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ABSTRACT

In hierarchical models of structure formation, the time derivative of the halo mass function may

be thought of as the difference of two terms – a creation term, which describes the increase in

the number of haloes of mass m from mergers of less massive objects, and a destruction term,

which describes the decrease in the number of m-haloes as these merge with other haloes,

creating more massive haloes as a result. The first part of this paper focuses on estimating the

distribution of times when these creation events take place. In models where haloes form from

a spherical collapse, this distribution can be estimated from the same formalism which is used

to estimate halo abundances: the constant-barrier excursion-set approach. In the excursion-set

approach, moving rather than constant barriers are necessary for estimating halo abundances

when the collapse is triaxial. First, we generalize the excursion-set estimate of the creation time

distribution by incorporating ellipsoidal collapse. Then, we show that these moving barrier

based predictions are in better agreement with measurements in numerical simulations than

are the corresponding predictions of the spherical collapse model. In the second part of the

paper, we link the creation time distribution to the creation term mentioned above. For this

quantity, the improvement provided by the ellipsoidal collapse model is more evident. These

results should be useful for studies of merger-driven star formation rates and active galactic

nucleus activity. We also present a similar study of the creation of haloes conditioned on

belonging to an object of a certain mass today, and reach similar conclusions – the moving

barrier based estimates are in substantially better agreement with the simulations. This part of

the study may be useful for understanding the tendency for the oldest stars to exist in the most

massive objects, and for star formation to only occur in lower mass objects at late times.

Key words: methods: numerical – galaxies: halo – cosmology: theory – dark matter.

1 IN T RO D U C T I O N

In hierarchical clustering models, self-bound dark matter haloes in-

crease their mass by merging with other haloes (Press & Schechter

1974; Bond et al. 1991; Lacey & Cole 1993). These mergers are ex-

pected to affect the galaxy populations hosted by the merging haloes

(White & Rees 1978; White & Frenk 1991), possibly triggering star

formation or active galactic nucleus (AGN) activity (Efstathiou &

Rees 1988; Haehnelt & Rees 1993; Kauffmann & Haehnelt 2000).

As a result, there has been some interest, both analytic and numer-

ical, in estimating when such mergers happen.

Let n(m|t) dm denote the number density of haloes with mass in

the range dm about m at time t. As a result of mergers, dn/dt is the

sum of two competing effects – the number of objects in a given

mass bin increases if smaller mass objects merge to form an object

⋆E-mail: jmoreno,shethrk@physics.upenn.edu (JM); carlo.giocoli@

unipd.it (CG)

of precisely this mass, an event we call creation; or the number

decreases as objects of this mass merge with others, thus depleting

the number in the bin, an event we call destruction. Thus, the time

derivative of the halo mass function is the difference of the creation

and destruction rates:

dn/dt = C(m, t) − D(m, t). (1)

For the star formation and AGN problems above, one is more inter-

ested in the creation rates C(m, t) than in dn/dt .

Given n(m|t), it is easy enough to take the time derivative; the

problem is to separate dn/dt into its two contributions. Roughly

speaking, low-mass objects may have undergone significant mergers

in the past, but they are not being created in merging events any more

– their evolution is expected to be dominated by the destruction term.

In contrast, extremely massive objects are undergoing substantial

merging activity at the current time, and the time derivative of the

halo mass function should be a good estimator of the creation rate

of these objects. But quantifying the general case requires a richer

model.
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300 J. Moreno, C. Giocoli and R. K. Sheth

Early work used the Press & Schechter (1974) form for n(m|t),
and advocated equating the ‘positive’ term in dn/dt with the creation

rate, and the ‘negative’ term with the destruction rate (e.g. Haehnelt,

Natarajan & Rees 1998). But this is clearly not a solution at all, since

it provides no rule for how to determine what one should correctly

equate with ‘positive’. For example, if dn/dt = P − N , there is

no particular reason why one could not have written the right-hand

side as (P − ǫ) − (N − ǫ). The second part of this paper is devoted

to extracting the creation rate C from dn/dt . See Blain & Longair

(1993a,b), Sasaki (1994) and Kitayama & Suto (1996) for other

attempts to solve this problem.

