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however, are divergent in the collinear direction of the in- and out-going bath particles if

the mediator is massless. To address the issue of collinear divergences, we derive the bound-
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The main result is an expression for a more general cross section, which allows to compute

higher-order bound-state formation processes inside the primordial plasma background in

a comprehensive manner. Based on this result, we show that next-to-leading order con-

tributions, including the bath-particle scattering, are i) collinear finite and ii) generically

dominate over the on-shell emission for temperatures larger than the absolute value of the

binding energy. Based on a simplified model, we demonstrate that the impact of these new

effects on the thermal relic abundance is significant enough to make it worthwhile to study

more realistic coannihilation scenarios.
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1 Introduction

One of the leading dark matter (DM) candidates are Weakly Interacting Massive Particles

(WIMPs) [1–3], which can account for all the present DM energy fraction [4] through

their thermal production mechanism in the early Universe. While current upper bounds

on the coupling strength to Standard Model (SM) particles put a variety of thermal dark

matter candidates around the electroweak scale under tension, the TeV mass region and

above remains less constrained and an attractive possibility. In such a high mass region,

however, even the heaviest gauge bosons of the SM start to act as a long-range force between

annihilating WIMP pairs, leading to a variety of quantum mechanical phenomena. These

are important to include for predicting i) the thermal relic abundance precisely and ii) the

flux of final state SM particles produced from DM annihilation in, e.g., the galactic center.
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One famous example in the Minimal Supersymmetric extension of the SM (MSSM)

is the traditional case of wino-like neutralino, for which the important role of quantum

mechanical effects was pointed out in seminal works [5–8]. Already at the TeV mass region,

the ladder exchange of the most massive SM gauge bosons enhances the probability that a

slowly moving wino pair annihilates. This quantum mechanical effect is called Sommerfeld

enhancement (SE) [9] or Sakharov enhancement [10] and lowers the predicted abundance by

about 50 % compared to a tree-level computation in this case [8]. In turn, the enhancement

in the cross section allows for a 30% larger wino mass to compensate for the effect. The

flux of SM particles from the present neutralino annihilation in, e.g., the galactic center is

sensitive in particular to the predicted mass, since small variations can lead to Sommerfeld

resonances [6]. This example shows that it is required to predict the DM mass precisely once

quantum mechanical effects can drastically change the observational outcome, in order to

constrain the model or to estimate the required exposure time for fully testing the thermal

case. Various follow-up works extended the studies of the Sommerfeld effect in the MSSM

to more general cases, see, e.g., refs. [11–27] and [28–34] for formal aspects. For recently

refined calculations of the present day SM flux in wino and higgsino models, see refs. [35–37].

Additional quantum mechanical effects caused by attractive long-range interactions are

the existence of meta-stable bound states in the two-particle spectrum of WIMPs. Their

formation and subsequent decay into SM particles can be seen as an additional channel

depleting the relic density [38] and therefore allows for even larger dark matter masses. On

the one hand, bound-state effects turn out to be negligibly small [39] in the traditional wino

case within the current description of bound-state formation (BSF) via the emission of an

on-shell mediator. On the other hand, large corrections to the predicted mass were found

in other electroweak coannihilation scenarios, e.g., the quintuplet case in the context of

minimal dark matter [39]. Similar strong effects were identified for coannihilation scenarios

with colored charged particles [40–43]. In addition to the electroweak gauge boson, photon,

and gluon induced bound states, also the Higgs boson [44, 45] can attractively contribute

to confine DM into a meta-stable bound state. Self-interacting DM [46] with new light

mediators [47–58], motivated from a bottom-up approach to alleviate the diversity problem

in galactic rotation curves [59, 60] or in certain cases even simultaneously ameliorate the

Hubble tension [61, 62], are further examples where long-range interactions can affect the

dark matter relic abundance.

So far, the formation of dark matter bound states via the emission of an on-shell

mediator was considered as the dominant process. However, it was pointed out recently

that this does not necessarily have to be the dominant BSF channel during the thermal

dark matter freeze-out [63]. The conversion between scattering and bound states in the

radiation dominated epoch can also efficiently take place via bath-particle scattering, where

a mediator is exchanged virtually between a DM two-body pair and a relativistic primordial

plasma particle.

While in ref. [63], a mediator with a mass larger than the binding energy was inves-

tigated, we consider massless or lighter mediators in the present work. The masses of SM

force-carries is temperature dependent during the electroweak cross over, which motivates

to investigate these cases more carefully. Moreover, the exact massless mediator case has
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Figure 1. Graphic shows electrically or color charged coannihilation examples where bound states

are formed via bath-particle scattering. The amplitudes for these processes are divergent in the

forward scattering direction of the bath particles. Parallel black solid lines represent the bound

state, while open lines correspond to the initial two-particle scattering state.

relevance in coannihilation scenarios [64], where another unstable dark partner is relatively

close in mass to the actual DM particle such that the abundance of the latter can even

dominantly depend on the number density evolution of the former. Since the coannihilating

partner can decay (or coscatter) and therefore disappears at late times, it is allowed to have

electric or color charge. Coannihilation examples are illustrated diagrammatically in fig-

ure 1, where the charged coannihilating partner can form bound states via SM bath-particle

scattering through the exchange of a photon or gluon. Since they all come with a large

multiplicity, one may ask the question by how much these additional processes contribute

to the previously studied case of BSF via the emission of an on-shell mediator only.

The problem is that the bound-state formation amplitudes diverge for massless medi-

ators in the forward scattering direction of the in- and out-going bath particles in figure 1

(see also ref. [63]). Since these processes are temperature dependent, the Kinoshita-Lee-

Nauenberg (KLN) theorem [65, 66] is not directly applicable. Therefore this problem can

not be addressed through the computation of higher-order amplitudes in the collision term

of the Boltzmann equation in zero-temperature quantum field theory. We refer to this

approach as the “conventional Boltzmann formalism”. Thus, the question by how much

these processes could additionally deplete the DM relic abundance can not be answered

given the conventional methods.

Interestingly, the system of heavy (co)annihilating charged partners inside the Early

Universe plasma is very similar to heavy quarkonia inside a quark gluon plasma produced,

e.g., at the Large Hadron Collider. Based on thermal field theory, effective theories (EFTs)

applied to different temperature regimes have been developed to describe the dissociation

processes of heavy quarkonia also through parton scattering, i.e., the reverse process of

the two diagrams on the right in figure 1. The EFTs so far cover the temperature range

T � E, where E is the absolute value of the quarkonia binding energy (see, e.g., [67]).

While in the heavy quarkonia case this temperature regime is most of interest (e.g., to

understand temperature modifications of decay spectra or to probe the state of quark

gluon plasma, see for a review ref. [68]), in the DM case the probably most important

regime is when the temperature comes close to the binding energy as the Universe cools

down. Similar to hydrogen recombination, this is the temperature regime where most of

the bound states populate. Indeed, there is an exponential enhancement of the depletion

of the DM abundance caused by bound state decays if the system remains in ionization

equilibrium until the temperature is of the order binding energy or below [69]. Therefore we
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need to precisely resolve the regime T . E to investigate the decoupling of the scattering

states from the bound states in the presence of the primordial plasma. In this case, none

of the so far developed finite temperature EFT descriptions are applicable.

The main purpose of this work is to develop a more general method of how to calculate

higher order DM bound-state formation processes inside the Early Universe plasma, in

complementary lines with the heavy quarkonia literature. One major aspect is to address

the problem of collinear divergences once massless mediators or light mediators during

the electroweak cross over are involved and to understand the temperature regime T . E

where scattering states are expected to fully decouple from the decaying bound states.

To this end, we manage to derive the BSF collision term in the proper framework of

non-equilibrium quantum field theory, explicitly demonstrated for a vector mediator model

in section 2. A more general BSF cross section is defined from the collision term, expressed

in terms of thermal correlation functions. Based on this novel result, we demonstrate in

section 3 that our BSF cross section correctly contains the on-shell mediator emission at the

perturbation order of free correlation functions. In section 4, a complete next-to-leading

order computation for the direct capture into the ground state is presented, cancellation of

forward scattering divergences for bath-particle scattering and the off-shell decay is proven

in a model independent way, as well as the renormalization of the ultraviolet vacuum diver-

gence are discussed. Our fixed NLO result fully addresses the temperature regime T . E.

The impact on the thermal relic density from all these new next-to-leading order effects is

investigated in section 5 and our findings discussed in section 6. We concluded in section 7.

2 Generalized bound-state formation cross section

In order to study the infrared divergence structure of higher order bound-state formation

processes within a plasma environment for the case of a massless mediator, we consider for

simplicity a QED-like model:

L ⊃ −gχ̄γµχAµ + Lenv, (2.1)

where χ is a heavy Dirac fermion and Aµ an Abelian massless gauge boson. The final form

of the derived bound-state formation cross section for a pair of χ fields in eq. (2.11) at the

end of this section will be independent of the underlying particle content in the assumed

equilibrated environment and therefore Lenv can be chosen later.

The choice of the simplified model in eq. (2.1) is three-fold. First, χ can be seen as

an electrically charged coannihilating DM partner (“chargino”). In this case, Aµ can be

the SM photon, interacting with, e.g., electrons e in the primordial plasma environment

Lenv. ⊃ −gēγµeAµ. Note that to make it a proper coannihilation scenario, the Lagrangian

for χ must also allow for decay or coscattering events with the actual DM particle which

is however for the following discussion not relevant to include. Second, perspective can

be changed into the case where χ is the actual stable DM particle interacting through a

dark photon with some other dark radiation in the plasma environment (see introduction

for motivation coming from cosmological structure formation). This most simple case

will be adopted in section 5 to study the impact of higher order BSF processes on the
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relic abundance. Third, the model in eq. (2.1) is the QED analog of heavy quarks in a

quark gluon plasma, which allows us additionally to extend our discussion beyond the DM

application. In this case the environment contains the light quarks which result in bound

state formation via particle scattering through the exchange of a gluon gauge field.

Due to the different connectivity of the QED-like model, we will for simplicity just refer

to χ as DM. Varying the coupling between electroweak and strong values, allows us to gain

at least some insight into colored coannihilation or heavy quarks in a quark gluon plasma.

It is clear that the insight is limited by one major difference: in the non-abelian case, transi-

tions occur between color singlet and color octet heavy quarkonium (colored coannihilating

partner) states, where the initial and final two-body state have different potentials.

Temperatures around the typical chemical decoupling and below are considered, where

the DM χ fields can be assumed to be non-relativistic to a good approximation. We

commence from the potential non-relativistic (pNR) effective theory [70–72], which allows

for naturally writing the two-body bound and scattering states in terms of wave function

fields. In this framework, the transition between different two-body states are described

by an “electric” dipole operator r · E(x, t), where E(x, t) = −∇A0(x) − ∂tA(x) in terms

of the gauge field. In the Hamiltonian formalism, those dipole (dip) interactions are given

by (see, e.g., ref. [70], also for the color electric dipole operator as the QCD analog term):

Hdip(t) = −
∑
Spin

∫
d3xd3r O†sr(x, r, t) [g r ·E(x, t)]Osr(x, r, t), where (2.2)

Osr(x, r, t) =

∫
d3K

(2π)3

{∑
B
e−i(EBt−K·x)ψB(r)ĉsrB,K (2.3)

+

∫
d3k

(2π)3
e−i(Ekt−K·x)ψk(r)âsK/2+kb̂

r
K/2−k

}
.

