
J
H
E
P
1
1
(
2
0
2
1
)
2
0
2

Published for SISSA by Springer

Received: June 18, 2021

Revised: September 21, 2021

Accepted: November 12, 2021

Published: November 26, 2021

Dark matter from a complex scalar singlet: the role of

dark CP and other discrete symmetries

Leonardo Coito, Carlos Faubel, Juan Herrero-García and Arcadi Santamaria

Departament de Física Teòrica, Universitat de València and IFIC, Universitat de València-CSIC,

Dr. Moliner 50, E-46100 Burjassot (València), Spain

E-mail: leonardo.coito@uv.es, carlos.faubel@uv.es,

juan.herrero@ific.uv.es, arcadi.santamaria@uv.es
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explicitly and spontaneously. The pseudo-scalar is naturally stabilized by the presence of a

remnant discrete symmetry: dark CP. We study and compare the phenomenology of several

simplified models with only one explicit symmetry breaking term. We find that several

regions of the parameter space are able to reproduce the observed dark matter abundance

while respecting direct detection and invisible Higgs decay limits: in the resonances of the

two scalars, featuring the known as forbidden or secluded dark matter, and through non-

resonant Higgs-mediated annihilations. In some cases, combining different measurements

would allow one to distinguish the breaking pattern of the symmetry. Moreover, this setup

admits a light DM candidate at the sub-GeV scale. We also discuss the situation where

more than one symmetry breaking term is present. In that case, the dark CP symmetry

may be spontaneously broken, thus spoiling the stability of the dark matter candidate.

Requiring that this does not happen imposes a constraint on the allowed parameter space.

Finally, we consider an effective field theory approach valid in the pseudo-Nambu-Goldstone

boson limit and when the U(1) breaking scale is much larger than the electroweak scale.

Keywords: Beyond Standard Model, Cosmology of Theories beyond the SM

ArXiv ePrint: 2106.05289

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP11(2021)202

mailto:leonardo.coito@uv.es
mailto:carlos.faubel@uv.es
mailto:juan.herrero@ific.uv.es
mailto:arcadi.santamaria@uv.es
https://arxiv.org/abs/2106.05289
https://doi.org/10.1007/JHEP11(2021)202


J
H
E
P
1
1
(
2
0
2
1
)
2
0
2

Contents

1 Introduction 2

2 The complex scalar singlet Lagrangian and its symmetries 4

3 Mass spectrum and couplings 6

3.1 The general case 6

3.2 Minimal models 8

3.2.1 Radiative corrections 9

4 Phenomenology 9

4.1 Dark matter relic abundance 9

4.2 Direct detection 10

4.3 Higgs signal strength and invisible decays 12

4.4 Numerical results 12

4.4.1 The quadratic model 12

4.4.2 Comparison of minimal models 14

4.4.3 Light dark matter 19

5 Beyond minimal models 20

5.1 About spontaneous dark CP violation 20

6 The pseudo-Nambu-Goldstone boson limit: an EFT approach 22

6.1 Effective operators 22

6.2 Numerical results 24

7 Conclusions 25

A Correspondence between real and complex parametrizations 27

B Relevant interactions for the minimal models 27

C Hadronic decay modes 27

D Direct detection for explicit symmetry breaking terms with the Higgs

field 28

– 1 –



J
H
E
P
1
1
(
2
0
2
1
)
2
0
2

1 Introduction

In the last hundred years very strong evidence for the presence of non-baryonic cold dark

matter (DM) in the Universe has been established [1, 2] (see also refs. [3–6] for reviews).

However, the Standard Model (SM) does not provide a suitable particle that could account

for it. One of the simplest extensions of the SM that contains a DM candidate is obtained

by adding a real scalar singlet, φ, equipped with a discrete symmetry that prevents its

decay [7, 8].1 The scalar potential of the SM is

VSM = m2
HH†H + λH(H†H)2 , (1.1)

where H is the usual Higgs doublet, which after electroweak spontaneous symmetry break-

ing can be written in the unitary gauge as

H =
1√
2

(

0

v + h′

)

. (1.2)

Here v = 246 GeV is the electroweak vacuum expectation value and h′ is the Higgs boson

(in the absence of mixing with other scalars). This potential is now extended by adding

three new couplings,

∆V (H, φ) = m2φ2 + λHφ|H|2φ2 + λφφ4 , (1.3)

where terms odd in φ are removed by imposing the discrete symmetry φ → −φ, which

makes the φ particles stable if the symmetry is not broken spontaneously.

The Higgs portal term, λHφ|H|2φ2, controls the annihilation of pairs of φ parti-

cles into SM states. The observed relic abundance can be reproduced via freeze-out

for particular values of the DM mass (in the Higgs boson resonance, or for large val-

ues mφ & 500 GeV [9–12]). The simplest model has been extensively studied [9, 12–19],

and has been embedded in larger schemes that solve other problems of the SM such as

neutrino masses, inflation and baryogenesis [20, 21]. The mechanism is quite predictive

because exactly the same coupling with the Higgs field that allows for DM annihilations

gives rise to DM scatterings in direct detection (DD) experiments [22] (see also [23–26])

and, if the DM is light enough, induces invisible Higgs decays into DM [27–29]. Neither

of the two effects has been observed and this sets important constraints on the model;

in particular, DD experiments have left little parameter space for this scenario (see for

instance refs. [10, 11, 30, 31]).

The simplest extension of the model consists in just adding a second scalar singlet with

the appropriate symmetries [16, 32–36]. The most general terms one can add to the SM

potential that describe the interactions of the two scalar singlets can be written as

V (H, φ1, φ2) =
|H|2√

2
(ω1φ1+ω2φ2)+

|H|2
2

(α1φ2
1+α12φ1φ2+α2φ2

2)+VI+VII+VIII+VIV , (1.4)

1Actually in ref. [8] the case of N complex singlets was studied.
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with

VI =
1√
2

(δ1φ1 + δ2φ2) , (1.5)

VII =
1

2

(

m2
1φ2

1 + 2m2
12φ1φ2 + m2

2φ2
2

)

, (1.6)

VIII =
1

2
√

2

(

µ1φ3
1 + µ12φ2

1φ2 + µ21φ2
2φ1+µ2φ3

2

)

, (1.7)

VIV =
1

4

(

λ1φ4
1 + β12φ3

1φ2 + λ12φ2
1φ2

2+β21φ3
2φ1+λ2φ4

2

)

. (1.8)

The potential above, which contains 19 real parameters, does not have any additional

symmetry beyond the SM ones. However, the kinetic terms of the two new scalars do have

an O(2) rotation symmetry and a shift symmetry φ1,2 → φ1,2 + c1,2. These symmetries

can be used to remove the quadratic mixing m2
12φ1φ2 in VII and the linear terms in VI

(or the terms |H|2(ω1φ1 + ω2φ2)). Therefore, the general potential adds 16 real physical

parameters to the 2 parameters of the SM potential. Notice that these simplifications can

always be used when the potential does not have any symmetry. However, if one imposes

some symmetry that relates the parameters of the potential one should start from the

most general potential compatible with the symmetry, check if there are parameters that

can be removed by using the symmetries of the kinetic terms and then check whether the

symmetries are broken or not by the global minimum of the potential. For instance, if

we impose φ1 ↔ φ2, we have that m2
1 = m2

2, but m2
12 6= 0 is allowed; one could go to

a different basis in which m2
12 = 0 but with m2

1 6= m2
2, and in this basis the symmetry

φ1 ↔ φ2 is hidden. Similarly, in the symmetry basis linear terms would be allowed, as long

as δ1 = δ2, and then one could ask about the conditions for this symmetry to be preserved

by the vacuum.

If the potential does not have any symmetry the new particles do not carry any con-

served quantum number that prevent them from decaying and, in general, they cannot be

DM. The simplest way to have a sufficiently long-lived particle and therefore a good DM

candidate is that it has at least one preserved symmetry. There are many symmetries one

can impose; for instance, one can require that the potential is invariant under φ1 → −φ1

and φ2 → −φ2. This will remove completely VIII and the linear terms in the singlets. Then,

if the symmetry is not spontaneously broken, the lightest of the two new particles will be

completely stable. This model has been recently studied in detail in ref. [32], where it has

been shown that some of the problems of the model with just one scalar can be alleviated.