Before addressing the creation term C (the number density of

mergers per Gyr), in the first part of the paper, we discuss the

distribution of times c(t |m) when these creation events take place

(i.e. c ≡ C/
∫

C dt is the rate normalized by the total number of

creation events that will ever occur). Although c and C differ only

by normalization constant, it turns out that c is somewhat easier to

model. This is because the excursion-set formalism from which the

Press–Schechter mass function can be derived (Bond et al. 1991;

Lacey & Cole 1993), carries with it a prescription for computing

c(t |m), the distribution of creation times (Percival & Miller 1999).

In this case, the functional form of c(t |m) is very similar to that of

f (m|t) ≡ mn(m|t)/ρ̄, where ρ̄ is the mean comoving background

density.

Since that time, interest has shifted to functional forms for n(m|t)
which more closely approximate the abundances measured in nu-

merical simulations (e.g. Sheth & Tormen 1999; Warren et al. 2006;

Lukić et al. 2007; Reed et al. 2007; Tinker et al. 2008). So it is in-

teresting to ask how the creation time distributions are modified.

Percival, Miller & Peacock (2000) argue that the relation between

the functional forms of c(t |m) and f (m|t) should survive these mod-

ifications, and show that this does indeed provide a good description

of halo creation in simulations. However, although they use intuition

from the excursion-set approach to motivate their arguments, their

method sidesteps the generalization of the excursion-set approach

from which the modified mass functions may be derived – this is

the ellipsoidal collapse ‘moving’ barrier approach (Sheth, Mo &

Tormen 2001; Sheth & Tormen 2002). The first goal of this paper

is to calculate the creation time distribution self-consistently within

the moving barrier excursion-set approach. We do find that c and

f are simply related, but that this is actually extremely fortuitous –

Appendix A3 demonstrates that this scaling does not hold generally.

Getting the normalization constant which relates c to the creation

rate C(m, t) is a more challenging problem. Percival et al. (2000) ob-

tained this quantity by matching the creation time distribution to the

rate measured in N-body simulations in the low-redshift regime (see

also Percival & Miller 1999), but they acknowledge that they have

no theory for the normalization factor. One possible solution to this

problem is to explore the evolution of the halo population in terms

of coagulation theory, where the creation and destruction terms are

estimated separately (von Smoluchowski 1916, 1917). Early ap-

plications to galaxy formation and dark matter halo interactions

include Silk & White (1978), Cavaliere, Colafrancesco & Menci

(1991a), Cavaliere, Colafrancesco & Scaramela (1991b), Cavaliere,

Colafrancesco & Menci (1992), Cavaliere & Menci (1993), Sheth &

Pitman (1997) and Menci et al. (2002). For a more recent treatment,

see Benson, Kamionkowski & Hassani (2005) and Benson (2008).

For white-noise initial conditions, both the von Smoluchowski

and the Press–Schechter excursion-set expressions for n(m|t) agree,

so, for this case, the creation and destruction rates are known (Sheth

& Pitman 1997). However, obtaining the rates for more general

initial conditions, or for the modified mass functions that are of

more current interest, remains unsolved. The second goal of the

present paper is to provide a model for the creation rate of dark

matter haloes that is informed by both coagulation theory and the

modified excursion-set approach with moving barriers. We also

study the problem of how halo creation is modified if it is known

that the merging haloes are bound up in objects of mass M at some

later time T . The excursion-set theory provides a way to compute

the conditional mass function N (m|t , M , T ). We show how the

conditional distribution of creation times c(t |m, M , T ) is related

to f (m|t , M , T ) = (m/M)N (m|t , M , T ). For the conditional rate,

the problem is to separate dN/dt into creation and destruction

components. Sheth (2003) argues that this conditional distribution

may be the basis for understanding the phenomenon known as

downsizing (also see Neistein, van den Bosch & Dekel 2006).

Section 2 provides a brief summary of the excursion-set approach

and shows why the creation times associated with different barri-

ers differ. Sections 3 and 4 compare the predicted and measured

N-body creation time distributions and creation rates, respectively.

Conditional versions of these quantities are included in the appro-

priate sections. A final section summarizes our findings. Technical

details of the calculations are provided in the Appendices.

A few final remarks regarding the different uses of the term ‘halo

creation’ are in order. The first part of the paper focuses on the

creation time distribution, c(t |m), which can be derived within the

excursion-set formalism. The second part focuses on the creation

rate, C(m, t), the first term in the coagulation equation (equation 1).

The former is a normalized time distribution, while the latter is not

normalized. (The normalized distribution is denoted with lower case

c, while the non-normalized rate is denoted with capital C.) Another

source of confusion is that halo ‘creation’ is distinct from halo

‘formation’; following Lacey & Cole (1993), the latter is typically

defined as the time that an object first reaches half its current mass.

