)ψ−+ψ†+ iγ ·(∇−ieA)ψ−−ψ†− iγ ·(∇−ieA)ψ+ ,

(2.7)
where ψ± ≡ P±ψNR (thus ψNR = ψ+ + ψ−). Integrating out the heavy field ψ− at tree
level by solving its equation of motion (EOM),

ψ− = 1
2me + i∂t − eA0

iγ · (∇− ieA)ψ+ , (2.8)
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we arrive at the EFT for ψ+:

Leffψ =ψ†+

[
i∂t − eA0 − γ · (∇− ieA) 1

2me + i∂t − eA0
γ · (∇− ieA)

]
ψ+

=ψ†+

[
i∂t−eA0 + (∇−ieA)2

2me
+ (∇×A) · eΣ

2me
− i

4m2
e

(∇−ieA) · ∂t(∇−ieA) + . . .

]
ψ+

(2.9)

where we have used

γiγj = −δij − iεijkΣk , Σ ≡
(
σ 0
0 σ

)
. (2.10)

We can readily identify the first four terms in eq. (2.9), which come from LO in the 1/me

expansion, as the familiar electromagnetic interactions as in NR quantum mechanics. There
are several operators at NLO in the 1/me expansion, of which we have only written out
the one involving ∂t. This is the last term in eq. (2.9), and is the only NLO term that
will be relevant in what follows. Importantly, it gives a tree-level contribution to the wave
function renormalization of the ψ+ field. In NR EFT calculations, it is often convenient to
adopt an operator basis where temporal derivatives in the quadratic part of the Lagrangian
have been traded for spatial derivatives, so as to eliminate any non-trivial wave function
renormalization factors at tree level. The field redefinition needed to go into this basis, at
the order we are working here, is

ψ+ =
[
1− 1

8m2
e

(
γ · (∇− ieA)

)2]
ψ̂+ . (2.11)

This field redefinition does not change the LO Lagrangian (the first four terms in eq. (2.9)),
but replaces the last term in eq. (2.9) by NLO operators that do not contain ∂t (and hence
do not contribute to the wave function renormalization of ψ̂+). We will not need the NLO
operators for electron couplings to vector fields (photon and dark photon),1 but the field
redefinition in eq. (2.11) that modifies the NLO Lagrangian will be important in the cases
of scalar and pseudoscalar DM.

We are interested in the case where the photon field Aµ consists of an electrostatic
background Φ and quantum fluctuations Aµ:

A0(x, t) = Φ(x) +A0(x, t) , A(x, t) = A(x, t) . (2.12)

The normalized NR field ψ̂+ can be expanded in energy eigenstates of the NR Schrödinger
equation:

ψ̂+(x, t) =
∑
I,s

ĉI,s e
−iεI t ΨI(x) 1√

2

(
ξs
ξs

)
, (2.13)

1As a side remark, in the special case of an electrostatic potential, A0 = Φ(x), A = 0, one can check
that keeping all the NLO terms reproduces the familiar fine structure correction in NR quantum mechanics:
Leff,NLOψ = ψ̂†+

∇4

8m3
e
ψ̂+ − e

8m2
e

(∇2Φ) ψ̂†+ψ̂+ − ie
8m2

e
(∇Φ) ·

(
ψ̂†+ Σ × ←→∇ ψ̂+

)
, where the three terms are the

relativistic kinetic energy correction, the Darwin term and spin-orbit coupling, respectively.
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where ĉI,s are annihilation operators for NR electrons, and(
− ∇

2

2me
− eΦ(x)

)
ΨI(x) = εIΨI(x) , ξ+ =

(
1
0

)
, ξ− =

(
0
1

)
. (2.14)

Note that the form of the background field in eq. (2.12) assumes negligible spin-orbit
coupling, in which case the two spin states s = ± for a given I are degenerate. From
eqs. (2.9) and (2.12), we can also deduce the electron’s coupling to photon quanta Aµ at
LO in the NR EFT:

LeffψA = −eA0 ψ̂
†
+ψ̂+ −

ie

2me
A ·

(
ψ̂†+
←→
∇ ψ̂+

)
+ e

2me
(∇×A) ·

(
ψ̂†+ Σ ψ̂+

)
− e2

2me
A2 ψ̂†+ψ̂+ ,

(2.15)
where ψ̂†+

←→
∇ ψ̂+ ≡ ψ̂†+ (∇ψ̂+)− (∇ψ̂†+) ψ̂+.

Let us now move on to the DM-electron interaction Lint. For vector DM, we can simply
replace eAµ → eAµ − g φµ in the derivation above, and obtain:

Leffint = g φ0 ψ̂
†
+ψ̂+ + ig

2me
φ ·
(
ψ̂†+
←→
∇ ψ̂+

)
− g

2me
(∇× φ) ·

(
ψ̂†+ Σ ψ̂+

)
+ ge

me
φ ·A ψ̂†+ψ̂+ −

g2

2me
φ2 ψ̂†+ψ̂+ (vector DM).

(2.16)

For the scalar and pseudoscalar cases, since Lint contains an operator that has a different
structure than all the operators in Lψ, there is no such simple replacement. In principle,
we should have included Lint when solving the EOM for ψ− in eq. (2.8). However, if we are
working at leading order in the DM-electron coupling g, it is sufficient to simply substitute
eq. (2.8) into Lint. We therefore obtain, at LO in the NR expansion:

Leff,LOint =

g φ ψ̂
†
+ψ̂+ (scalar DM) ,

− g
2me (∇φ) · ψ̂†+ Σ ψ̂+ (pseudoscalar DM) .

(2.17)

We now show that these LO terms are not sufficient to capture the dominant contributions
to DM absorption. The point is that our NR EFT is an expansion in ∇

me
∼ ve, and

the power counting is such that momenta (and spatial derivatives) count as meve and
energies (and time derivatives) count as mev

2
e . For NR absorption, the energy deposition

is ω ' mφ ∼ mev
2
e . Meanwhile although the momentum transfer formally counts as meve,

it is in fact much smaller: q = mφvφ ∼ mev
2
evφ � meve, with vφ ∼ O(10−3). Therefore,

when the LO result contains factors of q, we need to work out the NLO terms and see if
they may in fact dominate.

From eq. (2.17) it is clear that such q suppression is indeed present in the pseudoscalar
case. It is perhaps less obvious that the scalar case also suffers a q suppression, and its
origin can be understood from charge conservation: the LO operator couples the scalar
DM φ to the electron number density ψ̂†+ψ̂+ = −ρe/e (with ρe the charge density carried
by the electron), whose matrix elements vanish in the q → 0 limit because ρe = q · Je/ω;
technically this is manifest via the orthogonality of initial and final state electron wave
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functions, as we will see later in the paper.2 Therefore, in both scalar and pseudoscalar
cases, we need to expand Lint up to NLO where there are several operators. Many of them
will not be needed, though, because they are also q suppressed or involve too many fields
to contribute to the in-medium self-energies to be computed in the next section. Including
only the unsuppressed operators at NLO that contain up to four fields, we have

Leffint =


g φ ψ̂†+ψ̂+ + g

8m2
e
φ
(
ψ̂†+
←→
∇ 2ψ̂+

)
− ige

2m2
e
φA ·

(
ψ̂†+
←→
∇ ψ̂+

)
(scalar DM) ,

− g
2me (∇φ) · ψ̂†+ Σ ψ̂+ + ig

4m2
e

(∂tφ)
(
ψ̂†+ Σ · ←→∇ ψ̂+

)
(pseudoscalar DM) .

(2.18)
These results were already summarized in table 1 (for brevity we dropped the hat on ψ̂+ and
omitted the last operator in the scalar case in that table — we will see that it gives vanishing
contribution to DM absorption in an isotropic medium). The second term in the scalar
case, where the DM φ couples to ψ̂†+

←→
∇ 2ψ̂+ ≡ ψ̂†+(∇2ψ̂+) + (∇2ψ̂†+) ψ̂+− 2 (∇ψ̂†+) · (∇ψ̂+),

is obtained by combining the ψ†−ψ− term from ψ̄ψ = ψ†+ψ+ − ψ†−ψ− (with ψ− replaced by
its EOM solution eq. (2.8)) and additional terms from the field redefinition in eq. (2.11).
We will see in the next section that this operator gives the dominant contribution to scalar
DM absorption. Pseudoscalar DM absorption is likewise dominated by the NLO operator
(∂tφ)

(
ψ̂†+ Σ · ←→∇ ψ̂+

)
.3

3 In-medium self-energies and absorption rates

We now use the NR EFT derived in the previous section to compute DM absorption rates.
Generally, the absorption rate of a state can be derived from the imaginary part of its
self-energy. In a medium, care must be taken because of mixing effects. If the DM φ mixes
with a SM state A in the medium (generalization to the case of mixing with multiple states
is straightforward) then the self-energy matrix has to diagonalized to find the in-medium
eigenstates: (

m2
φ + Πφφ ΠφA

ΠAφ ΠAA

)
→

(
m2
φ + Πφ̂φ̂ 0

0 ΠÂÂ

)
, (3.1)

where Πφφ ∼ O(g2), ΠφA,ΠAφ ∼ O(g). For a 4-momentum Qµ = (ω, q), we have ΠφA(Q) =
ΠAφ(−Q). Simple algebra shows that to O(g2),

Πφ̂φ̂ ' Πφφ + ΠφAΠAφ

m2
φ −ΠAA

. (3.2)

2The same can be said for the φ0 component in the vector DM case. However, since φ0 couples exactly
to the charge density even beyond LO, retaining higher order terms in the NR expansion does not remove
the q suppression.

3Technically, the electron fields in the two equivalent expressions of the pseudoscalar coupling, gφψ̄iγ5ψ

and − g
2me

(∂µφ)(ψ̄γµγ5ψ), are not the same, but are related by a field redefinition. If one derives the NR
EFT starting from − g

2me
(∂µφ)(ψ̄γµγ5ψ), this NLO operator is obtained directly from its µ = 0 component.