One can impose many other symmetries: φ1 → φ1, φ2 → −φ2 or φ1 ↔ φ2 or complete

invariance under the symmetry of the kinetic term, O(2). Many of these symmetries lead

to equivalent Lagrangians and some may or may not be broken spontaneously. It is then

interesting to classify the different inequivalent possibilities that could lead to a good DM

candidate and study the allowed parameter space for each of them. Since O(2) is isomorphic

to U(1) times a reflection, it is more natural to explore the symmetries using the complex

parametrization for the two real fields S ≡ (φ1 + iφ2) /
√

2. The possible models that could

lead to a stable particle are quite obvious in this parametrization and can be classified in

two groups depending on whether the complex field S acquires a vacuum expectation value

– 3 –
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(VEV) or not. In this work, we focus on the former case because it helps to avoid DD

constraints [37–41]. Moreover it can also help to alleviate the instability problems of the

scalar potential of the SM (see for instance ref. [42]).

The paper is structured as follows. In section 2 we discuss the general Lagrangian

with two real scalar fields by using the complex parametrization, and we classify all the

symmetries one can impose on it that could lead to a DM candidate. In section 3 we study

the scalar spectrum and couplings in the most general scenario. We outline the possible

explicit symmetry breaking terms, which give rise to what we term as minimal models.

In section 4 we analyze the DM phenomenology, discussing the relic abundance, DD and

Higgs invisible decays, presenting numerical results for a prototypical minimal model (the

quadratic model) and comparing with the other ones. In addition, we discuss the possibility

of a light DM candidate at the sub-GeV scale. In section 5 we study the case with several

symmetry breaking terms, which in general may lead to the spontaneous breaking of the

symmetry that stabilizes the DM in large regions of the parameter space. In section 6 we

discuss an effective Lagrangian approach which is appropriate when the DM candidate is a

pseudo-Nambu-Goldstone boson (PNGB). Finally in section 7 we outline the main results

of this work. We also provide several appendices with more technical details.

2 The complex scalar singlet Lagrangian and its symmetries

We write the complex scalar singlet field S as

S ≡ 1√
2

(φ1 + iφ2) . (2.1)

Then, the most general Lagrangian of the SM extended by S can be written as

L = LSM + |∂µS|2 − V (H, S) , (2.2)

where LSM includes the SM potential, VSM, in eq. (1.1), and V (H, S) contains all the

interactions of the new complex scalar S. In the complex parametrization, the symmetry

of the kinetic term is S → eiαS and S → S∗, namely, U(1) times a reflection, which can be

identified with a “dark” charge conjugation, or “dark” CP (DCP) since the kinetic term of

the scalar also preserves parity.

If the U(1) global symmetry is preserved by the Lagrangian but is spontaneously

broken by the vacuum, there will be an exactly massless Goldstone boson and, of course,

no DM candidate (it would contribute, though, to dark radiation). Therefore, if there is

spontaneous symmetry breaking (SSB), in order to have a DM candidate we need both

DCP conservation and, at least, one term that breaks explicitly the U(1). In this work, we

are interested in this scenario. If the explicit symmetry breaking is much smaller than the

VEV of S, the lightest of the scalars is a PNGB and can be the DM candidate. This limit

is studied in section 6.

In order to have a DM candidate the potential V (H, S) has to preserve, at least, a

discrete symmetry that stabilizes the DM candidate. The possible discrete symmetries

one can impose are the discrete subgroups of the kinetic term symmetry group, namely,
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O(2) ∼ U(1) + reflection, compatible with a polynomial Lagrangian. These are Z2 (S →
−S), Z3 (S → ei2π/3S) , Z4 (S → iS) and the reflection, DCP, (S → S∗).2 One may think

that there could also be other discrete symmetries like S → −S∗ (φ1 → −φ1, φ2 → φ2

in the real parametrization) or S → iS∗ (φ1 ↔ φ2 in the real parametrization), but all

the symmetries that involve a reflection are physically equivalent to DCP, as can easily be

seen by rephasing the field and redefining the parameters in the Lagrangian. Therefore, we

define DCP as S → S∗. A necessary condition for DCP conservation is that all couplings

in the potential are real, like in the Standard Model CP. Notice, however, that since the

potential only depends on |H|2 this DCP can be defined independently of the standard CP.

Then, it will not be affected by the SM violations of CP and will not induce additional CP

violation in the SM.

Given the possible symmetries, it is natural to split the potential in the terms that

preserve the U(1) symmetry, V0, and the terms that break it explicitly, V1,full, VZ2,full, VZ3

and VZ4
, classified according to the discrete symmetries they preserve. That is

V (H, S) = V0 + V1,full + VZ2,full + VZ3
+ VZ4

, (2.3)

with

V0 = m2
SS†S + λS(S†S)2 + λHS(H†H)(S†S) , (2.4)

and

V1,full =
1

2
µ3S +

1

2
µH1|H|2S +

1

2
µ1(S†S)S + H.c. , (2.5)

VZ2,full =
1

2
µ2

SS2 +
1

2
λH2|H|2S2 +

1

2
λ2(S†S)S2 + H.c. , (2.6)

VZ3
=

1

2
µ3S3 + H.c. , (2.7)

VZ4
=

1

2
λ4S4 + H.c. . (2.8)

The second, third and fourth terms respect a Z2, Z3 and Z4 symmetry, respectively. The

parameters m2
S , λHS , λS in V0 are all real, therefore, V0 is also invariant under S → S∗.

All the parameters of the symmetry breaking terms are, in principle, complex. Therefore,

the general complex potential contains 3 real and 8 complex couplings, 19 real parameters,

as in the real parametrization. The correspondence between the couplings in the real

and complex parametrizations is given in appendix A. If all the couplings in the complex

parametrization are real, the 8 couplings m2
12, δ2, ω2, α12, µ2, µ12, β12, β21 in the real

parametrization vanish. Therefore, the presence of any of the latter implies that the DCP

is explicitly violated in the potential.

By using a phase redefinition of S one can choose one of the couplings, for instance

µ2
S , real (and positive or negative), which would be equivalent to choosing m2

12 = 0 in the

real parametrization. Moreover, as in the real parametrization, the linear terms can be

2If S does not get a VEV, all the symmetries discussed can be used to stabilize the DM. For instance, the

case in which only Z2 is imposed, S → −S and general complex couplings are allowed has been discussed

in ref. [32]. In ref. [43] the authors have explored the possibility of having asymmetric DM in an extended

scenario with a real scalar singlet in addition to the complex scalar singlet.
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expressed in terms of other couplings when selecting the global minimum of the theory.

Then, the general potential in the complex parametrization contains 4 real and 6 complex

couplings, 16 real physical parameters in total, like in the real representation. From the 16

parameters, 3 preserve the U(1) symmetry and 13 break it. However, we should remark

that if we are going to impose some symmetry, to count the number of physical parameters

we should start with the general Lagrangian, including all the terms, and see how many of

them survive the symmetry.

If the minimum of the potential is found for 〈S〉 6= 0, U(1) undergoes SSB. Then, also

Z2, Z3 and Z4 will be broken by the VEV of S. However, if all couplings are real, DCP

will only be broken if the VEV of S is complex.

It is easy to see that if there is only one U(1) symmetry breaking term its coupling

can be taken real. Moreover, in that case, the VEV of S can always be chosen real [44],

therefore DCP will be automatically preserved also by the vacuum. Alternatively, if there

are several symmetry breaking terms, depending on the values of the couplings, the VEV

can be complex even if the couplings are real and, therefore, the system can suffer from

spontaneous DCP violation (see section 5.1). Then, we arrive at the conclusion that if

there is SSB of U(1) the only symmetry that could provide a DM candidate is DCP. In this

case, the other discrete symmetries Z2, Z3, Z4 can only be used to simplify the Lagrangian3

and/or to motivate the presence of the DCP symmetry (e.g. in the case of Z3 or Z4).

The general case of SSB of U(1) with all possible explicit symmetry breaking terms

contains many parameters and it is not very predictive. Moreover, the discrete symmetry

DCP, necessary to have a DM candidate, must be imposed by hand, and even in this case

it could be broken by the vacuum, leading to an unstable pseudo-scalar. On the other

hand, if there is only one explicit U(1) symmetry breaking term, as discussed above, DCP

is automatically conserved. Therefore, it makes sense to study first the cases with only

one symmetry breaking term and then analyze how the addition of other terms modify the

simplest scenarios. This can also be justified by using symmetries or by taking the softest

symmetry breaking terms. We will make this analysis in section 3.2.

3 Mass spectrum and couplings

3.1 The general case

Following the discussion above we will consider the general potential in eqs. (2.3)–(2.8)

and require a DCP symmetry, e.g. that all the couplings in the potential are real. Then

we will have 11 real parameters, 3 preserving U(1) and 8 breaking it. Notice that, when

S is written in terms of real and imaginary parts, φ1,2, the Lagrangian is invariant under

φ2 → −φ2 which is just the manifestation of the DCP symmetry. If unbroken by the

vacuum, this symmetry will avoid φ2 from decaying and it will be a good DM candidate.