The dipole interaction Hamiltonian contains all possible types of two-body conversion

processes, i.e., scattering-scattering, bound-bound, and scattering-bound state transitions.

The general two-body field operator Osr(x, r, t) consists of the whole energy spectrum of

χ-field pairs, whose individual components are converted into each other through dipole

interactions. Spin configurations are conserved in the transitions, represented by s and

r for particle and anti-particle, respectively, and summed over. The components with

negative energy eigenvalues EB (binding energy) are created by fundamental bound-state

operators ĉ† with quantum number B = {nlm}. The positive energy spectrum with kinetic

energy Ek = k2/(2µ) = µv2
rel/2 and reduced mass µ is created by the particle operator

â† and anti-particle operator b̂†. The expansion coefficients involve the bound state ψB(r)

and scattering state ψk(r) wave functions, which are the solution of the time-independent

Schrödinger equation with a static Coulomb potential. The wave function dependence on

the spin is neglected, and r, x denote relative and center-of-mass coordinates, respectively.

In the following, the time evolution of the particle number density is derived in the den-

sity matrix formalism, relating the collision term to the dipole Hamiltonian. To this end,

underlying assumptions are clarified first. We take an unperturbed Hamiltonian so that the

number densities for the scattering and bound states are conserved and compute the BSF
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and dissociation rates perturbatively. Let Ĥ, Ĥ0, and Ĥint being the full, free, and inter-

action Hamiltonian, namely Ĥ = Ĥ0 + Ĥint. The unperturbed Hamiltonian is given by the

summation of that for the scattering state, the bound state, and the thermal environment,

Ĥ0 = ĤS+ĤB+Ĥenv. The initial density matrix is assumed to factorize into a tensor prod-

uct of the scattering state, the bound state, and the thermal environment: ρ̂(t = 0) = ρ̂S⊗
ρ̂B⊗ρ̂env. By definition, it commutes with the unperturbed Hamiltonian: [ρ̂(t = 0), Ĥ0] = 0.

Our starting point is the von Neumann equation in the interaction picture: i ˙̂ρI(t) =

[ĤI(t), ρ̂I(t)], where the density matrix and interaction Hamiltonian in the interaction

picture are given by ρ̂I = eiĤ0tρ̂e−iĤ0t and ĤI = eiĤ0tĤinte
−iĤ0t respectively. The time

evolution of the particle number density is obtained from the expectation value of n̂kχ ≡∑
s â

s†
kχ
âskχ as follows:

ṅχ =
1

vol(R3)

∫
d3kχ
(2π)3

Tr
[

˙̂ρI n̂kχ

]
' − 1

vol(R3)

∫
d3kχ
(2π)3

lim
t→∞

∫ t

0
dt′Tr

{[[
n̂kχ , ĤI(t)

]
, ĤI(t

′)
]
ρ̂(t = 0)

}
. (2.4)

In the second line, we perform the time dependent perturbation with respect to HI and

take the leading order.1 The limit t → ∞ is justified since the typical time scale of our

interest is much smaller compared to that in the thermal plasma.2 The time evolution of

the anti-particle and bound-state number density can be expressed in the same way. Notice

that the expectation value in the right-hand side of eq. (2.4) should be taken by the initial

factorized density matrix.

To derive the change of the particle number density under dipole transitions, we have

to evaluate the double commutator in eq. (2.4) for the dipole interaction Hamiltonian in

eq. (2.2). While the dipole interaction Hamiltonian contains all possible types of two-body

conversion processes, only the conversion of a scattering state into a bound state and the

reverse process can change the particle number density nχ. Thus, it is sufficient to consider

only the mixed contributions containing the product c†ab and its hermitian conjugate part

in eq. (2.2). These two contribution lead to bound-state formation and the reverse process

called dissociation. The computational details of the double commutator are discussed in

appendix A.

Here we highlight the most important part in the computation in appendix A. Since the

dipole Hamiltonian contains the electric field, the computation of the double commutator

in eq. (2.4) shows the appearance of certain time-ordered photon two-point functions. As

already emphasized, this commutator should be evaluated by means of the factorized initial

density matrix, i.e., ρ̂(t = 0) = ρ̂S ⊗ ρ̂B ⊗ ρ̂env with ρ̂env ∝ e−Ĥenv/T . Therefore the photon

1Here only the leading order term in the interaction Hamiltonian ĤI is kept. If one is interested in

processes involving photons more than one, such as double photon emission, one has to consider high order

terms in ĤI .
2Since we are interested in the cosmological evolution of the DM number density, the typical time which

we would like to resolve is H−1 with H being the Hubble parameter. On the other hand, a typical time

scale of the dynamics involving the bound state would be of the order of 1/EB . We assume EB > H which

is fulfilled in the situation of our interest. Under these assumptions, one may take t→∞. See also [73].
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two-point functions appearing in the computation are nothing but the thermal propagators:

D−+
µν (x− y) ≡ 〈Aµ(x)Aν(y)〉 for BSF and D+−

µν (x− y) ≡ 〈Aν(y)Aµ(x)〉 for dissociation. As

well known, thermal propagators fulfill the Kubo-Martin-Schwinger relation [74, 75] (see

also chapter “Real-time formalism prerequisites” in [69]):

D−+
µν (P ) = [1 + f eq

γ (P 0)]Dρ
µν(P ), D+−

µν (P ) = f eq
γ (P 0)Dρ

µν(P ), (2.5)

with f eq
γ being the equilibrium phase-space distribution obeying Bose-Einstein statistics.

The KMS condition relates both two-point functions to the spectral function, defined in

coordinate space by Dρ
µν(x− y) ≡ 〈[Aµ(x), Aν(y)]〉. This photon spectral function encodes

all interactions of the primordial plasma environment. We will outline how to estimate the

effects from the thermal plasma perturbatively in eq. (2.12).

With these relations, the change of the particle number density in eq. (2.4) due to the

dipole interactions in eq. (2.2) is found to be given by:

ṅχ = −gχgχ̄
∑
B

∫
d3kχ
(2π)3

d3kχ̄
(2π)3

d3p

(2π)3
Dρ
µν(∆E,p)

∑
Spin

T µk,B(∆E,p)T ν?k,B(∆E,p)

×
{
fχ(kχ)fχ̄(kχ̄)[1 + f eq

γ (∆E)]− fB(K− p)f eq
γ (∆E)

}
, (2.6)

with ∆E = Ek − EB, k = (kχ − kχ̄)/2, K = kχ + kχ̄, and p being the three-momentum

of the mediator with fixed P 0 = ∆E. The transition matrix elements T of scattering and

bound states are proportional to the dipole overlap integrals:

T 0
k,B(P 0,p) ≡ g iδ

ss′δrr
′

√
gχgχ̄

p

∫
d3rψ?B(r)rψk(r), (2.7)

T ik,B(P 0,p) ≡ g iδ
ss′δrr

′

√
gχgχ̄

P 0

∫
d3rψ?B(r)riψk(r). (2.8)

The transition element fulfills current conservation PµT µk,B(P ) = 0, as a consequence the

global symmetry of the model in eq. (2.1).

The χ fields and the bound states are assumed to be in kinetic equilibrium and dilute.

Their phase-space densities take the classical Maxwell-Boltzmann statistics and can be

written as: fX = f eq
X nX/n

eq
X (T ). By noticing the standard non-relativistic thermal average

in eq. (2.6), a bound-state formation cross section can be defined as:

〈σbsf
B vrel〉 ≡

gχgχ̄
neq
χ n

eq
χ̄

∫
d3kχ
(2π)3

d3kχ̄
(2π)3

(σbsf
B vrel)f

eq
χ (kχ)f eq

χ̄ (kχ̄). (2.9)

Replacing the time derivative on the l.h.s. of eq. (2.6) with cosmic time derivative, and

adding the usual DM annihilation part in the r.h.s., the particle number density equation

can be brought into the standard form:

ṅχ + 3Hnχ = −
∑
B
〈σbsf
B vrel〉

[
nχnχ̄ − nB

neq
χ n

eq
χ̄

neq
B

]
− 〈σanvrel〉

[
nχnχ̄ − neq

χ n
eq
χ̄

]
. (2.10)
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Figure 2. Illustration of the generalized cross section eq. (2.11) in terms of a self-energy diagram,

containing the interacting mediator two-point function. Parallel lines represent the bound state,

while open lines correspond to the two-particle scattering state.

Finally, we can identify a generalized bound-state formation cross section as

σbsf
B vrel ≡

∫
d3p

(2π)3

[
1 + f eq

γ (∆E)
]
Dρ
µν(∆E,p)

∑
Spin

T µk,B(∆E,p)T ν?k,B(∆E,p). (2.11)

This cross section is one of the central results of this work and can be diagrammatically

expressed in terms of the self-energy diagram depicted in figure 2. The vertices represent the

leading order dipole transition contained in Tk,B. The black blob indicates the interacting

spectral correlation function Dρ of the mediator, which encodes all interactions with the

primordial plasma environment and is the key difference compared to previous literature.

It can be seen as a probability density of having a mediator excitation at a certain p for

fixed ∆E. The excitation can be on-shell but also virtually induced through the thermal

environment via, e.g., bath-particle scattering. It is convenient to compute the spectral

function from the retarded correlator via Dρ
µν = 2 Im

[
iDR

µν

]
, since the latter obeys also in

thermal field theory the Dyson-Schwinger equation, given in momentum space by

DR
µν = DR,0

µν +DR,0
µα Παβ

R DR,0
βν + . . . . (2.12)

In the next section 3, we demonstrate that BSF via on-shell mediator emission is reproduced

from the free retarded propagator. In section 4, the first interaction term containing the

retarded self-energy ΠR is analyzed.

Although the cross section was derived for a particular model, we expect the factor-

ization into Dρ and Tk,B to be a rather model-independent feature. In ref. [63], a direct

relation between the transition matrix elements and relativistic amplitudes has been given.

The advantage of this relation is that results of the previous literature, computing the

on-shell emission only, can be used to directly determine Tk,B. For Yukawa interactions

involving scalar mediators, one can drop the Lorentz indices in eq. (2.11). The correspond-

ing transition elements, as well as many other cases, can be found in refs. [43, 76–78].

For non-abelian gauge theories, e.g., colored coannihilation examples with BSF via gluon

scattering (triple vertex) as in the fourth diagram in figure 1, one may have to carefully

re-derive eq. (2.11) from the corresponding pNREFT action to show the gauge invariance

once a gluon loop is involved in the self-energy. Nevertheless, we expect for a fermion loop

that eq. (2.11) holds also in the non-abelian gauge theory. In the remaining part of this

work we focus on Abelian gauge interactions.

– 8 –



J
H
E
P
0
9
(
2
0
2
0
)
0
8
6

Figure 3. Correspondence between the leading order self-energy contribution and the amplitude

squared shown. R indicates the retarded mediator propagator.

3 Recovering on-shell emission at the leading order

Consider the dominant direct capture into the ground state nlm = 100 for the QED-like

model in eq. (2.1). The overlap integral in eq. (2.8) has been analytically computed in,

e.g., ref [76]. From this result one can get an expression for the transition matrix elements:

∑
spins

T µk,100(∆E,p)T ν?k,100(∆E,p) =
4πh(ζ)

µ3∆E2

(
p · k̂
∆E k̂

)µ(
p · k̂
∆E k̂

)ν
, (3.1)

h(ζ) ≡ 26π

(
2πζ

1− e−2πζ

)
ζ6

(1 + ζ2)3
e−4ζacotζ , (3.2)

with ζ ≡ α/vrel and ∆E = mχα
2(1+ζ−2)/4 for the ground-state capture. The nice feature

now is that eq. (3.1) can be reused in eq. (2.11) at any order in the two-point correlation

function of the photon field to determine leading and higher-order bound-state formation

cross sections inside the primordial plasma environment.