On the other hand, if one derives the NR EFT from gφψ̄iγ5ψ, a further field redefinition is needed to
eliminate operators involving the background electrostatic potential Φ and arrive at the same operator
coefficient shown in eq. (2.18).
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The DM absorption rate is then derived from the imaginary part of the eigenvalue corre-
sponding to the DM-like state, φ̂:

Γφabs = −
Zφ̂
ω

ImΠφ̂φ̂ ' −
1
ω
Im
(

Πφφ + ΠφAΠAφ

m2
φ −ΠAA

)
, (3.3)

where the wave function renormalization Zφ̂ =
(
1 − dReΠφ̂φ̂

dω2

)−1
= 1 + O(g2) has been

approximated as unity. The total rate per unit target mass is given by

R = ρφ
ρT

1
ω

Γφabs = − ρφ
ρT

1
ω2 Im

(
Πφφ + ΠφAΠAφ

m2
φ −ΠAA

)
, (3.4)

where ρT is the target’s mass density, and ρφ = 0.4GeV/cm3 is the local DM energy
density. For non-relativistic DM, ω ' mφ, and ρφ ' 1

2m
2
φφ

2
0 with the DM field amplitude

defined by φ(x, t) = φ0 cos(q · x− ωt).
The calculation of self-energies generally involves two graph topologies:

Q−→
O1 O2

≡ − iΠO1,O2(Q) = −iΠO2,O1(−Q) , (3.5)

Q−→
O

≡ − iΠ′O(Q) , (3.6)

where a blob represents the sum of one-particle-irreducible (1PI) graphs. While we have
drawn curly external lines for concreteness, they can each represent a scalar, pseudoscalar
or vector. The operators O1, O2, O that the external fields couple to may carry Lorentz
indices, in which case Π and Π′ inherit these indices. We discuss the calculation of these
self-energy diagrams in appendix A.

In the cases of interest here, A represents one of the polarizations of the SM photon,
and ΠAA is directly related to the target’s complex conductivity/dielectric function, as
discussed further below. Since ΠAA enters the absorption rate formula (eq. (3.4)) as long
as there is a nonzero mixing ΠφA, let us examine this quantity in more detail before
specializing to each DM model. The photon self-energy tensor Πµν is defined such that the
effective action contains

Seff ⊃
1
2

∫
d4QΠµν(Q)Aµ(Q)Aν(−Q)

= 1
2

∫
d4Q

[
Π00(Q)A0(Q)A0(−Q)− 2 Π0j(Q)A0(Q)Aj(−Q) + Πij(Q)Ai(Q)Aj(−Q)

]
,

(3.7)

where Aj (j = 1, 2, 3) represent the three components of A. As usual, we compute Πµν

from the sum of 1PI graphs. From eq. (3.7) it is clear that the sign convention here is such
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that iΠ00, −iΠ0j and iΠij are given by the sum of two-point 1PI graphs between A0A0,
A0Aj and AiAj , respectively. From the photon-electron couplings in eq. (2.15), we obtain
Πµν in terms of ΠO1,O2 and Π′O defined in eq. (3.5) and (3.6):

Π00 = −e2 Π1,1 , Π0j = −e2 Π1,vj ,

Πij = −e2 Πvi,vj −
e2

4m2
e

(q2δij − qiqj) Π1,1 + e2

me
δijΠ′1 , (3.8)

where the velocity operator vj is defined by

vj ≡ − i
←→
∇ j

2me
. (3.9)

Here and in what follows, we suppress the arguments Qµ = (ω, q) of self-energy functions
where there is no confusion. To arrive at the expression of Πij in eq. (3.8), we have simplified
the spin trace assuming the electron loop does not involve non-trivial spin structures; for
example,

ΠΣi,Σj = tr(σiσj)
tr 1

Π1,1 = δij Π1,1 . (3.10)

This assumption is obviously valid for one-loop self-energy diagrams. In the superconductor
calculation in section 5, we will need two-loop self-energies with an internal phonon line;
in that case the electron-phonon coupling is spin-independent, so the same simplification
applies.

The photon self-energy satisfies the Ward identity QµΠµν = QνΠµν = 0. From eq. (3.8)
we see that this implies the following relations between Π1,1, Π1,vj , Πvi,vj and Π′1:

ωΠ1,1 = qj Π1,vj , ωΠ1,vj = qi Πvi,vj −
qj

me
Π′1 . (3.11)

These relations can be explicitly checked with the one-loop-level expressions in eqs. (A.7)
and (A.8).

We can write Πµν in terms of its polarization components as follows:

Πµν = −
∑

λ,λ′=±,L
Πλλ′ e

µ
λe
ν∗
λ′ , (3.12)

where
eµ± = 1√

2
(0 , x̂± iŷ) , eµL = 1√

Q2 (q , ωẑ) (3.13)

for Qµ = (ω, q) = (ω, qẑ). These are the three photon polarizations in Lorenz gauge
Qµe

µ
λ = 0, and coincide with the three physical polarizations of a massive vector with

m2 = Q2.
We will mostly focus on isotropic target materials in this work, and leave a discussion

of the anisotropic case to appendix B. For an isotropic medium, the 3 × 3 matrix Πλλ′ is
diagonal: Π++ Π+− Π+L

Π−+ Π−− Π−L
ΠL+ ΠL− ΠLL

 isotropic−→

ΠT 0 0
0 ΠT 0
0 0 ΠL

 (3.14)
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where ΠT and ΠL are the transverse and longitudinal photon self-energies, respectively.
The photon self-energy tensor Πµν therefore has the following form:

Πµν isotropic−→ −ΠT

(
eµ+e

ν∗
+ + eµ−e

ν∗
−
)
−ΠLe

µ
Le

ν∗
L = −


q2

Q2 ΠL 0 0 ωq
Q2 ΠL

0 ΠT 0 0
0 0 ΠT 0

ωq
Q2 ΠL 0 0 ω2

Q2 ΠL

 . (3.15)

From the linear response relation Jµ = −ΠµνAν
4 and Ohm’s law J = σE = σ(iωA−iqA0)

we can relate ΠT and ΠL to the complex conductivity σ, which in turn is related to the
complex dielectric ε via σ = iω(1− ε) [17, 23, 26]:

ΠT = −iωσ = ω2(1− ε) , ΠL = −iωZ−1
L σ = Q2(1− ε) , (3.16)

where ZL = ω2/Q2. The real part of the conductivity σ1 ≡ Reσ (the imaginary part of
the dielectric) gives the photon absorption rate in medium:

σ1 = ω Im ε = − 1
ω
ImΠT = −ZL

ω
ImΠL . (3.17)

We finally note that all the quantities introduced above — the complex conductivity σ and
dielectric ε, and photon self-energies ΠT , ΠL can be simply computed from Π1,1:

ε− 1 = iσ

ω
= −ΠL

Q2 = −ΠT

ω2 = −e
2

q2 Π1,1 . (3.18)

With the photon part of the self-energy calculation completed, we now move on to consider
self-energies involving the DM and compute DM absorption rates.

3.1 Vector absorption

Since a vector DM couples to electrons in the same way as the photon, albeit with a
coupling rescaled by −g/e = −κ, we have

Πµν
φφ = −κΠµν

φA = −κΠµν
Aφ = κ2 Πµν . (3.19)

Each of the three polarizations of φ mixes with the corresponding polarization of the
photon. Therefore, for the transverse (longitudinal) polarization, we simply set Πφφ =
−κΠφA = −κΠAφ = κ2 ΠAA in eq. (3.4), with ΠAA = ΠT (ΠL). As a result,

RT,L = −κ2 ρφ
ρT

Im
(

ΠT,L

m2
φ −ΠT,L

)
= −κ2 ρφ

ρT
m2
φ Im

(
1

m2
φ −ΠT,L

)
. (3.20)

The total absorption rate for an unpolarized vector DM is obtained by averaging over the
three polarizations, R = (2RT + RL)/3. For NR absorption, we have ω2 ' Q2 = m2

φ, and
ΠT ' ΠL = m2

φ
e2

q2 Π1,1 (see eq. (3.18)), so

Rvector = −κ2 ρφ
ρT

Im

 1
1− e2

q2 Π1,1

 . (3.21)

4Strictly speaking, linear response theory relates Jµ and Aν via the retarded Green’s function Rµν , which
differs from the time-ordered self-energy Πµν by the sign of the imaginary part at negative frequencies. This
difference is however irrelevant for our calculations.
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The rate is semi-independent of the momentum transfer (and hence the DM velocity) since
Π1,1 generically scales as q2.

The result can also be written in terms of the material’s complex conductivity/dielectric:

Rvector = −κ2 ρφ
ρT

Im
(1
ε

)
= κ2 ρφ

ρT

1
|ε|2

σ1
mφ

, (3.22)

with ε, σ1 evaluated at ω = mφ, q = 0. One may think of

1
|ε|2

=
m4
φ

(m2
φ − ReΠL)2 + (ImΠL)2 (3.23)

as an in-medium screening factor, which suppresses the absorption rate compared to the
obvious rescaling of photon absorption by κ2 [14, 24, 31, 81].

3.2 Pseudoscalar absorption

A pseudoscalar does not mix with the photon due to parity mismatch,5 and we simply have
R = − ρφ

ρT

1
ω2 ImΠφφ. The pseudoscalar self-energy Πφφ is defined such that the effective

action contains
Seff ⊃ −

1
2

∫
d4Q

[
m2
φ + Πφφ(Q)

]
φ(Q)φ(−Q) . (3.24)

Therefore, −iΠφφ is given by the sum of two-point 1PI graphs. From the pseudoscalar
coupling in eq. (2.18), we find, again after simplifying the spin trace as in eq. (3.10):

ImΠφφ = g2

4m2
e

Im
[
q2 Π1,1 − ωqj

(
Π1,vj + Πvj ,1

)
+ ω2 Πvj ,vj

]
(3.25)

Comparing with eq. (3.8), we see that ImΠφφ for a pseudoscalar is closely related to the
photon polarization Πµν :

ImΠφφ = −g
2

e2
1

4m2
e

Im
[
q2 Π00 − ω qj

(
Π0j + Πj0)+ ω2Πjj − q2 ω2

2m2
e

Π00
]
. (3.26)

Note that the Π′1 term in Πjj is purely real and thus does not appear in the equation above.
Also, since ω � me, we can drop the last term. Writing Πµν in terms of ΠT and ΠL as in
eq. (3.15) and setting g = gaee, we find

Rpseudoscalar = −g2
aee

ρφ
ρT

1
4m2

eω
2

1
e2
(
2ω2 ImΠT +m2

φ ImΠL

)
. (3.27)

For NR absorption, ω2 ' Q2 = m2
φ, and ΠT ' ΠL = e2 m2

φ

q2 Π1,1 (see eq. (3.18)), and
therefore,

Rpseudoscalar = −g2
aee

ρφ
ρT

3m2
φ

4m2
e

1
q2 ImΠ1,1 . (3.28)

5The mixed self-energy Π0
φA (Πj

φA) between φ and A0 (Aj) has to be parity odd (even). For an isotropic
target one must have Πj

φA ∝ qj while Π0
φA is a scalar function of q2, so neither has the right parity if

nonzero.
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As in the vector DM case, the absorption rate can be written solely in terms of Π1,1; the
other self-energies that appear in eq. (3.25) have been traded for Π1,1 via the Ward identity.
Also, analogous to the vector DM case, the rate is semi-independent of the DM velocity
as Π1,1 ∼ q2. Note that the dominant contribution to pseudoscalar DM absorption comes
from the last term in eq. (3.25) that is proportional to ω2 Πvi,vj , which originates from the
second (formally NLO) operator in eq. (2.18) (as underlined in table 1).

