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In this work we study a classically scale-invariant extension of the Standard Model in which the dark
matter and electroweak scales are generated through the Coleman-Weinberg mechanism. The extra SUð3ÞX
gauge factor gets completely broken by the vacuum expectation values of two scalar triplets. Out of the
eight resulting massive vector bosons the three lightest are stable due to an intrinsic Z2 × Z0

2 discrete
symmetry and can constitute dark matter candidates. We analyze the phenomenological viability of the
predicted multi-Higgs sector imposing theoretical and experimental constraints. We perform a compre-
hensive analysis of the dark matter predictions of the model solving numerically the set of coupled
Boltzmann equations involving all relevant dark matter processes and explore the direct detection prospects
of the dark matter candidates.
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I. INTRODUCTION

The first run of the LHC culminated with the discovery
[1,2] of the 125GeVHiggs boson [3–6]. The StandardModel
(SM) is now complete and has successfully passed every
experimental test. Nevertheless, it comes short of describing
various phenomena such as the nature of dark matter, the
nonzero neutrino masses, the asymmetry between matter and
antimatter. It also cannot explain the origin of the electroweak
scale and why strong interactions seem to preserve the CP
symmetry. A more fundamental theory should be able to
address these issues and also accommodate a particle physics
description of cosmological inflation. The second run of the
LHC is now underway and will hopefully provide us with
solutions to someof these problems andpoint us to a direction
for physics beyond the Standard Model.
In the SM, the Higgs field H enters the Lagrangian

through the scalar potential

VðHÞ ¼ −m2H†H þ λhðH†HÞ2; ð1:1Þ

where λh is the Higgs self-coupling andm2 > 0 is the mass
parameter responsible for spontaneously breaking the
electroweak symmetry. The latter is the only dimensionful
parameter in the SM, and its quadratic sensitivity with
respect to higher scales is what causes the hierarchy
problem. Setting m2 ¼ 0 results in a manifestly classically
scale-invariant (CSI) theory [7]. In 1973 Coleman and
E. Weinberg (CW) [8] considered scalar QED and showed

that classical scale symmetry gets broken at the quantum
level due to logarithmic corrections and that the gauge
symmetry breaking scale can arise through dimensional
transmutation. Three years later Gildener and S. Weinberg
(GW) [9] generalized their mechanism by considering an
arbitrary number of scalar fields. However, an implemen-
tation of the CW mechanism in the SM is not phenom-
enologically viable due to the large top mass that renders
the effective potential unstable. This situation can be
remedied by extending the SM with new scalar and/or
vector degrees of freedom which contribute positively to
the effective potential.
The measured value of the Higgs boson mass

Mh ¼ 125.09� 0.24 GeV [10] gives λðMtÞ ≈ 0.1285
[11,12] at the scale of the top mass. Because of the large
contribution of the top Yukawa coupling in its renormal-
ization group equation (RGE), λh runs negative above
scales of Oð1010 GeVÞ which results in the vacuum being
in a metastable state [13–22]. In order to (fully) stabilize the
potential, one needs to couple the Higgs field with extra
bosonic fields that contribute positively to the RGE of λh.
A classically scale invariant extension of the SM can in

principle solve both the hierarchy and the vacuum stability
problems. Various CSI models have recently been pro-
posed. The authors of [23–61] extended only the scalar
sector, while the authors of [62–102] extended the gauge
sector as well with Abelian or non-Abelian gauge sym-
metries. Some of these models have the appealing feature
that they also predict stable and weakly interacting massive
particles (WIMPs) which can be viable candidates for dark
matter (DM).
In this work, we propose a CSI extension of the SM

where a new SUð3ÞX gauge symmetry can provide massive
gauge fields that can account for the observed DM relic
density. The hidden sector will be broken completely by
two scalar triplets. These will have portal couplings with
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the Higgs field and will help in the stabilization of the
potential. The scalar sector will consist of three Higgs-like
particles, one of which will be massless at tree level but will
nevertheless acquire a nonzero mass once we consider the
full one-loop scalar potential. All eight of the extra gauge
bosons will become massive, while the three lightest will be
stable due to their parities under an intrinsic Z2 × Z0

2

discrete symmetry of SUð3ÞX. These three dark gauge
bosons will be our DM candidates. Because of the rich
structure of the extra gauge group, the computation of the
DM relic density will include various types of processes
apart from DM annihilations, such as semiannihilations,
coannihilations, and DM conversions.
The layout of the paper is the following. In the

next section we present the model and calculate the masses
of the new fields. In Sec. III we impose various theoretical
and experimental constraints on the model. Then, in Sec. IV
we give a detailed analysis of the system of Boltzmann
equations that need to be solved in order to obtain the DM
relic abundance, and we also focus on the role of coanni-
hilations and DM conversion processes. Furthermore, we
examine the direct detection prospects of the DM candidates.
Finally, we summarize and conclude in Sec. V. Useful
formulas are presented in Appendixes A, B, and C.

II. THE MODEL

We begin with a CSI version of the Standard Model and
consider an SUð3ÞX extension of its gauge symmetry in
order to accommodate the presence of dark matter. The
non-CSI version of this model was recently considered in
Ref. [103]. The breaking of the gauge symmetry SUð3ÞC×
SUð2ÞL×Uð1ÞY×SUð3ÞX→SUð3ÞC×Uð1Þem is achieved
through the Coleman-Weinberg mechanism [8]. In addition
to the new SUð3ÞX gauge bosons, referred to as “dark”
gauge bosons, the model contains a pair of complex scalars
Φ1ð1; 1; 0; 3Þ and Φ2ð1; 1; 0; 3Þ transforming as singlets
under the Standard Model gauge group and as triplets under
SUð3ÞX, referred to as “dark” scalars. In this section we
explore the scalar and gauge sectors of the model. First, we
present the tree-level potential. Employing the Gildener-
Weinberg formalism [9], we minimize the tree-level poten-
tial at a definite energy scale which defines a flat direction
among the scalar fields. Then, we compute the tree-level
scalar and dark gauge boson masses. One of the scalar
bosons turns out to be massless at tree level and corre-
sponds to the pseudo–Nambu-Goldstone boson (pNGB) of
broken scale symmetry. Finally, we present the one-loop
effective potential which becomes dominant along the flat
direction and greatly lifts the mass of the pNGB.

A. Tree-level potential

The most general renormalizable and scale-invariant
tree-level scalar potential involving the standard Higgs
doublet H and the dark triplets Φ1, Φ2 is

V0 ¼ λhðH†HÞ2 þ λ1ðΦ†
1Φ1Þ2 þ λ2ðΦ†

2Φ2Þ2
− λ3ðΦ†

1Φ1ÞðΦ†
2Φ2Þ þ λ4ðΦ†

1Φ2ÞðΦ†
2Φ1Þ

þ
�
λ5
2
ðΦ†

1Φ2Þ2 þ λ6ðΦ†
1Φ1ÞðΦ†

1Φ2Þ

þ λ7ðΦ†
2Φ2ÞðΦ†

1Φ2Þ þ H:c:

�
− λh1ðH†HÞðΦ†

1Φ1Þ

þ λh2ðH†HÞðΦ†
2Φ2Þ − ðλh12ðH†HÞðΦ†

1Φ2Þ þ H:c:Þ;
ð2:1Þ

where all appearing coupling constants are taken to be real
and positive. Notice that we have assumed negative signs
for the λh1 and λ3 portal couplings as the basic seed of
symmetry breaking. Out of the 12 degrees of freedom
included in Φ1, Φ2, 8 are Higgsed away. Using gauge
freedom and removing 5 of them from Φ1 and 3 from Φ2,
we end up in the unitary gauge withΦ1 containing 1 andΦ2

3 real degrees of freedom

Φ1¼
1ffiffiffi
2

p

0
B@

0

0

v1þϕ1

1
CA; Φ2¼

1ffiffiffi
2

p

0
B@

0

v2þϕ2

ðv3þϕ3Þþ iðv4þϕ4Þ

1
CA:

ð2:2Þ

Assuming CP invariance implies that all vacuum expect-
ation values (VEVs) are real and v4 ¼ 0. The extra SUð3ÞX
can be completely broken if at least two of the remaining
VEVs are nonzero, so we further assume v3 ¼ 0 for
simplicity. The standard Higgs will correspond to 1 real
degree of freedom