See Giocoli et al. (2007) for an explicit calculation showing how

creation and formation are related.

2 EXCURSI ON SETS AND MASS HI STORY

In the excursion-set approach, the problem of estimating the halo

abundances is mapped to one of estimating the distribution of the

number of steps a Brownian motion random walk must take before

it first crosses a barrier of specified height (Bond et al. 1991).

In this approach, the height of the barrier plays a crucial role.

The Press–Schechter mass function is associated with barriers of

constant height – such barriers arise naturally in models in which

haloes form from a spherical collapse model. In contrast, the more

accurate mass functions may be related to barriers whose height

increases monotonically with the number of steps – such barriers

arise naturally in ellipsoidal collapse models (Sheth et al. 2001).

Following Sheth & Tormen (2002), we will be interested in bar-

riers of the form

B(S, δc) =
√

qδc

[

1 + β

(

S

qδ2
c

)γ ]

. (2)

Here, δc is the overdensity required for spherical collapse – it is

a monotonically decreasing function of time, given by δc0/D(t),

where δc0 ≃ 1.686 and D(t) is the growth factor. S is a monotonically

decreasing function of halo mass, given by σ 2(m), the variance of the

initial density fluctuation field. The Press–Schechter mass function

is associated with (q, β, γ ) = (1, 0, 0), whereas ellipsoidal collapse

has (0.707, 0.47, 0.615).

When β = 0 (the barrier associated with spherical collapse), all

walks are guaranteed to cross the barrier, and the barriers associated

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 397, 299–310
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Halo creation in moving barrier models 301

with two different times do not intersect. However, if β > 0 and

γ > 1/2, e.g. for the ellipsoidal collapse barrier, then not all walks

cross the barrier, and the barriers associated with two different times

may intersect. Sheth & Tormen (2002) suggest that the intersection

of barriers may allow one to represent the possibility that haloes

can fragment. This is problematic when discussing the creation rate

problem, which assumes that fragmentation never occurs.

For this reason, we study the limiting case of ‘square root’ barriers

for which γ = 1/2:

B(S, δc) =
√

qδc + β
√

S. (3)

This family of barriers is particularly interesting because an ana-

lytic solution to the first crossing distribution is available (Breiman

1966), although slightly cumbersome (see Appendix A1). Because

γ = 1/2 is not very different from the value associated with ellip-

soidal collapse, one might have expected the predicted halo abun-

dances associated with square root barriers to provide a reasonable

description of simulations. We show below that this can be achieved

if one sets (q, β, γ ) = (0.55, 0.5, 0.5) (see Fig. 3). Halo merger

and formation histories associated with this model are also in good

agreement with simulations (Giocoli et al. 2007; Moreno, Giocoli

& Sheth 2008).

The dependence on S of the square root barrier means that it is

more like the ellipsoidal than spherical collapse barrier (which has

constant height, independent of S). However, there is one important

respect in which the square root model is very like the constant

one. Consider the barriers associated with two different times. For

square root barriers, the difference between the barrier heights is

B(S, δc2) − B(S, δc1) = (δc2 + β
√

S) − (δc1 + β
√

S)

= δc2 − δc1. (4)

Note that this difference is independent of S. This is also (trivially)

true for constant barriers, but it is not true for any other values of

γ . In this respect, the excursion-set model based on square root

barriers is extremely special. This will be important later.

2.1 Mass history for different barriers

Fig. 1 illustrates the relation between Brownian motion random

walks and the mass growth history of an object. Consider first the

left-hand panel. The jagged line shows an example of a random

walk – this walk represents the run of smoothed overdensity around

a randomly chosen position in the initial fluctuation field, as the

region over which the overdensity is smoothed changes from large

(left) to small (right). (The plot actually shows the initial overden-

sity evolved to the present time using linear theory – it differs from

the initial overdensity by a multiplicative constant.) The initial over-

densities are all small compared to unity, so one may associate a

mass with each smoothing scale: this mass is larger for the larger

smoothing scales.