We can further recast the pseudoscalar DM absorption rate in terms of the photon
absorption rate σ1 = Reσ = ω Im ε and reproduce the standard result [14, 15, 24, 29]:

Rpseudoscalar = g2
aee

e2
ρφ
ρT

3mφσ1
4m2

e

. (3.29)

We remark in passing that pseudoscalar absorption has also been studied in the context
of solar axion detection; in that case, the relativistic kinematics ω � mφ means that the
ImΠL term in eq. (3.27) is negligible, so the proportionality factor in eq. (3.29) is 1

2 instead
of 3

4 [14, 29, 82].

3.3 Scalar absorption

For scalar DM, we need to compute explicitly both ImΠφφ and its mixing with the photon
Πµ
φA(Q) = Πµ

Aφ(−Q). These self-energies are defined such that

Seff⊃
∫
d4Q

[
−1

2
(
m2
φ + Πφφ(Q)

)
φ(Q)φ(−Q)−Πµ

φA(Q)φ(Q)Aµ(−Q)
]

=
∫
d4Q

[
− 1

2
(
m2
φ + Πφφ(Q)

)
φ(Q)φ(−Q)−Π0

φA(Q)φ(Q)A0(−Q)

+ Πj
φA(Q)φ(Q)Aj(−Q)

]
. (3.30)

Therefore, −iΠφφ, −iΠ0
φA and iΠj

φA are given by the sum of two-point 1PI graphs between
φφ, φA0 and φAj , respectively. From the scalar coupling in eq. (2.18) and photon coupling
in eq. (2.15), we find:

ImΠφφ = g2 Im
(
Π1,1 −Π1,v̄2 −Πv̄2,1 + Πv̄2,v̄2

)
, (3.31)

Π0
φA = − ge

(
Π1,1 −Πv̄2,1

)
, (3.32)

Πj
φA = − ge

(
Π1,vj −Πv̄2,vj + 1

me
Π′vj

)
, (3.33)

where

v̄2 ≡ 1
2 v

jvj = −
←→
∇ 2

8m2
e

. (3.34)

As in the photon case, the self-energies are related by the Ward identity QµΠµ
φA = 0:

ωΠv̄2,1 = qj Πv̄2,vj −
qj

me
Π′vj , (3.35)

where we have used the first relation in eq. (3.11). One can explicitly check that eq. (3.35)
holds between the one-loop-level expressions for the self-energies in eqs. (A.7) and (A.8).
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For an isotropic medium, we must have Πj
φA ∝ qj because there is no special direction

other than q.6 So the mixing only involves the photon’s longitudinal component. Therefore,
ΠAA in the rate formula eq. (3.4) should be set to ΠL = m2

φ
e2

q2 Π1,1 (see eq. (3.18)), and
ΠφA should be set to

ΠφL = Πµ
φAeLµ = 1

q
√
Q2

(
q2 Π0

φA − ωqj Πj
φA

)
= −

√
Q2

q
Π0
φA = ge

√
Q2

q

(
Π1,1 −Πv̄2,1

)
,

(3.36)
where we have used the Ward identity to trade qj Πj

φA for ωΠ0
φA. Substituting the ex-

pressions for ImΠφφ, ΠφL and ΠL above into eq. (3.4), and applying the NR absorption
kinematics ω2 ' Q2 = m2

φ, we find

Rscalar = − d2
φee

4πm2
e

M2
Pl

ρφ
ρT

1
m2
φ

Im

Πv̄2,v̄2 + q2

e2

(
1− e2

q2 Πv̄2,1
)(

1− e2

q2 Π1,v̄2
)

1− e2

q2 Π1,1

 , (3.37)

where we have used ΠLφ(Q) = ΠφL(−Q), Πv̄2,1(−Q) = Π1,v̄2(Q), and g = dφee
√

4πme
MPl

.
We see that the result for scalar absorption, eq. (3.37), depends on Πv̄2,v̄2 , Πv̄2,1,

Π1,v̄2 in addition to Π1,1. If we had kept only the LO operator φ ψ̂†+ψ̂+ in the calculation
above, we would obtain eq. (3.37) with Πv̄2,v̄2 , Πv̄2,1, Π1,v̄2 set to zero, which coincides
with q2

m2
φ
times the vector DM absorption rate in eq. (3.21). Just as in the vector DM

case, the contribution of the LO operator φ ψ̂†+ψ̂+ to scalar DM absorption is screened due
to in-medium mixing [38]. However, the formally NLO operator φ

(
ψ̂†+
←→
∇ 2ψ̂+

)
introduces

additional contributions via Πv̄2,v̄2 , Πv̄2,1, Π1,v̄2 . As we will see in the next two sections,
generically Π1,1 , Πv̄2,1 ∼ q2 while Πv̄2,v̄2 ∼ q0. It is thus clear from eq. (3.37) that the
absorption rate of a NR scalar DM is in fact dominated by the Πv̄2,v̄2 term:

Rscalar ' −d2
φee

4πm2
e

M2
Pl

ρφ
ρT

1
m2
φ

ImΠv̄2,v̄2 . (3.38)

Importantly, this term (overlooked in several previous calculations of scalar DM absorp-
tion [38–40]) is not directly proportional to the photon absorption rate and is unscreened.
We emphasize that the suppression of LO operator’s contribution is specific to the case of
non-relativistic DM absorption, where q � ω; for absorption of a relativistic scalar (q ' ω)
or scalar-mediated scattering (q � ω), the LO operator φ ψ̂†+ψ̂+ indeed gives the dominant
contribution.

To summarize, in this section we have derived DM absorption rates in terms of in-
medium self-energies of the form ΠO1,O2 , as defined in eq. (3.5). (Contributions from the
other graph topology, eq. (3.6), have been eliminated using the Ward identity.) Both vector
and pseudoscalar absorption involve a single self-energy function Π1,1 ∝ ΠL (see eqs. (3.21)
and (3.28)), and the rates can be simply related to the (complex) conductivity/dielectric

6We note in passing that the Π′vj term in Πj
φA is q independent and must therefore vanish in an isotropic

medium. This is why we have omitted the φA ·
(
ψ̂†+
←→
∇ ψ̂+

)
operator in eq. (2.18), which only contributes

to this term, from table 1.
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Figure 1. Comparison between different terms contributing to the scalar DM absorption rate,
defined in eq. (3.39), for Si, Ge and Al-SC targets assuming q = 10−3mφ. Dashed curves indicate
negative values. In all three targets we see that Rv̄2,v̄2 dominates over the entire DM mass range
considered. This term comes from an NLO operator in the NR EFT (underlined in table 1) and
cannot be directly related to the target’s optical properties (i.e. the complex conductivity/dielec-
tric function). For Si and Ge, the calculation of Rv̄2,1 is technically challenging as explained in
section 4; however, it is parameterically the same order in q as R1,1 and therefore expected to be
also subdominant compared to Rv̄2,v̄2 .

(see eqs. (3.22) and (3.29)). In these cases, the data-driven approach based on the mea-
sured conductivity/dielectric is viable, and we can also use optical data to calibrate our
theoretical calculations based on DFT or analytic modeling. On the other hand, for scalar
DM absorption, additional self-energy functions Πv̄2,v̄2 , Πv̄2,1, Π1,v̄2 enter (see eq. (3.37)),
and the rate is not directly related to photon absorption. In this case, the data-driven
approach fails and theoretical calculations are needed.

In the next two sections, we compute the self-energies Π1,1, Πv̄2,v̄2 , Πv̄2,1, Π1,v̄2 in
crystal and superconductor targets, respectively, which then allow us to derive the absorp-
tion rates of vector, pseudoscalar and scalar DM in these targets. Our main results for
Si, Ge and Al-superconductor (Al-SC) targets are collected in figures 1, 2 and 3. First,
figure 1 confirms the dominance of the Πv̄2,v̄2 term in the scalar DM absorption rate (i.e.
that eq. (3.37) indeed simplifies to eq. (3.38)) by rewriting eq. (3.37) as

Rscalar = d2
φee

4πm2
e

M2
Pl

ρφ
ρT

(
Rv̄2,v̄2 +R1,1 +Rv̄2,1

)
, (3.39)

and comparing the sizes of the terms. Here Rv̄2,v̄2 ≡ − 1
m2
φ
ImΠv̄2,v̄2 ,

R1,1 ≡ − 1
m2
φ

q2

e2 Im
(

1
1− e2

q2 Π1,1

)
, while the remaining terms define Rv̄2,1. Next, figure 2

shows the projected reach for the pseudoscalar and vector DM models, where we see good
agreement between our theoretical calculations (solid curves) and rescaled optical data
(dashed curves). Lastly, figure 3 shows our calculated reach for scalar DM and compares
the Al-SC results with previous work [14, 38]. These results will be discussed in detail in
the following sections.
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Figure 2. Projected 95% C.L. reach (3 events with no background) with semiconductor crystal
(Si, Ge) and superconductor (Al-SC) targets for the vector and pseudoscalar DM models defined in
eq. (2.3), assuming 1 kg-yr exposure. We compare our theoretically calculated reach (solid) against
the data-driven approach utilizing the target material’s measured conductivity/dielectric [83, 84]
(dashed). For Si and Ge, the data-driven approach was taken in previous works [14, 15], with which
we find good agreement. For Al-SC, our theoretical calculation reproduces the results in ref. [24]
(dotted) up to the choice of overall normalization factor. Also shown are existing direct detection
limits from XENON10/100 [15], stellar cooling constraints from the Sun (assuming Stückelberg
mass for vector DM) [85] and white dwarfs (WD) [86], and pseudoscalar couplings corresponding
to the QCD axion in KSVZ and DFSZ (for 0.28 ≤ tan β ≤ 140) models [87].
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Figure 3. Projected 95% C.L. reach (3 events with no background) with semiconductor crystal
(Si, Ge) and superconductor (Al-SC) targets, for the scalar DM model defined in eq. (2.3), assuming
1 kg-yr exposure. In contrast to the vector and pseudoscalar cases shown in figure 2, the projections
here cannot be derived from the target’s optical properties. Differences compared to Hochberg et
al. [24] and Gelmini et al. [38] in the Al-SC case are discussed in detail in section 5. Also shown
are existing constraints from fifth force [88] and red giant (RG) cooling [89].