Focusing in this section on the leading order, the free retarded propagator is given by

DR
µν(P )

∣∣
free

= −igµν [P 2 + isgn(P 0)ε]−1. The imaginary part of this expression determines

the free photon spectral function, which is nothing but the on-shell contribution:

Dρ
µν(P )

∣∣
LO

= −gµνsgn(P 0)(2π)δ(P 2). (3.3)

The cross section for capture into the ground state via the emission of an on-shell vector

mediator is recovered (cf., e.g., [76]) by inserting the free spectral function in eq. (3.3)

together with the transition matrix elements in eq. (3.1) into the main formula eq. (2.11):

σLO
100vrel ≡

∫
d3p

(2π)3

[
1 + f eq

γ (∆E)
]
Dρ
µν(∆E,p)

∣∣
LO

∑
spin

T µk,100(∆E,p)T ν?k,100(∆E,p)

=
4h(ζ)∆E

3µ3

[
1 + f eq

γ (∆E)
]
. (3.4)

At leading order of the mediator spectral function, the BSF cross section reduces to the

result one would obtain in the Boltzmann formalism based on vacuum amplitudes. In

this example, the result is the same as for SM neutral hydrogen recombination, with the

emission of a photon. The correspondence between the leading order self-energy diagram

and the amplitudes in the vacuum field theory is shown in figure 3. In the regime where

T � ∆E, ζ � 1, and using limζ→∞ ζacotζ = 1, one obtains that the leading order BSF

cross section eq. (3.4) is by approximately a factor three larger compared to the s-wave

Sommerfeld enhanced annihilation cross section into two photons, see ref. [76] for details.
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Figure 4. Diagram shows contributions contained in the photon spectral function at next-to-

leading order.

4 Next-to-leading order

We turn now to BSF processes arising at the first order of interactions with the primor-

dial plasma environment. The imaginary part of the first interaction term in the Dyson

eq. (2.12) of the retarded mediator correlation function defines the next-to-leading order

contribution to the spectral function and encodes the first interactions with the environ-

ment:

Dρ
µν(P )

∣∣
NLO

= 2 Im
[
iDR

µα(P )Παβ
R (P )DR

βν(P )
]
. (4.1)

Hereby, the self-energy Παβ
R (P ) depends on the content in Lenv. Under the assumption

of a SM photon as mediator, its self-energy is a sum over various contributions with W -

bosons, quarks and charged leptons running in the thermal loop. This is equivalent with

considering all processes interacting with the plasma at next-to-leading order, for instance

BSF via bath-particle scattering and off-shell mediator decay into a bath-particle pair is

intrinsically taken into account in the thermal self-energy.

In the following, we concentrate on the interactions with ultra-relativistic Dirac

fermions ψ in the primordial plasma environment such that we identify Lenv = −gψ̄γµψAµ,

which resembles in a simplified way the interaction with charged SM leptons or quarks.

Hence, the retarded self-energy contains a fermion loop as illustrated by the left diagram

in figure 4. We derive the retarded self-energy directly from the Wightman functions for

massless fermions as described appendix B. By inserting the obtained expression for the

retarded photon self energy

ΠR
µν(P ) = g2

∫
d3k1

(2π)32|k1|

∫
d3k2

(2π)32|k2|
Tr
[
γµ /K1γν /K2

]
(2π)3 (4.2)

×
{[

1− f eq
ψ (|k1|)− f eq

ψ (|k2|)
] [ iδ3(p + k1 + k2)

P 0 + |k1|+ |k2|+ iε
− iδ3(p− k1 − k2)

P 0 − |k1| − |k2|+ iε

]
+
[
f eq
ψ (|k2|)− f eq

ψ (|k1|)
] [ iδ3(p + k1 − k2)

P 0 + |k1| − |k2|+ iε
− iδ3(p− k1 + k2)

P 0 − |k1|+ |k2|+ iε

]}
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into the spectral function eq. (4.1), and the latter into the general expression for the BSF

cross section eq. (2.11), we obtain the following expression:

σNLO
B vrel ≡

∫
d3p

(2π)3

[
1 + f eq

γ (∆E)
]
Dρ
µν(∆E,p)

∣∣
NLO
T µk,B(∆E,p)T ν?k,B(∆E,p) (4.3)

=

∫
d3p

(2π)3

[
1 + f eq

γ (∆E)
] ∑

spins

T µk,B(∆E,p)T ν?k,B(∆E,p)

× g22 Im

[(
−i

(∆E + iε)2 − |p|2

)2 ∫ d3k1

(2π)32|k1|

∫
d3k2

(2π)32|k2|
Tr
[
γµ /K1γν /K2

]
×
{

/δ
3
(p + k1 − k2)

∆E + |k1| − |k2|+ iε

[
f eq
ψ (|k1|)− f eq

ψ (|k2|)
]

+
/δ

3
(p− k1 + k2)

∆E − |k1|+ |k2|+ iε

[
f eq
ψ (|k2|)− f eq

ψ (|k1|)
]

+
/δ

3
(p− k1 − k2)

∆E − |k1| − |k2|+ iε

[
1− f eq

ψ (|k1|)− f eq
ψ (|k2|)

]
+

/δ
3
(p + k1 + k2)

∆E + |k1|+ |k2|+ iε

[
−1 + f eq

ψ (|k1|) + f eq
ψ (|k2|)

]}]
.

When integrating the above equation, the imaginary part of the integral contains a prod-

uct of possible double and single poles. The former originate from the squared photon

propagator D2 and the latter from the self-energy ΠR in eq. (4.1).

Taking the imaginary part of single poles corresponds to putting the fermions in the

loop as on-shell, while the photons remain virtual. From top to bottom, the four single poles

belong to: BSF via particle3 and anti-particle scattering, as well as BSF via off-shell decay

of the photon into a pair of bath particles and the reverse process. The reverse process of

off-shell decay is an exception and does not contribute to the imaginary part for kinematical

reason (Note that ∆E is always positive). All others are graphically represented by the

top and middle diagram on the right-hand side of figure 4.

The contributions arising from the imaginary part of the double pole correspond to

the on-shell emission at next-to-leading order with a temperature dependent fermion loop.

We call these contributions in the following interference terms, collectively represented by

the bottom right diagram in figure 4.

The total BSF cross section amounts to a sum over all imaginary parts of the aforemen-

tioned single and double poles. The bath-particle scattering and off-shell decay, which arise

from the imaginary part of single poles, diverge in the case of a massless photon for zero

opening angle of the bath particles (k̂1 · k̂2 → 1). We will demonstrate that this divergence

is exactly canceled by the collinear divergence appearing in the interference terms. In the

3To identify the bath-particle scattering case, the identity
[
1 + f eq

γ (∆E)
] [
f eq
ψ (|k1|)− f eq

ψ (|k1|+ ∆E)
]

=

f eq
ψ (|k1|)

[
1− f eq

ψ (∆E + |k1|)
]

is helpful. Similarly, all three other possibilities can be identified. We

checked that the resulting cross sections from the imaginary part of the single poles only are identical to

the cross sections obtained in the conventional Boltzmann formalism, and that they are collinear divergent.
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conventional Boltzmann approach (i.e. considering only bath-particle scattering without

on-shell emission at NLO and finite temperature fermion loop), there is no other term

regulating this divergence, while in our approach the cancellation will be shown to happen

automatically. The loop contains also UV divergent vacuum parts, i.e. fψ independent

terms in eq. (4.3), which can be renormalized with the standard counter terms.

In the following, we show in section 4.1 the main steps for computing BSF at next-

to-leading order for the special case of capture into the ground state. In section 4.2, we

provide a general proof for the cancellation of the appearing collinear divergences. The

result for the next-to-leading order BSF cross section is compared to the leading order

contribution (on-shell mediator emission) in section 4.3. We set our results into context to

the massive mediator case in section 4.4.

4.1 Computational results for direct capture into the ground state

The discussion of the cancellation of the forward scattering divergences and the renormal-

ization of the UV divergences can be separated by noticing that the self-energy in eq. (4.2)

can be written as a sum over finite temperature and zero temperature parts. According to

this separation, it is useful to define cross sections respectively:

1

4π

∫
dΩk(σNLO

100 vrel) = (σNLO
100 vrel)T=0 + (σNLO

100 vrel)T 6=0, (4.4)

where the angular averaged parts are defined as

(σNLO
100 vrel)T=0 ≡

1

4π

∫
dΩk

∫
d3p

(2π)3

[
1 + f eq

γ (∆E)
]
T µk,100(∆E,p)T ν?k,100(∆E,p) (4.5)

× 2 Im
[
iDR

µα(∆E,p)Παβ
R (∆E,p)DR

βν(∆E,p)
]
T=0

,

(σNLO
100 vrel)T 6=0 ≡

1

4π

∫
dΩk

∫
d3p

(2π)3

[
1 + f eq

γ (∆E)
]
T µk,100(∆E,p)T ν?k,100(∆E,p) (4.6)

× 2 Im
[
iDR

µα(∆E,p)Παβ
R (∆E,p)DR

βν(∆E,p)
]
T 6=0

.

These two cross sections are computed separately in the following. The transition elements

T for the direct capture into the ground state are given in eq. (3.1). Out of computational

reasons it is already reasonable to perform here the angular average over the orientation of

the DM relative momentum and it naturally arises in the thermal average in eq. (2.9). The

following identities for the direct capture into the ground state will be helpful to simplify
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appearing expressions:

1

4π

∫
dΩk

∑
spins

T µk,100(∆E,p)T ν?k,100(∆E,p)(gµνP 2 − PµP ν)

=
4h(ζ)∆E

3µ3

3π

∆E3
(∆E2 − p2)(p2/3−∆E2), (4.7)

1

4π

∫
dΩk

∑
spins

T µk,100(∆E,p)T ν?k,100(∆E,p) Tr
[
γµ /K1γν /K2

]
=

16πh(ζ)

3µ3∆E2

{
2
(
|k1||k2|p2 −∆E|k1|p · k2 −∆E|k2|p · k1 + ∆E2k1 · k2

)
−
(
p2 − 3∆E2

)
(|k1||k2| − k1 · k2)

}
. (4.8)

Vacuum contribution. The renormalized retarded self-energy at zero temperature can

be obtained from the conventional Euclidean time-ordered self-energy through analytic

continuation. In the MS-scheme, the retarded photon self-energy for vacuum polarization

with approximately massless fermions running in the loop is given by:

iΠR
µν(P )

∣∣
T=0

= −
(
gµνP

2 − PµPν
) g2

12π2

[
ln

(
P 2 + isign(P 0)ε

−µ2
0

)
− 5

3

]
. (4.9)

The logarithm has a complex contribution for time-like P 2, which originates from the off-

shell decay into a massless bath-particle pair. Computing the integral over the imaginary

parts in eq. (4.5), we realize that the NLO cross section factorizes as

(σNLO
100 vrel)T=0 = (σLO

100vrel)

[
α

π
lim
ε↘0

Rε

]
(4.10)

into the LO contribution as given in eq. (3.4) and the NLO contribution with

Rε =
1

π

∫ ∞
0

d|p| Im
{

p2(∆E2 − p2)
(
p2 − 3∆E2

)
3∆E3 [(∆E + iε)2 − p2]2

[
ln

(
(∆E + iε)2 − p2

−µ2
0

)
− 5

3

]}
.