Consider a horizontal line, and consider the places where it first

intersects the random walk, as the height of this line, this barrier, is

raised. Clearly, this position shifts to the right as the barrier is raised

(red filled circles) – mass decreases as redshift increases. Whereas

the halo abundance problem corresponds to fixing the barrier height

δc (to illustrate, the height of dotted line corresponds to δc0 = 1.686)

and asking for the distribution of S values at which the barrier is

first crossed, the halo creation problem corresponds to asking for

the distribution of δc values for a fixed S. We will use f (S|δc) dS to

denote the first crossing distribution, and c(δc|S) dδc to denote the

distribution of creation times, where, for haloes of a given mass m,

c(δc|S) dδc = c(t |m) dt .

Note that the mass increases relatively smoothly sometimes, and

rather abruptly at others. For instance, in the interval 4.2 � S � 4.8

in the left-hand panel, mass decreases smoothly. Compare this situ-

ation to the sudden jump from S ≃ 4.8 → S ≃ 8.7 (red long-dashed

line). Thus, this walk does not contribute to the creation time distri-

bution for any values of S between 4.8 and 8.3. But it does contribute

in the calculation of halo abundances for every δc.

It is interesting to compare this mass accretion history with that

shown in the right-hand panel. The same walk is shown in both

panels. However, now the horizontal dotted line at δc0 has been

replaced by a curve that has δ-intercept at
√

qδc0, and increases with

increasing S – this is the square root barrier (equation 3) associated

with the same epoch as the constant one. The comparison clearly

shows that the mass accretion history (blue solid circles) depends on

the barrier shape. For instance, the values with S � 4.3 and S ≃ 8.8,

9.7 and S � 10.4 are no longer included in the mass accretion history

(red solid circles). Moreover, even if a point on the random walk

happens to be part of the mass history in both cases, its associated

Figure 1. The mass history associated with a random walk (jagged line) depends on the properties of the barrier. Panels show constant (left-hand panel) and

square root (right-hand panel) barriers. Time increases as δ decreases and mass decreases as S increases. The filled circles on the random walk denote the

history (red for spherical and blue for ellipsoidal collapse), and the horizontal jumps denote mergers. In the right-hand panel, the red circles were kept to

emphasize that different barriers predict different mass histories for a given random walk. For reference, the horizontal dotted line (curve) denotes the barrier

associated with the present.
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302 J. Moreno, C. Giocoli and R. K. Sheth

time is different under the two barrier prescriptions. To illustrate,

the point at S ≃ 4.4 is at the present for the square root barrier case

and in the past when constant barriers are used. As a result, the halo

mass function and the creation time distribution are modified. One

of the goals of this paper is to quantify these changes.

2.2 Self-similarity

Barriers of the form given in equation (2) are self-similar, in the

sense that if δc is increased by a factor κ , then so is
√

S. As a

result, the first crossing distribution f (S|δc) and the distribution of

halo creation times c(δc|S) are both simply functions of δ2
c/S. In

the present paper, we will denote this variable as ν if δc is fixed

and as νc if S is fixed. In other words, if equation (2) describes

ellipsoidal collapse, then f (S|δc)dS = f (ν)dν and c(δc|S)dδc =
c(νc)dνc. Appendix A1 shows that

c(νc) dνc = A
√

νc f (νc) dνc (5)

for the constant (A =
√

π/2) and square root (A ≃ 2) barriers.

This simple relationship is one of the central results of this paper,

as is the warning that it does not hold in general. Appendix A uses

a system of linear barriers to illustrate when this simple result does

not apply.

To test equation (5) for constant and square root barriers, we

generated 105 random walks with 104 steps between S = 0 and S =
S(mp) ≃ 28. Then, we stored the corresponding mass histories for

the constant and square root barriers (e.g. solid circles in Fig. 1).

Every (S, δc) point along the history has a corresponding νc. To

study how the creation time distribution depends on S, we could

have chosen the subset of walks which have the correct value of S,

and then found the distribution of νc = δ2
c/S values for those walks.

However, the self-similar scaling above means that c(νc) should be

the same for all S. As a result, there is no need to select a subset in S

before binning in νc. If we simply bin up all the νc values, whatever

the associated values of S, then we can compare the result with the

predicted c(νc).

The symbols in Fig. 2 show the creation time distributions for

the constant (triangles) and square root (circles) barriers: the distri-

bution associated with the square root barrier is broader and peaks

at slightly higher νc. The curves show the predicted creation time

distributions (equation 5); they are in excellent agreement with the

measurements. Equation (5) shows that these creation time distribu-

tions depend on the functional form of the first crossing distribution

f (ν). For the case of square root barriers, we show the Breiman

(1966) exact but complicated expression for f (ν), and a much sim-

pler approximation for it from Sheth & Tormen (2002). The two

curves are almost indistinguishable.