The real part φ1, however, has completely general couplings; in particular it has linear

and cubic terms. Since the potential in terms of φ1 is the most general potential we can

3Notice that the spontaneous breaking of discrete symmetries can lead to domain wall problems [45, 46].

However, since in our case these Zn are only used to simplify the potential, they can be considered as

approximate symmetries, thus avoiding domain wall problems.
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write, it has the same form after a shift transformation φ1 → φ1 + σ which can be used

to remove one of the parameters, for instance the cubic term µH1|H|2S or the linear term

µ3S, leaving only 10 real parameters. However, for the time being, we maintain all of

them, keeping in mind that if all of the DCP conserving couplings are present one of them

is redundant. Then, we will assume that the scalar singlet also takes a VEV, vs. Using the

linear parametrization for the singlet, we have

S =
1√
2

(

vs + ρ′ + iθ
)

. (3.1)

The Higgs doublet VEV, v, can always be taken real, and to preserve the DCP symmetry

we will require that also vs is real. Notice that the most general potential could lead to

a complex vs, therefore breaking spontaneously the DCP and spoiling the stability of the

DM candidate. In section 5.1 we will comment on the conditions to avoid spontaneous

DCP violation.

Using the minimization equations for h′ and ρ′, the bare mass parameters can be

written in terms of the couplings and VEVs,

−m2
H =

1

2
(λH2 + λHS)v2

s + λHv2 +

√
2

2
µH1vs , (3.2)

−m2
S = µ2

S + (λ2 + λS + λ4)v2
s +

1

2
(λH2 + λHS)v2 +

√
2

4
µH1

(

v

vs

)

v

+
3
√

2

4
(µ1 + µ3)vs +

√
2

2

µ3

vs
. (3.3)

Substituting them back in the potential allows us to compute the mass term of the fields.

When all couplings and VEVs are real, θ does not mix with the other fields, and its mass

is given by

m2
θ = −2µ2

S −
√

2

2

µ3

vs
− (λ2 + 4λ4)v2

s − λH2v2 − vs

2
√

2
(µ1 + 9µ3) − µH1

v

2
√

2

(

v

vs

)

, (3.4)

which displays the PNGB nature of the DM candidate θ, namely, its mass is zero if all the

8 symmetry breaking couplings vanish.

On the other hand, the real parts of the fields, (h′, ρ′), do mix with a mass matrix

given by

M2
S =

(

(

M2
S

)

11

(

M2
S

)

12
(

M2
S

)

21

(

M2
S

)

22

)

, (3.5)

with the following matrix elements
(

M2
S

)

11
= 2λHv2 ,

(

M2
S

)

12
=
(

M2
S

)

21
= (λH2 + λHS) vsv +

µH1v√
2

, (3.6)

(

M2
S

)

22
= 2 (λ2 + λS + λ4) v2

s +
3vs

2
√

2
(µ1 + µ3) − µH1v

2
√

2

(

v

vs

)

−
√

2µ3

2vs
. (3.7)

This mass matrix can be diagonalized by an orthogonal rotation of angle α
(

h

ρ

)

= R

(

h′

ρ′

)

, R ≡
(

cα −sα

sα cα

)

, RM2
SRT =

(

m2
h 0

0 m2
ρ

)

, (3.8)
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where we have defined sα ≡ sin α and cα ≡ cos α in order to simplify the notation. The

eigenstate h is chosen to be the 125 GeV boson observed at the LHC. In the numerical

analysis, we take the mixing sα < 0.1 in order to satisfy experimental measurements of the

Higgs signal strengths.

One can trade-off some of the couplings in terms of the physical masses mh, mρ and

the mixing angle α

λH =
c2

αm2
h + s2

αm2
ρ

2v2
, (3.9)

λS =
s2

αm2
h + c2

αm2
ρ

2v2
s

− 3

4
√

2

(µ1 + µ3)

vs
− (λ2 + λ4) +

µH1

4
√

2vs

(

v

vs

)2

+

√
2

4

µ3

v3
s

, (3.10)

λHS =
sαcα(m2

ρ − m2
h)

vvs
− µH1√

2vs

− λH2 . (3.11)

Therefore, we can replace the 5 parameters of the symmetry preserving U(1) potential

mH , mS , λH , λS , λHS , (3.12)

by the 5 physical parameters

v, mh, vs, mρ, sα . (3.13)

Since the mass (squared) of the DM depends linearly on all symmetry breaking couplings

one can replace one of them by the DM mass. In the simplified cases we will consider in

the next section there is only one symmetry breaking term, therefore they will depend on

6 parameters, those in eq. (3.13) plus the DM mass, mθ, from which four are unknown.

3.2 Minimal models

We introduce now minimal models, that is, with just one symmetry breaking term. In this

case the coupling can be taken real, and therefore the DCP that stabilizes the pseudo-scalar

is preserved. The selection is motivated by either being the softest symmetry breaking term

and/or by preserving a discrete symmetry. In V1,full and VZ2,full we just choose the softest

term, that is,

V1 =
1

2
µ3S + H.c. , (3.14)

VZ2
=

1

2
µ2

SS2 + H.c. . (3.15)

The potentials VZ3
and VZ4

in eqs. (2.7) and (2.8) already contain only one term. At some

point in the text we will refer to these minimal scenarios involving V1, VZ2
, VZ3

and VZ4
as

linear, quadratic, cubic and quartic models respectively.

In the numerical studies we impose the relevant theoretical constraints on the mod-

els: perturbativity, stability of the potential, and we have checked numerically that the

minimum (v 6= 0, vs 6= 0) is the global minimum of the potential [37].

For the minimal models, we particularize the expressions for λH , λS and λHS using

the general eqs. (3.9)–(3.11),

λH =
c2

αm2
h + s2

αm2
ρ

2v2
, λHS =

sαcα(m2
ρ − m2

h)

vvs
, λS =

1

2v2
s

(

s2
αm2

h + c2
αm2

ρ +A m2
θ

)

, (3.16)

with A = −1, 0, 1/3, 1/2 for the linear, quadratic, cubic and quartic models respectively.
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As can be seen in eq. (3.16), the condition λS > 0 is satisfied automatically in the

minimal models except in the linear one, for which for the mixing angles we will consider,

sα ǫ [10−5, 10−1], it just reads m2
θ . m2

ρ.

3.2.1 Radiative corrections

In principle the presence of a single explicit symmetry breaking term in the minimal models

may induce radiatively some other breaking terms. For instance, let us consider the case

of the quadratic model, with the potential in eq. (3.15). At one loop it generates finite

contributions to all couplings in VZ2,full (eq. (2.6)) and in VZ4
(eq. (2.8)). For mρ ≫ mh,

these corrections are of the order4

λ
(1)
2 ≃ λ2

S

(4π)2

µ2
S

m2
ρ

, λ
(1)
H2 ≃ λHSλS

(4π)2

µ2
S

m2
ρ

, λ
(1)
4 ≃ λ2

S

(4π)2

µ4
S

m4
ρ

. (3.17)

Notice that λ
(1)
4 is parametrically suppressed by µ2

S/m2
ρ compared to λ

(1)
2 , λ

(1)
H2. This is

also the case if the couplings come from higher-dimensional operators with spurions [47].

We have checked that the inclusion of the generated λ
(1)
4 , λ

(1)
H2 and λ

(1)
2 do not modify the

results significantly, since their contributions to the relevant observables are too small.

In the other minimal models (linear, cubic and quartic), the symmetry breaking terms

do not generate any further ones. For the linear case this can be seen in the effective

potential (i.e., it is not an interaction), while the cubic and quartic models in eqs. (2.7)

and (2.8) involve the only interactions allowed by a Z3 and Z4 symmetry, respectively, and

therefore do not generate any other terms.

4 Phenomenology

4.1 Dark matter relic abundance

In the Early Universe, the complex scalar singlet is in thermal equilibrium with the SM

thanks to the interactions mediated by the Higgs portal coupling, λHS . Then, at some

point in the evolution of the Universe, the scalar S acquires a real VEV, breaking all

possible symmetries except DCP, which, after SSB, is manifested by the pseudo-scalar θ as

θ → −θ, which could therefore be a potential DM candidate. Once its interactions are slow

enough compared to the expansion of the Universe, it freezes-out and thereafter its number

density over entropy density, n/s, remains constant. Considering non-relativistic freeze-

out, in large regions of the parameter space the interactions are too weak, the pseudo-scalar

freezes-out too early, and the relic abundance is too large. However, there are parts of the

parameter space that may produce large enough annihilations, so that the correct relic

abundance is reproduced:

1. Resonances with the Higgs boson h or with the scalar ρ, which occur for 2mθ≃mh

or 2mθ≃mρ (see figure 1 (a)). In this region, kinetic equilibrium of the final states at

freeze-out may not be a good assumption, and therefore there is some uncertainty in

the parameter values for which the abundance is reproduced [48–50].