– 15 –



J
H
E
P
0
9
(
2
0
2
1
)
1
2
3

4 Dark matter absorption in crystals

In this section, we specialize to the case of crystal targets that are described by band
theory. It suffices to compute the self-energies ΠO1,O2 at one-loop level, with O1,2 = 1, v̄2.
The result for general O1, O2 is given in eq. (A.7) in appendix A, and involves a sum
over electronic states I, I ′ that run in the loop. Since we assume the target is at zero
temperature the occupation numbers fI , fI′ take values of either 1 or 0. Only pairs of
states for which fI′ − fI 6= 0, i.e. one is occupied and the other is unoccupied, contribute
to the sum — it is between these pairs of states that electronic transitions can happen.

In the present case, the states are labeled by a band index i and momentum k within
the first Brillouin zone (1BZ), so we write I = i,k, and I ′ = i′,k′. The wave functions
have the Bloch form, which in real and momentum space read, respectively:

Ψi,k(x) = 1√
V

∑
G

ui,k,G e
i(k+G)·x , Ψ̃i,k(p) =

√
V
∑
G

ui,k,G δp,k+G , (4.1)

where the sum runs over all reciprocal lattice vectors G. These are related by

Ψi,k(x) =
∫

d3p

(2π)3 Ψ̃i,k(p) eip·x , Ψ̃i,k(p) =
∫
d3xΨi,k(x) e−ip·x (4.2)

upon applying the standard dictionary between discrete and continuum expressions:∑
p

= V

∫
d3p

(2π)3 , δp1,p2 = (2π)3

V
δ3(p1 − p2) . (4.3)

We now examine the matrix element 〈i′,k′| O1 e
iq·x |i,k〉 involved in eq. (A.7) for the

v̄2 and 1 operators; 〈i,k| O2 e
−iq·x |i′,k′〉 is completely analogous. For the v̄2 operator, we

simply obtain

〈i′,k′| v̄2 eiq·x |i,k〉 = − 1
8m2

e

∫
d3x

(
Ψ∗i′,k′

←→
∇ 2 Ψi,k

)
eiq·x

= 1
8m2

e

∑
G′,G

(k′ +G′ + k +G)2 u∗i′,k′,G′ ui,k,G δk′+G′,k+G+q . (4.4)

For NR absorption in the mass range of interest here, mφ . 100 eV, the momentum transfer
q ∼ 10−3mφ ∼ meV

(mφ
eV
)
is well within the 1BZ (O(keV)). This implies that Umklapp

processes where G′ 6= G do not contribute, so (lattice) momentum conservation simply
dictates k′ = k + q. At leading order in q we can set k′ = k, and eq. (4.4) simplifies to

〈i′,k′| v̄2 eiq·x |i,k〉 = δk′,k
1

2m2
e

∑
G

(k +G)2 u∗i′,k,G ui,k,G +O(q) . (4.5)

For the 1 operator, additional care is needed since 〈i′,k′| eiq·x |i,k〉 vanishes in the q → 0
limit: |i′,k′〉 and |i,k〉 are distinct energy eigenstates and therefore orthogonal. At O(q),
we have 〈i′,k′| eiq·x |i,k〉 ' iq · 〈i′,k′|x |i,k〉. A numerically efficient way to compute
this matrix element is to trade the position operator for the momentum operator via its
commutator with the Hamiltonian H = p2

2me + V (x):

〈i′,k′|x |i,k〉 = − 1
εi′,k′ − εi,k

〈i′,k′| [x, H] |i,k〉 = − i

me(εi′,k′ − εi,k)〈i
′,k′|p |i,k〉 . (4.6)
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Substituting in the wave functions, we find:

〈i′,k′| eiq·x |i,k〉 = δk′,k
q

me ωi′i,k
·
∑
G

(k +G)u∗i′,k,G ui,k,G +O(q2) . (4.7)

where ωi′i,k ≡ εi′,k − εi,k.
It is convenient to define the following crystal form factors, via which the Bloch wave

functions enter DM absorption rates (at leading order in q):

f i′i,k ≡
1

2m2
e

∑
G

(k +G)2 u∗i′,k,G ui,k,G , (4.8)

fi′i,k ≡
1

ωi′i,k

∑
G

(k +G)u∗i′,k,G ui,k,G . (4.9)

Note that they differ from the crystal form factor used in spin-independent DM scatter-
ing [12, 17, 21]: f[i′k′,ik,G] = ∑

G′ u
∗
i′,k′,G′+G ui,k,G′ . The absorption kinematics simply set

the k and G vectors of the initial and final states to be the same; also, powers of (k +G)
appear as follows from the effective operators.

The crystal form factors defined above allow us to write the self-energies in a concise
form. For the operators 1 and v̄2, the spin trace is trivial and simply yields a factor of two.
Each pair of valence/conduction states between which a transition can happen contributes
to two terms in the sum over electronic states, because either i,k or i′,k′ can be a valence
or conduction state. Combining the two terms for each pair, we obtain

Π1,1 = 2
V

∑
i′∈ cond.
i∈ val.

∑
k∈ 1BZ

(
1

ω − ωi′i,k + iδ
− 1
ω + ωi′i,k − iδ

) ∣∣∣∣ qme
· fi′i,k

∣∣∣∣2 , (4.10)

Πv̄2,v̄2 = 2
V

∑
i′∈ cond.
i∈ val.

∑
k∈ 1BZ

(
1

ω − ωi′i,k + iδ
− 1
ω + ωi′i,k − iδ

) ∣∣fi′i,k∣∣2 , (4.11)

where δ → 0+. We see explicitly that Π1,1 ∼ q2 and Πv̄2,v̄2 ∼ q0, as already alluded to
in section 3. The other two self-energies, Πv̄2,1 and Π1,v̄2 , take the form of q ·F +O(q2),
where F is a target-dependent function that involves f i′i,k and f i′i,k. In the absence of
a special direction, we must have F = 0 and therefore, Πv̄2,1 , Π1,v̄2 ∼ O(q2). Working
out the leading O(q2) contribution to these self-energies would require the O(q2) term in
〈i′,k′| eiq·x |i,k〉, which however does not admit a simple expression in terms of just the
momentum operator as in eq. (4.6). Nevertheless, Πv̄2,1 and Π1,v̄2 only enter the absorption
rate in the scalar DM case and we expect Rv̄2,1 ∼ R1,1 since Πv̄2,1, Π1,v̄2 and Π1,1 all scale
as q2. So as long as R1,1 � Rv̄2,v̄2 , it is justified to neglect the second term in eq. (3.37)
altogether and use eq. (3.38) for the rate; computing Πv̄2,1, Π1,v̄2 then becomes unnecessary.
We see from figure 1 that this is indeed the case for Si and Ge.

To calculate the DM absorption rates and make sensitivity projections, we use DFT-
computed electronic band structures and wave functions for Si and Ge [77], including
all-electron reconstruction up to a cutoff of 2 keV; see ref. [21] for details. We adopt the
same numerical setup as the “valence to conduction” calculation in ref. [21], and include
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also the 3d states in Ge as valence (treating them as core states gives similar results).
The finite resolution of the k-grid means we need to apply some kind of smearing to the
delta functions coming from the imaginary part of eqs. (4.10) and (4.11). This is done
in practice by setting δ in eqs. (4.10) and (4.11) to a finite constant 0.2 eV, which we find
appropriate for a 10×10×10 k-grid for the majority of the DM mass range. We implement
our numerical calculation as a new module “absorption” of the EXCEED-DM program [78].

We present the projected reach for the three DM models in figures 2 and 3, assuming
3 events (corresponding to 95% CL) for 1 kg-yr exposure without including background,
together with existing constraints on these models for reference. The solid curves are
our theoretical predictions; they are obtained using the rate formulae eqs. (3.21), (3.28)
and (3.38) for vector, pseudoscalar and scalar DM, respectively, with the self-energies
Π1,1, Πv̄2,v̄2 computed numerically for Si and Ge according to eqs. (4.10) and (4.11) as
explained above. For pseudoscalar and scalar DM, the reach curves are essentially the
sum of Lorentzians coming from the smearing of delta functions in ImΠ1,1 and ImΠv̄2,v̄2 ,
respectively; there is no screening in these cases. For vector DM, in-medium mixing with
the photon results in the plasmon peak (dip in the reach curves) between 10 and 20 eV for
both Si and Ge; the rate is screened below the plasmon peak.

For vector and pseudoscalar DM, we can alternatively take the data-driven approach,
using eqs. (3.22) and (3.29), respectively, to derive the rate from the measured conductiv-
ity/dielectric. As in refs. [14, 15], we use the measured optical data from ref. [83]. Results
from this data-driven approach are shown by the dashed curves; they are the same as in
refs. [14, 15] upon inclusion of backgrounds. For Si, the solid and dashed curves are very
close to each other for mφ & 3 eV; the theoretical calculation (solid curves) systematically
overestimates the rate as mφ approaches the band gap (1.2 eV) because of the smearing
procedure discussed above. For Ge, we see the same systematic discrepancy close to the
band gap (0.67 eV); also, the theoretical calculation predicts a sharper plasmon peak (cor-
responding to a smaller ImΠ1,1 near the plasmon frequency) compared to data. Aside from
these issues, we view the overall good agreement between the solid and dashed curves in
the vector and pseudoscalar cases as a validation of our DFT-based theoretical calculation
in the majority of DM mass range. Importantly, this gives credence to the reach curves
we have calculated in the scalar DM case, where the data-driven approach does not apply,
though one has to keep in mind that our calculation systematically overestimates the rate
for DM masses below about 3 eV because of the smearing issue.