H ¼ 1ffiffiffi
2

p
�

0

vh þ h

�
: ð2:3Þ

The scalar potential is further simplified if we impose
invariance of the potential under the discrete symmetry

Φ2 → −Φ2; ð2:4Þ
which implies

λ6 ¼ λ7 ¼ λh12 ¼ 0: ð2:5Þ
Omitting the VEVs for the moment, the resulting potential is

V0 ¼
λh
4
h4 þ λ1

4
ϕ4
1 þ

λ2
4
ϕ4
2 −

λh1
4

h2ϕ2
1 þ

λh2
4

h2ϕ2
2

−
λ3
4
ϕ2
1ϕ

2
2 þ

λ2
4
ðϕ2

3 þ ϕ2
4Þ2

þ
�
λ2
2
ϕ2
2 þ

λ3
4
ϕ2
1 þ

λ4
4
ϕ2
1 þ

λh2
4

h2
�
ðϕ2

3 þ ϕ2
4Þ

þ λ5
4
ϕ2
1ðϕ2

3 − ϕ2
4Þ: ð2:6Þ
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The above potential is bounded from below if the following
conditions [104–106] are satisfied for all energies up to the
Planck scale1:

λh ≥ 0; λ1 ≥ 0; λ2 ≥ 0; ð2:7Þ

2
ffiffiffiffiffiffiffiffiffi
λhλ1

p
−λh1≥0; 2

ffiffiffiffiffiffiffiffiffi
λhλ2

p
þλh2≥0; 2

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
−λ3≥ 0;

ð2:8Þ

4λhλ1λ2 − ðλ2h1λ2 þ λ2h2λ1 þ λ23λhÞ þ λh1λh2λ3 ≥ 0: ð2:9Þ

B. Scalar masses

Gauge symmetry breaking to SUð3ÞC ×Uð1Þem can
arise through the nonzero VEVs vh, v1, v2. Since the
tree-level potential does not contain any dimensionful
parameters, this can only occur via the Coleman-
Weinberg mechanism [8]. Having multiple scalars, we will
make use of the Gildener-Weinberg approach [9] in order
to minimize the potential. The tree-level potential is
minimized at a particular renormalization scale μ ¼ Λ
which defines the flat direction among the VEVs. The
corresponding equations read [9]

λhðΛÞv4h þ λ1ðΛÞv41 þ λ2ðΛÞv42 − λ3ðΛÞv21v22
− λh1ðΛÞv2hv21 þ λh2ðΛÞv2hv22 ¼ 0; ð2:10Þ

2λhðΛÞv2h − λh1ðΛÞv21 þ λh2ðΛÞv22 ¼ 0; ð2:11Þ

2λ1ðΛÞv21 − λ3ðΛÞv22 − λh1ðΛÞv2h ¼ 0; ð2:12Þ

2λ2ðΛÞv22 − λ3ðΛÞv21 þ λh2ðΛÞv2h ¼ 0: ð2:13Þ

Along the flat direction, the shifted scalar fields may be
written as

h ¼ ðφþ vÞnh; ϕ1 ¼ ðφþ vÞn1; ϕ2 ¼ ðφþ vÞn2;
ð2:14Þ

where φ2 ¼ h2 þ ϕ2
1 þ ϕ2

2 and the overall VEV v is
v2 ¼ v2h þ v21 þ v22, with n2h þ n21 þ n22 ¼ 1.
The mass matrix of the three scalar fields that participate

in the symmetry breaking can be read off from the shifted
tree-level potential to be

M2
0 ¼ v2

0
BBBBBB@

2λhn2h −nhn1λh1 nhn2λh2

−nhn1λh1 2λ1n21 −n1n2λ3

nhn2λh2 −n1n2λ3 2λ2n22

1
CCCCCCA

ð2:15Þ

in the ðh;ϕ1;ϕ2Þ basis. Next, we may consider a general
rotation

RM2
0R

−1 ¼ M2
d ⇒

0
B@

h

ϕ1

ϕ2

1
CA ¼ R−1

0
B@

h1
h2
h3

1
CA; ð2:16Þ

in terms of the rotation matrix R−1 given by

R−1 ¼

0
B@

cos α cos β sin α cos α sin β

− cos β cos γ sin αþ sin β sin γ cos α cos γ − cos γ sin α sin β − cos β sin γ

− cos γ sin β − cos β sin α sin γ cos α sin γ cos β cos γ − sin α sin β sin γ

1
CA: ð2:17Þ

Two of these rotation angles may be chosen to be related to
the flat direction through

nh ¼ sin α;

n1 ¼ cos α cos γ;

n2 ¼ cos α sin γ:

ð2:18Þ

Then, M2
d is diagonal, provided that the following relation

is satisfied:

tan 2β ¼ vhv1v2vðλh2 þ λh1Þ
ðλ1 þ λ2 þ λ3Þv21v22 − λhv2hv

2
: ð2:19Þ

The resulting tree-level masses include a zero eigenvalue,
namely, Mh2 ¼ 0, which corresponds to the pNGB of
broken scale invariance. Of course, this mass will be
strongly lifted at the one-loop level. The other two
eigenvaluesMh1 ,Mh3 are given by complicated expressions
in terms of the overall VEV, the angles, and the scalar
couplings. In addition to the above three scalar states there
are also the scalar fields ϕ3, ϕ4, which we did not include in
the above analysis. These fields do not receive a VEV but
obtain tree-level masses as soon as the gauge symmetry
breaking is established. As we will see in Sec. II D,

1In fact, a more rigorous treatment shows that we must replace
λ3 with λ3 þmin ½0; λ4 þ λ5; λ4 − λ5� in the stability conditions
(2.7)–(2.9). However, we shall assume λ4 þ λ5 > 0 and
λ4 − λ5 > 0, resulting in positive masses for the fields ϕ3 and
ϕ4 [cf. (2.24)–(2.25)]. Therefore min ½0; λ4 þ λ5; λ4 − λ5� ¼ 0.
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radiative corrections will strongly affect only the flat
direction defined by h2, while the masses of ϕ3, ϕ4, h1,
h3 will stay close to their tree-level values.

C. Dark gauge boson masses

The SUð3ÞX gauge fields enter the Lagrangian through
the kinetic terms

LX ¼ −
1

2
trfXμνXμνg þ jDμΦ1j2 þ jDμΦ2j2; ð2:20Þ

where the field strength tensor is defined as Xμν ¼ ∂μXν −
∂νXμ þ igX½Xμ; Xν� and the covariant derivative of Φi has
the form DμΦi ¼ ∂μΦi þ igXXμΦi.
Following Ref. [103], we consider the discrete symmetry

Z2 × Z0
2 of the SUð3Þ generators in the Gell-Mann basis,

where the first Z2 corresponds to a gauge transformation,
while the second Z0

2 is identified with complex conjugation.

The parities of the gauge fields Xμ and the scalar fields Φi

under Z2 × Z0
2 are summarized in Table I. This discrete

symmetry is important for the identification of dark matter
since the lightest fields with nontrivial discrete signatures
will not be able to decay to Standard Model matter.
For the particular choice of nonzero v1;2 and v3;4 ¼ 0,

there is only one mixing term, X3
μXμ8, among the dark

gauge fields. The gauge boson mass matrix has the
form

M2
X ¼ g2X

4

0
BBBBBBBBBBBBBBBB@

v22 0 0 0 0 0 0 0

0 v22 0 0 0 0 0 0

0 0 v22 0 0 0 0 − v2
2ffiffi
3

p

0 0 0 v21 0 0 0 0

0 0 0 0 v21 0 0 0

0 0 0 0 0 v21 þ v22 0 0

0 0 0 0 0 0 v21 þ v22 0

0 0 − v2
2ffiffi
3

p 0 0 0 0 ð4v21 þ v22Þ=3

1
CCCCCCCCCCCCCCCCA

: ð2:21Þ

Defining the gauge boson mass eigenstates as
�
X30
μ

X80
μ

�
¼

�
cos δ sin δ

− sin δ cos δ

��
X3
μ

X8
μ

�
; ð2:22Þ

with the mixing angle given by

tan 2δ ¼
ffiffiffi
3

p
v22

2v21 − v22
;