4DCP is still preserved in the parameter space considered if we include these radiatively-generated terms.

See section 5.

– 9 –



J
H
E
P
1
1
(
2
0
2
1
)
2
0
2

SM

SM

θ

θ

h , ρ

(a)

θ

θ

h , ρ

h , ρ

h , ρ

θ

θ

h , ρ

h , ρ

θ

θ

θ

h , ρ

h , ρ

(b)

Figure 1. Feynman diagrams of the possible DM annihilation channels. (a) DM annihilations into

SM states mediated by the Higgs boson h and the scalar ρ. (b) DM annihilations into h, ρ for the

case of forbidden and secluded DM.

2. Direct annihilations into (lighter) pairs of scalars h and/or ρ, for mθ&mh and/or

mθ & mρ (see figure 1 (b)). The latter case is known as secluded dark matter (SDM).

If λHS 6= 0, for sα & 10−16, ρ decays via mixing into SM states, as long as mρ > 2me.

3. Direct annihilations into somewhat slightly heavier pairs of hh, hρ, ρρ (see figure 1(b)).

This is known as forbidden dark matter (FDM). For mh & mρ & mθ, annihilations

into ρρ are normally larger and set the abundance. For mθ . mh . mρ, which chan-

nel dominates depends on the mixing angle α. In ref. [49] the case in which kinetic

equilibrium of the final states at freeze-out may not be a good assumption has also

been studied.

4. Non-resonant Higgs-mediated annihilations into SM states happening for DM masses

above 100 GeV and at mixings sα larger than the previous cases [51, 52] (see fig-

ure 1 (a)).

Along this paper we use the DM relic abundance value from the Planck Collaboration [53]

Ωobsh
2 = 0.120 ± 0.001 , (4.1)

where h is the dimensionless Hubble parameter, H = 100 h km/s/Mpc.

4.2 Direct detection

When there is non-zero mixing between the CP-even scalars, the pseudo-scalar may give

rise to nuclear scatterings in underground detectors. In the limit of an exact Goldstone

boson, the scatterings of θ are suppressed by the small momentum transfer. However,

for the minimal models with different symmetry breaking terms, in principle significant
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Minimal model λSI ∝ −
(

βhθθ cα

m2

h

+
βρθθ sα

m2
ρ

)

Linear sαcα

vsm2

h
m2

ρ
m2

θ(m2
h − m2

ρ)

Quadratic 0

Cubic − sαcα

vsm2

h
m2

ρ
m2

θ(m2
h − m2

ρ)

Quartic −2 sαcα

vsm2

h
m2

ρ
m2

θ(m2
h − m2

ρ)

Table 1. Effective DM-nucleon coupling that enters in the DD cross section in terms of the physical

parameters v, vs, mh, mθ, mρ and sα.

interaction rates may be generated, which may allow one to distinguish them. We follow

the analysis of refs. [37, 40]. The spin-independent DD cross section at tree level is given by

dσSI

dΩ
=

λ2
SI

f2
N m2

N

16π2 m2
θ

(

mθmN

mθ + mN

)2

, (4.2)

where mN = 0.939 GeV is the nucleon mass, and fN = 0.3 is the effective Higgs-nucleon

coupling [12]. The effective DM-nucleon coupling λSI reads as

λ2
SI ≡ 1

4f2
N m4

N

|M|2 =
1

4m2
N v2

(

βhθθ cα

t − m2
h

+
βρθθ sα

t − m2
ρ

)2

(4m2
N − t) , (4.3)

and the βi coefficients are defined by the interactions described in the appendix B. One can

see that in the zero momentum limit (t → 0), the effective DM-nucleon coupling goes as

λSI ∝ −
(

βhθθ cα

m2
h

+
βρθθ sα

m2
ρ

)

. (4.4)

The expressions for the effective coupling in the small momentum limit are particularized

for the minimal models in table 1. As the coupling λSI enters squared in the cross section,

there will be no difference for the linear and cubic models, whereas in the case of the

quartic model the effective coupling squared is a factor of 4 larger with respect to the

former models. For the quadratic model the effective DM-nucleon coupling vanishes in the

zero-momentum limit [37, 40]. We will show this using an EFT approach in section 6.

We assume that the one-loop contributions are small compared to the tree level ones,

as we are not in any particular point in parameter space where cancellations at tree level

occur [37] (see also refs. [54–57] for one-loop contributions in the case of the quadratic

model, where indeed they are the dominant contribution).

In the numerical analysis, DD constraint from XENON1T [58] has been taken into

account using the relative DM relic abundance of each point in the scan, and rescaling the

experimental bound. We are therefore assuming that the local relic abundance scales like

the global one, e.g. ρ ∝ Ω. That is, every allowed point in the parameter space satisfies

Ω

Ωobs

σSI 6 σXENON1T , (4.5)
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where σXENON1T is the 90% confidence level upper limit on the DM-nucleon spin-indepen-

dent cross section from XENON1T.

4.3 Higgs signal strength and invisible decays

For mθ < mh/2 and/or mρ < mh/2 new decay channels of the Higgs boson into θ and ρ

open up. The decay widths into these final states read

Γ(h → θθ) =
β2

hθθ

32π mh

√

1 − 4m2
θ

m2
h

, Γ(h → ρρ) =
β2

hρρ

32π mh

√

1 −
4m2

ρ

m2
h

, (4.6)

with the βi coefficients defined in appendix B. The Higgs invisible branching ratio is there-

fore given by

BR(h → inv) =
Γ(h → θθ) + Γ(h → ρρ)

c2
αΓSM

h + Γ(h → θθ) + Γ(h → ρρ)
, (4.7)

where ΓSM
h = 4.1 MeV is the SM Higgs decay width. The observed Higgs signal strength

in the measured channels imposes a constraint on µ = c2
α(1 − BR(h → inv)). A detailed

analysis taking into account the contributions of both CP-even scalars to the different

channels is beyond the scope of this work. However, in the limit of small mixing sα and

very heavy scalar ρ, we can neglect the contribution of the latter, take c2
α = 1 and directly

impose the experimental constraints on the invisible Higgs width. If the mass of ρ is of

the order of the Higgs boson mass or below (SDM), and if the mixing is very small, this is

also a reasonable assumption. We therefore impose the 90% confidence level upper limit

of BR(h → inv) < 0.16 obtained by the CMS Collaboration [59] (see also ref. [60] for the

ATLAS Collaboration results).

4.4 Numerical results

In the following we present the results of a numerical analysis of the scenarios discussed so

far. First, we focus on the quadratic model as prototypical example, which also features

suppressed DD rates, as we have discussed. The goal is to obtain all the regions where

the correct relic abundance can be reproduced. Then we investigate the parameter space

where it is possible to have a good DM candidate in each of the minimal models. Notice

that if the symmetry breaking terms λH2 and µH1 in eqs. (2.5) and (2.6) vanish, all the

observables we consider depend on s2
α. Therefore, we will only choose positive values for

the mixing. Finally we analyze the possibility to distinguish the models comparing their

predictions to different observables. The relic abundance has been computed using the

code micrOMEGAs [61], see also ref. [62].

4.4.1 The quadratic model

In this section we focus on one of the possibilities to obtain the correct relic abundance:

setting the DM candidate θ in resonance with the scalar ρ, which corresponds to the

option 1 discussed in section 4.1. The relevant annihilation process is θθ → ff , where f

refers to some SM particle. This setting allows one to expand the parameter space of DM

masses, which are not necessarily needed to be close to the Higgs boson resonance [51, 52].
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Figure 2. The red line shows the relic abundance in eq. (4.1) for the resonance condition with ρ

in the quadratic model. We plot different values of ∆ = 1 + 1/10, 1 + 1/100 on the left and right

panels respectively, see eq. (4.8), with vs = 100 GeV. Experimental constraints from invisible Higgs

decays (blue), rare B meson decays into light scalars (orange) and the thermalization condition

(green) are shown.

We parametrize the deviation from the resonance condition with the dimensionless mass

splitting parameter

∆ =
(mρ − mθ)

mθ
, (4.8)

so that mρ = (∆ + 1) mθ. In figure 2 we depict the (logarithm of the) mixing that repro-

duces the correct relic abundance in eq. (4.1) as a function of the DM mass for different

values of the dimensionless mass splitting ∆ and an illustrative value vs = 100 GeV. For

masses below 4-5 GeV decays into hadrons are taken into account5 and also constraints

from having a light scalar mixing with the Higgs boson [63]. In the parameter space con-

sidered here, the most relevant constraints come from the invisible Higgs boson decays,

the limits on rare B-meson decays, and being in thermal equilibrium with the SM par-

ticles in the Early Universe. The orange shaded region is excluded by the limits set on

B → Kρ → K + “invisible” [64]. In our model, ρ decays into an invisible final state

composed of two θ, and both escape the detectors leaving no signal. The calculation of the

decay rate B → Kρ was performed using the expressions in ref. [63]. The other relevant

constraint is set by the invisible Higgs decay, shown as the blue shaded region.

