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We explain the effect of dark matter (flat rotation curve) using modified gravitational
dynamics. We investigate in this context a low energy limit of generalized general rel-
ativity with a nonlinear Lagrangian L ∝ Rn, where R is the (generalized) Ricci scalar
and n is parameter estimated from SNIa data. We estimate parameter β in modified
gravitational potential V (r) ∝ −

1

r
(1 + ( r

rc

)β). Then we compare value of β obtained
from SNIa data with β parameter evaluated from the best fitted rotation curve. We
find β ≃ 0.7 which becomes in good agreement with an observation of spiral galaxies
rotation curve. We also find preferred value of Ωm,0 from the combined analysis of su-
pernovae data and baryon oscillation peak. We argue that although amount of ”dark
energy” (of non-substantial origin) is consistent with SNIa data and flat curves of spiral
galaxies are reproduces in the framework of modified Einstein’s equation we still need
substantial dark matter. For comparison predictions of the model with predictions of
the ΛCDM concordance model we apply the Akaike and Bayesian information criteria
of model selection.

Keywords: Dark Energy; Dark Matter; Modified Gravity.

1. Introduction

Different astronomical observations [1,2] are pointing out that our Universe be-

comes, at present time, in accelerating phase of expansion. In principle, there are

∗
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two quite different approaches to explain this observational fact. In the first ap-

proach (which can be called substantial) it is assumed that universe is filled by

mysterious perfect fluid violating the strong energy condition ρx + 3px > 0, where

ρx and px are, respectively, the energy density and the pressure of this fluid. The

nature as well as origin of this matter, called dark energy, is unknown until now.

Among these approaches have appeared concordance ΛCDM model, which predicts

that baryons contribute only about 4% of the critical energy density, non-baryonic

cold dark matter (CDM) about 25% and the cosmological constant Λ (vacuum en-

ergy) remaining 70%. Although ΛCDM model fits well SNIa data [3,4] this model

offers only description of the observations not their explanation. From the method-

ological view point the conception of mysterious dark energy seems to be effective

physical theory only and motivates theorists for searching of alternative approaches

in which nature of dark energy will be known at the very beginning.

In the first approach it is assumed that Einstein’s theory of general relativity

is valid which reduces in practice (after assuming Robertson-Walker symmetry of

space slices) to the case of Friedman - Robertson - Walker models. Nevertheless,

theoretically it is not a’priori excluded the possibility of cosmology based on some

extension of Einstein’s general relativity. In this paper we consider such particular

cases.

On the other hand, there are alternative ideas of explanation, in which instead

of dark energy some modifications of Friedmann’s equation are proposed at the very

beginning. In these approaches some effects arising from new physics like brane cos-

mologies, quantum effects, nonhomogeneities effects etc. can mimic dark energy by

a modification of Friedmann equation. Freese & Lewis [5] have shown that contri-

butions of type ρn to Friedmann’s equation 3H2 = ρeff , where ρeff is the effective

energy density and n is a constant, may describe such situations phenomenolog-

ically. These models (called by their authors called the Cardassian models) give

rise to acceleration, although the universe is flat, contains the usual matter and

radiation without any dark energy components. This models have been tested by

many authors (see for example [6,7,8,9,10,11,12]). What is still lacking is a funda-

mental theory (like general relativity) from which these models can be derived after

postulating Robertson Walker symmetry.

In this paper we shall consider such particular type of generalization of Einstein’s

general relativity in which Lagrangian is proportional to Rn, where R is generalized

Ricci skalar. In particular, Einstein’s general relativity is recovered if we put n =

1. This theory is part of the larger class of so-called f(R) gravity, i.e. theories

derived from gravitational Lagrangians that are analytical (usually polynomial)

functions of R. (see e.g. [13,14,15,16,17,18,19,20,21]. In this approach (we called

it non-substantial) instead of postulating mysterious dark energy it is assumed

some extension of general relativity. Then effect of acceleration appeared naturally

as a dynamical effect of the model. For modified gravity one can find Newtonian

potential in non-relativistic limit and ask about possibility to explain flat rotation

curve of spiral galaxies - major evidence for dark matter in the universe [22,23,24].
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(However, see also [25] for non flat rotational curves.) The main goal here is to

explore power of this particular generalization of gravity in the context of dark

energy and dark matter problems. We argue that although cosmology with modified

Lagrangian L ∝ Rn can explain ”dark energy problem” but baryon oscillation test

distinguishes value of density parameter of mater to be equal Ωm,0 ≃ 0.3, i.e.

problem of dark matter is yet not solved within the framework of f(R) theories. We

also demonstrate that models under considerations can reproduce rotation curves

of spiral galaxies.