⇒ tan δ ¼ −2v21 þ v22 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v41 − v21v

2
2 þ v42

p
ffiffiffi
3

p
v22

; ð2:23Þ

we obtain the masses shown in Table II. In the following,
we keep only the “þ” solution in (2.23) corresponding to
tan δ being small and positive for v21 ≫ v22.
In addition to the above gauge boson mass terms, the

scalar kinetic terms also give a scalar/gauge-boson mixing

igXXa
μð∂μΦiÞ†TaΦi þ H:c: ¼ gX

v2
2
ð∂μϕ4X6

μ − ∂μϕ3X7
μÞ:

This leads to a redefinition of the two scalar and gauge
fields involved according to

~X6
μ ¼X6

μþ
2

gX

v2
v21þv22

∂μϕ4; ~X7
μ ¼X7

μ−
2

gX

v2
v21þv22

∂μϕ3;

~ϕ3 ¼
v1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v21þv22
p ϕ3; ~ϕ4 ¼

v1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21þv22

p ϕ4:

The normalized masses for X6, X7 are the ones entering
in Table II, while the resulting masses of the canonical
scalar fields ~ϕ3, ~ϕ4 are

TABLE I. Gauge and scalar fields parities under Z2 × Z0
2.

Fields Z2 × Z0
2

h, ϕ1, ϕ2, ϕ3, X7
μ ðþ;þÞ

X2
μ, X5

μ ð−;þÞ
X1
μ, X4

μ ð−;−Þ
ϕ4, X3

μ, X6
μ, X8

μ ðþ;−Þ

TABLE II. Dark gauge boson masses.

Gauge fields Mass2

X1
μ

1
4
g2Xv

2
2

X2
μ

1
4
g2Xv

2
2

X30
μ

1
4
g2Xv

2
2ð1 − tan δffiffi

3
p Þ

X4
μ

1
4
g2Xv

2
1

X5
μ

1
4
g2Xv

2
1

X6
μ

1
4
g2Xðv21 þ v22Þ

X7
μ

1
4
g2Xðv21 þ v22Þ

X80
μ

1
3
g2Xv

2
1ð1 − tan δffiffi

3
p Þ−1
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M2
~ϕ3

¼ 1

2
ðλ4 þ λ5Þðv21 þ v22Þ; ð2:24Þ

M2
~ϕ4

¼ 1

2
ðλ4 − λ5Þðv21 þ v22Þ: ð2:25Þ

For v21 ≫ v22, the mixing angle δ is small and positive
[cf. (2.23)], while X1;2

μ and X30
μ are nearly degenerate in

mass and also the lightest of the eight dark gauge bosons. In
addition, because of their parities under Z2 × Z0

2

(cf. Table I), they are stable and can therefore constitute
DM candidates. Note, however, that ~ϕ4 and X30

μ have the
same parities under Z2 × Z0

2. This means that the decay
process X30 → ~ϕþ SM is possible if M ~ϕ4

< MX30 , and in

that case ~ϕ4 can be a DM candidate instead of X30
μ .

However, in the following we will study the case M ~ϕ4
>

MX30 and relegate this alternative scenario to future work.

D. One-loop potential

The one-loop potential, along the flat direction, at a
renormalization scale μ ¼ Λ where the tree-level potential
is minimized, takes the form

V1ðnφÞ ¼ Aφ4 þ Bφ4 lnðφ2=Λ2Þ; ð2:26Þ

where the dimensionless coefficients A, B are given (in the
MS scheme) by

A ¼ 1

64π2υ4

� X
i¼h1;h3; ~ϕ3; ~ϕ4

M4
i

�
−
3

2
þ log

M2
i

υ2

�
þ 6M4

W

�
−
5

6
þ log

M2
W

υ2

�
þ 3M4

Z

�
−
5

6
þ log

M2
Z

υ2

�

þ3
X8
i¼1

M4
Xi

�
−
5

6
þ log

M2
Xi

υ2

�
− 12M4

t

�
−1þ log

M2
t

υ2

��
; ð2:27Þ

B ¼ 1

64π2υ4

� X
i¼h1;h3; ~ϕ3; ~ϕ4

M4
i þ 6M4

W þ 3M4
Z þ 3

X8
i¼1

M4
Xi − 12M4

t

�
: ð2:28Þ

Note that the model, with its present minimal field
content, does not accommodate neutrino mass generation
through a right-handed neutrino seesaw mechanism.
Nevertheless, right-handed neutrinos can still be present
and obtain their mass from a separate sector, the minimal
example being a real scalar field that couples only to
neutrinos. Of course, with the given symmetries of the
model, if such a singlet exists, its couplings with the rest of
the scalars cannot be forbidden a priori. Nevertheless, it
could be assumed that these couplings are quite small, in
which case they would not affect the analysis of the rest of
the model.
Minimizing the one-loop effective potential, we obtain

V1ðnφÞ ¼ Bφ4

�
ln

�
φ2

v2

�
−
1

2

�
: ð2:29Þ

An immediate consequence of the one-loop radiative
corrections is to lift the pNGB mass to the nonzero value

M2
h2

¼ ∂2V1

∂φ2

����
φ¼v

¼ 1

8π2v2

�
M4

h1
þM4

h3
þM4

~ϕ3

þM4
~ϕ4

þ 6M4
W

þ 3M4
Z þ 3

X8
i¼1

M4
Xi − 12M4

t

�
: ð2:30Þ

Finally, note that the one-loop corrections to the masses
of ~ϕ3;4 are exactly zero, while the corrections to the masses
of h1;3 are very suppressed and can be safely ignored to a
first approximation.2

III. PHENOMENOLOGICAL ANALYSIS

In this section we study the phenomenological viability
of the model. First we examine the interrelationship among
the masses of the dark gauge bosons and scalars. Then,
scanning over a range of values for the scalar couplings and
the dark gauge coupling we find benchmark points that
satisfy stability and perturbativity constraints, as well as
bounds set by the first run of the LHC and measurements of
the electroweak precision observables.
The Coleman-Weinberg mechanism is successfully real-

ized if the mass of the dark scalarMh2 [cf. (2.30)] turns out
to be positive. For this to be true we must have B > 0
[cf. (2.29)], or

M4
h3
þM4

~ϕ3

þM4
~ϕ4

þ 3
X8
i¼1

M4
Xi

> ð317.26 GeVÞ4: ð3:1Þ

The scalar state h1 (that we identify with the Higgs
boson) has analogous couplings to the SM particles as a SM
Higgs, but is rescaled by the factor R11 from the rotation
matrix (2.17),

2See [33] for a complete treatment in a relevant CSI model.
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gh1χχ ¼ R11gSMhχχ ; ð3:2Þ

with χχ denoting a pair of SM particles. Constructing the
signal strength parameter for h1 [92],

μh1 ¼
σðpp → h1Þ
σSMðpp → hÞ

BRðh1 → χχÞ
BRSMðh → χχÞ ≃ cos2 α cos2 β;

ð3:3Þ

and employing the bound set by the first run of the LHC
[107–110],

μh1 > 0.81; @95%C:L:; ð3:4Þ

we can constrain the matrix element R11 as

R11 ¼ cos α cos β > 0.9; ð3:5Þ

meaning that the angles α, β cannot be too large.
Another experimental constraint arises from the mea-

surements of the oblique parameters S, T, and U. Setting
U ¼ 0, we have [111]

S ¼ 0.00� 0.08; T ¼ 0.05� 0.07: ð3:6Þ

In this model, the above parameters are given by the
formulas presented in Appendix A.
We can further constrain the model by requiring the

stability of the scalar potential and the perturbativity of the
couplings as they evolve with the renormalization scale. To
this end, we consider the scalar couplings (except λh) and
the gauge coupling gX and generate random values inside
the intervals shown below,

λ1; λ2; λ3; λh1; λh2; λ4; λ5 ∈ ½10−6; 1�; gX ∈ ½0; 3�:
ð3:7Þ

The scalar couplings are specified at the renormalization
scaleΛwhere the tree-level potential is minimized, whereas
the dark gauge coupling is defined at the scale of the
lightest dark gauge boson gXðMX30 Þ.
Then, we calculate the VEVs v1, v2 and the Higgs

self-coupling λh from the minimization conditions
(2.10)–(2.13). At the first stage, we keep only the
points that reproduce the measured Higgs mass

TABLE III. Benchmark points for the model parameters that satisfy the stability and perturbativity constraints, as
well as the bounds set by LHC and measurements of the oblique parameters. The VEVs, the masses, and Λ are in
GeV units. For completeness, we have also included the values of the total relic density of X1;2;30 and their effective
scattering cross sections off a nucleon (in cm2 units) which we discuss in Secs. IVA and IV B.