The features of the curve in figure 2 satisfying the relic abundance can be understood

from figure 4 of ref. [63]. Below the muon mass, DM annihilations can only occur into

electrons and positrons and are very suppressed, requiring large mixing angles that are

constrained. Above the muon mass, the kinks correspond to the opening of annihilation

channels into different hadronic and leptonic states. Also, at mθ ≃ 60 GeV the Higgs boson

resonance is clearly visible. It is important to mention how these results change for different

5Special attention is needed here as micrOMEGAs does not consider hadronic final states, see details in

appendix C.
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Figure 3. The colored region is the parameter space allowed by the XENON1T null-results for

the linear (left) and quartic (right) models. Blue (Orange) colored region corresponds to vs =

100 (1000) GeV. Black and gray dashed lines represent the resonance condition with the ρ (mρ =

2mθ) and the degenerate case (mρ = mθ) respectively.

values of vs. On one side, there is a cancellation in the annihilation rate on the resonance,

making it independent of vs. On the other side, the invisible Higgs limits weaken for larger

values of vs.

Notice that a detailed analysis of the relic abundance very close to the resonance has

been performed in ref. [48], and also for the case of a PNGB in ref. [50], where significant

differences appear in the computation of the relic density depending on whether kinetic

equilibrium is maintained at freeze-out or not. Also, there is a huge sensitivity to the mass

splitting, as can be seen by comparing the required mixing angles for the two different

values of the parameter ∆. Therefore, figure 2 is intended to show that it is possible to

have the proper relic abundance in the considered parameter space, but should be taken

with a grain of salt regarding the precision of the exact value of the mixing angle for a

given mass splitting that reproduces the abundance.

4.4.2 Comparison of minimal models

Now, we consider all the minimal models and study their allowed parameter space.

First, we focus on the restrictions that DD limits set on the minimal models, irre-

spectively of the relic abundance. In figure 3 we plot the allowed parameter space for the

different models in the (mθ, mρ) plane for sα = 10−1 for two values of vs (100 GeV in blue,

1 TeV in orange), after imposing the XENON1T limits [58]. In order to do that, we use the

expression for the DD cross section in eq. (4.2) and the λSI values shown in table 1. The

quadratic model has a momentum-suppressed DD cross section at tree level and therefore

it is not shown in the plot. Moreover, the effective coupling λSI for the cubic model is

similar to the linear case, apart from a relative sign, so we only plot the results for the

latter one. For smaller values of the mixing, there are no restrictions from DD null-results,

except for very light ρ masses. This can be understood by looking at the expressions of the
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Figure 4. Scan in the normalized mass splitting ∆ versus the (logarithm of the) mixing sα for

mθ = 40, 60, 130 GeV from left to right, and vs = 100 GeV, for the minimal models described in the

text. The green, blue, red and black colors correspond to the linear, quadratic, cubic and quartic

models respectively. All these points fulfill the relic abundance condition 0.5 6 Ω/Ωobs 6 1. We

also impose the XENON1T and the invisible Higgs decay constraints.

effective coupling in table 1 and its dependence on the ρ mass, which goes as λSI ≃ 1/m2
ρ

for small mρ values (but still larger than the typical momentum transfer at the XENON1T

Experiment, O(MeV)).

In appendix D we also discuss DD constraints for the symmetry breaking terms in-

volving the Higgs field in eqs. (2.5) and (2.6), which are qualitatively different.

Now we impose the requirement of reproducing the relic abundance. First of all, we

have checked that in all cases DM is in thermal equilibrium with SM particles in the Early

Universe: in the resonance case the relevant process is θθ ↔ SM SM, and in the SDM/FDM

scenarios the relevant ones are θθ ↔ ρρ, hρ, hh followed by ρ ↔ SM SM. Therefore, we

can safely use micrOMEGAs [61] for the numerical computation. Moreover, in the case of

SDM/FDM, we have checked that for the masses and mixings considered, the ρ particles

always decay into SM states.

In figure 4 we show the results of a scan of the normalized mass splitting parameter ∆

and the mixing angle for three different values of the mass (for mθ = 40, 60, 130 GeV from

left to right) and a fixed value of the VEV (vs = 100 GeV), where all the points satisfy

that 0.5 6 Ω/Ωobs 6 1. As can be observed, the different freeze-out scenarios discussed in

section 4.1 are realized in separated regions: the Higgs resonance (h-res.) for mθ ≃ mh/2

at a fixed value of the mixing, the ρ resonance (ρ-res.) for ∆ ≃ 1, FDM when ∆ & 0,

SDM for ∆ < 0 and the non-resonant Higgs-mediated annihilations (non-res. h) for masses

above 100 GeV and sα larger than the previous cases. It is important to point out that the

Higgs resonance is only observed in the middle plot and that is in agreement with figure 2,

where for mθ ≃ mh/2 the main DM annihilation channel into SM particles is mediated

by the Higgs boson. As expected, the resonance regions are the ones changing the most

among the different plots. Note that for the linear model, the proper relic abundance is

reached only at the resonances. This is due to the fact that the theoretical constraint

λS > 0 restricts the values of the mass splitting to the region ∆ > 0. Therefore, SDM

can not be realized in this case. Notice also that the perturbativity constraint (λS < 4π)

reduces the parameter space of each model in the case of large ρ masses.
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Figure 5. Relic abundance as a function of ∆ for mθ = 60 GeV, vs = 100 GeV and sα = 10−4 for

the minimal models. The correct value for the relic abundance is shown as an orange dashed line.

In ref. [52] similar results where obtained for the case in which the relic abundance is

reproduced through processes via resonances, and for the cases of large mixing and masses

above 100 GeV. The former can be seen for all mθ masses considered in figure 4, and the

latter in the case of mθ = 130GeV, where the resonant region starts expanding from ∆ ≃ 1

(non-res. h). However the regions with proper relic values from FDM and SDM scenarios

were not discussed in that work.

In order to better understand the structure of strips of figure 4, we plot in figure 5

the relic abundance for fixed values of mθ = 60 GeV, vs = 100 GeV and sα = 10−4 . We

observe that for the case of FDM, close to ∆ & 0, the linear model does not reach a cross

section large enough in order to have the correct relic abundance. This is due to a partial

cancellation happening among the diagrams (see the sign difference in eq. (3.10) in the

contribution to λS of µ3 with respect to the µ3 or λ4 one). In the quadratic model, for

∆ < 0 we see that SDM is allowed for two different values of the mass splitting. The

explanation comes from the fact that the amplitude for the DM annihilations into ρ has

two contributions, one proportional to mρ and the other one to mθ, and in this model only

the former is present, so when mρ → 0 the amplitude vanishes at tree level.6

In figure 6 we display the mixing angle versus the DM mass setting the resonance mass

condition in eq. (4.8). We show plots for two different values of the VEV, vs = 100 GeV in

the left panel, vs = 1000 GeV in the right panel. The case of mθ ≃ mh/2 corresponds to

the DM being in the resonance of both CP-even scalars, which are almost degenerate. It

can be observed how once mθ is close to the mass threshold mW , mZ or mh, new channels

θθ → WW, ZZ, hh open up. We conclude that the differences in the required mixing

6The values of Ωh2 in the limit mρ → 0 displayed in figure 5 should not be trusted because the amplitude

of the process goes to zero.
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Figure 6. Curves for the relic abundance in the ρ resonance for different values of the mass

splitting in eq. (4.8), ∆1 = 1 + 1/10 (solid), ∆2 = 1 + 1/100 (dashed) and vs = 102, 103 GeV (left,

right). Experimental constraints from invisible Higgs decays (blue), XENON1T experiment [58]

(gray), the projection for XENONnT [65] (red dot-dashed line) and the thermalization condition

(green) are shown. Same color code for the minimal models as in figure 4.
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Figure 7. Scan in ∆ and vs for fixed values of mθ and sα. The points fulfill the condition

0.5 6 Ω/Ωobs 6 1. We also impose the XENON1T and the invisible Higgs decay constraints. The

same color code as in figure 4 is applied.

angle among the minimal models are not significant in the resonances of h or ρ, so it is

very difficult to disentangle them.