(4.11)

Performing the integral and taking ε → 0, we obtain a finite result (see appendix C.1 for

the details on the contour integration):

lim
ε↘0

Rε =
1

3

[
ln

(
∆E2

µ2
0/4

)
− 10

3

]
. (4.12)

These vacuum corrections are shown in figure 12, shared and discussed in more detail in

appendix C.2. From now on, the renormalization scale is fixed to the ground state binding

energy µ0 = E100 = µα2/2.

In eq. (4.11), the imaginary part of the double pole and the imaginary part of the

logarithm correspond precisely to the zero temperature limit of the last two diagrams

in figure 4, i.e., zero temperature off-shell decay and zero temperature interference term,

respectively. Each contribution is individually divergent but the sum is finite. As expected

at T = 0 from the KLN theorem, the collinear divergences in real and virtual corrections
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cancel each other which is precisely the situation here. Hence, for a finite, physical cross

section, both contributions, off-shell decays as well as the virtual correction to the on-shell

emission, have to be taken into account.

The off-shell decay contribution has a zero temperature part, since the Pauli blocking of

the two final state bath particles contains phase space independent parts as (1−fψ)(1−fψ).

However, the bath particle scattering contribution has no zero temperature part. Therefore

the T = 0 KLN theorem can not be naively applied in this case. In zero temperature QFT,

there is no amplitude which cancels the collinear divergence of the bath-particle scattering.

While a consistent treatment of BSF at NLO is non-trivial in the conventional Boltz-

mann approach (e.g., with respect to double counting of real intermediate states when in-

serting by hand thermal field theory expressions into QFT amplitudes at zero temperature),

our advocated thermal field theory approach will take care of all crucial subtleties such as

finite temperature effects, double counting of real intermediate states, and the “automatic”

cancellation of all appearing infrared divergences, as we will discuss in the following.

Finite temperature contributions. Similar to eq. (4.10), the finite temperature part

of the NLO cross section can be written as

(σNLO
100 vrel)T 6=0 = (σLO

100vrel)

[
α

π
lim
ε↘0

∑
σ1,σ2

Rσ1σ2
ε

]
, (4.13)

where the remaining part to compute is the dimensionless function:4

Rσ1σ2
ε ≡ 1

π

∫ ∞
0

d|k|
∫ 1

−1
dτ

∫ ∞
0

d|p| Im [Gσ1σ2
ε (|p|, τ, |k|)] . (4.14)

In this compact notation, the summation over σi ∈ {+,−} in eq. (4.13) takes into account

all the finite temperature contributions contained in the self-energy in eq. (4.3). To arrive

here, integration over k2 in eq. (4.3) was performed over the momentum conserving delta

function and k1 was relabeled by k. The angular integration variable is τ ≡ p̂ · k̂. The

function Gσ1σ2
ε contains a product of the single and double poles, as given by

Gσ1σ2
ε (|p|, τ, |k|) ≡ F σ1σ2(|p|, τ, |k|)

([∆E + iε]2 − p2)2 (∆E + σ1|k| − σ2|p + σ1k|+ iε)
, (4.15)

4In principle, it does not matter which integral is chosen to perform the integration over the poles.

However, we would like to share some insights why we find this particular order especially suited. Here,

we have chosen the integral over k2 in eq. (4.3) to first perform the simple integration over the momentum

conserving delta functions, and then p to perform integration over the poles. In this order, the collinear

divergence occurs at τ ≡ p̂ · k̂1 → 1, which is physically not anymore the zero opening angle between

the bath particles but related to that divergence. In a different order where p integration over the delta

functions is performed first, the collinear divergences occur when the opening angle of the bath particles

approaches zero, i.e., k̂1 · k̂2 → 1. This order introduces coordinate singularities in addition, which one

can get rid off by transforming into certain elliptical coordinates. The final result in these coordinates

would be the same as in the order of integration chosen in this section, but more difficult to physically

interpret. Finally, we would like to remark that one is not allowed to choose different integration orders for

the single and double poles. This is because only the simultaneous integral over both contributions is in

general finite, while the individual terms can diverge. When separating the divergent integrals over single

and double poles, we find that one can still show that the collinear divergences cancel at the end, but one

misses important boundary terms and the final result would be different.
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where for the numerator we get

F σ1σ2(|p|, τ, |k|)≡
[
σ1f

eq
ψ (|k|)−σ2f

eq
ψ (|p+σ1k|)

] k2p2

∆E3|p+σ1k|
(4.16)

×
{[

p2−3∆E2
]
[|p+σ1k|−σ2(σ1|k|+ |p|τ)]

−2
[
p2|p+σ1k|−∆Eσ2|p|(|p|+σ1|k|τ)−∆E|p+σ1k||p|τ+∆E2σ2(σ1|k|+ |p|τ)

]}
.

For the integration over |p| in eq. (4.14), we consider the analytic continuation |p| → z

and perform the integration over the single and double poles of the function in eq. (4.15).

In appendix C.3, we show that due to the imaginary part in eq. (4.14), F σ1σ2 holomorphic

on the real line, and integration range from 0 to infinity, only the real and positive poles

contribute. All the real and positive poles are listed in table 1, together with their existence

criteria. We denote the double pole as z0 and the possible two single poles as zp/m for each

σ1σ2 configuration in eq. (4.15). The table can be used to simply write down the Rσ1σ2

functions expressed in terms of the residues as:

R++
0 =

∫ ∞
0

d|k|
∫ 1

−1
dτ
[
Res(G++

0 , z0) + Res(G++
0 , zp)

]
, (4.17)

R+−
0 =

∫ ∞
0

d|k|
∫ 1

−1
dτ
[
Res(G+−

0 , z0)
]
, (4.18)

R−+
0 =

∫ ∆E/2

0
d|k|

∫ 1

−1
dτ
[
Res(G−+

0 , z0) + Res(G−+
0 , zp)

]
(4.19)

+

∫ ∆E

∆E/2
d|k|

{∫ 1√
2∆E|k|−∆E2

|k|2

dτ
[
Res(G−+

0 , z0) + Res(G−+
0 , zp)− Res(G−+

0 , zm)
]

+

∫ √
2∆E|k|−∆E2

|k|2

−1
dτ
[
Res(G−+

0 , z0)
]}

+

∫ ∞
∆E

d|k|
∫ 1

−1
dτ
[
Res(G−+

0 , z0)
]
,

R−−0 = R++
0 . (4.20)

The different signs in front of the residues originate from the iε in eq. (4.15), where the zm
pole was constructed to lie always in the lower complex half plane for finite epsilon and the

other ones in the upper half plane, see appendix C.3 for details. The last equality follows

from symmetry considerations, which one can directly see from eq. (4.3) by interchanging

the labels k1 and k2 for the corresponding term.5

The list of all finite temperature contributions, from eq. (4.17) to eq. (4.20), is subject

to further discussion. BSF via bath-particle scattering is contained in the single pole

contribution Res(G++
0 , zp) and the finite temperature part of the off-shell decay of the vector

mediator into a bath-particle pair is contained in the zp residues in R−+. The individual

5Physically, this symmetry states that BSF via particle or anti-particle scattering is the same.
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σ1σ2 z0 zp zm

++ ∆E −|k|τ +
√

k2τ2 + ∆E2 + 2∆E|k| −
+− ∆E − −
−+ ∆E |k|τ +

√
k2τ2 + ∆E2 − 2∆E|k|, |k|τ −

√
k2τ2 + ∆E2 − 2∆E|k|,

if

{
∆E/2 ≤ |k| ≤ ∆E if ∆E/2 ≤ |k| ≤ ∆E

∧τ ≥
√

2∆E|k|−∆E2

|k|2

}
∧τ ≥

√
2∆E|k|−∆E2

|k|2 .

or 0 ≤ |k| ≤ ∆E/2.

Table 1. Summary of the real and positive poles of eq. (4.15), as well as their existence criteria.

residue would diverge in the limit τ → 1, reflecting the collinear divergence. However,

the double pole contribution with z0 diverges in the limit as well, but with opposite sign,

resulting in the fact that the sum over double and single pole contributions remains finite

in collinear direction. A rather general proof for the cancellation of collinear divergences is

presented in the next section. Therein, it is also explained why the terms where no single

poles exist are finite. The remaining k and τ integrals are all finite and we show their

numerically obtained values in figure 14, shared in the appendix C.4. Worthwhile to note

is that the most dominant contributions are R++ and R−−, which contain BSF via particle

and anti-particle scattering, respectively.

4.2 Proof for the cancellation of collinear divergences

From the mathematical point of view, collinear divergences occur since in the collinear

limit τ → 1 the single pole zp approaches the double pole z0 as

zp − z0 = (1− τ)
σ1|k|∆E

∆E + σ1|k|
+O((1− τ)2). (4.21)

To make that clear, let us take a closer look on the residues of a function with a double

pole at z0 and a single pole at zp, approaching each other in the collinear limit as, e.g., in

eq. (4.21). Every holomorphic function having such kind of pole structure can be written as

G(z) =
H(z)

(z − z0)2(z − zp)
, (4.22)

where H is holomorphic at z = z0 and z = zp. Using this general form, the residues of G

are given by:

Res(G, z0) = − H(z0)

(zp − z0)2
− H ′(z0)

zp − z0
, (4.23)

Res(G, zp) =
H(zp)

(zp − z0)2

=
H(z0)

(zp − z0)2
+
H ′(z0)

zp − z0
+

1

2
H ′′(z0) +O(zp − z0), (4.24)
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In the last line we expanded H(zp) around zp = z0. Clearly, each individual residue is

divergent in the collinear limit, when zp → z0. However, the collinear divergent terms

from eq. (4.23) and eq. (4.24) occur with opposite sign and hence cancel each other in

their sum. Let us comment on the remaining term 1
2H
′′(z0) whose appearance one can

intuitive understand. Since the double pole merges with the single pole in the collinear

limit, the function G|τ=1 = H(z)
(z−z0)3 has a triple pole. And indeed, its residue gives the

result expected from eq. (4.23) and eq. (4.24) as

Res(G|τ=1, z0) =
1

2
lim
z→z0

d2

dz2

[
(z − z0)3 H(z)

(z − z0)3

]
=

1

2
H ′′(z0)

= lim
τ→1

[Res(G, zp) + Res(G, z0)] , (4.25)

without any collinear divergence. This proves the collinear finiteness for any H holo-

morphic at z = z0 and z = zp and is in particular fulfilled for any F σ1σ2 in eq. (4.16) for

capture into the ground state.

From the discussion above, it follows that R++
0 as well as R−−0 in eq. (4.17) and

eq. (4.20) are finite. For σ1 = +, σ2 = −, the single poles do not exists as ∆E+ |k1|+ |k2|
is always nonzero. Hence the singularity at z = zp is removable and eq. (4.23) as well as

the singular part of eq. (4.24) vanish. Therefore eq. (4.18) is collinear finite. It remains to

discuss eq. (4.19), where σ1 = − and σ2 = +. As one can see, the collinear divergences are

canceled in the first and the second line. In the third line τ is smaller than 1. The last line

of eq. (4.19) is collinear finite since there are no single poles as ∆E − |k1| − |k2| is always

negative for |k1| > ∆E. Analog to the case σ1 = +, σ2 = − the singularities vanish.