BP1 BP2 BP3 BP4 BP5

λ1ðΛÞ 0.00008 0.0112 0.0014 0.00017 0.00015
λ2ðΛÞ 0.0706 0.01073 0.0689 0.12129 0.00126
λh1ðΛÞ 0.00292 0.0237 0.00282 0.0006 0.0016
λh2ðΛÞ 0.04116 0.00323 0.00031 0.00109 0.00344
λ3ðΛÞ 0.00459 0.0211 0.0196 0.00911 0.00088
λ4ðΛÞ 0.3104 0.3317 0.2878 0.3363 0.3564
λ5ðΛÞ 0.0052 0.000003 0.000011 0.13762 0.00167
λhðΛÞ 0.13811 0.13201 0.12804 0.12876 0.13295
gX 1.25 0.88 0.81 2.01 0.29
vh 246.22 246.22 246.22 246.22 246.22
v1 3180.05 882.78 2365.61 5272.32 6610.41
v2 557.43 869.86 891.70 1021.43 3898.50
Mh1 125.07 125.02 125.17 125.08 125.14
Mh2 588.86 97.82 189.80 2500.34 227.22
Mh3 215.81 184.42 353.78 512.43 228.37
M ~ϕ3

1282.51 504.70 958.99 2614.19 3247.10
M ~ϕ4

1261.21 504.69 958.95 1692.65 3231.93
MX1;2

349.65 382.29 361.14 1028.25 560.84
MX0

3
348.29 314.41 354.20 1023.32 531.48

MX4;5
1994.73 387.97 958.07 5307.55 950.98

MX6;7
2025.14 544.67 1023.88 5406.23 1104.05

MX0
8

2312.35 544.70 1127.97 6158.13 1158.77
Λ 1747.67 407.03 834.25 4704.95 1838.82
ΩXh2 0.0365 0.0670 0.1136 0.0952 6.19
σeff1;2 2.2 × 10−45 1.0 × 10−47 1.5 × 10−47 8.7 × 10−48 0

σeff3 1.2 × 10−44 7.7 × 10−46 2.8 × 10−46 5.5 × 10−47 1.5 × 10−46
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Mh1 ¼ 125.09� 0.24 GeV. Subsequently, we solve
numerically the two-loop RGEs (cf. Appendix B) and
keep only the values of the couplings that remain pertur-
bative up to the Planck scale and also satisfy the vacuum
stability conditions (2.7)–(2.9), as well as the bound set by
LHC (3.5) and the constraints on the parameters S and T
(3.6). We present five of these benchmark points in
Table III.
Most of these benchmark points (BPs) contain values for

the dark VEVs for which v21 ≫ v22. This results in the
masses of the dark gauge bosons X1

μ, X2
μ, X30

μ being nearly
degenerate, while the masses of the rest of the dark gauge
bosons are well above them. Nonetheless, in BP2, we have
also included the case v1 ≃ v2. In this case, the mass of X30

μ

is fairly lower than the masses of X1
μ and X2

μ, which are now
close to the masses of X4

μ and X5
μ, while the masses of X6

μ

and X7
μ become nearly degenerate with the mass of X80

μ .
Therefore, in the case v1 ≃ v2, we have

M2

X30 ≃
2

3
M2

X1;2 ≃
2

3
M2

X4;5 ≃
1

3
M2

X6;7 ≃
1

3
M2

X80 : ð3:8Þ

As we will see in the next section, the case v1 ≃ v2 is
distinct in its dark matter analysis.
Regarding the scalar bosons and the pNGB h2 in

particular, we observe that its mass depends highly on
the values of the VEVs v1, v2 and the dark gauge coupling
gX, or equivalently on the masses of the dark gauge bosons
and the rest of the scalars [cf. (2.30)]. For example, large
values for the VEVs and gX produce a large mass for h2, as
can be seen from BP4 in Table III.
Finally, the dark gauge boson mass spectrum for both

cases v21 ≫ v22 and v1 ≃ v2 is shown schematically in Fig. 1.

IV. DARK MATTER ANALYSIS

Recent astrophysical measurements [112] have corrobo-
rated the now well-established fact that ∼80% of the
nonrelativistic matter in the Universe is in a form that
remains a mystery to us and cannot be explained by the
known particles and forces. This DM could be constituted
of scalar bosons, fermions, vector bosons, a combination of
the above, or even something more exotic. Here we will
focus on vector DM [73,74,82,92,97,103,113–144].
Whatever the case may be, a DM candidate particle

should be stabilized by some kind of symmetry, such that it
may not decay to the SM particles. The simplest possibility
of a stabilizing symmetry is that of a Z2 discrete symmetry.
A neutral and weakly interacting massive particle can be a
DM candidate if it is the lightest Z2-odd particle in a given
model. In order to accommodate more DM candidates, one
should consider a ZN (N ≥ 4) or a product of two or more
Z2’s as the stabilizing symmetry.
The intrinsic Z2 × Z0

2 symmetry of the dark sector of the
model, not shared by the SM fields, singles out the particles

with nontrivial signatures under this symmetry as a stable
sector without any other symmetry requirements. The
lightest of the dark gauge bosons then, are possible dark
matter candidates. Under our assumptions, the lightest of
them are the dark gauge bosons X1

μ, X2
μ, and X30

μ .
The present model allows for various processes that are

able to change the number density of dark matter particles.
These are the following:
(a) Annihilation into SM. All dark gauge bosons interact

with the scalars hi (i ¼ 1, 2, 3), which in turn
communicate with the SM fields. Thus, the DM
candidates X1;2;30

μ can annihilate to the SM particles
through the Higgs portal.

(b) Semiannihilation. The non-Abelian nature of the
extra gauge symmetry allows the processes XaXb →
Xchi to occur. In this case, the final number of DM
particles is one less than the initial number, as
opposed to the case of annihilations where the
DM number of particles is changed by two units.
Semiannihilation processes are of great interest
regarding DM phenomenology since they can domi-
nate in much of the parameter space.

(c) Coannihilation. This kind of process has been thor-
oughly investigated in the context of supersymmetric
DM models.3 There, the lightest neutralino particle
(LSP) is a DM candidate and can potentially coanni-
hilate with the next-to-lightest supersymmetric particle
(NLSP) if their respective masses are close enough. A
similar situation arises in the dark sector of the model
under consideration when v1 ≃ v2, since in that case
the masses of the DM candidates X1

μ and X2
μ are close

to those of X4
μ and X5

μ (cf. Fig. 1) and may in principle
coannihilate with them through the processes
X1X4;5 → X7;6hi and X2X4;5 → X6;7hi. Notice, how-
ever, that we cannot employ the usual condition
between the LSP and NLSP(s) number densities
before, during, and after freeze-out, namely
ni=nj ¼ neqi =n

eq
j , since its validity cannot be guaran-

teed when semiannihilations are also involved (see
Ref. [146] for more details).

(d) DM conversion. In multicomponent DM systems the
various DM candidates have different masses in
general. Then, if the relevant interactions are allowed,
a DM species may be converted to another. In this
model the three DM candidates X1;2;30

μ are nearly
degenerate in mass, and such processes ðX1;2X1;2 →
X30X30 Þ are generally phase space suppressed. How-
ever, again in the limiting case v1 ≃ v2 the mass
splitting of X30

μ with regard to X1
μ and X2

μ can have
a significant effect in today’s number density of these
DM species.