However, the opposite happens in the FDM and SDM scenarios, where the differences

among models are clearly visible. This can also be observed in figure 7, where we plot the

normalized mass splitting versus the VEV vs for the minimal models and different values

of the DM mass (mθ = 40, 60, 130 GeV from left to right) with a fixed (small) mixing

angle sα = 10−5. Notice that the SDM scenario can also happen for the cubic and quartic

models when the value of vs is increased.

Now we perform a scan for the different models in the parameters

sα ǫ [10−5, 10−1] , mθ ǫ [10, 1000] GeV,
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Figure 8. Scan in the rescaled spin-independent DD cross section signal for the minimal models

versus the DM mass, for mixing in the range sα ǫ [10−5, 10−1], and fixed values vs = 100 GeV and

∆ = 0.1 (left, FDM) ∆ = 1.1 (right, ρ resonance). Constraints from perturbativity and invisible

Higgs decay have been taken into account. We also plot in gray the exclusion region from the

current XENON1T experimental limit [58] and its projection [65] as a red dot-dashed line.

for fixed vs = 100 GeV and ∆ (FDM, ∆ = 0.1; ρ resonance ∆ = 1.1) accepting the points

for which 0.5 6 Ω/Ωobs 6 1. In figure 8 we depict the results: the rescaled spin-independent

DD cross section σSI, resc = (Ω/Ωobs)σSI for the different models, along with the current and

future limits of the XENON1T experiment [58, 65]. Notice that for the parameter values

considered, in the case of SDM (∆ = −0.1, for instance) the DM is under-abundant, so

we do not show this case. Remember that for the quadratic model in the zero-momentum

limit there is an exact cancellation at tree level in the DD cross section (see table 1).

Therefore, its dominant contribution is at one loop and is very suppressed. We can see

that in the FDM region (∆ = 0.1), assuming astrophysics are under control (say, the

standard halo model), a precise-enough positive measurement of a DD signal could allow

one to distinguish among the minimal models. This is not the case for the region close to

the ρ resonance (∆ = 1.1), and also close to the Higgs resonance (mθ ≃ 60 GeV), where

the required parameters are quite insensitive to the minimal model considered.

We have checked that in all the minimal models there is a significant temperature

dependence of the thermally averaged annihilation cross section in the resonance scenario,

allowing to avoid indirect detection (ID) bounds [66]. This was also found in the case of the

quadratic model in ref. [51]. However, in the SDM regime the variation on the temperature

is more subtle (see next section). Of course, ID bounds do not constrain FDM, given the

absence of DM annihilations at zero temperature in this case.

Finally, we have also studied the DM self-interacting cross section for each model and

found that the maximum values were reached in the resonance with the scalar ρ. However,

in the parameter space considered the values of the cross section were much smaller than

the ones constrained by clusters, . 1 cm2/g [67].
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Figure 9. Scan in ∆ and vs (sα) with fixed mθ = 1 GeV and sα = 10−5 (vs = 10 GeV) for

the minimal models on the left (right) panel. Constraints from light scalars that mix the Higgs,

Fermi-LAT and invisible Higgs decay have been taken into account. All the points fulfill the relic

abundance condition 0.5 6 Ω/Ωobs 6 1.

4.4.3 Light dark matter

In this section we discuss the possibility of light DM (e.g. at the sub-GeV scale) in the

minimal models.7 Let us analyze in the following the different freeze-out scenarios described

in section 4.1. We impose that the DM candidates are in thermal equilibrium in the

Early Universe. Furthermore, constraints from DD experiments, namely CRESST-III and

DarkSide-50 [69, 70], and invisible Higgs decays are applied.

1. In the ρ resonance, the lightest possible mass for the DM candidate can be read from

figure 2 and it could be at the sub-GeV scale. As discussed in section 4.4.2 (figure 6),

it is difficult to disentangle the minimal models in the resonance condition, therefore

the same lower bound for the DM mass applies for the rest of the models. Constraints

on the mixing angle coming from meson decays into invisible states (B → Kρ and

K → πρ [63]) forbid lower DM masses.

2. In the SDM/FDM scenarios, restrictions on the mixing angle come basically from

existing limits on light scalars that mix with the Higgs boson (see figure 8 in ref. [63]).

For the SDM regime, ID bounds must also be considered.

As an illustrative example, in figure 9 we take mθ = 1 GeV and perform an scan for

the minimal models where the points fulfill the condition 0.5 6 Ω/Ωobs 6 1: on the left

panel we plot ∆ versus vs with sα = 10−5; on the right panel we depict ∆ versus sα with

vs = 10 GeV. For this value of vs, the constraint from the invisible Higgs decay almost

excludes the ρ resonance solution, and ID bound from Fermi-LAT [66] forbids SDM for

∆ . −0.1.

7Ref. [68] also discusses light thermal DM candidates in similar scenarios as those considered in this

work.
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5 Beyond minimal models

Here we will try to go a bit beyond the minimal models discussed above, which involved

just one dominant symmetry breaking term. We do so by combining pairs of minimal

models, that is including simultaneously two symmetry breaking terms. The main goal

is to study if the parameter space opens up. However, notice that the inclusion of the

additional couplings (even if real) can lead to SSB of DCP and spoil the DM candidate,

as it would not longer be stable. Therefore, we should require that this does not happen,

which leads to important constraints on the parameter space of these non-minimal models.

5.1 About spontaneous dark CP violation

In this section we study the case in which the potential contains two explicit U(1) symmetry

breaking terms, which we write as

Vxsb = ã Sn + b̃ Sn′

+ H.c. , (5.1)

where n, n′ = 1, 2, 3, 4 correspond to the linear, quadratic, cubic and quartic model in-

teractions, and ã and b̃ are generically the couplings of the two interactions we consider.

Without loss of generality we take n < n′.

DCP conservation, defined as S → S∗, requires that the two couplings ã and b̃ are real.

To avoid SSB of DCP we should also require that the VEV of S is invariant, 〈S〉 = 〈S∗〉,
and therefore, 〈S〉 must be real. Moreover, since the rest of the Lagrangian is invariant

under phase transformations, we can make a redefinition S → −S and take always 〈S〉
real and positive. Then, to explore the conditions under which DCP is not spontaneously

broken it is convenient to use the exponential parametrization (see refs. [44, 71])

S =
1√
2

(

vs + σ′
)

eiG/vs , (5.2)

because in this parametrization the field G only appears in the symmetry breaking part

of the Lagrangian, eq. (5.1). Then, according to the discussion above, we require that

the global minimum of the potential is found at 〈σ′〉 = 0 (this will fix the value of vs in

terms of all the parameters of the potential) and 〈G〉 = 0 so that
√

2〈S〉 = vs > 0. In this

parametrization the potential contains the terms

Vxsb ⊃ Vsb ≡ v4
s

(

a cos

(

n
G

vs

)

+ b cos

(

n′ G

vs

))

, (5.3)

where we have defined the dimensionless couplings

a ≡ 2

v4
s

(

vs√
2

)n

ã , b ≡ 2

v4
s

(

vs√
2

)n′

b̃ , (5.4)

which are expressed in terms of the original couplings of the Lagrangian as given in table 2.

Then, to avoid spontaneous violation of DCP one has to require that G = 0 is the

global minimum of Vsb in eq. (5.3). Obviously, the first derivative of Vsb in G = 0 is zero,

while the second derivative is −v2
s(n2a + n

′2b). Therefore, to have a local minimum at
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n, n′ Minimal model a, b

1 Linear µ3/
(
√

2 v3
s

)

2 Quadratic µ2
s/
(

2 v2
s

)

3 Cubic µ3/
(

2
√

2 vs
)

4 Quartic λ4/4

Table 2. Relation of the effective parameters a and b defined in eqs. (5.1), (5.3)–(5.4) and the

explicit symmetry breaking couplings in the potential for the minimal models.
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DCP violation

Figure 10. Upper limits on the effective symmetry breaking terms a and b for DCP conservation,

as described in eq. (5.3) for all the possible combinations of two minimal models. Combinations of

models which appear with the same color share the same DCP conserving parameter region.

G = 0 one should require b ≤ −a(n2/n′2). Then, one has to check that it is the global

minimum of Vsb(G) by comparing it with other minima, which has to be done case by case.

We thus find that the conditions for DCP conservation are

a ≤ 0 and







b ≤ 0 (n, n′) = (2, 3), (3, 4)

b ≤ −a(n2/n′2) (n, n′) 6= (2, 3), (3, 4)
(5.5)

These constraints are displayed in figure 10 in the (a, b) plane and, when ex-

pressed in terms of the explicit symmetry breaking parameters of the general potential

in eqs. (2.3)–(2.8), must be added to the theoretical constraints mentioned in section 3.2.