The use of barriers which scale self-similarly (equation 2) was

motivated by the observation that, when expressed as a function of

ν, halo abundances in simulations could be scaled to a universal

form (Sheth & Tormen 1999). We have added the long-dashed

curve in the figure, which shows the result of using the Sheth &

Tormen (1999) functional form for f (νc) in equation (5); it is almost

indistinguishable from the curves associated with the square root

barrier.

3 CREATION TIME D ISTRIBUTION

In Section 2, we discussed the creation time distribution from the

excursion-set point of view. Having shown that the analytic expres-

sions accurately reproduce our Monte Carlo measurements, we now

Figure 2. The creation time distribution in self-similar form. The variable

νc denotes δ2
c/S at fixed mass. Triangles and circles show the distribution

measured from an ensemble of random walks with constant and square root

barriers, respectively. Dotted and solid (dashed) lines show the associated

predictions. The long-dashed curve shows the result of inserting the Sheth

& Tormen (1999) form for f (ν) d ν into equation (5).

study if they provide a good description of halo creation in N-body

simulations.

We use data from the German Israel Fund 2 (GIF2)

simulation (Gao et al. 2004), available at http://www.mpa-

garching.mpg.de/Virgo, which followed the evolution of 4003 par-

ticles of mass mp = 1.73 × 109 h−1 M⊙ in a box of size of

110 h−1 Mpc, in a flat � cold dark matter (�CDM) cosmology

with parameters (�m, σ 8, h, �b h2) = (0.3, 0.9, 0.7, 0.0196). Haloes

were identified at 50 outputs equally spaced in log10(1 + z) between

1 + z = 20 and 1 + z = 1. See Giocoli, Tormen & van den Bosch

(2008) for more details about the post-processing of the simulation.

Haloes were labelled as having been ‘created’ if at least half of

their particles were not observed in a more massive halo at an earlier

time. This is essentially the method adopted by Percival & Miller

(1999) – and we refer the interested reader to that paper for details.

3.1 Distribution of creation redshifts

The creation time distributions we measure in simulations and

shown as filled circles in Fig. 4 are normalized to unity. However,

the simulations only sample δc at epochs before the present time,

whereas the theory curves assume that 0 ≤ δc ≤ ∞. Therefore, for

haloes of mass m, we set

c(z|m) dz =
c(δc|Sm)

∫ ∞
δc0

dδ′
c c(δ′

c|Sm)

∣

∣

∣

∣

dδc

dz

∣

∣

∣

∣

dz, (δc ≥ δc0). (6)

These are the curves in Fig. 4. The open triangles and circles show

the creation times measured in constant and square root random

walk ensembles sampled at the same redshifts as the simulations. We

studied bins of size d log10m = 0.2 in mass centred at log10(m/m⋆)

= 0.5 to −3 in steps of −0.5. It is common practice to express halo

masses in terms of the typical mass m⋆(z), defined by S[m⋆(z)] ≡
δ2

c(z). Throughout this work, m⋆ (with no z-dependence) denotes

m⋆(z = 0). In this cosmology, m⋆ = 8.7 × 1012 M⊙h−1 ≃ 5030 mp.
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Halo creation in moving barrier models 303

A couple of remarks are in order. Only the haloes with the highest

redshift in each mass bin were treated as newly created. These mea-

surement were tested with different bin sizes (not shown), yielding

similar results. One limitation is that if d log10 m is too small, most

bins are empty, and the data does not follow a continuous curve. One

should not take d log10 m to be too large – in particular, the mass

bins for the different values of m should be disjoint. Our choice of

d log10 m satisfied both criteria. Lastly, we found that our choice of

redshift bin d log10(1 + z) = 0.05 was sufficiently large to capture

enough creation events and sufficiently small for comparison with

the different theory curves.

The solid circles in the figure denote the N-body measurement,

where only haloes with m > 10 mp are considered (note that the

lowest mass panel has no black filled circles). In all cases, improve-

ment over the location of the peaks is seen when the square root

barrier is used. However, these curves are slightly broader than those

traced by the simulation data, making the height of these normalized

distributions lower.