While the residue of the single pole Res(G, zp) and the residue of the double pole

Res(G, z0) diverge individually in the collinear limit, we have shown in summary that

the sum of both terms remains finite. In the Boltzmann formalism only the single pole

Res(G, zp) would occur, and hence the collision term would be ill-defined. This makes

the thermal field theory approach necessary for studying BSF at higher order, at least if

massless gauge bosons or light mediators (for how light see section 4.4) are involved.

It remains to discuss the residue at zm, only present in R−+
0 . Similarly, Res(G0, zp)

and Res(G0, zm) have poles if zp = zm. This situation occurs if |τ | =
√

2∆E|k|−∆E2

|k|2 =: τ∗
and therefore it is only present in the second line of eq. (4.19). Because of the relative

signs these singularities do not cancel. However, due to the choice of the order of the

integration (see discussion in section 4.1, paragraph Finite temperature contributions)

the singularities only grow like (τ − τ∗)−
1
2 . For that reason the integrating over τ does not

cause any problems. Finally, the last exception occurs if z0 = zp = zm. This is the case for

τ = 1, |k| = ∆E. In this case the function F−+ given in eq. (4.16) goes to zero and the

integral remains finite.

4.3 Ground state capture at leading and next-to-leading order

The leading order cross section for capture into the ground state (σLO
100vrel) in eq. (3.4) and

our full result of the next-to-leading order cross section (σNLO
100 vrel) in eq. (4.4) are compared
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Figure 5. Lower row shows the bound-state formation cross sections. Upper row compares the ther-

mally averaged quantities. The cross sections are normalized to (σv)0 ≡ πα2/m2
χ. From left to right,

the vertical lines indicate when temperature is larger than the Bohr momentum κ = µα, the electric

Debye mass m2
D = g2T 2/3 and the temperature are smaller than the ground state binding energy.

to each other. In the lower panel of figure 5, the cross sections are shown as a function

of inverse relative velocity. In the high temperature regime around the Bohr-momentum

κ, the total cross section differs in shape and amplitude compared to the LO. The overall

increase in the amplitude towards higher temperatures is mainly caused by the number

density of relativistic bath particles, scaling as T 3. Additionally, the NLO cross section

has a stronger dependence on the relative velocity for vrel & α, which turns into the milder

scaling v−1
rel for vrel � α.

The temperature and velocity enhancement leads to the fact that the overall BSF prob-

ability distribution in the thermal average is sharply peaked at the DM relative momentum

∼ κ and contributes less at the conventional one ∼ (mχT )1/2 for temperatures much larger

than the binding energy. These two features are less pronounced in the on-shell emission

case, qualitatively explaining the increase of the thermally averaged BSF cross section at

NLO towards higher temperatures as shown in the upper row of figure 5.

From the upper row, one can immediately recognize that the NLO dominates over

the LO BSF cross section for temperatures larger than the Debye mass, as indicated by

the dashed orange lines. This result may be expected from the finite temperature QCD

literature, mostly discussing from the point of view of the inverse process. Namely, it is

well known for heavy quarkonia in a quark gluon plasma that the dissociation rate via
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parton scattering is larger than the gluo-dissociation rate for Debye masses larger than the

binding energy (see, e.g., ref. [67]). Through the argument of detailed balance, this implies

that the cross section of BSF via parton scattering must also dominate over the on-shell

mediator emission cross section. Figure 5 confirms this statement for our QED-like model.

The efficient NLO bound-state formation and dissociation processes suggest that ther-

mally produced dark matter remains in ionization equilibrium until close to T ∼ ∆E. In

such a state, the system will obey nχnχ̄/(n
eq
χ n

eq
χ̄ ) = nB/n

eq
B and the r.h.s. of the Boltzmann

equation will be independent of the actual size of the BSF cross section, as can be directly

seen from eq. (2.10).

Our fixed NLO result is expected to be accurate especially in the temperature regime

T . ∆E, where dark matter in the considered model is expected to fully decouple from

ionization equilibrium. First smaller departure from ionization equilibrium, however, will

turn out to already occur at slightly higher temperatures as shown later in section 5 (see,

e.g., right plot in figure 8).

To obtain corrections to our fixed order computation for T � ∆E, or more specifically

κ � T � mD � E and κ � T � E � mD, one can reorganize the perturbation theory

and use the hard thermal loop (HTL) [79] approximation to correct the LO and NLO

terms, which only applies for T � ∆E due to the expansion in small P 0/|k| ∼ ∆E/T

(and |p|/|k| ∼ |p|/T ). The resulting EFT descriptions are already developed for the QCD

analog of heavy quarkonia in a quark gluon plasma, e.g., see ref. [67]. These results include

HTL corrections to the dominant contribution of parton dissociation, which can be related

via the argument of detailed balance to the reverse process of bound-state formation via

bath-particle scattering.

As discussed in appendix C.4, we find that the dominant bath-particle scattering as

contained in our R++ and R−− acquire corrections of around 30 % from the other terms

R−+ and R+− present at the same coupling order. Since the HTL corrections to R++ and

R−− in the regime κ� T � mD � E and κ� T � E � mD might be of the same order

as neglecting R+− and R−+, we shall therefore adopt our complete fixed order computation

also outside its strict validity regime later in section 5. It remains to be investigated in

future work how HTL corrections can modify the initial ionization decoupling stage.

4.4 When is a thermal field theory approach required?

In the conventional Boltzmann formalism, the bound-state formation cross section for bath-

particle scattering is always finite for massive mediators. However in the limit mass to zero,

the cross section has a collinear divergence, which originates from the forward scattering

divergence of the bath-particles, see also ref. [63]. In this section, we would like to answer

the following question for practical purposes: what is the critical mediator mass, above

which the conventional Boltzmann formalism is a sufficient description and below which a

more sophisticated thermal field theory analysis as presented in our work is required?

To estimate the critical mediator mass, only the dominant contributions of R++ and

R−− are considered, which contain the BSF via particle and anti-particle scattering, respec-

tively. Additionally, these functions also contain interference terms originating from the
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Figure 6. Comparison of the thermally averaged bound-state formation cross section for bath-

particle scattering in the conventional Boltzmann and the thermal field theory approach.

double poles of the photon propagator. For a vector mediator with a mass mV , one can sim-

ply replace the photon propagator by a massive one. This changes only the double pole into:

G++
ε (|p|, τ, |k|) =

F++(|p|, τ, |k|)(
[∆E + iε]2 − p2 −m2

V

)2
(∆E + |k| − |p + k|+ iε)

, (4.26)

where the single pole and F++ remain unaffected. One can immediately recognize that

the double pole at |p| = z̃0 = (∆E2 −m2
V )1/2 only exists for ∆E > mV . This is always

true for mediator masses smaller than the absolute value of the binding energy. In general,

for massive mediators one can replace R++ by:

lim
ε↘0

R++
ε =

∫ ∞
0

d|k|
∫ 1

−1
dτ
[
θ(z̃2

0)Res(G++
0 , z̃0) + Res(G++

0 , zp)
]
. (4.27)

As a reminder, the term Res(G++
0 , zp) corresponds to BSF via bath-particle scattering and

reproduces ref. [63]. From this equation one can see that the double pole contribution,

which causes the difference to the Boltzmann formalism, can be neglected for mediator

masses much larger than the binding energy due to θ(z̃2
0). This statement is confirmed

numerically as shown in figure 6, where we compute the BSF cross section based on

the full eq. (4.27) and without the double pole contribution. The Boltzmann formalism

overestimates the effect of the bath-particle scattering for mV � E100. For mV � E100,

the Boltzmann formalism is reliable.

5 Impact on thermal relic abundance

The results of the previous sections allow us to explore the impact of higher-order BSF

processes on the evolution of the thermal relic abundance for the following simplified model
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with N bath particle species:

L ⊃ −gχ̄γµχAµ −
N∑
i=1

gψ̄iγ
µψiAµ. (5.1)

Here, we now consider χ to be the actual DM particle (and not the charged co-annihilating

partner), A to be a dark photon with a negligible mass for the considered temperature

regime, and ψ some fermionic dark radiation particles. This resembles light mediator

models being mostly disconnected from the SM, motivated from self-interacting dark matter

scenarios as listed in the introduction. It can also be seen as the QED analog of heavy

quarkonia in a quark gluon plasma, where the number of light quarks are here represented

by the number of fermionic dark radiation.

An s-wave χ-pair can annihilate into 2γ and N effectively massless ψ pairs. The total

s-wave Sommerfeld enhanced annihilation cross section, averaged over the initial spin and

summed over final degrees of freedom, can be written as

σanvrel = (1 +N)
πα2

m2
χ

|ψk,l=0(r = 0)|2, (5.2)

where the first two factors account for the tree-level part and |ψk,l=0(0)|2 = 2πζ(1−e−2πζ)−1

is the Sommerfeld enhancement factor [9, 10]. For the lowest s-wave χ bound states, we

consider the spin singlet (S) decay into 2γ [80, 81], and the spin triplet decay into 3γ [82]

and N ψ-pairs [83]. The decay widths can be written as

Γdec
S = 4× πα2

m2
χ

|ψ100(r = 0)|2, (5.3)

Γdec
T =

(
c3γ +

N

3

)
Γdec
S , (5.4)

where |ψ100(0)|2 = (µα)3/π, and c3γ = 4(π2 − 9)α/(9π) [82]. We compute the BSF cross

section in eq. (2.11) for the capture into the ground state up to NLO in the dark photon

spectral function:

〈σbsf
100vrel〉 ' 〈σLO

100vrel〉+N〈σNLO
100 vrel〉. (5.5)

For the LO cross section we can directly use the expression in eq. (3.4), while for the NLO

contribution we take N times our results in eq. (4.4). The number density evolution of the

lowest bound states can be included into the Boltzmann eq. (2.10) for the scattering states

approximately as [38, 40]:6

ṅχ + 3Hnχ = − [〈σanvrel〉+W (T )]
[
nχnχ̄ − neq

χ n
eq
χ̄

]
, (5.6)

W (T ) ≡ 〈σ
bsf
100vrel〉

4

[
Γdec
S

Γdec
S + Γdis

S

+ 3×
Γdec
T

Γdec
T + Γdis

T

]
. (5.7)

6For the numerical solution of this equation, we use a private mathematica version of the DarkSUSY [84]

relic density routine. For the case N = 0, we reproduced the results of ref. [38] as a check.

– 21 –



J
H
E
P
0
9
(
2
0
2
0
)
0
8
6

SE only

+W LO BSF

+W NLO BSF

W only:

LO BSF

+NLO BSF

Io. eq.

100 1000 104 105

0.5

1

5

10

50

x=mχ/T

(<
σ
an
v>

+
W

)/
(σ
v)

0
α=0.033

T
=E

100

N=1

N=1
0

SE only

+W LO BSF

+W NLO BSF

W only:

LO BSF

+NLO BSF

Io. eq.

10 100 1000 104

0.5

1

5

10

50

x=mχ/T

(<
σ
an
v>

+
W

)/
(σ
v)

0

α=0.1

T
=E

100

N=1

N=1
0

Figure 7. Importance of NLO BSF processes for different N . Upper (lower) solid and dashed

black line, as well as upper (lower) red and blue line correspond to the N = 1 (N = 10) case. All

quantities are normalized to (σv)0 ≡ (1 +N)πα2/m2
χ, such that the curve for SE annihilation and

for W in ionization equilibrium are independent of N .