As an illustrative example of the consequences of combining two minimal models, in

figure 11 we plot the results in the planes (sα, ∆) on the left and (vs, ∆) on the right for

having a suitable DM candidate when considering the cubic and quartic symmetry breaking

terms, both alone and together. The results show that including both terms allows values

of mρ and vs in between the individual cases (minimal models); that is the region covered
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Figure 11. Left) Scan in ∆ and sα for the cubic and quartic models around the region of ∆ & 0

(FDM), similar to figure 4 (left). Points in gray correspond to the region of parameter space of the

model which is the combination of both interactions and preserves DCP. Right) Scan in ∆ and vs,

similar to figure 7 (left), enlarged with the combined model.

by the gray dots in the figure. Analogous results were found when considering the other

combinations of minimal models.

In conclusion, having two symmetry breaking terms enlarge the parameter space for

a good DM candidate to regions bounded by the minimal models. This is a consequence

of the additional constraints required to avoid the spontaneous violation of DCP shown in

figure 10.

6 The pseudo-Nambu-Goldstone boson limit: an EFT approach

6.1 Effective operators

For the following discussion it is useful to consider the exponential parametrization,

eq. (5.2), in terms of the radial mode σ′ and the angular mode G. Let us now assume

that S takes a large VEV as compared to the explicit symmetry breaking terms. Then, the

mass of the angular mode G is much smaller that the symmetry breaking scale mG ≪ vs

and it can be considered a PNGB. At low energies, the scenario which involves a PNGB

G stabilized by a discrete symmetry (DCP) G → −G can be parametrized by

∆L =
1

2
(∂G)2 +

cG

v2
s

(

|H|2 − v2

2

)

(∂G)2 − 1

2
m2

GG2 + λGG4 + λHG

(

|H|2 − v2

2

)

G2 , (6.1)

where the PNGB mass mG, the quartic coupling λG and the Higgs portal λHG break the

shift-symmetry. These correspond at high energies to linear, quadratic, cubic and quartic

terms in the complex singlet scalar S in the linear parametrization. Notice that they are not

suppressed by derivatives, e.g., they can give significant contributions for instance in DD.

Let us parametrize the breaking with the charge n of the field S (e.g., V ∝ Sn + H.c.).

We can now proceed to integrate-out the radial mode σ′. In terms of the UV parameters,
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the Wilson coefficients read

cG = − sα
vs

v
, (6.2)

λHG = − cG
n

2

m2
G

v2
s

, (6.3)

λG =
n2

8

m4
G

m2
σ′v2

s

, (6.4)

and mG = mθ is given in eq. (3.4). Notice that mG and λG (and cG and λHG) are related

with each other. We have expressed these coefficients in terms of physical parameters using

also that, in the limit vs ≫ v,

sα ≃ λHS

2 λS

v

vs
. (6.5)

If one considers a certain shift symmetry G/vs → G/vs + 2π/n at low energies, the non-

derivative terms may be dropped and the allowed terms in the potential take the form

∆V =
4
∑

n=1

Vn +
2
∑

n=1

Un , (6.6)

where

Vn = dn cos

(

n
G

vs

)

and Un = cn

(

|H|2 − v2

2

)

(

1 − cos

(

n
G

vs

))

, (6.7)

and we have assumed a renormalizable UV completion, which sets the upper limit in

the sums. These dn (with n = 1, . . . , 4) low-energy terms have mass-dimension 4 and

correspond at high energies, respectively, to terms linear, quadratic, cubic and quartic in the

complex singlet scalar S in the exponential parametrization, e.g., respecting respectively

the discrete symmetry DCP, Z2, Z3, Z4. Similarly, the cn (with n = 1, 2) have mass

dimension two and correspond at high energies, respectively, to terms linear and quadratic

with the Higgs doublet, e.g., respecting respectively the discrete symmetry DCP and Z2.

Once expanded, they yield the mass and quartic interactions of the PNGB.

It is interesting to note that if we integrate by parts the derivative interaction in

eq. (6.1) we obtain

(

|H|2 − v2

2

)

(∂G)2 → −
(

|H|2 − v2

2

)

G∂2G − G∂µ

(

|H|2
)

∂µG

→ m2
G

(

|H|2 − v2

2

)

G2 − G∂µ

(

|H|2
)

∂µG , (6.8)

where in the last step we use the Klein-Gordon equation of motion for G, which is correct

for G on-shell, as in the case of DD experiments. If we substitute back in eq. (6.1) we find

an additional contribution to the Higgs portal coupling,

λHG → λHG + m2
G

cG

v2
s

= cG
m2

G

v2
s

(

−n

2
+ 1

)

(6.9)
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Figure 12. Comparison of the relic abundance between the PNGB effective Lagrangian with the

Higgs field, eq. (6.1) (orange line), and the full theory for the quadratic model in eq. (3.15), which

also includes the radial mode σ′ (blue dashed line). The correct value for the relic abundance is

shown as a black dotted line, e.g., the region above is excluded and in the region below the PNGB

is under-abundant.

which exactly cancels for n = 2 and produces a suppression in DD experiments, since

the other terms always involve the momenta of the PNGB. This cancellation was already

noticed in ref. [37].

Regarding the relic abundance, there are two options depending on the scale of vs:

• If vs ≪ v, unless very small couplings are involved, we expect mh ≫ mσ′ , mG. In

order to explain the relic abundance, the DM G needs to be at the radial mode (σ′)

resonance, e.g., mG ≃ mσ′/2 ≪ v, or almost degenerate with the σ′, e.g. mG ≃ mσ′ ≪
v (for SDM/FDM). In either case, the small mass splitting between σ′ and G is not

naturally achieved, as the symmetry breaking terms need to be comparable to vs, and

therefore, strictly speaking, in that case G cannot be considered a natural PNGB.

• If vs ≫ v, unless very small couplings are involved, we expect mσ′ ≫ mh, mG. We

can integrate-out the radial mode σ′, and, in this case, the prediction is that the

PNGB needs to be at the Higgs resonance to explain the relic abundance, e.g., mG ≃
mh/2, see refs. [40, 51], or almost degenerate with the σ′, e.g. mG ≃ mσ′ ≪ v (for

SDM/FDM). In this scenario, the small mass splitting between h and G is achieved

for breakings of the order of the electroweak scale (which is below vs). We can use an

effective Lagrangian with just the PNGB and the Higgs field (see also refs. [72, 73]),

and compare to the results of the complete model (for instance the relic density and

direct detection).

6.2 Numerical results

In figure 12 we plot the relic abundance versus the DM mass for both the effective La-

grangian of the PNGB in eq. (6.1) and the full quadratic model which includes the radial

mode, with the symmetry breaking term in eq. (3.15) that gives the mass to the DM

candidate.
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In the complete model (blue dashed line) we have set sα = 0.1 and vs = mσ′ = 103 GeV,

where mσ′ is the mass of the radial mode. In the effective Lagrangian approach (orange

line), we use the Wilson coefficients cG and λHG from eqs. (6.2) and (6.3) with the values

for sα and vs mentioned before. Notice that, as we are comparing the effective Lagrangian

with the full quadratic model, n = 2 in the λHG coefficient. We can see both the Higgs and

the radial resonances in the case of the complete model. The EFT reproduces very well the

full model, including the Higgs resonance, up to DM masses below ≃ vs/6, above which the

EFT cannot be trusted. In the full model, we also see the solution at mG ≃ mσ′ ≃ 1 TeV

(forbidden/secluded, annihilations into σ′ bosons), which of course cannot be captured by

the EFT. In the full model and in the EFT we see a small kink at mG ≃ mh corresponding

to the opening of the annihilation channel GG → hh. A small kink at mG = 1 TeV,

corresponding to the opening of the channel GG → σ′σ′, can also be seen in the full model.

7 Conclusions

A real scalar singlet, stabilized by a discrete symmetry, is one of the simplest candidates

for DM. However, by combining relic abundance constraints with direct detection null-

results, the allowed parameter space has been almost completely ruled-out, leaving only a

few allowed spots: at the Higgs boson resonance, or at high masses, where annihilations

into Higgs boson pairs opens up.

In this work we have extended this minimal scenario in the simplest possible way: a

complex scalar singlet, charged under a global U(1) symmetry. If the symmetry is not

broken, neither spontaneously nor explicitly, the allowed parameter space is very similar

to that of the real scalar singlet.8 If the symmetry is preserved at the Lagrangian level but

not respected by the vacuum of the theory there will be an exact Goldstone boson in the

spectrum and, since it is massless, it is dark radiation and cannot constitute the DM of the

Universe. Therefore, the symmetry must also be broken explicitly at the Lagrangian level,

yielding a pseudo-Nambu-Goldstone Boson as the DM candidate. The explicit symmetry

breaking of the U(1) needs to preserve at least the dark CP that stabilizes the DM particle.