3.2 Self-similarity of halo creation

The excursion-set model suggests that if the halo mass function

f (ν) d ν can be scaled to a self-similar form, then the creation time

distribution c(νc) d νc is also self-similar. To test this, we have scaled

the values of δc(z) associated with each mass bin in the simulations

to νc = δc(z)2/S(m), and measured the resulting distribution of

νc. However, because all mass bins sample the same range in δc,

they sample different ranges in νc. We account for this by dividing

the measured distribution of νc by a normalization factor given by
∫ ∞

νc0
dν ′

c c(ν ′
c), where νc0 = δ2

c0/S(m) and c(νc) is associated with the

Sheth & Tormen (1999) formula.

Fig. 5 shows the result: different symbols show the rescaled

distributions associated with the various masses. Note that they do

indeed appear to trace out a universal curve. The various smooth

curves show the constant barrier, square root barrier and Sheth &

Tormen (1999) based predictions. The symbols approximately split

the difference between the constant and square root barrier models.

3.3 Conditional distribution of creation redshifts

So far we have discussed the unconditional creation time distri-

bution c(t |m) and its relation to f (m|t). In this section, we study

the creation time distribution, c(t |m, T , M), of m-haloes at time t

conditioned to be bound up in M-haloes at a later time T . We also

discuss how this quantity is related to f (m|t , M , T ), the fraction of

mass in m-progenitors at time t of a final halo of mass M at time T .

The latter is derived from the excursion-set theory by setting

f (m|t,M, T )dm = f (S|δ1, S0, δ0)dS, (7)

where S = S(m), S0 = S(M), δ1 = δc(t) and δ0 = δc(T ). The

right-hand term is the crossing distribution of a barrier B(S, δ1) by

random walks with origin at (S0, B(S0, δ0)). In Fig. 1, this amounts

to shifting the origin from (0, 0) to (S0, δ0) (left-hand panel) or to

(S0,
√

qδ0 +β
√

S0) (right-hand panel). In this work, the conditional

mass function is denoted by N (m|t , M , T )dm = (M/m)f (m|t , M ,

T )dm.

In essence, conditioning is equivalent to finding the (uncondi-

tional) crossing distribution of a barrier

B(s, δ1, δ0) = B(s + S0, δ1) − B(S0, δ0), s = S − S0. (8)

In the constant barrier problem, B = δ1 − δ0. This means one

simply replaces all the unconditional expressions given previously

with δc(z) → δ1 − δ0 and S → s = S−S0. As a result, the only

change occurs in the self-similar variable ν (and νc): δ2
c/S → (δ1 −

δ0)2/(S − S0) (Lacey & Cole 1993; Percival & Miller 1999; Sheth

2003).

The square root barrier is slightly more complicated:

B(s, ac) = ac + β
√

s + S0, ac = δ1 − δ0 − β
√

S0. (9)

Because equation (9) is not quite the same functional form as

equation (3), the first crossing distribution is not simply a suit-

ably rescaled version of the unconditional distribution. Rather, it is

a function of ηβ ≡ ac/
√

S0 and s/S0. Nevertheless, the logic one

follows to arrive at the creation time distribution is the same. In

particular, the conditional versions of c and f are simply related:

c(ηβ |S/S0)dηβ = A(S/S0)f (S/S0|ηβ )d(S/S0), (10)

where now the A factor is a function of S/S0. This is another

central result of this paper (compare to equation 5). Expressions for

the exact solution and the corresponding Sheth & Tormen (2002)

approximation are given in Appendix A.5.

Fig. 6 shows the conditional distribution of creation redshifts

for m/m⋆ = (0.1, 0.01) that end up in haloes of mass M/m⋆ =
(1, 10) today. Filled symbols show the GIF2 measurements, open

circles show our Monte Carlos with square root barrier and open

triangles show Monte Carlos with a constant barrier. Smooth curves

show the corresponding predictions – note that they are in excellent

agreement with the Monte Carlos.

The simulation bin sizes d log10 m and d log10(1 + z) were used

as in the unconditional case. Selecting haloes to be conditioned

to belong to a final M-halo reduces the number of creation events

significantly. We selected haloes bound to end up in clumps with

mass in a bin of size dlog10 M = 0.5. As in the unconditional case

(Fig. 4), the distributions peak at higher redshifts and are slightly

broader for lower m (compare left- and right-hand panels). The

same trends are seen as one increases the final M (compare top and

bottom panels).

In general, the moving barrier based curves provide a much better

description of the simulations, although the agreement is by no

means perfect. For example, the square root barrier tends to produce

distributions which are slightly broader than those in the N-body

simulation. This effect is more pronounced in the right-hand panels.