The structure of the paper is as follows. In section II we define class of cosmolog-

ical models of essential theory of gravity with lagrangian proportional to the Ricci

scalar. Section III is devoted to analyze constraints on model parameters from SNIa,

baryon oscillation peak and CMB shift. In section IV we investigate problem of ro-

tation curves of spiral galaxies. Section V summarizes our results and formulates

general conclusion that models modified gravity which are based on generalized

lagrangians L ∝ Rn and Palatini formalism although solve the acceleration and flat

rotation curves problems still favor Ωm,0 ≃ 0.3.

2. Cosmological models of nonlinear Palatini gravity

Let us consider the simplest cosmological model of generalized Einstein’s theory

of gravity with Lagrangian L = f(R) which is function of the (generalized) Ricci

scalar. The action is assumed in the form

A = Agrav + Amat =

∫

(
√

det gf(R) + 2Lmat(Ψ))d4x (1)

where f(R) ∝ Rn and n is a constant. We also assumed that dynamical equation

determining evolution of the cosmological model can be derived from the action

through the Palatini formalism in which both metric g and symmetric connection

Γ are regarded as an independent variables. Thus R ≡ R(g, Γ) = gµνRµν(Γ) denotes

generalized Ricci scalar (see e.g. [17] for details).

Because of homogeneity and isotropy of the surface t = const is assumed, t -

being a global cosmic time, we choose Robertson-Walker metric i.e.

ds2 = −dt2 + a2(t)
[ 1

1 − kr2
dr2 + r2

(

dθ2 + sin2(θ)dϕ2
)]

. (2)

where k = 0,±1 is curvature index, r, θ, φ are usual spherical coordinates. Some

properties of these theories (in the Palatini framework) have been already investi-

gated by Capozziello et al. [26]. It has been demonstrated that under two popular

choices f(R) ∝ Rn and f(R) ∝ lnR both models provide well fits to the SNIa data.

Here we consider matter content in the form of perfect fluid which satisfy the

conservation condition:

dρ

dt
= −3H(ρ + p) (3)

where H = d
dt

(ln a) is Hubble’a function. For convenience we assume simple form of

equation of state (E.Q.S). After adopting Palatini formalism field equation reduces



4 Borowiec, God lowski, Szyd lowski

to the ordinary second order differential equation which admits first integral in the

form:

H2 = F (a). (4)

The first integral (4) is usually called (generalized) Friedman equation. This is the

first order differential equation in which right hand side is determined by matter

content and curvature. Due to simple relation between the scale factor and the

redshift z (1 + z = a0

a
) formula (4) can be written in the form H2 = F (z) (a0

denotes the present value of the scale factor which corresponds to the redshift

z = 0) In the system filled by both dust matter and radiation the function F (a)

takes the following form:

H2 =
2n

3(3 − n)

[

κηdust

β

]
1
n

a−
3
n +

+
4n(2 − n)κηrad

3β(n − 3)2

[

κηdust

β

]
1−n

n

a−
n+3

n − k

a2

[

2n

(n − 3)

]2

. (5)

where Lgrav = β
2−n

Rn√g, β is dimensional constant, wdust ≡ pdust/ρdust = 0. If

n = β = 1 and ηrad = 0 then the classical FRW dust filled model is recovered.

Let us formulate some important remarks:

(1) the formula (5) contains many nonphysical parameters which can be replaced by

dimensionless density parameters Ωi defined for each additive contribution to

the r.h.s. of (4). This in turn can be treated as a (fictitious or real) component of

some effective energy density. Density parameter Ωi is defined for each energy

component in standard way Ωi = ρi/3H2
0 where H0 is present value of the

Hubble function and ρi is energy density of i − th fluid.