This is the case we have studied in this work.

We have considered 4 cases with only one explicit breaking term, which we call linear,

quadratic, cubic and quartic. The choices are motivated by either being the softest possible

symmetry breaking term, or by a discrete symmetry. All these models preserve a dark CP

symmetry, while the quadratic, cubic and quartic models are also invariant under Z2, Z3

and Z4, respectively. These are the simplest models in the sense that the breaking involves

only the new complex scalar singlet and it is the softest within each class. Furthermore,

they are quite stable under radiative corrections, as only the case of the quadratic model

generates, at one loop, further symmetry breaking terms, which are, however, suppressed.

The models are necessarily very predictive, with just four new parameters: mθ, mρ, sα

and vs. However, the allowed parameter space to obtain the correct relic abundance is

enlarged significantly with respect the case of only one real scalar because the presence of

an additional scalar, ρ, that mixes with the Higgs boson. Then, the allowed annihilation

8There can be cases with two component DM, which will be studied elsewhere.
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channels are now duplicated: being at a resonance with h and/or ρ, or at high masses,

where annihilations into h and/or ρ pairs may open up. The last case, when h and/or ρ are

(a bit) more massive than the pseudo-scalar is known as forbidden DM. Moreover, the relic

abundance can also be reproduced in the limit of small mixing, via annihilations into h

and/or ρ pairs. Annihilations in ρ pairs when mρ < mθ provide an example of secluded DM.

Our analysis shows that these minimal models may potentially be distinguished among

themselves if a positive signal in direct detection is observed. Measuring the DM mass

(say, by a gamma ray line in indirect detection), for instance, can yield further information

regarding the underlying symmetry. Moreover a positive detection of a new scalar would

yield further information on the mixing, sα, and on the symmetry breaking scale. It should

have couplings to SM fermions like those of the Higgs boson but suppressed by the mixing

with respect to the latter, with possible extra decay modes ρ → θθ and/or ρ → hh if

kinematically allowed.

In addition to this, we have analyzed the possibility of light DM. At the ρ resonance

the lowest DM mass could be at the sub-GeV scale where annihilations into muons and

hadrons are still possible, whereas in the forbidden/secluded DM cases the mass could

be even lower, specially in the forbidden scenario for which indirect detection bounds do

not apply.

We also study the case in which two of these symmetry breaking terms appear simulta-

neously, to see if the parameter space increases. In this case, the dark CP symmetry, which

for just one symmetry breaking term (that can always be taken as real) was preserved also

after SSB of the U(1), may be violated by the vacuum. We have derived the restrictions

for all possible pair combinations of the symmetry breaking terms that appear in the min-

imal models so that the dark CP is preserved after SSB and, therefore, the pseudo-scalar

is stable. We find that, once these DM stability constraints are taken into account, the

allowed parameter space opens up precisely in the region between the two minimal models.

Therefore, we can conclude that adding more symmetry breaking terms (at least by pairs)

fills up the parameter space between the minimal models.

Finally, for small explicit symmetry breaking compared to the scale of SSB of the U(1),

we have obtained an effective low energy Lagrangian including both the usual Higgs portal

as well as a derivative Higgs portal. This effective Lagrangian turns out to be very useful

in order to analyze DM phenomenology, specifically the relic abundance in the case of the

Higgs boson resonance and direct detection.
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A Correspondence between real and complex parametrizations

The correspondence between the couplings in the real and complex parametrization,

eqs. (1.4) and (2.3) respectively, is shown in table 3.

Real Complex

ω1 Re {µH1}
ω2 − Im {µH1}
α1 Re {λH2} + λHS

α12 −2 Im {λH2}
α2 −Re {λH2} + λHS

δ1 Re
{

µ3
}

δ2 −Im
{

µ3
}

Real Complex

m2
1 m2

S + Re
{

µ2
S

}

m2
12 −Im

{

µ2
S

}

m2
2 m2

S − Re
{

µ2
S

}

µ1 Re {µ1 + µ3}
µ12 Im {−µ1 − 3µ3}
µ21 Re {µ1 − 3µ3}
µ2 Im {−µ1 + µ3}

Real Complex

λ1 Re {λ2 + λ4} + λS

λ2 Re {−λ2 + λ4} + λS

β12 Im {−2λ2 − 4λ4}
λ12 −6 Re {λ4} + 2λS

β21 Im {−2λ2 + 4λ4}

Table 3. Correspondence between the couplings in the real and complex parametrizations.

B Relevant interactions for the minimal models

The couplings which are relevant for DM phenomenology can be parametrized as

−L ⊃ 1

2

(

βhθθθ2 + βhρρρ2
)

h +
1

2
βρθθθ2ρ , (B.1)

with the coefficients βi summarized in table 4 for the minimal models. Note that

βρθθ = βhθθ

(

sα → −cα, m2
h → m2

ρ

)

(B.2)

C Hadronic decay modes

We follow the procedure described by ref. [12] with the cross section for the ρ-mediated9

s-channel DM annihilations into hadronic final states written as

σvrel =
4β2

ρθθ√
s

|Dρ(s)|2 Γρ→hadrons(
√

s) , (C.1)

with

|Dρ(s)|2 =
1

(

s − m2
ρ

)2
+ m2

ρΓ2
ρ,full (mρ)

. (C.2)

The βρθθ coefficient is given by the Lagrangian in eq. (B.1), the decay width of the ρ into

hadrons, Γρ→hadrons, is taken from figure 4 in ref. [63], and the full ρ width, Γρ,full, is just

9Note that in our notation ρ is the new scalar, not the ρ-meson.
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Linear Quadratic

βhθθ
sα(m2

θ
−m2

h)
vs

−m2

h
sα

vs

βρθθ − cα(m2

θ
−m2

ρ)
vs

m2
ρcα

vs

βhρρ cαsα

(

sα(m2

h
+2m2

ρ)
v − cα(m2

h
−3m2

θ
+2m2

ρ)
vs

)

− cαsα(m2

h
+2m2

ρ)(vcα−sαvs)

vvs

Cubic Quartic

βhθθ − sα(m2

h
+m2

θ)
vs

− sα(m2

h
+2m2

θ)
vs

βρθθ
cα(m2

ρ+m2

θ)
vs

cα(m2
ρ+2m2

θ)
vs

βhρρ
1
3cαsα

(

3sα(m2

h
+2m2

ρ)
v − cα(3m2

h
+m2

θ
+6m2

ρ)
vs

)

− cαsα(m2

h
+2m2

ρ)(vcα−sαvs)

vvs

Table 4. Expressions for the βi coefficients particularized for the minimal models in terms of the

physical parameters v, vs, mh, mθ, mρ and sα.

the Γρ→θθ, which is the dominant one in the considered parameter space. This decay width

is described by

Γρ→θθ =
β2

ρθθ

32π mρ

√

√

√

√1 − 4m2
θ

m2
ρ

. (C.3)

D Direct detection for explicit symmetry breaking terms with the Higgs

field

Here we also consider the following explicit symmetry breaking terms with the Higgs field,

VH1 =
1

2
µH1|H|2S + H.c. , (D.1)

VH2 =
1

2
λH2|H|2S2 + H.c. . (D.2)

We focus on the DD constraints (irrespectively of the relic abundance, as in the first

analysis in section 4.4.2) for models including these potentials. We provide the effective

DM-nucleon couplings generated in table 5.

Model λSI ∝ −
(

βhθθ cα

m2

h

+
βρθθ sα

m2
ρ

)

VH1
sαcα

vsm2

h
m2

ρ
m2

θ(m2
h − m2

ρ) − 2m2

θ

vm2

h
m2

ρ
(s2

αm2
h + c2

αm2
ρ)

VH2 − 2m2

θ

vm2

h
m2

ρ
(s2

αm2
h + c2

αm2
ρ)

Table 5. Effective DM-nucleon coupling that enters in the DD cross section in terms of the physical

parameters v, vs, mh, mθ, mρ and sα.

Figure 13 shows the allowed parameter space by the XENON1T bound for both models.

We plot two values of the VEV (vs = 102, 103 GeV in blue and orange, respectively) and
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Figure 13. Parameter space that is allowed by the XENON1T bound for the models with the

symmetry breaking terms in the potential VH1 and VH2 in eqs. (D.1) and (D.2). Blue (Orange)

colored region corresponds to vs = 100 (1000) GeV. Black and gray dashed lines represent the

resonance condition with the ρ (mρ = 2mθ) and the degenerate case (mρ = mθ) respectively.

set sα = 10−3, which is the typical value for the mixing in order to get the correct relic

abundance near the resonances (see figure 6). We can see that DM masses larger than

10 GeV are excluded by the experimental constraint from XENON1T.
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