The effective cross section W (T ) comprises all information of the bound states. It con-

sists out of a sum over the individual singlet and triplet BSF cross sections (here spin-

independent), weighted by branching ratios containing the individual decay and dissocia-

tion rates. The latter corresponds to the inverse process of the bound-state formation and

is therefore related via detailed balance as

Γdis
i =

〈σbsf
100vrel〉

4

neq
χ n

eq
χ̄

neq
100

, (5.8)

where the equilibrium number density of the bound state contains one spin d.o.f.

The effective cross section W features two asymptotic regimes:

W (T ) '

{
(Γdec
S + 3Γdec

T )neq
100/(n

eq
χ n

eq
χ̄ ) for Γdec

i � Γdis
i (ionization equilibrium) ,

〈σbsf
100vrel〉 for Γdec

i � Γdis
i (out-off io. eq.) .

(5.9)

In the first asymptotic regime, the bound and scattering states are in ionization equilibrium

(io. eq.). Here, W is i) independent of the BSF cross section and dissociation rate [69], and

ii) maximum for a given bound-state decay rate and temperature. In figure 7, the maximum

value of W is indicated by the green line for electroweak (left panel) and strong couplings

(right panel). In the second asymptotic regime at later times, the number density depletion

depends only on the total BSF cross section, since the bound states immediately decay

without being dissociated back into the scattering states (BSF without “back reaction”).

The transition between these two regimes occurs when the dissociation rate is comparable

to the decay rates.

We estimate the maximum relative size of W with respect to the SE annihilation cross

section,7 assuming io. eq.:

W (T )

〈σanvrel〉
≈ 2× |E100|

T
e|E100|/T . (5.10)

7In the instantaneous approximation of the SE, one can estimate 〈σanvrel〉 ≈ (1 + N)(σvrel)0(x/x0)1/2

for x� x0 and x0 = 3/(4π2α2), see, e.g., appendix in ref. [61] for details.
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Figure 8. Impact of bound-state formation at NLO on the evolution of the thermal relic abundance.

Here, Y ≡ nχ/s, where s is the SM entropy density, and YSE assumes Sommerfeld enhanced

annihilation only.

In this model, the ratio is independent of the number N of bath-particle species. In

io. eq., W first grows rapidly for decreasing temperature with a power law (mχ/T )3/2,

becomes comparable to the SE for temperature around twice the binding energy, and has

an exponentially growing factor for lower temperature.

The relevance of NLO BSF contributions depends, for instance, on for how long the LO

BSF can keep the system in ionization equilibrium. In figure 7, we show that for only one

bath-particle species in the plasma, the on-shell emission of a vector mediator is still effec-

tive enough to keep W close to its maximum value for sufficiently long time. In this case,

the effect of the NLO contributions is only marginally relevant. For larger N , however, the

relevance of the NLO contributions is more important. This is because the SE annihilation,

NLO BSF cross section, and triplet decay rate are proportional to N , while the LO BSF

is independent. BSF via bath-particle scattering as the dominant NLO process, can keep

the system in io. eq. until temperatures close to the binding energy even for large N .

Moreover, the relevance of NLO BSF contributions depends on the relative size of W

compared to the SE annihilation around the decoupling time from ionization equilibrium.

Close to the binding energy, the depletion of the DM number density is exponentially

sensitive to the ionization decoupling temperature according to eq. (5.10). While in the

conventional Boltzmann framework one can artificially push the decoupling temperature

below the binding energy by lowering the vector mediator mass, our thermal field theory

result suggests even for a massless vector mediator a decoupling before but close to the

strong exponentially enhanced regime. Based on this result, we may expect a significant

impact on the predicted relic abundance in the model under consideration mainly for strong

couplings α ∼ 0.1.
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Figure 9. Under the assumption of a strong coupling α = 0.1 and one quark in the plasma, we

show the predicted relic abundance when considering a tree-level cross section only (blue), including

the Sommerfeld effect (red), considering BSF via LO on-shell emission (pink), as well as BSF at

NLO (black).

To demonstrate this more clearly, we choose a strong coupling value and more conserva-

tively N = 3 (“one quark”) in figure 8. Here, the effect of NLO corrections can significantly

change the relic abundance due to a delayed decoupling from ionization equilibrium. The

resulting corrections to the upper limit of the DM mass, above which the Universe would

contain too much DM (overclosure bound), are shown in figure 9. For choices of larger N ,

the differences between LO and NLO would further increase.

6 Discussion

The results of previous sections show that DM bound-state formation inside a relativistic

thermal bath can be dominated by higher order processes for a certain temperature range.

It was demonstrated that next-to-leading order processes contained in the mediator spectral

function have the potential to change the thermal relic abundance significantly. Although

we analyzed a simplified model, this message should be recognized in the broader context

of coannihilation scenarios, where the number of SM bath particles can be much larger

than considered here in this work.

The formalism used in this work also allows to study the impact of the ambient primor-

dial plasma on excited DM state transitions. One can simply change the initial scattering

state into a bound state, which transforms the BSF cross section eq. (2.11) into a level-

transition rate. The factorization between the spectral function and the level-transition

matrix element holds in this case as well. Contributions from higher DM states were how-

ever dropped in the previous section and remain a major uncertainty in the prediction of

the final relic abundance.
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Heavy annihilating quarkonia inside the quark-gluon plasma produced, e.g., at the

Large Hadron Collider, has many similarities compared with heavy annihilating dark mat-

ter in the primordial plasma. For instance an earlier work which discusses annihilation and

decay of quarkonia based on a Lindblad equation in an open quantum system framework

is given in ref. [85], also commenting on a possible application to dark matter annihila-

tion. For completeness, let us put this work now in context with the quarkonia literature

discussing bound-state formation and the reverse process.

In the low temperature regime T . E, similar to our approach, the LO cross sec-

tion for quarkonium formation and dissociation is derived from the Lindblad equation in

ref. [86]. In ref. [87], a particular part of cancellation of collinear divergences is suggested

while an ad hoc insertion of a finite temperature self-energy into vacuum amplitudes was

performed. Our work can be regarded as a first complete analysis at NLO in the Abelian

mediator spectral function. Starting from first principles, we have derived eq. (2.11) and

demonstrated that the mediator spectral function evaluated at NLO automatically leads

to a collinear safe cross section and includes all the possible processes simultaneously. For

example, we have shown that even the finite part of the interference terms is important for

predicting the relic abundance precisely (see figure 14), which cannot be addressed without

the full NLO treatment.

In the high temperature regime T � E, quarkonium formation and dissociation

in QCD in a Lindblad framework has also been studied in other works, see, e.g.,

refs. [73, 88, 89]. Heavy quarkonia dissociated by parton scattering including finite temper-

ature corrections has been discussed in ref. [67]. Since the latter works focus on effective

descriptions for temperatures much larger than the binding energy T � E, the results can

be seen as complementary to our strictly fixed but complete NLO (QED) analysis valid

for T . E. While in ref. [67], HTL corrections to parton scattering only was considered

for certain temperature ranges, it may be relevant to correct all terms occurring at NLO

to obtain a more accurate result. Regarding the thermal DM case, we may expect that

in particular the two regimes κ � T � mD � E and κ � T � E � mD should be

investigated in more detail beyond our extrapolation of the fixed NLO result outside its

strict validity range. We have seen that (small) departures from ionization equilibrium can

occur already for T � E, where the impact of HTL corrections remains to be clarified.

While in the two regimes κ� T � mD � E and κ� T � E � mD, HTL corrections

can be seen as perturbations around the strict leading and next-to-leading order term in

the mediator spectral function, the situation changes when the Debye mass exceeds the

Bohr momentum. In such a high temperature regime, the plasma can entirely probe the

typical size of the bound state. The bound and scattering states become non-separable

because of the rapid transition between them, which calls for another approach capable of

coping with this situation.

By using another formalism valid at high temperature but limited to the assumption of

ionization equilibrium, environmental corrections to the upper formula of (5.9) have been

studied in the literature [90–95]. The method is based on an effective in-medium potential,

which shows next to the expected Debye screening mass, a temperature dependent energy

shift (Salpeter correction), as well as an imaginary thermal width [96, 97]. An estimate
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Figure 10. Illustration of the goodness of different descriptions, based on the assumption that

the mediator is (unsuppressed) coupled to the primordial plasma background. LO and LO+NLO

indicate bound-state formation via LO emission of an on-shell mediator only or including higher

order contributions to the photon spectral function, respectively. The bottom bar represents HTL

resummed corrections to the Sommerfeld enhanced annihilation and bound-state decay rate under

the assumption of ionization equilibrium.

shows that the thermal width in the effective in-medium potential can lead to an entire

melting of all bound states for mD & κ [98, 99]. Such melting phenomena have been ex-

perimentally observed, e.g., in the decay spectra of bottomonium systems in a quark-gluon

plasma, see figure 1 in ref. [100]. In ref. [69], it has been emphasized that the formalism for

computing the relic abundance in the effective in-medium potential description is limited

to the assumption of ionization equilibrium (see also ref. [101]), illustrated by the bottom

bar line in figure 10.

In the view of all literature results, we may suggest the following more accurate treat-

ment. In the high temperature regime until ionization equilibrium becomes broken, it

can be recommended to use the effective in-medium potential approach as developed in

refs. [98, 99] or alternatively see also [69]. One practical advantage is that all bound states

(of a certain partial wave) can be elegantly included. If the ionization decoupling temper-

ature is close to the binding energy, one can directly initialize the abundance by the final

value of the high temperature formalism and continue time integration with the treatment

of this work. If the decoupling temperature is much larger than the binding energy, one

should take into account in the intermediate temperature regime HTL corrections to our

fixed NLO analysis, similar as described in ref. [67]. Finally, we would like to remark that

in realistic colored coannihilation scenarios the number of SM scattering particles can be

so large, that the hierarchy mD � T can not be guaranteed in general.

7 Summary and conclusion

In the conventional Boltzmann formalism, the amplitude for higher-order bound-state for-

mation processes can become collinear divergent in the case of massless mediators. A large

number of possible bound-state formation channels through SM particle scattering, via

the virtual exchange of, e.g., photons or gluons in coannihilation scenarios, can not be

investigated in this context. Based on non-equilibrium quantum field theory techniques,

we derived a more general cross section, eq. (2.11), which addressed this issue without the

need of an ad hoc screening mass regulator. We presented for the first time a full compu-
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tation and analysis of the thermal one-loop correction for the dominant capture into the

ground state in the case of ultra-relativistic fermions in the primordial plasma environment,

resembling the interactions with light SM leptons or quarks. For temperatures larger than

the absolute value of the binding energy, we found that bound-state formation via bath-

particle scattering dominates also for massless vector mediators over the so far considered

on-shell mediator emission. Our results are complementary to the one in ref. [63], where

massive mediators were investigated.

The key quantity in the generalized bound-state formation cross section is the spec-

tral two-point correlation function of the interacting mediator. It was demonstrated that

a perturbative expansion in the coupling parameter of this spectral function successively

generates on-shell and virtual mediator contributions in a proper thermal field theoretical

framework. The known result for the capture into the ground state via the emission of an

on-shell mediator was reproduced at the lowest order in the perturbative expansion. The

higher-order BSF processes via bath-particle scattering and off-shell mediator decay were

identified at the first interaction level. These processes are collinear divergent for massless

mediators in the conventional Boltzmann approach. It was shown that other terms auto-

matically occur in the spectral function in addition, canceling the collinear divergences and

resulting in a finite collision term. A rather general analytic proof for the collinear finite-

ness, applying in particular to our full first interaction term, was presented in section 4.2.