(2) for our further analysis it is useful to separate this contribution on the r.h.s. of

(4) which represents real dust matter scaling like a−3 from the non-substantial

effects of generalized Lagrangian (related with n-parameter). Then our basic

formula can be rewritten to the new more suitable form:
(

H

H0

)2

= Ωm,0(1 + z)3
2n

(3 − n)
Ωnonl,0(1 + z)

3(1−n)
n +

+Ωr,0(1 + z)4
4n (2 − n)

(n − 3)
2 Ωnonl,0(1 + z)

3(1−n)
n . (6)

where parameter Ωnonl,0 is determined from the constraint H(z = 0) = H0

Ωnonl,0 =

(

2n

(3 − n)
Ωm,0 +

4n (2 − n)

(n − 3)2
Ωr,0

)

−1

. (7)

Here k = 0 is assumed for simplicity (for more general formulas see [27]).

One can check that in the case of n = 1 one obtains Einstein de Sitter model

filled with matter and radiation. The basic formula (6) will be suitable in the
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next section for providing priors on Ωm,0 which can be obtained from independent

extragalactic measurements or baryon oscillation peak.

From formula (6) on can drive a few conclusions. The first is that rejection of Ωr,0

in (6) doesn’t eliminate automatically the dust term. On the other hand substitution

ηdust = 0 give rise to rejection of the second (radiation) term automatically. The

next observation arising from (6) is that term Ωnonl,0(1 + z)
3(1−n)

n plays a role of

lapse function. Therefore one can re-scale original cosmological time following the

rule: t 7→ τ : dτ2 = Ωnonl,0(1 + z)
3(1−n)

n dt2 and then obtain, after re-scaling density

parameters, a flat model which is dynamically equivalent to the flat FRW model

with : Ωm,0 = Ωm,0
2n

3−n
and Ωr,0 = Ωr,0

4n(2−n)

(3−n)2
. Therefore, the exact solutions are

well known in the form of t = t(Ωm,0, Ωr,0, z).

It is also worth to notice that equation (6) is equivalent to

(

H

H0

)2

− F (a) ≡ 0 or

(

a
′

)2

2
+ V (a) = 0, (8)

where ′ ≡ d
dτ

, dt|H0| = dτ , V (a) = −ρeff
a2

6 = −F (a)a2

2 . Due to particle like

representation of the dynamics in the form (8) it is possible its investigation in

terms of what H.-J. Schmidt calls classical mechanics with the lapse function [28].

3. Observational constraints on modified gravity parameters

Within the framework of modified gravity, the acceleration originates from non-

substantial contribution arising from curvature modification. This gives rise to neg-

ative effective pressure and leads to self accelerating cosmology.

3.1. Constraining model parameters from SNIa data

The fundamental test for parameters of cosmological model is based on the lumi-

nosity distance as a function of red-shift dl(z) (the so-called Hubble diagram)

dL(z) = (1 + z)
c

H0

1
√

|Ωk,0|
F
(

H0

√

|Ωk,0|
∫ z

0

dz′

H(z′)

)

, (1)

where Ωk,0 = − k
H2

0
and F(x) ≡ sinh(x), x, sin(x) for k = −1, 0, +1 respec-

tively. For distant SNIa relation between luminosity distance dL, absolute magni-

tude M and directly observed their apparent magnitude m has the following form:

µ ≡ m − M = 5 log10 dL + 25 = 5 log10 DL + M , (2)

where M = −5 log10 H0 + 25 and DL = H0dL.

The goodness of fit is characterized by the parameter

χ2 =
∑

i

(µtheor
i − µobs

i )2

σ2
i

. (3)
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where µobs
i is the measured value, µtheor

i is the value calculated in the model under

consideration, and σi is the total measurement error. Assuming that supernovae

measurements come with uncorrelated Gaussian errors, one can determine the like-

lihood function L ∝ exp(−χ2/2). The Probability Density Function (PDF) of cos-

mological parameters [1] can be derived from Bayes’ theorem. Therefore, one can

estimate model parameters by using a minimization procedure. It is based on the

likelihood function as well as on the best fit method minimizing χ2.