5 Dark matter absorption in superconductors

We now turn to the case of conventional superconductors described by BCS theory. For
the majority of the calculation, we are concerned with electronic states with energies ε
satisfying |ε − εF | � ∆, where εF is the Fermi energy and 2∆ ∼ O(meV) is the gap, and
the description of a superconductor approaches that of a normal metal; corrections due to
Cooper pairing only become relevant within O(∆) of the Fermi surface.

Following refs. [22–24], we model the electrons near the Fermi surface with a free-
electron dispersion εk = k2

m∗
and wave function Ψk(x) = 1√

V
eik·x, where the effective mass
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m∗ is generally an O(1) number times the electron’s vacuum massme. At zero temperature,
electrons occupy states up to the Fermi surface, a sphere of radius kF =

√
2m∗εF . The

volume of the Fermi sphere gives the density of free electrons, ne = 2
(2π)3

4
3πk

3
F , where

the twofold spin degeneracy has been taken into account. We expect this simple effective
description to hold up to a UV cutoff ωmax (∼ 0.5 eV for Al), above which interband
transitions become important and one may instead perform a DFT calculation (as in the
case of crystals discussed in section 4).

Within this simple free-electron model, the self-energies ΠO1,O2 are real at one-loop
level; it is easy to see that two electronic states differing by energy ω and momentum q

cannot be both on-shell when ω � q. Therefore, the leading contribution to the imaginary
part arises at two loops, and we have

ΠO1,O2 ' ReΠ(1-loop)
O1,O2

+ i ImΠ(2-loop)
O1,O2

. (5.1)

For the real part ReΠO1,O2 = ReΠ(1-loop)
O1,O2

, we apply the general formula eq. (A.7) to
the free-electron model in the limit ω � q, as explained in detail in appendix A.2. The
results are:

ReΠ1,1 = q2

ω2
ne
m∗

, ReΠv̄2,1 = ReΠ1,v̄2 = k2
F

2m2
e

q2

ω2
ne
m∗

. (5.2)

While these are derived for normal conductors, we expect them to carry over to the su-
perconductor case; proportionality to ne (the total number of electronic states within the
Fermi sphere) implies insensitivity to deformations within O(∆) of the Fermi surface. We
also note in passing that, via eq. (3.18), we obtain the familiar result for the photon self-
energies [90, 91]: ReΠT = ω2

p, ReΠL = Q2

ω2 ω
2
p, where ω2

p ≡ e2ne
m∗

is the plasma frequency
squared.

For the imaginary part ImΠO1,O2 = ImΠ(2-loop)
O1,O2

, we expect the dominant contribution
to come from two-loop diagrams with an internal phonon line for a high-purity sample
(otherwise impurity scattering may also contribute). These are associated with φ (or
γ) + e− → e− + phonon processes by the optical theorem, and can be computed by the
standard cutting rules, as we detail in appendix A.3. We model the (acoustic) phonons with
a linear dispersion, ωq′ = csq

′ where cs is the sound speed, and neglect Umklapp processes
which amounts to imposing a cutoff on the phonon momentum, q′max = qD ≡ ωD/cs with
ωD the Debye frequency. The electron-phonon coupling, in our normalization convention,
is given by Ce-phq

′√
2ωq′ρT

[24, 92, 93], with Ce-ph ∼ O(εF ) a constant with mass dimension one.
Accounting for the superconducting gap, we obtain, for ω � q:

ImΠ1,1 =−
C2

e-ph ω
2 q2

3 (2π)3ρT c
6
s

∫ min
(

1− 2∆
ω ,

ω
D

ω

)
0

dxx4(1−x)E
(√

1− (2∆/ω)2

(1− x)2

)
, (5.3)

ImΠv̄2,v̄2 =−
C2

e-ph ω
4

(2π)3ρT c
4
s

m4
∗

m4
e

∫ min
(

1− 2∆
ω ,

ω
D

ω

)
0

dxx2(1−x)3E

(√
1− (2∆/ω)2

(1− x)2

)
, (5.4)

ImΠv̄2,1 = ImΠ1,v̄2 =
C2

e-ph ω
2 q2

3 (2π)3ρT c
4
s

m2
∗

m2
e

∫ min
(

1− 2∆
ω ,

ω
D

ω

)
0

dxx2(1−x)2E

(√
1− (2∆/ω)2

(1− x)2

)
, (5.5)
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Fermi energy εF = 11.7 eV
Plasma frequency ωp = 12.2 eV
Electron effective mass m∗ = 9π2ω4

p

128α2ε3
F

= 0.35me

Fermi momentum kF =
√

2m∗εF = 2.1 keV
Superconducting gap 2∆ = 0.6meV
Debye frequency ωD = 37meV
Sound speed cs = 2.1× 10−5

Maximum phonon momentum qD = ωD
cs

= 1.8 keV
Electron-phonon coupling Ce-ph = 56 eV
Mass density ρT = 2.7 g/cm3

Table 2. Material parameters for aluminum superconductor.

where E(z) =
∫ 1

0 dt
√

1−z2t2

1−t2 is the complete elliptic integral of the second kind. For energy
depositions much higher than the gap, ω � 2∆, the elliptic integral E(1) = 1 drops out
and we reproduce the results for a normal conductor; see appendix A.3 for details.

With the expressions of self-energies above, we can use eqs. (3.21), (3.28) and (3.37)
to calculate the absorption rates for vector, pseudoscalar and scalar DM. We consider an
aluminum superconductor (Al-SC) target, for which the relevant material parameters are
listed in table 2. We use the same numerical values as in ref. [24] for εF , ωp, ∆, ωD, cs,
and determine the electron-phonon coupling Ce-ph from resistivity measurements [94, 95]
as explained in appendix A.3. For scalar DM, we again confirm the dominance of the Rv̄2v̄2

term in eq. (3.39), as seen in figure 1, so the rate formula eq. (3.37) simplifies to eq. (3.38)
as in the cases of Si and Ge discussed in section 4.

Figures 2 and 3 show the projected reach, assuming 3 events per kg-yr exposure without
including background. We see that Al-SC, with its O(meV) gap, significantly extends the
reach with respect to Si and Ge to lowermφ. The solid red curves are obtained from the self-
energy calculations discussed above; the underlying model has a UV cutoff ωmax ∼ 0.5 eV
where we truncate the curves. Low-temperature conductivity data are available between
0.2 eV and 3 eV [84]. For the vector and pseudoscalar DM models, we also present the
reach following the data-driven approach in this mass range (dashed curves), obtained by
using eqs. (3.22) and (3.29) with σ1(= Reσ = ω Im ε) taken from ref. [84] and Re ε set to
1− ω2

p

ω2 . Between 0.2 eV and 0.5 eV where both theoretical (solid) and data-driven (dashed)
predictions are shown, they are in reasonable agreement, with the latter stronger by about
40% for both κ and gaee at 0.2 eV. The difference is presumably a result of approaching
the UV cutoff of the theoretical calculation, and possibly also the neglect of Umklapp
contributions. For scalar DM, the data-driven approach is not viable, and we present our
theoretical prediction up to 0.5 eV. We also show the reach curves obtained in the previous
literature [24, 38] for comparison, and discuss the differences in what follows.
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Comparison with previous calculations. The calculation of DM absorption in super-
conductors was first carried out in ref. [24], where the 2→2 matrix element for φ + e− →
e− + phonon was evaluated at leading order in q. For vector and pseudoscalar DM, our
results agree with ref. [24] as seen in figure 2, up to a minor numerical prefactor understood
as follows. Ref. [24] chose the value of the electron-phonon coupling Ce-ph such that the
photon absorption rate (i.e. conductivity σ1) matches the experimentally measured value
at ω = 0.2 eV. In this work, we instead determine Ce-ph via the λtr parameter following
refs. [94, 95], which results in a slightly lower value and hence the slight mismatch observed
in figure 2.

The more significant numerical difference in the scalar case between our results and
ref. [24], as seen in figure 3, can be traced to two sources. First, the numerically dominant
effect is that ref. [24] did not distinguish m∗ and me, while we have kept the vacuum mass
me in the operator coefficients and used the effective mass m∗ for the electron’s dispersion
and phase space; the two masses differ by about a factor of three in Al-SC. Note that the
difference between me and m∗ does not affect the vector and pseudoscalar absorption rates
as they only depend on Π1,1, which is independent of m∗/me. Second, ref. [24] dropped a
factor of (1−x)2 in the scalar absorption matrix element when taking the soft phonon limit;
this results in an O(1) difference on the projected reach that is numerically subdominant.
One can easily verify these two points by evaluating the integral in eq. (A.38) using x2(1−x)
in place of m

4
∗

m4
e
x2(1−x)3 in the last line; this would reproduce the analytic relation presented

in ref. [24] between scalar and photon absorption rates in the limit ω � 2∆.
More recently, ref. [38] revisited scalar DM absorption and claimed that in-medium

effects lead to a significantly weaker reach. We reiterate that while in-medium mixing with
the photon screens the contribution from the LO operator 1, the leading contribution to
scalar absorption comes instead from the NLO operator v̄2 that is not screened. In fact,
the screening factor in ref. [38] was (correctly) derived for the 1 operator but inconsistently
applied to the dominant contribution coming from the v̄2 operator as obtained in ref. [24].
As a result, ref. [38] significantly underestimated the reach as we can see from figure 3.