A similar effect was found by Moreno et al. (2008) for the formation

time distribution, which is related to (but different from) the creation

time distribution of interest here (see Giocoli et al. 2007, for details).

In that paper, we speculate that the discrepancy there was due to

non-Markovian effects. We refer the interested reader to Pan et al.

(2008) for a discussion of this topic.

4 H ALO C REATI ON R ATES

Extracting the creation rate from dn/dt (or dn/dt) is a non-trivial

problem. In this section, we make use of halo coagulation theory to

estimate this quantity.

4.1 Unconditional rate

In this formalism, the halo mass function n(m|t) obeys

dn(m|t)
dt

= C(m, t) − D(m, t), (11)

where

C(m, t) =
∫ m

0

K(m′, m − m′; t)

2
n(m′|t)n(m − m′|t)dm′ (12)
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304 J. Moreno, C. Giocoli and R. K. Sheth

is our creation term, and the destruction term is

D(m, t) =
∫ ∞

0

K(m, m′; t)n(m|t)n(m′|t)dm′ (13)

(von Smoluchowski 1917). In these expressions, the coagulation

kernel K(m, m′ ;t) is symmetric in m and m′.

Few analytic solutions to von Smoluchowski’s equation exist.

However, when the kernel is additive in mass, then the associated

mass function is given by the Press–Schechter formula for white-

noise initial conditions (Silk & White 1978; Sheth & Pitman 1997).

Of course, white noise is a bad approximation to the initial condi-

tions in the CDM models of current interest. Moreover, we have

shown that ellipsoidal collapse gives a better description of halo

abundances and creation times than Press–Schechter (spherical col-

lapse). Nevertheless, the expression obtained for the creation term

in that special case,

C(m, t) = ρ̄ m n(m|t)
∣

∣

∣

∣

dδc

dt

∣

∣

∣

∣

(14)

(Sheth & Pitman 1997), will serve as a guide (see Appendix B

for more details regarding coagulation with spherical collapse and

white-noise initial conditions).

This prescription has two interesting properties. First, it is related

to the creation time distribution in a simple way:

C(m, t) = g(m)c(t |m) (15)

(please see Appendix B7). This is equivalent to saying that one

obtains c by normalizing C:

C(m, t)
∫

C(m, t)dt
=

g(m)c(t |m)
∫

g(m)c(t |m)dt
=

g(m)c(t |m)

g(m)
∫

c(m, t)dt
= c(t |m).

(16)

This indicates that all the time dependence in the creation rate is

encoded in the creation time distribution, which was amply studied

in the first part of the paper. In particular, in Section 3, we showed

that the mass function and the creation time distribution are related

in a simple way (equation 5), at least for barriers which are close to

constant or square root. Since we are in this regime, we assume that

our prescription [i.e. C(m, t) = g(m)c(t |m)] works well enough for

our purposes, even when the initial power spectrum is not white

noise, and the barrier associated with the random walk problem

which gives the mass function n that is of interest is not constant. The

second property is that this prescription reduces to the known exact

creation rate in the white-noise case. This fact, while seemingly

obvious, was never imposed as a requirement to be obeyed by the

creation rate in previous works (Blain & Longair 1993a,b; Sasaki

1994; Kitayama & Suto 1996).

Fig. 7 compares this assumption with the measured creation rates

in the simulations. The simulation measurements in Figs 4 and 7 are

the same, except that in the latter, data is normalized in time. Note

that the heights of the curves increase with decreasing mass. This

reflects that fact that, in hierarchical models, more small haloes are

created during the history of the universe than are massive haloes

(which are only created at later times). The constant barrier model

works well for massive haloes, but it overpredicts the creation rate

of less massive haloes – showing a similar discrepancy as in the

Press–Schechter mass function in that mass regime. In all cases, the

square root barrier and the Sheth & Tormen (1999) creation rates

match N-body results reasonably well.

4.2 Conditional rate

We assume that the same prescription can be applied for the condi-

tional case. That is, the rate of creation of haloes of mass m at time

t conditioned to belong to M haloes at a later time T > t is given by

C(m, t |M,T ) = ρ̄ mN (m, t |M, T )

∣

∣

∣

∣

dδc

dt

∣

∣

∣

∣

(17)

(Sheth 2003). Fig. 8 shows our results for the same set of m and M as

in Fig. 6. As in the unconditional case, the simulation measurements

in Figs 6 and 8 are the same, except that in the latter, data are

normalized in time.