In our analysis we used two samples of supernovae. One of them is “Gold” Riess

et al. sample of 157 SNIa [3]. Second one is the sample of 115 supernovae compiled

recently by Astier et al. [4]. This latest sample of 115 supernovae is our basic sample.

For statistical analysis we have restricted the parameter Ωm,0 to the interval

[0, 1] and n to [−10.0, 10.0] (except n = 0 and additionally n = 3 for w = 0).

Moreover, because of the singularity at n = 3, w = 0 we have separated the cases

n > 3 and n < 3 for w = 0 in our analysis. Please note that Ωnonl,0 is obtained

from the constraint H(z = 0) = H0. The results of two fitting procedures performed

on Riess and Astier samples with different prior assumptions for n are presented

in Tables 1 and 2. In the Table 1 the values of model parameters obtained from

the minimum the χ2 are given, whereas in Table 2 the results from marginalized

probability density functions are displayed. The best fit (minimum χ2) gives n ≃ 2.6

with the Astier et al. sample versus n ≃ 2.1 with the Gold sample. In Figure 1 we

present Probability distribution obtained with the Astier sample for the parameters

Ωm,0 and n for non-linear gravity model, (case n < 3 marginalized over the rest

of parameters). Please note that from Fig. 1 we obtain a very weak dependence of

PDF on the matter density parameter if only Ωm,0 ≥ 0.05. Because bounce is a

generic features of presented models for n > 2 [27] it is interesting to calculate from

observational data probability that value of n paprameter is greated from two. We

find that P (n > 2) ≃ 0.99. It means that bounce is strongly favored over big-bang

scenario like to in loop quantum gravity for example [32]. The Fig. 2 and Fig. 3

shows likelihood contours on the plane (Ωm,0, n) obtained (from fits to the SNIa

data and baryon oscilation peak test respecitvely), obtained for non-linear gravity

model, for the case n < 3 marginalized over M
Most popular are the Akaike information criteria (AIC) [33] and the Bayesian

information criteria (BIC) [34]. We use this criteria to select model parameters

providing the preferred fit to data.

One of the important problem of modern observational cosmology is the so-

called degeneracy problem: many models with dramatically different scenarios agree

with the present day observational data. Information criteria for model selection

[29] can be used, in some subclass of dark energy models, in order to overcome this

degeneracy [30,31]. Most popular are the Akaike information criteria (AIC) [33] and

the Bayesian information criteria (BIC) [34]. We use this criteria to select model

parameters providing the preferred fit to data.
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Table 1. The flat non-linear gravity model with dust and radiation. Results of statistical analysis

performed with Astier et al. and Gold Riess et al. samples of SNIa as a minimum χ2 best-fit. We
separately analyzed the case n > 3 and n < 3 .

sample Ωm,0 Ωnonl,0 n χ2

Gold 0.35 < 0.01 3.001 180.7

n < 3 0.89 0.23 2.13 181.5

n > 3 0.35 < 0.01 3.001 180.7

Astier 0.01 −1.47 3.11 108.7

n < 3 0.98 0.08 2.59 108.9

n > 3 0.01 −1.47 3.11 108.7

Table 2. The flat non-linear gravity cosmological model with dust and radiation. The values of
the parameters obtained from one dimensional PDFs calculated on the Astier et al. and the Gold
Riess et al. SNIa samples. Because of the singularity at n = 3 we separately analyze the cases
n > 3 and n < 3 .

sample Ωm,0 Ωnonl,0 n

Gold 0.01 0.26 2.11

n < 3 1.00 0.26 2.11

n > 3 0.01 −0.01 3.001

Astier 0.01 0.09 2.56

n < 3 1.00 0.09 2.56

n > 3 0.01 -0.01 3.01

Fig. 1. Probability distribution obtained with the Astier sample for the parameters Ωm,0 and n,
marginalized over the rest of parameters. Non-linear gravity model, n < 3 .

The AIC [33] is defined by

AIC = −2 lnL + 2d , (4)
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Fig. 2. The flat non-linear gravity model with dust and radiation (n < 3). Likelihood contours on
the (Ωm,0, n) plane, marginalized over M, obtained from fits to SNIa Astier et al. sample.

where L is the maximum likelihood and d the number of model parameters. The

best model, with a parameter set providing the preferred fit to the data, is that

which minimizes the AIC.