3See, for example, Ref. [145] and references therein.
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A. Boltzmann equations and relic density

In order to determine the present day abundance of the
DM species we need to solve a coupled set of Boltzmann
equations involving the number densities of the dark sector
particles. These equations can be written in a compact
form as

dna
dt

þ 3Hna ¼ Caða ¼ 1; 2; 30Þ; ð4:1Þ

with H being the Hubble parameter and Ca ¼
P

bcdCab→cd
being the collision rate of all possible 2 → 2 processes for a
given species that can change its number density. We can
relate the collision rate of a reaction with its inverse by
making use of the detailed balance equation

Cab→cd ¼ −hσab→cdvri
�
nanb − ncnd

n̄an̄b
n̄cn̄d

�

¼ þhσcd→abvri
�
ncnd − nanb

n̄cn̄d
n̄an̄b

�
; ð4:2Þ

where n̄≡ neq is the equilibrium number density and
hσab→cdvri is the thermally averaged cross section times
the relative velocity of the DM particles. It is given by the
general formula [147–149]

hσab→cdvri ¼
1

2m2
am2

bTK2ðma=TÞK2ðmb=TÞ
×
Z

∞

ðmaþmbÞ2
dsK1ð

ffiffiffi
s

p
=TÞpinðsÞwðsÞ; ð4:3Þ

where wðsÞ ¼ EaEbσab→cdvr. The cross section for a given
process aþ b → cþ d is

σab→cdvr¼
1

1þδcd

poutðsÞ
32πspinðsÞ

Z
dcosθjMab→cdj2; ð4:4Þ

with jMj2 denoting the spin summed and polarization
averaged matrix element squared. In Eq. (4.3),KνðzÞ stands
for the modified Bessel functions. The general expressions
for the kinematical variables contained in (4.3) and (4.4) are
provided in Appendix C.
We may now proceed to obtain the relic abundance

of the DM candidates by solving numerically the set of
Boltzmann equations. In order to write down the system of
coupled equations, we need to identify the reactions which
modify the number of X1

μ, X2
μ, and X30

μ particles. Since
MX1

¼ MX2
> MX30 , the number densities satisfy n1 ¼

n2 ≠ n3. It should also be clear that hσvri11→χχ0 ¼
hσvri22→χχ0 ≠ hσvri33→χχ0 , hσvri12→3χ ¼ hσvri21→3χ ≠
hσvri13→2χ ¼ hσvri31→2χ ¼ hσvri23→1χ ¼ hσvri32→1χ , and
hσvri11→33 ¼ hσvri22→33 ≠ hσvri33→11 ¼ hσvri33→22,
where, for example, hσvri12→3χ is short for hσvriX1X2→X30χ

,
etc., and χχ0 denotes SM SM and hihj pairs when these are
kinematically allowed.
The processes which modify the number of X1;2

μ particles
are

X1;2X1;2 → χχ0; X1;2X2;1 → X30;80hi;

X1;2X30 → X2;1hi; X1;2X1;2 → X30X30 ; ð4:5Þ

whereas the ones which modify the number of X30 particles
are

X30X30 → χχ0; X1;2X30 → X2;1hi;

X30hi → X1;2X2;1; X30X30 → X1;2X1;2: ð4:6Þ

The collision operators for the processes which modify
the number of X1

μ and X2
μ particles are

MX1,2 MX3'

MX4,5

MX6,7

MX8'

MX1,2

MX3'

MX4,5

MX6,7 MX8'

FIG. 1. Mass spectra of dark gauge bosons for the cases v21 ≫ v22 (left) and v1 ≃ v2 (right).
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C11→χχ0 ¼ −hσvri11→χχ0 ½n21 − n̄21� ¼ C22→χχ0 ;

C12→3hi ¼ − hσvri12→3hi

�
n1n2 − n̄1n̄2

n3
n̄3

�
¼ C21→3hi ;

C12→8hi ¼ − hσvri12→8hi ½n1n2 − n̄1n̄2� ¼ C21→8hi ;

C13→2hi ¼ − hσvri13→2hi

�
n1n3 − n̄1n̄3

n2
n̄2

�
¼ C23→1hi ;

C11→33 ¼ − hσvri11→33

�
n21 − n23

n̄21
n̄23

�
¼ C22→33;

C1hi→23 ¼þ hσvri23→1hi

�
n2n3 − n̄2n̄3

n1
n̄1

�
¼ C2hi→13;

ð4:7Þ

whereas the ones which modify the number of X30
μ particles

are

C33→χχ0 ¼ −hσvri33→χχ0 ½n23 − n̄23�;

C13→2hi ¼ −hσvri13→2hi

�
n1n3 − n̄1n̄3

n2
n̄2

�
¼ C23→1hi ;

C33→11 ¼ þhσvri11→33

�
n21 − n23

n̄21
n̄23

�
¼ C33→22;

C3hi→12 ¼ þhσvri12→3hi

�
n1n2 − n̄1n̄2

n3
n̄3

�
: ð4:8Þ

As discussed above, in the case v1 ≃ v2, the particles X
4;5
μ

are thermally available to X1;2
μ and may coannihilate with

them. We therefore also have to include them in our
analysis. The collision operators for the processes which
change the number of X4;5

μ particles are4

C44→χχ0 ¼ − hσvri44→χχ0 ½n24 − n̄24� ¼ C55→χχ0 ;

C14→7hi ¼ − hσvri14→7hi ½n1n4 − n̄1n̄4� ¼ C15→6hi

¼ C24→6hi ¼ C25→7hi ;

C44→11 ¼ − hσvri44→11

�
n24 − n21

n̄24
n̄21

�
¼ C44→22

¼ C55→11 ¼ C55→22;

C44→33 ¼ − hσvri44→33

�
n24 − n23

n̄24
n̄23

�
¼ C55→33: ð4:9Þ

Next, let us define

Ya ≡ na
s
; x≡MX30

T
; Zab→cdðxÞ≡ sðx ¼ 1Þ

Hðx ¼ 1Þ hσvriab→cd;

ð4:10Þ

where H ¼
ffiffiffiffiffiffiffiffiffi
4π3g⋆
45

q
T2

MPl
, g⋆ ≃ g⋆s is the number of effective

relativistic degrees of freedom, and s ¼ 2π2g⋆s
45

T3 is the
entropy density. Then, we may finally write down the
coupled set of Boltzmann equations in dimensionless
variables as

dY1

dx
¼ −

1

x2

�
Z11→χχ0 ½Y2

1 − Ȳ2
1� þ Z12→3hi

�
Y1Y2 − Ȳ1Ȳ2

Y3

Ȳ3

�
þZ12→8hi ½Y1Y2 − Ȳ1Ȳ2� þ Z13→2hi

�
Y1Y3 − Ȳ1Ȳ3

Y2

Ȳ2

�

−Z23→1hi

�
Y2Y3 − Ȳ2Ȳ3

Y1

Ȳ1

�
þ Z11→33

�
Y2
1 − Y2

3

Ȳ2
1

Ȳ2
3

�
−Z44→11

�
Y2
4 − Y2

1

Ȳ2
4

Ȳ2
1

�
− Z55→11

�
Y2
5 − Y2

1

Ȳ2
5

Ȳ2
1

�

þZ14→7hi ½Y1Y4 − Ȳ1Ȳ4� þ Z15→6hi ½Y1Y5 − Ȳ1Ȳ5�
	
; ð4:11Þ

dY2

dx
¼ dY1

dx
ð1 ↔ 2; 4 ↔ 5; 7 ↔ 6Þ; ð4:12Þ

dY3

dx
¼ −

1

x2

�
Z33→χχ0 ½Y2

3 − Ȳ2
3� þ Z13→2hi

�
Y1Y3 − Ȳ1Ȳ3

Y2

Ȳ2

�
þZ23→1hi

�
Y2Y3 − Ȳ2Ȳ3

Y1

Ȳ1

�
− Z11→33

�
Y2
1 − Y2

3

Ȳ2
1

Ȳ2
3

�

−Z22→33

�
Y2
2 − Y2

3

Ȳ2
2

Ȳ2
3

�
− Z44→33

�
Y2
4 − Y2

3

Ȳ2
4

Ȳ2
3

�
−Z55→33

�
Y2
5 − Y2

3

Ȳ2
5

Ȳ2
3

�
− 2Z12→3hi

�
Y1Y2 − Ȳ1Ȳ2

Y3

Ȳ3

�	
; ð4:13Þ

dY4

dx
¼ −

1

x2

�
Z44→χχ0 ½Y2

4 − Ȳ2
4� þ Z44→11

�
Y2
4 − Y2

1

Ȳ2
4

Ȳ2
1

�
þZ44→22

�
Y2
4 − Y2

2

Ȳ2
4

Ȳ2
2

�
þ Z44→33

�
Y2
4 − Y2

3

Ȳ2
4

Ȳ2
3

�

þZ14→7hi ½Y1Y4 − Ȳ1Ȳ4� þ Z24→6hi ½Y2Y4 − Ȳ2Ȳ4�
	
; ð4:14Þ

4Of course, these reactions also change the number of X1;2;30
μ particles. Also, we have assumed that the heavier dark gauge bosons