6 Conclusions

In this paper we revisited the calculation of electronic excitations induced by absorption of
bosonic DM. Specifically, we focused on O(1 - 100) eV mass DM for Si and Ge targets that
are in use in current experiments, and sub-eV mass DM that a proposed Al superconductor
detector will be sensitive to. We utilized an NR EFT framework, where couplings between
the DM and electron in a relativistic theory are matched onto NR effective operators in a
1/me expansion. We then computed absorption rates from in-medium self-energies, care-
fully accounting for mixing between the DM and the photon. For crystal targets like Si and
Ge, we used first-principles calculations of electronic band structures and wave functions
based on density functional theory, and implemented the numerical rate calculation as a
new module “absorption” of the EXCEED-DM program [21, 78]. For BCS superconductors,
we adopted an analytic model as in refs. [22–24] treating electrons near the Fermi surface
as free quasiparticles and including corrections due to the O(meV) superconducting gap.
The projected reach is presented in figures 2 and 3 for vector, pseudoscalar and scalar DM.
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Most of previous calculations of DM absorption relied upon relating the process to
photon absorption, and hence to the target’s optical properties, i.e. the complex conduc-
tivity/dielectric. For vector and pseudoscalar DM, this is a valid approach. Our theoretical
calculations reproduced the results of this data-driven approach in the majority of mass
range, which we view as a validation of our methodology and numerical implementation.

For scalar DM, however, we showed that the dominant contribution is not directly
related to photon absorption. One therefore cannot simply rescale optical data to derive
the DM absorption rate. Importantly, the familiar coincidence between scalar and vector
couplings, ψ̄ψ ' ψ̄γ0ψ, holds only at leading order in the NR EFT. For non-relativistic
scalar DM φ, matrix elements of the leading order operator are severely suppressed by
the momentum transfer q ∼ 10−3mφ. The dominant contribution comes instead from a
different operator that is formally next-to-leading-order in the NR EFT expansion, and
does not suffer from in-medium screening. We presented reach projections for scalar DM
based on our theoretical calculations. Notably, for Al superconductor, the reach we found
is much more optimistic than the recent estimate in ref. [38].

It is straightforward to extend the calculation presented here to anisotropic targets
and materials with spin-dependent electronic wave functions (as can arise from spin-orbit
coupling); we will investigate this subject in detail in an upcoming publication. Another
future direction is to calculate phonon and magnon excitations from DM absorption via in-
medium self-energies in a similar EFT framework, refining and extending the calculation in
ref. [96]. Finally, in-medium self-energies are also relevant for DM detection via scattering;
one can carry out a calculation similar to what we have done here, but in a different
kinematic regime, to include in-medium screening corrections in the study of DM-electron
scattering via general EFT interactions [97].
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A Self-energy calculations

A.1 General result for the one-loop self-energy

At one-loop level, the self-energies defined in eqs. (3.5) and (3.6) are given by

− iΠO1,O2(Q) =
Q−→

I′

I

O1 O2

, −iΠ′O(Q) =
Q−→

I

O
, (A.1)
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where the external states (drawn with curly lines for concreteness) can be either spin-0
or spin-1, and the internal electronic states I, I ′ are summed over. Using the in-medium
Feynman rules (see e.g. ref. [93]) we obtain, for the first diagram:

− iΠO1,O2 = (−1)
V

∑
I′I

∫ ∞
−∞

dε

2π
tr
(
〈I ′| O1 e

iq·x|I〉〈I| O2 e
−iq·x|I ′〉

)
(ε+ ω − εI′ + iδI′)(ε− εI + iδI)

, (A.2)

where V is the total volume, “tr” represents the spin trace, and δ
I(′) ≡ δ sgn(ε

I(′) − εF )
with δ → 0+. Note that the iδ prescription for electron propagators is different from the
vacuum theory, and depends on whether the state is above or below the Fermi energy εF ;
using the correct iδ prescription is crucial for ensuring causality. Meanwhile, the matrix
elements coming from the vertices are

〈I ′| O1 e
iq·x|I〉 =

∫
d3x

[
Ψ∗I′(x)O1ΨI(x)

]
eiq·x , (A.3)

and likewise for 〈I| O2 e
−iq·x|I ′〉. Here O1,2 are matrices in spin space, and may involve

spatial derivatives acting on the electronic wave functions. For example, for the velocity
operator defined in eq. (3.9) (which is proportional to the identity matrix in spin space),
we have
〈
I ′
∣∣ vj eiq·x ∣∣I〉 = − i

2me

〈
I ′
∣∣←→∇j eiq·x ∣∣I〉 = − i

2me

∫
d3x

[
Ψ∗I′ (∇jΨI)− (∇jΨ∗I′) ΨI

]
eiq·x .

(A.4)
We can evaluate the energy integral in eq. (A.2) by examining the pole structure of the

integrand in the complex plane. If δI′ and δI have the same sign (i.e. if both I ′ and I are
above or below the Fermi energy), the two poles are on the same side of the real axis and
they have opposite residues; the integral therefore vanishes upon closing the contour via
either +i∞ or −i∞. So we must have one state above the Fermi energy and one below it,
in which case there is one pole on each side of the real axis; closing the contour via either
+i∞ or −i∞ to pick up the residue at one of the poles, we obtain

∫ ∞
−∞

dε

2π
1

(ε+ ω − εI′ + iδI′)(ε− εI + iδI)
=


i

ω − ωI′I + iδ
if δI′ > 0, δI < 0 ;

− i

ω − ωI′I − iδ
if δI′ < 0, δI > 0 .

(A.5)
Here ωI′I ≡ εI′−εI , and δ→0+. All cases discussed above can be concisely summarized as:∫ ∞

−∞

dε

2π
1

(ε+ ω − εI′ + iδI′)(ε− εI + iδI)
= −i (fI′ − fI)
ω − ωI′I + iδI′I

, (A.6)

where fI , fI′ are the occupation numbers (equal to 1 for states below the Fermi energy, 0
for states above it), and δI′I ≡ δ sgn(ωI′I). We therefore obtain

ΠO1,O2 = − 1
V

∑
I′I

fI′ − fI
ω − ωI′I + iδI′I

tr
(
〈I ′| O1 e

iq·x|I〉〈I| O2 e
−iq·x|I ′〉

)
. (A.7)
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As the simplest example, setting O1 = O2 = 1 in eq. (A.7), we obtain Π1,1, and hence the
dielectric via eq. (3.18), which reproduces the familiar Lindhard formula (see e.g. ref. [98]
and recent discussions in refs. [58, 59]).

Now move on to the second diagram in eq. (A.1). While we have shown in section 3
that contributions to absorption rates from this diagram can be eliminated using the Ward
identity, we present its result here for completeness and also to allow for an explicit check
of the Ward identity. In this diagram, the electron propagator starts and ends at the
same time point and time-ordering becomes ambiguous. The correct prescription is to take
the normal-ordered product of creation and annihilation operators, and the loop is simply
proportional to the electron number operator [93]. Again writing the result in terms of
occupation number fI , we find

Π′O = − 1
V

∑
I

fI tr〈I| O|I〉 . (A.8)

Note that Π′O is purely real at all orders. With eqs. (A.7) and (A.8) one can readily verify
the relations implied by the Ward identity, eqs. (3.11) and (3.35).

A.2 Real part of the one-loop self-energy in a metal

We now apply eq. (A.7) to the case of a metal. As discussed in section 5, we model the
electrons near the Fermi surface of a metal as free quasiparticles with an effective mass m∗
and energy eigenstates labeled by momentum. The sum over I, I ′ becomes integrals over
k,k′, and we have

ΠO1,O2 = ReΠO1,O2

= − 1
V

∫
V d3k′

(2π)3

∫
V d3k

(2π)3
fk′ − fk

ω − k′2

2m∗ + k2

2m∗

tr
(
〈k′| O1 e

iq·x|k〉〈k| O2 e
−iq·x|k′〉

)
. (A.9)

Note that the iδ in the denominator is irrelevant since the intermediate states cannot go
on-shell and ΠO1,O2 is real at one-loop level.

Let us first consider Π1,1. For the matrix element part, we have

〈k′| 1 eiq·x|k〉= 1
V

∫
d3x ei(k+q−k′)·x 1 = (2π)3

V
δ3(k + q − k′) 1 , (A.10)

tr
(
〈k′| 1 eiq·x|k〉〈k| 1 e−iq·x|k′〉

)
= 2 (2π)3

V
δ3(k+q−k′) 1

V

∫
d3x = 2 (2π)3

V
δ3(k+q−k′) .

(A.11)

Therefore,

Π1,1 = −2
∫

d3k

(2π)3
fk+q − fk

ω − (k+q)2

2m∗ + k2

2m∗

= −2
∫

d3k

(2π)3
fk+q − fk

ω − k·q
m∗
− q2

2m∗

. (A.12)
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Expanding in small q and integrating by parts, we find

Π1,1 = − 2
∫

d3k

(2π)3 (q · ∇fk + . . . )
( 1
ω

+ k · q
m∗ω2 + . . .

)
= 2

∫
d3k

(2π)3 fk (q · ∇+ . . . )
( 1
ω

+ k · q
m∗ω2 + . . .

)
' 2

∫
d3k

(2π)3 fk
q2

m∗ω2 = q2

ω2
ne
m∗

, (A.13)

where the gradients are in k space, and ne = 2
∫ d3k

(2π)3 fk is the free electron density.
We can calculate Πv̄2,1 in a similar way. The matrix element part again yields a

momentum-conserving delta function, and the integrand can then be expanded in small q.
We find

Πv̄2,1 = − 2
∫

d3k

(2π)3
fk+q − fk

ω − k·q
m∗
− q2

2m∗

(2k + q)2

8m2
e

= 2
∫

d3k

(2π)3 fk

(
q · ∇ − 1

2 q
iqj ∇i∇j + . . .

)( 1
ω

+ k · q
m∗ω2 + . . .

)(
k2

2m2
e

+ k · q
2m2

e

+ . . .

)

' 2
∫

d3k

(2π)3 fk
k2q2 + 2(k · q)2

2m2
em∗ω

2 = k2
F

2m2
e

q2

ω2
ne
m∗

, (A.14)

where we have used fk = Θ(kF − k), and ne = 2
(2π)3

4
3πk

3
F . Finally, since eq. (A.14) is

invariant under (ω, q)→ (−ω,−q), we have Π1,v̄2(Q) = Πv̄2,1(−Q) = Πv̄2,1(Q).