The BIC introduced by Schwarzc [34] is defined as

BIC = −2 lnL + d lnN , (5)

where N is the number of data points used in the fit. While AIC tends to favor

models with a large number of parameters, the BIC penalizes them more strongly,

so the later provides a useful approximation to the full evidence in the case of no

prior on the set of model parameters [35].

Please note that both values of information criteria have no absolute sense and

only the relative values between different models are physically interesting. For the

BIC a difference of 2 is treated as a positive evidence (6 as a strong evidence)

against the model with larger value of BIC [36,37]. If we do not find any posi-

tive evidence from information criteria, the models are treated as identical, while

eventually additional parameters are treated as not significant. Therefore, the in-

formation criteria offer a possibility to introduce a relation of weak ordering among
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Table 3. Results of AIC and BIC performed on the Astier versus the Gold Riess samples of SNIa.

sample AIC BIC

ΛCDM Gold 179.9 186.0

ΛCDM Astier 111.8 117.3

Non-Lin.Grav. Gold 186.6 195.8

Non-Lin.Grav. Astier 114.7 122.9

considered models.

In the Table 3 the value of AIC and BIC for the ΛCDM and the non-linear

gravity models are presented. Note that for both samples we obtain with AIC and

BIC for the ΛCDM model smaller values than for non-linear gravity. Most interst

is using a Bayesian framework to compare the cosmological models, because they

automatically penalize models with more parameters to fit the data. Based on these

simple information criteria, we find that the SNIa data still favor the ΛCDM model,

because under a similar quality of the fit for both models, the ΛCDM contains less

parameters.

3.2. CMB shift parameter

For stringent and deeper constraint on model parameters we include in our analysis

the so called (CMB) ”shift parameter“. This parameter is defined as:

R ≡
√

Ωm,0

|Ωk,0|
F (y(zlss)) (6)

where R0 = 1.716±0.062 [38] and zlss = 1089 [39]. The R-parameter determines the

angular scale of the first acustic peak through the angular distance to last scattering

and physical scale of the sound horizon. It is insensitive with respect perturbations

and are suitable to constrain model parameter. The region allowed by the analysis

of (CMB) ”shift parameter“ the plane (Ωm,0, n) for non-linear gravity model (for

the case n < 3) is presented on the Fig 4 (lower panel).

We obtain for non-linear gravity model the values of the model parameters

Ωm,0 = 0.67 and n = 1.03 as a best fit. Please note that this area is not allowed by

SNIa data.

3.3. Baryon oscillation peak

Recently Fairbarn and Goobar [40] used baryon oscillation peak detected in

the SDSS Luminosity Red Galaxies Survey [41] as a independent test of Dvali-

Gabadadze-Porrati (DGP) brane model. They used constraint for:

A ≡=

√

Ωm,0

E(z1)
1
3

(

1

z1

√

|Ωk,0|
F
(

√

|Ωk,0|
∫ z1

0

dz

E(z)

)

)
2
3

, (7)
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so that E(z) ≡ H(z)/H0 and z1 = 0.35 yield A = 0.469 ± 0.017. The quoted

uncertainty corresponds to one standard deviation, where a Gaussian probability

distribution has been assumed. These constraints could be used for fitting cosmo-

logical parameters (see also [4,40,42]).

Fairbarn and Goobar [40] showed that the joint constraints for both SNIA data

and the baryon oscillations peak ruled out flat DGP model at the 99% confidence

level. Analogical analysis can be performed for our model. We obtain for non-linear

gravity model the values of the model parameters Ωm,0 = 0.28, Ωnonl,0 = 0.33 and

n = 2.53 as a best fit. On the Fig.3 we show the region allowed by the baryon

oscillation test on the plane (Ωm,0, n) for non-linear gravity model with dust and

radiation (for the case n < 3).