X6;7;80
μ have already decayed to the lighter ones.
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dY5

dx
¼ dY4

dx
ð4 ↔ 5; 1 ↔ 2; 7 ↔ 6Þ: ð4:15Þ

The equilibrium yields Ȳa ≡ n̄a
s are given by

Ȳ3 ¼
ĝX
g⋆s

45

4π4
x2K2ðxÞ; ð4:16Þ

Ȳ1;2 ¼
ĝX
g⋆s

45

4π4
r21;2x

2K2ðr1;2xÞ; ð4:17Þ

Ȳ4;5 ¼
ĝX
g⋆s

45

4π4
r24;5x

2K2ðr4;5xÞ; ð4:18Þ

where we have defined r1;2 ≡ MX1;2

M
X3

0 , r4;5 ≡ MX4;5

M
X3

0 , and

ĝX ¼ 3 are the spin degrees of freedom of the dark gauge
bosons. We have numerically solved this system using
Mathematica, and we have also employed the packages
FeynArts/FormCalc [150,151] in order to produce analytic
results for the various cross sections involved. Finally,
we have obtained the total relic density of the X1;2;30

μ

particles

ΩXh2 ¼ ΩX1h2 þ ΩX2h2 þ ΩX30h2; ð4:19Þ

where

ΩXah2 ¼ MXas0Yað∞Þ
ρc=h2

; ð4:20Þ

with s0 ¼ 2890 cm−3 and ρc=h2¼1.05×10−5GeV=cm3.
Equation (4.19) has to be compared with the measured DM
relic density ΩDMh2 ¼ 0.1197� 0.0022 [112]. Next, we
further explore the cases v21 ≫ v22 and v1 ≃ v2.

1. Case v21 ≫ v22
In this case, as stated above, the masses of the DM

candidates X1, X2, and X30 are nearly degenerate, while the
masses of X4 and X5 are well above those of X1 and X2.
Therefore, coannihilation effects play no significant role in
the final relic density of X1;2;30 . However, even though the
mass splitting between MX1 ¼ MX2 and MX30 is small, the
DM conversion processes X1;2X1;2 → X30X30 can lower
the number density of X1 and X2 and enhance that of
X30 , rendering X30 the predominant DM component.
To get a feeling of the effect of DM conversion, we set

the parameters of the model according to BP1 of Table III
and solve numerically the Boltzmann equations (4.11)–
(4.13) (omitting the coannihilation terms), thus obtaining
the solutions for the yields Y1;2 and Y3 with respect
to x ¼ MX30=T.
In Fig. 2 we plot these solutions with the DM conversion

processes switched on (left) and switched off (right). When
the DM conversion is switched off, the final yields are
closer together, with the separation attributed to the slightly
different masses between X1;2 and X30 , as well as to the
mixing between X30 − X80 which results in more Feynman
diagrams contributing to the annihilation processes
X30X30 → hihj and the semiannihilation processes
X1;2X2;1 → X30hi.

5 On the other hand, the separation of
the final yields is larger when the DM conversion processes
are switched on, since more X1 and X2 particles have

Y1,2 w/ DM conv.

Y3 w/ DM conv.

101 102 103 104

10–13
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10–9

10–8

10–7

10–6

10–5

x = MX3' / T

Y
a

w/o coann.

Y1,2 w/o DM conv.

Y3 w/o DM conv.
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10–13

10–12

10–11

10–10

10–9

10–8

10–7

10–6

10–5

x = MX3' / T

Y
a

w/o coann.

FIG. 2. The yields Y1;2 and Y3 in terms of x ¼ MX30 =T for BP1. The right plot has been obtained neglecting the DM conversion terms
in the Boltzmann equations. These terms are included in the left plot. The DM conversion process reduces the final number density of
the X1 and X2 particles since some of them are converted to X30 .

5In the non-CSI version of this model considered in Ref. [103],
the authors performed their SUð3Þ DM analysis under the
simplified assumption that the rest of the dark sector particles
do not contribute to DM annihilation. They also only included the
couplings of the DM candidates to the two lightest scalar bosons
h1, h2 and not the heavierH in their notation. Here, we include all
possible couplings and Feynman diagrams relevant to the relic
densities of X1;2;30 .

ALEXANDROS KARAM and KYRIAKOS TAMVAKIS PHYSICAL REVIEW D 94, 055004 (2016)

055004-10



annihilated and have been converted to X30 ; a reaction that
continues to occur to some extent even after freeze-out. In
the case without DM conversion, the particles X1, X2, and
X30 comprise 19%, 19%, and 62% of the total relic density,
respectively, while in the case with DM conversion they
comprise 13%, 13%, and 74% of the total relic density,
respectively.
In Fig. 3 we fix again the model parameters as in BP1,

but this time we leave the extra gauge coupling gX free and
scan over it, ergo obtaining the total relic density ΩXh2 of
the DM candidates. We first observe a resonant dip around
110 GeV which corresponds to MX30 ≃MX1;2 ¼ Mh3=2.
Then the relic density grows until ∼175 GeV where the tt̄
channel opens up. After that, there is a steep decrease
aroundMh3 ≃ 215 GeV where all the annihilation channels
XaXa → h3h3 and the semiannihilation channels XaXb →
Xch3 become kinematically available. This point crosses
the observed DM relic density (blue band in Fig. 3) and
corresponds to gX ¼ 0.78 (which also satisfies the con-
straints discussed in Sec. III).
Above Mh3 , one may expect that the relic density would

decrease monotonically. This can be understood as follows:
every vertex containing three dark gauge boson legs is
proportional to gX while every vertex containing two dark
gauge bosons and one or two scalar bosons is proportional
to g2X. Therefore, hσvri ∝ g2X, or ΩXh2 ∝ 1=g2X. This indi-
cates that the relic density should decrease as we increase
gX (and therefore MX1;2;30 ). Nevertheless, the mass of the
pNGB Mh2 depends on all the masses of the model
[cf. (2.30)]. This means that as gX grows, so do the dark
gauge boson masses and consequently Mh2. This effect
tends to counterbalance the expected decrease of ΩXh2. On
the other hand, as gX becomes smaller, the relic density of
the DM candidates increases considerably and tends to
overclose the Universe. For example, the small value of gX

from BP5 in Table III leads to ΩXh2 ≃ 6.2, in which case
X1;2 are also completely depleted and X30 makes up 100%
of the relic density. Furthermore, the dependence ofMh2 on
gX means that there can be only two resonant dips,
corresponding to Mh1=2 and Mh3=2. This is in contrast
to the non-CSI version of the model [103] where there
should be three resonant dips, corresponding to Mh1=2,
Mh2=2, Mh3=2, since in that case Mh2 does not depend on
gX. As a result, the CSI version of the model that we
consider is in general more constrained.

2. Case v1 ≃ v2
In this case, X30 is nearly 20% lighter than X1 and X2

[cf. (3.8)] while X4 and X5 are almost degenerate with the
latter ones. Therefore, coannihilations between X1;2 and
X4;5 may occur around the time of freeze-out and influence
the relic density of these four particles. Since the semi-
annihilations X1;2X30 → X2;1hi are now phase-space sup-
pressed, the Boltzmann equations governing the number
densities of X1;2 and X4;5 are almost identical. We therefore
expect their relic number densities to be very close. This is
indeed the case as can be seen in Fig. 4.
There, we also distinguish between the cases when

coannihilations are switched on (left) and switched off
(right). The effect is clearly insignificant, and in both cases
the DM candidates X1, X2, and X30 comprise approximately
1%, 1%, and 98% of the total relic density, respectively.
The dominant phenomenon is DM conversion since most
X1;2 and X4;5 have had enough time to annihilate to X30 .
We display the importance of this effect in Fig. 5, where

coannihilations are switched on, but this time we distin-
guish between the cases when DM conversion is switched
on (left) and off (right). With DM conversion switched on,
the DM candidates X1, X2, and X30 comprise again 1%, 1%,
and 98% of the total relic density. With DM conversion
switched off, X1, X2, and X30 comprise around 7%, 7%, and
86% of the total relic density, respectively. Moreover, the
total relic density is almost 2 times larger in the former case
(DM conversion on) than in the latter case (DM conversion
off). This can be attributed to the fact that without DM
conversion freeze-out is delayed and more DM particles
have time to annihilate to SM particles.