A.3 Imaginary part of the two-loop self-energy in a metal

The one-loop self-energies calculated above are purely real: both electrons cannot go on-
shell if their energies and momenta differ by Qµ = (ω, q) with ω � q. The leading
contribution to ImΠO1,O2(Q) comes from two-loop diagrams with an internal phonon line.
In this section, we compute them first in the case of a normal conductor, and then discuss
the corrections needed in the superconductor case when ω approaches the gap 2∆.

Cut diagrams. There are three contributing diagrams:

Q−→ →
Q′

K

O1 O2

= − i
∫

d4K

(2π)4

∫
d4Q′

(2π)4 GK GK+QGK+Q−Q′ GK+QG
ph
Q′

y2
q′ tr

[
Õ1(K,K +Q) Õ2(K +Q,K)

]
, (A.15)
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Q−→

K +Q

Q′→
O1 O2

= − i
∫

d4K

(2π)4

∫
d4Q′

(2π)4 GK GK+QGK GK+Q′ G
ph
Q′

y2
q′ tr

[
Õ1(K,K +Q) Õ2(K +Q,K)

]
, (A.16)

Q−→ ↓ Q′

K

O1 O2

= − i
∫

d4K

(2π)4

∫
d4Q′

(2π)4 GK GK+QGK+Q−Q′ GK−Q′ G
ph
Q′

y2
q′ tr

[
Õ1(K,K +Q) Õ2(K +Q−Q′,K −Q′)

]
. (A.17)

Here each propagator is labeled by a four-momentum that consists of the energy it carries
and the momentum label of the electron or phonon state. In each diagram, we denote
four-momentum flowing into the O1 vertex from the electron propagator as Kµ = (ε,k),
and the phonon four-momentum (with direction indicated by the arrow) as Q′µ = (ω′, q′).
The electron and phonon propagators are denoted by iG and iGph, respectively, with

GK = 1
ε− k2

2m∗ + iδε
, Gph

Q′ = 1
ω′ − ωq′ + iδ

− 1
ω′ + ωq′ − iδ

= 2ωq′
ω′2 − ω2

q′ + iδ
, (A.18)

where δε = δ sgn(ε − εF ), δ → 0+, and ωq′ = csq
′. The electron-phonon vertex yq′ =

Ce-phq
′√

2ωq′ρT
, while the vertices associated with operator insertions O1,2 yield the momentum

space representations of these operators, Õ1,2, whose arguments are the incoming and
outgoing electrons’ four-momenta. We have assumed exact momentum conservation and
neglected Umklapp processes; the latter may introduce an O(1) correction to the final
results which is more difficult to calculate.

By the optical theorem, 2 ImΠO1,O2 is given by the sum of cut diagrams. For the first
diagram, eq. (A.15), there is only one possible cut to put all intermediate states on-shell,
i.e. the one through the phonon propagator and the two electron propagators carrying
momenta K and K +Q−Q′. By the cutting rules, we should replace

Gph
Q′ → − 2πi

[
δ(ω′ − ωq′) + δ(ω′ + ωq′)

]
, (A.19)

GK → − 2πi sgn(ε− εF ) δ
(
ε− k2

2m∗

)
, (A.20)

GK+Q−Q′ → − 2πi sgn(ε+ ω − ω′ − εF ) δ
(
ε+ ω − ω′ − (k + q − q′)2

2m∗

)
. (A.21)

For ω > 0, the on-shell condition requires ω′ > 0, ε < εF and ε + ω − ω′ > εF ; this
corresponds to a process where an electron jumps out of the Fermi sphere by absorbing
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Qµ = (ω, q) while emitting a phonon to conserve momentum. We therefore obtain

Cut
[
eq. (A.15)

]
= −

∫
d4K

(2π)3

∫
d4Q′

(2π)3 2π δ(ω′ − ωq′) δ
(
ε− k2

2m∗

)
δ

(
ε+ ω − ω′ − (k + q − q′)2

2m∗

)
fk
(
1− fk+q−q′

)
G2
K+Q y

2
q′ tr

[
Õ1(K,K +Q) Õ2(K +Q,K)

]
= −

∫
d3k

(2π)3

∫
d3q′

(2π)3 2π δ
(
ω + k2

2m∗
− (k + q − q′)2

2m∗
− ωq′

)
fk
(
1− fk+q−q′

)
y2
q′

G2
K+Q tr

[
Õ1(K,K +Q) Õ2(K +Q,K)

]
, (A.22)

where it is understood that ε (the energy components of K) is set to k2

2m∗ in the final expres-
sion. The second diagram, eq. (A.16), is completely analogous. Cutting the propagators
GK+Q, Gph

Q′ and GK+Q′ , we obtain

Cut
[
eq. (A.16)

]
= −

∫
d3k

(2π)3

∫
d3q′

(2π)3 2π δ
(
ω + (k + q′)2

2m∗
− (k + q)2

2m∗
− ωq′

)
fk+q′

(
1− fk+q

)
y2
q′

G2
K tr

[
Õ1(K,K +Q) Õ2(K +Q,K)

]
= −

∫
d3k

(2π)3

∫
d3q′

(2π)3 2π δ
(
ω + k2

2m∗
− (k + q − q′)2

2m∗
− ωq′

)
fk
(
1− fk+q−q′

)
y2
q′

G2
K−Q′ tr

[
Õ1(K −Q′,K +Q−Q′) Õ2(K +Q−Q′,K −Q′)

]
, (A.23)

where we have shifted the integration variable k→ k − q′ to arrive at the last line.
For the last diagram, eq. (A.17), there are two possible cuts: through GK , Gph

Q′ ,
GK+Q−Q′ and through GK+Q, Gph

Q′ , GK−Q′ . Carrying out the same procedure as above,
we obtain

Cut
[
eq. (A.17)

]
= −

∫
d3k

(2π)3

∫
d3q′

(2π)3

{
2π δ

(
ω + k2

2m∗
− (k + q − q′)2

2m∗
− ωq′

)
fk
(
1− fk+q−q′

)
y2
q′

GK+QGK−Q′ tr
[
Õ1(K,K +Q) Õ2(K +Q−Q′,K −Q′)

]
+ 2π δ

(
ω + (k − q′)2

2m∗
− (k + q)2

2m∗
− ωq′

)
fk−q′

(
1− fk+q

)
y2
q′

GK GK+Q−Q′ tr
[
Õ1(K,K +Q) Õ2(K +Q−Q′,K −Q′)

]}

= −
∫

d3k

(2π)3

∫
d3q′

(2π)3 2π δ
(
ω + k2

2m∗
− (k + q − q′)2

2m∗
− ωq′

)
fk
(
1− fk+q−q′

)
y2
q′

GK+QGK−Q′ tr
[
Õ1(K,K +Q) Õ2(K +Q−Q′,K −Q′)

+ Õ1(K −Q′,K +Q−Q′) Õ2(K +Q,K)
]
, (A.24)
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where we have shifted the integration variable k → k + q′ and then changed q → −q′
(assuming the phonon energies ωq′ and electron-phonon couplings yq′ depend only on the
magnitude but not the direction of q′) in the second term.

Adding up eqs. (A.22), (A.23) and (A.24), we obtain

2 ImΠO1,O2 =−
∫

d3k

(2π)3

∫
d3q′

(2π)3 2π δ
(
ω + k2

2m∗
− (k + q − q′)2

2m∗
− ωq′

)
fk
(
1−fk+q−q′

)
y2
q′

tr
{[
GK+Q Õ1(K,K +Q) +GK−Q′ Õ1(K −Q′,K +Q−Q′)

]
×
[
GK+Q Õ2(K +Q,K) +GK−Q′ Õ2(K +Q−Q′,K −Q′)

]}
. (A.25)

Small q expansion. As in the previous section, we expand the integrand in small q.
The electron propagators become:

GK+Q = 1
k2

2m∗ + ω − (k+q)2

2m∗

= 1
ω − k·q

m∗
− q2

2m∗

= 1
ω

+ k · q
m∗ω2 + . . . , (A.26)

GK−Q′ = 1
k2

2m∗ − ωq′ −
(k−q′)2

2m∗

= 1
−ω + (k+q−q′)2

2m∗ − (k−q′)2

2m∗

= − 1
ω
− (k − q′) · q

m∗ω2 + . . . ,

(A.27)

where we have used the energy-conserving delta function to eliminate ωq′ in GK−Q′ . There-
fore, at leading order in q′,

GK+Q Õ1(K,K +Q) +GK−Q′ Õ1(K −Q′,K +Q−Q′)

=


GK+Q +GK−Q′ '

q′ · q
m∗ω2 for O1 = 1 ,

GK+Q
(2k + q)2

8m2
e

+GK−Q′

(
2(k − q′) + q

)2
8m2

e

' −m∗
m2
e

ω − ωq′
ω

for O1 = v̄2 ,

(A.28)

where an identity operator in spin space is understood, and we have again used energy
conservation to simplify the expression in the O1 = v̄2 case. Note in particular how the
O(q0) terms cancel in the case of O1 = 1, such that this LO operator gives a q-suppressed
contribution. The other factor GK+Q Õ2(K +Q,K) +GK−Q′ Õ2(K +Q−Q′,K −Q′) in
eq. (A.25) is completely analogous, so we obtain, after taking the spin trace (which simply
yields a factor of two) and substituting in yq′ = Ce-phq

′√
2ωq′ρT

, ωq′ = csq
′:

ImΠ1,1

ImΠv̄2,1 = ImΠ1,v̄2

ImΠv̄2,v̄2

=−
C2
e-ph

2m2
∗ρT cs

∫
d3k

(2π)3

∫
d3q′

(2π)3 2π δ
(
ω+ k2

2m∗
− (k + q − q′)2

2m∗
− ωq′

)

× fk
(
1− fk+q−q′

)
q′ ·



(q′ · q)2

ω4

−m
2
∗

m2
e

q′ · q
ω2

(
1− csq

′

ω

)
m4
∗

m4
e

(
1− csq

′

ω

)2


. (A.29)

– 28 –



J
H
E
P
0
9
(
2
0
2
1
)
1
2
3

Including the gap. We have presented the calculation of cut diagrams assuming a nor-
mal metal for simplicity. Accounting for pairing of electrons in the BCS theory introduces
a slight modification in the final result in the form of a coherence factor [94]. Concretely,
for the imaginary part of two-loop self-energies computed above, this amounts to replacing

2π δ
(
ω + k2

2m∗
− k′2

2m∗
− ωq′

)
fk
(
1− fk′

)
→ π

2 δ
(
Ek + Ek′ + ωq′ − ω

) (
1− εkεk′ −∆2

EkEk′

)
(A.30)

in eq. (A.29), where we have abbreviated k + q − q′ ≡ k′ and defined εk ≡ k2

2m∗ − εF ,
Ek ≡

√
ε2k + ∆2 (and similarly for εk′ , Ek′). The energy of the electron-hole pair is therefore

constrained to be Ek + Ek′ ≥ 2∆.