Based on our extended analysis in section 4.4, we conclude that a thermal field theory

approach is required for models where the mediator mass is smaller than the absolute

value of the binding energy. This implies that our approach can become important also for

massive SM gauge bosons or the Higgs field during the electroweak cross over, featuring a

large number of possible BSF channels via SM particle scattering as well.

In the case of our simplified model, we demonstrated in section 5 that the impact of

the new higher-order bound-state formation effects on the thermal relic abundance can be

especially significant if the on-shell emission is not enough to keep the system in ioniza-

tion equilibrium until temperatures close to the binding energy. Regarding more realistic

coannihilation scenarios, the size of the corrections to the upper bound on the DM mass

from higher-order bound-state formation processes still remains an open question from the

perspective of this work, since the details of the underlying model might play a crucial

role. This is mainly due to the fact that the impact on the relic abundance is exponentially

sensitive to the precise decoupling time from ionization equilibrium if it is maintained until

temperatures around the binding energy. Model-dependent order one variations in the ion-

ization equilibrium decoupling temperature are crucial for the impact of the higher-order

effects. With an accurate low-temperature formalism at hand, together with the insights

from simplified DM models, the analysis of more realistic coannihilation dark matter sce-

narios is interesting to pursue in future work.
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A Computation of double commutator

In this appendix, we give a detailed derivation of eq. (2.6) starting from eq. (2.4). Through-

out this paper, we are interested in the BSF and dissociation rate. For this purpose, one

may focus on a particular part of the whole interaction Hamiltonian, which is nothing but

the dipole interactions given in eq. (2.2). Inserting the mode expansion given in eq. (2.3), we

obtain the following form for the operator responsible for the transition between scattering

and bound states:

Ĥdip ⊃ −
∫

K,k,P

∑
B,Spin

ei(∆E−P0)t Ei(P )Li ?k,B â
s†
K/2+kb̂

r†
K/2−kĉ

sr
B,K−p + H.c., (A.1)

where the overlap integral is given by

Lik,B = g

∫
d3r ψ?B(r)riψk(r). (A.2)

Here we use a shorthand notation for integrals:
∫
k ≡

∫
d3k

(2π)3 and
∫
P ≡

∫
d4P

(2π)4 . The positive

quantity ∆E ≡ Ek − EB is the total energy emitted in the inelastic conversion, i.e. relative

kinetic energy plus the absolute value of the negative binding energy.

All one needs to do is to evaluate the double commutator in the right-hand side of

eq. (2.4) by using eq. (A.1) in order to obtain the collision term for the BSF and disso-

ciation rates. Below we summarize commutators and expectation values relevant for our

computations:[
n̂kχ , â

s
k′χ

]
= −(2π)3δ3(kχ − k′χ)âsk′χ ,

[
n̂kχ , â

s†
k′χ

]
= (2π)3δ3(kχ − k′χ)âs†k′χ

, (A.3)

for commutators, and〈
as†kχa

s′
k′χ

〉
= fχ(kχ)(2π)3δ3(kχ − k′χ)δss′ ,

〈
bs†kχ̄b

s′

k′χ̄

〉
= fχ̄(kχ̄)(2π)3δ3(kχ̄ − k′χ̄)δss′ ,〈

csr†B,Kc
s′r′
B′,K′

〉
= fB(K)(2π)3δ3(K−K′)δBB′δss′δrr′ , (A.4)

for expectation values of creation and annihilation operators. Here note that these expec-

tation values are taken by the initial factorized density matrix: 〈•̂〉 = Tr[•̂ρ̂(t = 0)]. We

also need two-point functions of the electric field defined by

E−+
ij (P ) ≡

∫
d4(x− y)e−iP ·(x−y)

〈
Ei(x)Ej(y)

〉
,

E+−
ij (P ) ≡

∫
d4(x− y)e−iP ·(x−y)

〈
Ej(y)Ei(x)

〉
. (A.5)
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For later convenience, we rewrite this electric correlator in terms of its gauge field as:

E
−+/−+
ij (P ) = (ip0giµ − ipig0µ)(−ip0gjµ + ipjg0ν)D−+/+−

µν (P ), (A.6)

where in coordinate space D−+
µν (x− y) ≡ 〈Aµ(x)Aν(y)〉 and D+−

µν (x− y) ≡ 〈Aν(y)Aµ(x)〉.
Since the expectation value is taken by the factorized initial density matrix and the en-

vironment is assumed to be in thermal equilibrium, these correlators coincide with the

thermal correlator, fulfilling the KMS relation:

D−+
µν (P ) = [1 + f eq

γ (P 0)]Dρ
µν(P ), D+−

µν (P ) = f eq
γ (P 0)Dρ

µν(P ), (A.7)

where the photon spectral function is given by Dρ
µν(x−y) ≡ 〈[Aµ(x), Aν(y)]〉. f eq

γ represents

the Bose-Einstein distribution for the gauge boson.

Using these equations, one finally obtain the collision term associated with the BSF

and dissociation:

CBSF+diss = −gχgχ̄
∑
B

∫
d3kχ
(2π)3

d3kχ̄
(2π)3

d3p

(2π)3
Dρ
µν(∆E,p)

∑
Spin

T µk,B(∆E,p)T ν?k,B(∆E,p)

×
{
fχ(kχ)fχ̄(kχ̄)[1 + f eq

γ (∆E)]− fB(K− p)f eq
γ (∆E)

}
, (A.8)

with ∆E = k2/(2µ) + |EB|, k = (kχ − kχ̄)/2, and K = kχ + kχ̄. Here we have dropped

the Bose enhancement and Fermi suppression factors for the scattering and bound states

because they are dilute. To obtain this compact form, we have used the following relation

between the overlap integral and tensors defined in eqs. (2.7) and (2.8):

1

gχgχ̄
Eρij(P )

∑
Spin

Lik,Bδ
ss′δrr

′
Lj?k,Bδ

ss′δrr
′

= Dρ
µν(P )

∑
Spin

T µk,B(P )T ν?k,B(P ), (A.9)

where gχ and gχ̄ represent the spin degrees of freedom for particle and anti-particle respec-

tively. The collision term can be expressed as the following simple form

CBSF+diss = −
∑
B
〈σbsf
B vrel〉

[
nχnχ̄ − nB

neq
χ n

eq
χ̄

neq
B

]
, (A.10)

where

σbsf
B vrel ≡

∫
d3p

(2π)3

[
1 + f eq

γ (∆E)
]
Dρ
µν(∆E,p)

∑
Spin

T µk,B(∆E,p)T ν?k,B(∆E,p). (A.11)

One might wonder why this cross section contains 1 + f eq
γ (∆E) even for the inverse

process. To avoid this confusion, we provide an explicit proof for the inverse process starting
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from eq. (A.8):

reverse = gχgχ̄
∑
B

∫
k,K−p

(σBvrel)(k)
f eq
γ (∆E)

1 + f eq
γ (∆E)

fB(K− p)

= gχgχ̄
∑
B

∫
k,K

(σBvrel)(k) e−
∆E
T f eq
B (EB + K2/8µ)× nB

neq
B

=
∑
B

(
gχgχ̄
neq
χ n

eq
χ̄

∫
kχ,kχ̄

(σBvrel)(k)e
−

k2
χ

4µT e
−

k2
χ̄

4µT

)
×
neq
χ n

eq
χ̄

neq
B

nB

=
∑
B
〈σBvrel〉 ×

neq
χ n

eq
χ̄

neq
B

nB. (A.12)

In the first line we change the integration variable from (kχ,kχ̄,p) to (k,K− p,p) and

insert the definition of the generalized cross section. To avoid confusions, we explicitly

write down the momentum dependence of the generalized cross section. In the second line

we relabel the integration variable from K− p to K. We also use the relation f eq
γ (∆E)/[1+

f eq
γ (∆E)] = e−∆E/T and the approximation of kinetic equilibrium fB = f eq

B nB/n
eq
B . In the

third line we use the diluteness of the bound state f eq
B = e−(EB+K2/8µ)/T and the energy

conservation e−∆E/T e−(EB+K2/8µ)/T = e−k
2
χ/(4µT )e−k

2
χ̄/(4µT ). This completes the proof of

the second term in eq. (A.10).

B Retarded self-energy for massless fermions

The retarded photon self-energy is defined in terms of greater and lesser self-energies as

ΠR
µν(x− y) = θ(x0 − y0)

[
Π−+
µν (x− y)−Π+−

µν (x− y)
]
, (B.1)

Π+−
µν (x− y) = g2 Tr

[
γµS

+−(x− y)γνS
−+(y − x)

]
, (B.2)

Π−+
µν (x− y) = g2 Tr

[
γµS

−+(x− y)γνS
+−(y − x)

]
. (B.3)

where the two-point functions of the fermionic bath-particles are defined as

S−+
ij (x− y) ≡ 〈ψi(x)ψ̄j(y)〉, (B.4)

S+−
ij (x− y) ≡ −〈ψ̄j(y)ψi(x)〉. (B.5)

In the free limit and in thermal equilibrium, their Fourier transform is given by

S+−(K) = − /K(2π)δ(K2)
[
−θ(−K0) + f eq

ψ (|K0|)
]
, (B.6)

S−+(K) = − /K(2π)δ(K2)
[
−θ(+K0) + f eq

ψ (|K0|)
]
. (B.7)
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f eq
ψ is the Fermi-Dirac equilibrium phase-space distribution. In the free and equilibrium

limit, the terms needed for the self-energy can be expressed in Fourier space as:

S+−(x− y) =

∫
d4k

(2π)4
e−ik(x−y)S+−(k)

=

∫
d3k

(2π)32|k|
/K
[
−f eq

ψ (|k|)e−ik(x−y) − (1− f eq
ψ (|k|))eik(x−y)

]
≡
∫

d3k

(2π)32|k|
/K
[
−αke

−ik(x−y) − βkeik(x−y)
]
, (B.8)

S−+(x− y) =

∫
d4k

(2π)4
e−ik(x−y)S−+(k)

=

∫
d3k

(2π)32|k|
/K
[
(1− f eq

ψ (|k|))e−ik(x−y) + f eq
ψ (|k|)eik(x−y)

]
≡
∫

d3k

(2π)32|k|
/K
[
βke
−ik(x−y) + αke

ik(x−y)
]
, (B.9)

θ(x0 − y0) = − 1

2πi

∫
dk

1

k0 + iε
e−ik

0(x0−y0). (B.10)

Where α and β are short notation for the phase space density and the Pauli blocking,

respectively.