B. Direct detection

Maybe the best prospect for validating the WIMP DM
paradigm is through the direct detection of DM particles at
deep underground facilities. Many experiments are in
progress, and hopefully we may soon get a glimpse of
this dark world.
Interactions between the DM particles X1;2;30

μ and the
nucleons N can be mediated through a t-channel exchange
of the scalar bosons hi. For the individual DM components,
the corresponding spin-independent elastic scattering cross
sections are
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h2
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FIG. 3. The total relic density of X1;2 and X30 as a function of
the dark gauge coupling gX for BP1. The blue band corresponds
to the observed DM relic density within 3σ.
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σSI1;2 ¼
f2N

16πv2h

m4
N

ðMX1;2 þmNÞ2
����g2Xv2

X3
i¼1

Ri3R1i

M2
hi

����
2

; ð4:21Þ

σSI3 ¼ f2N
16πv2h

m4
N

ðMX30 þmNÞ2
���� 43 g2Xv1sin2δ

X3
i¼1

Ri2R1i

M2
hi

þ 1

3
g2Xv2ðcos 2δþ 2 −

ffiffiffi
3

p
sin 2δÞ

X3
i¼1

Ri3R1i

M2
hi

����
2

;

ð4:22Þ

where fN ≃ 0.3 [152–158] is the nucleon form factor and
mN ¼ 0.939 GeV is the average nucleon mass.
Since we have three DM candidates with different

masses (MX1 ¼ MX2 > MX30 ), not all of them contribute
equally to the local DM density which in direct detection
experiments is assumed to be composed of a single DM

species. Nevertheless, we may assume that the contribution
of each DM species to the local density is equal to the
contribution of that particular species to the relic density
and consequently construct the effective cross sec-
tions [159–161]

σeffa ¼ σSIa

�
ΩXah2

ΩXh2

�
: ð4:23Þ

For example, BP3 in Table III reproduces the observed
DM relic density within 3σ, with X1, X2, and X30 compris-
ing approximately 5%, 5%, and 90% of its total. The
resulting effective cross sections are then

σeff1;2 ¼ 1.46715 × 10−47 cm2;

σeff3 ¼ 2.77662 × 10−46 cm2:
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FIG. 5. The yields Y1;2, Y3, and Y4;5 in terms of x ¼ MX30 =T for BP2. The right plot has been obtained neglecting the DM conversion
terms in the Boltzmann equations. These terms are included in the left plot. The DM conversion processes are significant since many
X1;2 particles are converted to X30 .
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FIG. 4. The yields Y1;2, Y3, and Y4;5 in terms of x ¼ MX30 =T for BP2. The right plot has been obtained neglecting the coannihilation
terms in the Boltzmann equations. These terms are included in the left plot. The difference is very small since most X1;2 and X4;5

particles are converted to X30 .
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Both of these numbers are well below the limits set by the
LUX experiment [162], but are nevertheless within the
reach of future experiments such as LZ [163] and
XENON1T [164].

V. SUMMARY AND CONCLUSIONS

In the present article we have examined a classically
scale-invariant extension of the SM, enlarged by a weakly
coupled dark SUð3ÞX gauge group. The extra sector
consists of the eight dark gauge bosons and two complex
scalar triplets. Under mild assumptions on the parameters
of the scalar potential of the model the scalar triplets can
develop nonvanishing vacuum expectation values and
break the extra SUð3ÞX completely via the Coleman-
Weinberg mechanism. Eight of the 12 scalar degrees of
freedom are absorbed by the dark gauge bosons, rendering
them all massive. We focused on and analyzed the case in
which the symmetry breaking pattern involves two VEVs.
As a result of the portal couplings of the dark scalars to the
Higgs field, the dark gauge symmetry breakdown triggers
electroweak symmetry breaking. In the framework of the
Gildener-Weinberg formalism we considered the full
one-loop effective potential. At one-loop level the
pseudo–Nambu-Goldstone boson of broken classical scale
symmetry receives a large radiative mass. Out of the
massive dark gauge bosons the lightest three of them are
almost degenerate in mass and also stable due to an intrinsic
Z2 × Z0

2 discrete symmetry of SUð3ÞX. These are identified
as DM candidates.
The parameters of the model and the mass patterns

resulting from symmetry breaking have subsequently been
subjected to the various existing theoretical and experi-
mental constraints. The requirements on the tree-level and
one-loop effective scalar potential to be bounded from
below have been analyzed. Constraints arising from LHC
searches and measurements of the electroweak parameters
S and T have also been examined. Thus, we obtained five
benchmark points for the parameters of the model that
stabilize the vacuum, satisfy the experimental constraints,
and reproduce the measured mass for the observed
Higgs boson.
Having analyzed the phenomenological viability of the

model, a comprehensive DM analysis was undertaken.
After identifying the relevant DM processes (annihilations,
semiannihilations, coannihilations, and DM conversions),
the set of coupled Boltzmann equations was constructed,
describing the number density evolution of the DM
candidates in order to obtain their total relic density and
compare it to the measured value. The Boltzmann equa-
tions were solved numerically in two cases defined by the
VEVs of the SUð3ÞX scalar fields.
In the first case, the VEV separation was large (v21 ≫ v22)

and the three dark gauge boson candidates X1, X2, and X30

were nearly degenerate in mass. This case may seem
similar to the dark SUð2ÞX model (recently considered

in Refs. [92] and [73,74,100,142]) where the extra gauge
symmetry gets broken by a complex scalar doublet. There,
the three dark gauge bosons are completely degenerate in
mass and contribute equally to the DM relic density. In the
SUð3ÞX model, however, even though X1;2;30 are nearly
degenerate in mass, the lightest of the three (X30 ) is the
predominant DM component. This occurs mainly due to
the mixing between X30 and X80 which means that more
Feynman diagrams contribute to the semiannihilation
processes X1;2X1;2 → X30hi and the annihilation processes
X30X30 → hihj. Also, even though the mass splitting is
small, some of the X1;2 particles are converted to X30 and
increase its final relic density. Finally, as it is transparent
in the framework of the GW formalism employed, the
pNGB mass depends on all the other masses of the
model. Consequently, there can be only one resonant dip
for the DM relic density in the SUð2ÞX model (corre-
sponding to MHiggs=2) and two in the SUð3ÞX model
(corresponding to Mh1=2 and Mh3=2). Therefore, in
general, enlarging the gauge group means that more
scalars are needed in order to break it, which leads to
a larger parameter space that may be compatible with
cosmological observations.
In the second case, the VEVs were very close

(v1 ≃ v2). This resulted in X30 being around 20% lighter
than X1, X2 (which were exactly degenerate) and X4, X5

(which were exactly degenerate too) now being close in
mass with X1 and X2. Therefore, possible coannihilation
effects had to be examined. Nevertheless, it turned out that
the dominant process was DM conversion and X30 was
again the predominant DM component. Finally, we
determined that the DM candidates have viable prospects
of being directly detected by future underground
experiments.
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APPENDIX A: OBLIQUE PARAMETERS

The S and T parameters are given in this model by the
expressions (see also [34,113,138])

S ¼ 1

24π

�
R2

11½logRh1h þGðM2
h1
;M2

ZÞ − GðM2
h;M

2
ZÞ�

þR2
12½logRh2h þ GðM2

h2
;M2

ZÞ −GðM2
h;M

2
ZÞ�

þR2
13½logRh3h þ GðM2

h3
;M2

ZÞ −GðM2
h;M

2
ZÞ�

	
;