The k integral. We now perform the k integral:

I ≡
∫

d3k

(2π)3
π

2

(
1− εkεk′ −∆2

EkEk′

)
δ
(
Ek + Ek′ + ωq′ − ω

)
. (A.31)

The integrand depends only on the magnitude of k and the angle θ between k and q′ − q.
So the azimuthal angle integral simply yields a factor of 2π and we can use the δ function
to perform the integral over cos θ. The argument of the δ function has two roots in cos θ
(corresponding to εk′ = ±|εk′ |), both of which are within the range [−1, 1] in most of viable
phase space. Noting that dEk′

d cos θ = εk′
Ek′

dεk′
d cos θ = − εk′

Ek′
k|q′−q|
m∗

, we have

I = m∗
4π|q′ − q|

∫ ∞
0

dk k
Ek′

|εk′ |

(
1 + ∆2

EkEk′

)
Θ
(
ω − ωq′ −∆− Ek

)
. (A.32)

where Ek′ = ω − ωq′ − Ek. Changing the integration variable from k to Ek, we find

I = m2
∗

2π|q′ − q|

∫ ω−ωq′−∆

∆
dE

EE′+∆2

|εε′|
= m2

∗
2π|q′ − q|

∫ ω−ωq′−∆

∆
dE

EE′ + ∆2√
(E2−∆2)(E′2−∆2)

,

(A.33)
where a factor of two comes from combining contributions from the two values of k above
and below kF that correspond to the same Ek, and we have abbreviated Ek, Ek′ , εk, εk′ to
E,E′, ε, ε′, with E′ = ω − ωq′ −E. The integral over E can be reduced to elliptic integrals
via E = 1

2
[
ω − ωq′ + t (ω − ωq′ − 2∆)

]
:

I = m2
∗

4π|q′ − q|

∫ 1

−1
dt

(ω − ωq′ + 2∆)
√

1− α2t2

1− t2 −
4∆(ω − ωq′)
ω − ωq′ + 2∆

1√
(1− t2)(1− α2t2)


= m2

∗
2π|q′ − q|

[
(ω − ωq′ + 2∆)E(α)− 4∆(ω − ωq′)

ω − ωq′ + 2∆ K(α)
]

= m2
∗(ω − ωq′)

2π|q′ − q|

[
(1 + β)E(α)− 2β

1 + β
K(α)

]
= m2

∗(ω − ωq′)
2π|q′ − q| E

(√
1− β2

)
(A.34)

where we have introduced

α ≡
ω − ωq′ − 2∆
ω − ωq′ + 2∆ = 1− β

1 + β
, β ≡ 2∆

ω − ωq′
(A.35)
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to simplify notation, and

K(z) =
∫ 1

0
dt

1√
(1− t2)(1− z2t2)

, E(z) =
∫ 1

0
dt

√
1− z2t2

1− t2 (A.36)

are the complete elliptic integrals of the first and second kind, respectively. In the ∆→ 0
limit, corresponding to a normal conductor, we have α → 1, β → 0, E(1) = 1, and
I → m2

∗(ω−ωq′ )
2π|q′−q| .

The q′ integral. The remaining integral over the phonon momentum is
ImΠ1,1

ImΠv̄2,1 = ImΠ1,v̄2

ImΠv̄2,v̄2

 = −
C2
e-phω

4πρT cs

∫
d3q′

(2π)3 E

(√
1− (2∆/ω)2

(1− csq′/ω)2

)

× q′

|q′ − q|

(
1− csq

′

ω

)
·



(q′ · q)2

ω4

−m
2
∗

m2
e

q′ · q
ω2

(
1− csq

′

ω

)
m4
∗

m4
e

(
1− csq

′

ω

)2


. (A.37)

Expanding q′

|q′−q| = 1 + q′·q
q′2 + . . . and keeping the leading nonvanishing term, we can

easily carry out the angular integration. Finally, changing the radial integration variable
to x = csq′

ω , we obtain


ImΠ1,1

ImΠv̄2,1 = ImΠ1,v̄2

ImΠv̄2,v̄2

=−
C2
e-phω

4

(2π)3ρT c
4
s

∫ xmax

0
dxE

(√
1− (2∆/ω)2

(1−x)2

)


q2

3c2
sω

2 x
4(1−x)

− q2

3ω2
m2
∗

m2
e

x2(1−x)2

m4
∗

m4
e

x2(1−x)3


,

(A.38)

where the upper limit

xmax ≡ min
(

1− 2∆
ω
,
ωD
ω

)
(A.39)

is set by the requirements ω − ωq′ ≥ 2∆ and ωq′ = csq
′ ≤ ωD (Debye frequency).

When the energy deposition is well above the gap, ω � 2∆, eq. (A.38) reproduces the
normal conductor result:

ImΠ1,1
ω�2∆−−−−→−

C2
e-ph

(2π)3ρT

ω2q2

15 c6
s

·


1
6 (ω ≤ ωD) ,

x5
D

(
1− 5

6 xD
)

(ω > ωD) ,
(A.40)
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ImΠv̄2,1 = ImΠ1,v̄2
ω�2∆−−−−→

C2
e-ph

(2π)3ρT

ω2q2

9 c4
s

m2
∗

m2
e

·


1
10 (ω ≤ ωD) ,

x3
D

(
1− 3

2 xD+ 3
5 x

2
D

)
(ω > ωD) ,

(A.41)

ImΠv̄2,v̄2
ω�2∆−−−−→−

C2
e-ph

(2π)3ρT

ω4

3 c4
s

m4
∗

m4
e

·


1
20 (ω ≤ ωD) ,

x3
D

(
1− 9

4 xD+ 9
5 x

2
D−

1
2 x

3
D

)
(ω > ωD) ,

(A.42)

where xD ≡ ωD/ω.

Determination of Ce-ph. We use resistivity measurements [95] to determine Ce-ph. In
refs. [94, 95], a parameter λtr is introduced for the electron-phonon coupling, which is
defined by

λtr = 2
∫ ∞

0

dω′

ω′
α2
tr F (ω′) . (A.43)

The function α2
tr F (ω′) is in turn defined from the conductivity of a normal conductor,

σ1(ω) = Reσ(ω) =
ω2
p

ω2
2π
ω

∫ ω

0
dω′ (ω − ω′)α2

tr F (ω′) . (A.44)

Note that the normalization convention in ref. [94] is such that 4πσ1 there equals σ1 in our
notation. From eqs. (3.18) and (A.38) (in the limit ∆→ 0) we can readily identify

α2
tr F (ω′) =


C2
e-phe

2ω′4

3 (2π)4ρT c
6
sω

2
p

(ω′ ≤ ωD) ,

0 (ω′ > ωD) ,
(A.45)

and therefore
λtr =

C2
e-phe

2ω4
D

6 (2π)4ρT c
6
sω

2
p

. (A.46)

For Al, using λtr = 0.39 together with values of the other parameters in table 2, we find
Ce-ph = 56 eV.

B Absorption in anisotropic targets

Since the benchmark materials considered in this work (Si, Ge and Al-SC) are near-
isotropic, in the main text of the paper we worked under the simplifying assumption
that the medium is isotropic. However, it is straightforward to extend the calculation
to anisotropic targets. In this appendix, we discuss the modifications needed to go beyond
the isotropic limit.

First, the in-medium photon self-energy matrix Πλλ′ may have nonzero off-diagonal
entries, and its eigenvalues can be found by diagonalization [26]:Π++ Π+− Π+L

Π−+ Π−− Π−L
ΠL+ ΠL− ΠLL

 diagonalize−→

Π1 0 0
0 Π2 0
0 0 Π3

 . (B.1)
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A DM state φ may mix with all three photon polarizations, and eq. (3.4) generalizes to

R = − ρφ
ρT

1
ω2 Im

Πφφ +
∑

i=1,2,3

ΠφiΠiφ

m2
φ −Πi

 , (B.2)

where Πφi is obtained from Πµ
φA by first projecting onto eµ±,L and then rotating into the

diagonal basis.
For vector DM φ, the same rotation in eq. (B.1) diagonalizes also the φφ and φA

self-energy matrices. So each of the three polarizations of φ mixes only with the one
corresponding photon polarization, and we simply replace ΠT,L in eq. (3.4) by Π1,2,3 and
average over the three polarizations to obtain the rate in the anisotropic case:

Rvector = −1
3 κ

2 ρφ
ρT

m2
φ

∑
i=1,2,3

Im
(

1
m2
φ −Πi

)
. (B.3)

For pseudoscalar DM, still assuming spin-degenerate electronic states, we obtain from
eq. (3.26):

Rpseudoscalar = −g2
aee

ρφ
ρT

1
4m2

eω
2

1
e2

[
ω2 Im (Π++ + Π−−) +m2

φ ImΠLL

]
, (B.4)

which generalizes eq. (3.27). Note that while anisotropy allows for a nonzero mixing be-
tween the DM φ and the photon (via its coupling to the electron’s magnetic dipole), its
contribution to absorption rate is at O(q2) and negligible. On the other hand, if the elec-
tronic states are not spin-degenerate (e.g. due to spin-orbit coupling), one would need to
explicitly compute additional matrix elements of the spin operator Σ between the spin part
of the wave functions, and the absorption rate cannot be written in terms of components
of the photon self-energy matrix. Also, mixing between the DM and the photon becomes
relevant in this case.

For scalar DM, anisotropy may introduce mixing with all three photon polarizations,
and eq. (B.2) applies. The final result, however, is still expected to be dominated by
the Πv̄2,v̄2 term from Πφφ, and we therefore have the same formula, eq. (3.38), as in the
isotropic case:

Rscalar ' −d2
φee

4πm2
e

M2
Pl

ρφ
ρT

1
m2
φ

ImΠv̄2,v̄2 . (B.5)
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