Fig. 3. The flat non-linear gravity model with dust and radiation (n < 3). Likelihood contours on
the (Ωm,0, n) plane, marginalized over M, obtained from baryon oscillation peak test.
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3.4. Combined SNIa, CMB shift and baryon oscillation

constraints

Now it is possible obtained constraints from both SNIa data and CMB shift and

baryon oscillation peak. The results of our combined analysis are presented in the

Fig.4 (upper panel) On can see that the combination of three independent obser-

vational constraints distinguish the value Ωm,0 ≃ 0.3 like for ΛCDM concordance

model in which there is present substantial conception of dark matter. However

please note that area allowed by CMB shift is excluded by area allowed by com-

bined SNIa data and baryon oscillation peak because different value of n obtained

in both cases.

4. Flat rotation curves from cosmology in L ∝ R
n theories

Let us consider low energy limit of modified gravity with lagrangian L ∝ Rn.

For this aims it is useful to consider point like m in Schwarzchild - like metric

(spherically symmetric). Then modified gravitational potential which corrected the

ordinary Newtonian potential is of the form:

V (r) ∝ −1

r
(1 + (

r

rc

)β) (1)

where rc is characteristic parameter which crucially depends on the mass of the

system and β = β(n) [43].

Hence we can evaluate the rotation curve in the Newtonian limit of modified

gravity
mv2

c
(r)

r
= −∂V

∂r
. In the previous section we estimate value of n ≃ 2.6. Then

we calculate β parameter from the formula:

β =
12n2 − 7n − 1 −

√
36n4 + 12n3 − 83n2 + 50n + 1

6n2 + 4n − 2
(2)

obtained by Capozzielo et al. [43].

We obtain β ≃ 0.7 which is close to β estimated for NGC 5023 (β = 0.714).

Therefore we obtain that considered theory reproduce flat rotation curves of spiral

galaxies. Moreover, the value of β parameter required to explain acceleration ex-

pansion of the Universe give rise to correct peculiarities of observed rotation curve.

Nevertheless note, that from investigation presented in previous section density pa-

rameter for matter is close to Ωm,0 = 0.3 rather than to value Ωm,0 = 0.05 as can be

expected if both effects of dark energy and dark matter has non-substantial nature

i.e. (arises from modified gravity only).

5. Conclusion

In this paper we consider the simplest choice of f(R) theories with f(R) ∝ Rn. The

basic motivation is searching for fundamental theory of gravity capable to explain

both dark energy and dark matter problems without referring to mysterious dark

energy conception. For this aim we consider cosmology based on such a theory of
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Fig. 4. The comparision the the confidence levels (on the plane (Ωm,0, n)) obtained from combined
analysis SNIa Astier sample and baryon oscillations peak (upper panel) and from (CMB) ”shift
parameter“ (lower panel) .

gravity and then we use different observational constraints on independent model

parameters. We consider simple flat FRW model. It is integrable in exact form after
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re-parametrization of time variable. From estimation based on SNIa and BOP we

obtain n > 2 which means that bouncing phase instead of big-bang singularity is

generic features of such models. Because n > 2 new τ parameter is monotonous

function of cosmic time and acceleration epoch is transitional only phenomenon. In

the future the universe decelerate which distinguish our model from ΛCDM one.

Note that because for small value of scale factor a curvature effects are negligible in

the comparison to other matter contribution, therefore, in the generic case big-bang

singularity is replaced by bounce.

Analysis of SNIa Astier data shows that values of χ2 statistic are comparable for

both ΛCDM and best fitted non-linear gravity model. For deeper analysis we use

Akaike and Bayesian information criteria of model comparison and selection. We

find these criteria still to favor the ΛCDM model over non-linear gravity, because

(under the similar quality of the fit for both models) the ΛCDM model contains

one parameter less.

Moreover, we find that the effect of dark matter can be kinematically explained

as a effect of nonlinear gravity with Lagrangian L ∝ Rn. Parameter β required for

explaining accelerated expansion of the universe give rise to correct peculiarities

of observed rotation curve. However from baryon oscillation peak prior we still

obtain Ωm,0 ≃ 0.3 (instead of Ωm,0 ≃ 0.05 as we expected). Moreover, we find

a disagreement between results obtained from CMB shift parameter analysis and

that from joint SNIa and baryon oscillation peak. Finally, the substantial form of

dark matter is still required.
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