ðA1Þ
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T ¼ 3

16πsin2θW

�
R2

11

�
1

cos2θW

�
logRZh1

1 − RZh1

−
logRZh

1 − RZh

�
−
�
logRWh1

1 − RWh1

−
logRWh

1 − RWh

��

þR2
12

�
1

cos2θW

�
logRZh2

1 − RZh2

−
logRZh

1 − RZh

�
−
�
logRWh2

1 − RWh2

−
logRWh

1 − RWh

��

þR2
13

�
1

cos2θW

�
logRZh3

1 − RZh3

−
logRZh

1 − RZh

�
−
�
logRWh3

1 − RWh3

−
logRWh

1 − RWh

��	
; ðA2Þ

where the functions RAB, Gðm2
A;m

2
BÞ, and fðRABÞ are given by

RAB ¼ M2
A

M2
B
; ðA3Þ

GðM2
A;M

2
BÞ ¼ −

79

3
þ 9RAB − 2R2

AB þ ð12 − 4RAB þ R2
ABÞfðRABÞ

þ
�
−10þ 18RAB − 6R2

AB þ R3
AB − 9

RAB þ 1

RAB − 1

�
logRAB; ðA4Þ

fðRABÞ ¼

8>>><
>>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RABðRAB − 4Þp

log
��� RAB−2−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RABðRAB−4Þ

p
2

��� RAB > 4;

0 RAB ¼ 4;

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RABð4 − RABÞ

p
arctan

ffiffiffiffiffiffiffiffiffiffi
4−RAB
RAB

q
RAB < 4:

ðA5Þ

APPENDIX B: RGES

In this appendix, we present the two-loop gauge RGEs, as well as the one-loop RGEs for the Yukawa and scalar
couplings. However, in our numerical analysis we used the full set of two-loop RGEs obtained using SARAH [165,166].
Defining βκ ≡ ð4πÞ2 dκ

d ln μ, the RGEs have the form

βg1 ¼
41

10
g31 þ

1

ð4πÞ2
1

50
g31ð199g21 þ 135g22 þ 440g23 − 85y2t Þ; ðB1Þ

βg2 ¼ −
19

6
g32 þ

1

ð4πÞ2
1

30
g32ð27g21 þ 175g22 þ 360g23 − 45y2t Þ; ðB2Þ

βg3 ¼ −7g33 þ
1

ð4πÞ2
1

10
g33ð11g21 þ 45g22 − 260g23 − 20y2t Þ; ðB3Þ

βgX ¼ −
32

3
g3X −

1

ð4πÞ2
284

3
g5X; ðB4Þ

βyt ¼ yt

�
9

2
y2t −

17

20
g21 −

9

4
g22 − 8g23

�
; ðB5Þ

βλh ¼ −6y4t þ 24λ2h þ λh

�
12y2t −

9

5
g21 − 9g22

�
þ 27

200
g41 þ

9

20
g21g

2
2 þ

9

8
g42 þ 3λ2h1 þ 3λ2h2; ðB6Þ

βλ1 ¼ −16g2Xλ1 þ 28λ21 − 2λ3λ4 þ 2λ2h1 þ 3λ23 þ
13

6
g4X þ λ24 þ λ25; ðB7Þ

ALEXANDROS KARAM and KYRIAKOS TAMVAKIS PHYSICAL REVIEW D 94, 055004 (2016)

055004-14



βλ2 ¼ −16g2Xλ2 þ 28λ22 − 2λ3λ4 þ 2λ2h2 þ 3λ23 þ
13

6
g4X þ λ24 þ λ25; ðB8Þ

βλh1 ¼ λh1

�
−

9

10
g21 −

9

2
g22 − 8g2X þ 12λh − 4λh1 þ 16λ1 þ 6y2t

�
þ 6λh2λ3 − 2λh2λ4; ðB9Þ

βλh2 ¼ λh2

�
−

9

10
g21 −

9

2
g22 − 8g2X þ 12λh − 4λh2 þ 16λ1 þ 6y2t

�
þ 6λh1λ3 − 2λh1λ4; ðB10Þ

βλ3 ¼ λ3ð−16g2X þ 16λ2 þ 16λ1 − 4λ3Þ − 2λ24 − 2λ25 − 4λ1λ4 − 4λ2λ4 þ 4λh1λh2 −
11

6
g4X; ðB11Þ

βλ4 ¼ 10λ25 − 16g2Xλ4 þ 4λ1λ4 þ 4λ2λ4 þ 6λ24 − 8λ3λ4 þ
5

2
g4X; ðB12Þ

βλ5 ¼ 4λ5ð−2λ3 − 4g2X þ 4λ4 þ λ1 þ λ2Þ: ðB13Þ

For the SM gauge couplings and the top quark Yukawa coupling we specify the boundary conditions at the top quark pole
mass Mt [14,86],

g1ðμ ¼ MtÞ ¼
ffiffiffi
5

3

r �
0.35830þ 0.00011

�
Mt

GeV
− 173.34

�
− 0.00020

�
MW − 80.384 GeV

0.014 GeV

��
; ðB14Þ

g2ðμ ¼ MtÞ ¼ 0.64779þ 0.00004

�
Mt

GeV
− 173.34

�
þ 0.00011

�
MW − 80.384 GeV

0.014 GeV

�
; ðB15Þ

g3ðμ ¼ MtÞ ¼ 1.1666þ 0.00314

�
αsðMZÞ − 0.1184

0.0007

�
− 0.00046

�
Mt

GeV
− 173.34

�
; ðB16Þ

ytðμ ¼ MtÞ ¼ 0.93690þ 0.00556

�
Mt

GeV
− 173.34

�
− 0.00042

�
αsðMZÞ − 0.1184

0.0007

�
; ðB17Þ

whereas the dark gauge coupling is defined at the scale of the lightest dark gauge boson gXðMX30 Þ. The boundary conditions
for the scalar couplings are specified at the renormalization scale Λ where the tree-level potential is minimized.

APPENDIX C: KINEMATICS

The expressions for the Mandelstam variables s, t, u in the center of mass (CM) frame for the general process
aþ b → cþ d are

s ¼ ðEa þ EbÞ2; ðC1Þ

t ¼ m2
a þm2

c − 2EaEc þ 2paðsÞpcðsÞ cos θ; ðC2Þ

u ¼ m2
a þm2

d − 2EaEd − 2paðsÞpdðsÞ cos θ; ðC3Þ

where θ is the CM scattering angle and piðsÞ ¼ j~pij. The energies Ea, Eb, Ec, Ed and the 3-momenta pa, pb, pc, pd can be
expressed in terms of the CM energy squared s as

Ea ¼
1

2
ffiffiffi
s

p ðsþm2
a −m2

bÞ; Eb ¼
1

2
ffiffiffi
s

p ðsþm2
b −m2

aÞ;

Ec ¼
1

2
ffiffiffi
s

p ðsþm2
c −m2

dÞ; Ed ¼
1

2
ffiffiffi
s

p ðsþm2
d −m2

cÞ; ðC4Þ
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pinðsÞ≡ paðsÞ ¼ pbðsÞ ¼
�
s
4
−
1

2
ðm2

a þm2
bÞ þ

1

4s
ðm2

a −m2
bÞ2

�
1=2

;

poutðsÞ≡ pcðsÞ ¼ pdðsÞ ¼
�
s
4
−
1

2
ðm2

c þm2
dÞ þ

1

4s
ðm2

c −m2
dÞ2

�
1=2

: ðC5Þ

Using sþ tþ u ¼ m2
a þm2

b þm2
c þm2

d we can write

t ¼ 1

2
½m2

a þm2
b þm2

c þm2
d − sþ ðt − uÞ�; ðC6Þ

u ¼ 1

2
½m2

a þm2
b þm2

c þm2
d − s − ðt − uÞ�; ðC7Þ

and express t − u as

t − u ¼ −
1

s
ðm2

a −m2
bÞðm2

c −m2
dÞ þ 4paðsÞpcðsÞ cos θ: ðC8Þ

In view of the above, any function fðs; t; uÞ is a function of s and the incoming momentum projection pinðsÞ cos θ. Finally,
the relative velocity is

vr ¼ j~βa − ~βbj ¼
pin

ffiffiffi
s

p
EaEb

: ðC9Þ
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