Using these equations, the retarded self-energy can be written in Fourier space as

ΠR
µν(P ) = g2

∫
d4zeiPz

∫
dk0

(2π)
e−ik

0z0

∫
d3k1

(2π)32|k1|

∫
d3k2

(2π)32|k2|
Tr
[
γµ /K1γν /K2

] i

k0 + iε

×
{(

βk1e
−ik1z + αk1e

ik1z
)(
−αk2e

ik2z − βk2e
−ik2z

)
−
(
−αk1e

−ik1z − βk1e
ik1z
)(

βk2e
ik2z + αk2e

−ik2z
)}

= g2

∫
d3k1

(2π)32|k1|

∫
d3k2

(2π)32|k2|
Tr
[
γµ /K1γν /K2

]
(2π)3

×
{
αk1αk2

(
iδ3(p− k1 − k2)

P 0 − |k1| − |k2|+ iε
− iδ3(p + k1 + k2)

P 0 + |k1|+ |k2|+ iε

)
+ βk1βk2

(
iδ3(p + k1 + k2)

P 0 + |k1|+ |k2|+ iε
− iδ3(p− k1 − k2)

P 0 − |k1| − |k2|+ iε

)
+ αk1βk2

(
iδ3(p− k1 + k2)

P 0 − |k1|+ |k2|+ iε
− iδ3(p + k1 − k2)

P 0 + |k1| − |k2|+ iε

)
+ βk1αk2

(
iδ3(p + k1 − k2)

P 0 + |k1| − |k2|+ iε
− iδ3(p− k1 + k2)

P 0 − |k1|+ |k2|+ iε

)}
. (B.11)
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Figure 11. Contour used to compute the vacuum part. Black dot: the pole of the function Gε; α1,

α2: paths on the real line; β: path in the complex plane (half circle) avoiding the singularities of Gε.

After rearrangement, the latter equation can be brought into a convenient form

ΠR
µν(P ) = g2

∫
d3k1

(2π)32|k1|

∫
d3k2

(2π)32|k2|
Tr
[
γµ /K1γν /K2

]
(2π)3 (B.12)

×
{[

1− f eq
ψ (|k1|)− f eq

ψ (|k2|)
] [ iδ3(p + k1 + k2)

P 0 + |k1|+ |k2|+ iε
− iδ3(p− k1 − k2)

P 0 − |k1| − |k2|+ iε

]
+
[
f eq
ψ (|k2|)− f eq

ψ (|k1|)
] [ iδ3(p + k1 − k2)

P 0 + |k1| − |k2|+ iε
− iδ3(p− k1 + k2)

P 0 − |k1|+ |k2|+ iε

]}
,

which is used in section 4 to analyze the various NLO contributions.

C Next-to-leading order contributions in more detail

In this appendix, we share some details of the next-to-leading order computation of the

mediator spectral function, as well as some more detailed discussion about the individual

contributions.

C.1 Contour integration for vacuum part

To evaluate the vacuum part of the cross section in eq. (4.10), one has to compute

R0 = lim
R→∞

lim
ε↘0

1

π

∫ R

0
d|p| Im [Gε(|p|)] , (C.1)

for

Gε(|p|) =
p2(∆E2 − p2)

(
p2 − 3∆E2

)
3∆E3 [(∆E + iε)2 − p2]2

[
ln

(
(∆E + iε)2 − p2

−µ2
0

)
− 5

3

]
. (C.2)

Consider the analytic continuation |p| → z and choose the branch cut as shown in figure 11.

In order to avoid integrating thought the singularity at z = ∆E+ iε we deform the contour

and integrate over γ = α1 + β + α2 (see figure 11), where

α1(t) = t, t ∈ [0,∆E − r], (C.3)

β(t) = ∆E + reit, t ∈ [−π, 0], (C.4)

α2(t) = t, t ∈ [∆E + r,R]. (C.5)
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As the value of the integral does not change when integrating along γ and G0 has no

singularities on γ we get

lim
ε↘0

1

π

∫ R

0
d|p| Im [Gε(|p|)] = Im

[
lim
ε↘0

1

π

∫
γ

dz Gε(z)

]
= Im

[
1

π

∫
γ

dz G0(z)

]
, (C.6)

where

G0(z) =
z2
(
z2 − 3∆E2

)
3∆E3(∆E2 − z2)

[
ln

(
z2 −∆E2

µ2
0

)
− 5

3

]
=

1

3∆E

(
2− z2

∆E2
− ∆E

z + ∆E
+

∆E

z −∆E

)[
ln

(
z2 −∆E2

µ2
0

)
− 5

3

]
. (C.7)

Note that
∫
γ dz G0(z) does not depend on r. Moreover, as G0 is purely real on {x ∈ R |

x > ∆E} the integration along α2 in eq. (C.6) gives no contribution. By considering each

summand in eq. (C.7) separately and taking the limit r ↘ 0 we finally obtain

R0 = lim
r↘0

Im

[
1

π

∫
α1+β

dz G0(z)

]
=

1

3

[
ln

(
∆E2

µ2
0/4

)
− 10

3

]
. (C.8)

C.2 Scale dependence of the vacuum part

As discussed in section 4.1, in particular around eq. (4.10), the NLO contribution at zero

temperature can be factorized in terms of the LO contribution,

(σLO
100vrel) + (σNLO

100 vrel)T=0 = (σLO
100vrel)

{
1 +N × α

3π

[
ln

(
∆E2

µ2
0/4

)
− 10

3

]}
, (C.9)

where N specifies the number of particle species in the thermal plasma and thus also the

multiplicity of particles that are running in the loop in the NLO contribution to the on-shell

emission. As expected from the renormalization procedure of the occurring UV divergence,

the final cross section will feature a renormalization scale dependence µ0 that needs to be

fixed by a physical motivated scale. As the characteristic scale of the BSF process lies

around the binding energy, we choose accordingly µ0 = E100 = mχα
2/4.

In figure 12, we show the vacuum contribution at LO and NLO in dependence of the

inverse relative velocity vrel for coupling strengths up to the order of the unitarity bound for

s-wave SE annihilation, α = 0.5 [102]. In order to estimate the uncertainty that arises from

this particular choice of scale, we vary the latter between µ0 = 2E100 and µ0 = E100/2

(shaded area). The upper panel features the general expected behaviour: with larger

velocity the relative cross section decreases as BSF is suppressed due to the small overlap

of the wave functions. Moreover, larger couplings α lead to a relatively larger BSF cross

section. From eq. C.9, we can infer that for larger couplings the NLO correction becomes

more relevant and hence also the dependence of the scale uncertainty, as visible in the lower

panel. Note that we have taken the conservative choice of N = 1. For larger N not only

the correction itself, but also the scale uncertainty is expected to be more pronounced.

For the renormalization of the occurring UV divergence, we had chosen the simplest

choice for the renormalization scheme, namely the MS scheme. However, a more physical

motivated approach would be to use an on-shell scheme for the renormalization of the
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Figure 12. Upper panel: BSF cross section normalized to the tree-level annihilation cross section

at LO (dashed lines) and NLO (solid lines) in dependence of the inverse relative velocity for different

coupling strengths α while fixing the renormalization scale to µ0 = E100 = mχα
2/4 (assuming N =

1). Shaded areas (barely visible) indicate the scale uncertainty by varying the renormalization scale

between µ0 = 2E100 and µ0 = E100/2. Lower panel: relative correction of the NLO contribution

with respect to the LO cross section with the renormalization scale fixed at µ0 = E100 = mχα
2/4

(solid lines). The shaded area indicates the renormalization uncertainty as in the upper panel.

photon propagator since the photon is on-shell in the corresponding interference terms.

However, this unnecessarily complicates the cancellation of the infrared divergences. While

it would be academically interesting to study the application of the on-shell scheme and to

compare it with the MS scheme in more detail, we leave this investigation for future work.

C.3 Contour integration for the finite temperature part

The function Gσ1σ2
ε (z) = Gσ1σ2

ε (z, τ, |k|) in the finite temperature part of the cross section

in eq. (4.13) has three types of poles:

• the double poles of the squared mediator propagator at ±(∆E + iε),

• the single poles of the retarded self-energy at wp/m, wp lying in the upper half and

wm lying in the lower half of the complex plane,

• and the poles of F σ1σ2 , which do not lie on the real line.

When ε goes to 0, w0 ≡ ∆E + iε goes to z0 = ∆E which lies on the positive real line. wp
and wm go to

zp/m = lim
ε↘0

wp/m ≡ −τσ1|k| ± sign(∆E + σ1|k|)
√
τ2|k|2 + ∆E2 + 2σ1∆E|k|, (C.10)

which can lie on the positive real line, as well.
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Figure 13. Contour used to compute the finite temperature part. Black dots: poles of the function

Gσ1σ2
ε ; z0, zp, zm: location of the poles of Gσ1σ2

0 which lie on the real line; w0, wp, wm: location of

the poles of Gσ1σ2
ε which go to z0, zp, zm as ε ↘ 0; α1, α2, α3, α4: paths on the real line; β0, βp,

βm: paths in the complex plane (half circles) avoiding the singularities of Gσ1σ2
ε .

For the moment let us assume that zp/m are real and positive. To avoid integrating

through the singularities we deform the path of integration as shown in figure 13. The defor-

mation of the path does not affect the value of the integral over |p| as F σ1σ2 is holomorphic

in some neighborhood of the real line. Since Gσ1σ2
0 has no poles on the new path γ, we get

lim
ε↘0

∫ ∞
0

d|p| Gσ1σ2
ε (|p|, τ, |k|) = lim

ε↘0

∫
γ

dz Gσ1σ2
ε (z, τ, |k|) =

∫
γ

dz Gσ1σ2
0 (z, τ, |k|). (C.11)

As Gσ1σ2
0 (z) is real valued on the real line, the integration along α1, . . . , α4 only gives a

real contribution. Moreover, it follows that the Laurent coefficients of Gσ1σ2
0 at z = z0, z =

zp, and z = zm, respectively, are real. Using Laurent series expansion it is straightforward

to verify that

Im

(∫
β0

Gσ1σ2
0 (z)dz

)
= πRes(Gσ1σ2

0 , z0), (C.12)

Im

(∫
βp/m

Gσ1σ2
0 (z)dz

)
= ±πRes

(
Gσ1σ2

0 , zp/m
)
. (C.13)

Finally we get

lim
ε↘0

∫ ∞
0

d|p| Im
[
Gσ1σ2
ε (|p|, τ, |k|)

]
= lim

ε↘0

∫ ∞
0

dz Im
[
Gσ1σ2
ε (z, τ, |k|)

]
(C.14)

= π ·
[

Res(Gσ1σ2
0 , z0) + Res(Gσ1σ2

0 , zp)− Res(Gσ1σ2
0 , zm)

]
, for zp/m ∈ R+.

If one of the poles zp/m is negative or not real then the corresponding term in eq. (C.14)

vanishes as there is no need to deform the path of integration. In particular, by the same

argument the poles on the imaginary axis, originating from the equilibrium phase-space

distributions in eq. (4.3), do no contribute.

C.4 Individual contributions of the finite temperature part

The Rσ1σ2 functions, in eq. (4.17) to eq. (4.20), are all dimensionless. Therefore they

can only dependent on the ratio ∆E/T for massless mediators. This fact makes the relic
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Figure 14. The plot shows the individual Rσ1σ2 functions and their dependence on ∆E/T .

abundance computation efficient, since one can tabulate the sum over all these functions

in advance depending on a single variable.

For a selected range we show the individual contributions in figure 14. R++ and R−−

contain the BSF via bath-particle and anti-particle scattering and are the most dominant

contributions. The double pole in R+− contributes negatively, and R−+ has some oscillat-

ing features. The latter contains the finite temperature part of the off-shell mediator decay

into bath particles as well as other single and double pole residues. Depending on which

part dominates inside R−+, the function takes positive and negative values.

Most important is the value of the sum over all functions at T/∆E ∼ 1, since there one

would roughly enter the exponential depletion phase of the relic abundance if ionization

equilibrium is maintained. One can see that for a very precise determination of the relic

abundance, the inclusion of all terms are needed at least in this case. Throughout this

work we take all of them into account.
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