For both choices of m, the height of the curves decreases with

increasing final mass M (compare top and bottom panels). This

effect is less pronounced for the smaller m (compare left- and right-

hand panels). In all panels, curves based on the square root barrier

provide a more accurate description of the measurements.

5 D I SCUSSI ON AND C ONCLUSI ONS

We have used the excursion-set approach to study how the distribu-

tion of halo creation times is modified if haloes are assumed to form

from an ellipsoidal rather than a spherical collapse (see Fig. 1). The

creation time distribution governs the time dependence in the cre-

ation term found in von Smoluchowski-like interpretations of the

evolution of the halo mass function (Sheth & Pitman 1997; Benson

et al. 2005; Benson 2008) (i.e. normalizing the creation rate in time

gives the creation time distribution). In this approach, halo abun-

dances and creation times can be derived from the study of random

walks which cross barriers of some specified height. The barrier

itself is specified by the physics of gravitational collapse; that asso-

ciated with spherical collapse has a constant height and this allows

simple analytic solutions for halo abundances and creation times

(e.g. Karlin & Taylor 1975; Bond et al. 1991; Percival & Miller

1999). Dropping the spherical collapse assumption is not trivial, as

it results in a barrier whose height increases with distance along the

walk (Sheth et al. 2001). Moreover, the moving barrier associated

with ellipsoidal collapse is not well-suited to the study of creation

times (see equation 2 and related discussion, as well as discussion

in Sheth & Tormen 2002).

For this reason, we approximated the ellipsoidal collapse barrier

with a square root barrier (equation 3) for which an analytic solution

for the halo mass function exists (Breiman 1966). Moreover, this

barrier yields a halo mass function which is in good agreement

with simulations (Fig. 3). We used Monte Carlo realizations of

random walks to show that the associated creation time distribution

is related to the halo mass function in just the same way that it

is for the constant barrier (equation 5). Because the halo mass

functions associated with the two barriers are different, the creation

time distributions also differ (Fig. 2). The moving barrier based

predictions were in slightly better agreement with measurements of

halo creation times in simulations (Figs 4 and 5).

We also presented the first derivation of the conditional creation

time distribution using the moving barrier model of ellipsoidal col-

lapse. In this case, the differences between the constant and mov-

ing barrier predictions were somewhat more dramatic; the moving

barrier predictions were in substantially better agreement with the

simulations (see Fig. 6, especially the panels on the right). For both

the unconditional and conditional versions, we showed there was a

simple link between c and f (equations 5 and 10), but showed that

this link is special to the constant and square root barriers. While

not true in general (see Appendix A for a counter example), we

argued that, for the mass functions of current interest in cosmology,

this link should provide reasonably accurate approximations to the

creation time distribution.
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Halo creation in moving barrier models 305

Figure 3. Comparison of the GIF2 mass function (symbols) with that de-

rived from the first crossing distribution of a square root barrier: equation (3)

with (q, β, γ ) = (0.55, 0.5, 0.5). The constant barrier Press–Schechter result

is plotted for completeness. Bottom panel shows the ratio of both data and

theory curves to the functional form of Sheth & Tormen (1999).

We also presented an approximation for the normalization con-

stant which converts the creation time distribution into a halo

creation rate. This was motivated by connecting our results to co-

agulation theory (e.g. Sheth & Pitman 1997). Figs 7 and 8 indicate

that this yields reasonably accurate results.

An alternative approach is to express the creation rate in terms of

R(m, m′|t), the rate of mergers of m-haloes with m′-haloes, creating

(m + m′)-haloes as a result. This merger rate has been measured

recently in cosmological simulations (Fakhouri & Ma 2008, 2009)

and studied in the spherical (Lacey & Cole 1993) and ellipsoidal

(Zhang, Ma & Fakhouri 2008a) collapse versions of the excursion-

set approach. The problem in this case is that, with the exception

of white-noise initial conditions, the excursion-set theory predicts

that R(m, m′|t) �= R(m′, m|t) (Sheth & Pitman 1997) (but see

Neistein & Dekel 2008, for a possible solution). Even if the merger

rate were defined unambiguously within the excursion-set approach

with moving barriers, care must be taken when the integrals in equa-

tions (12) and (13) are computed. Our prescription of the creation

rate circumvents these problems altogether. A third possible method

is to use the merger rate developed by Benson et al. (2005) (see

also Benson 2008). This method avoids the complications in the

excursion-set theory by estimating the coagulation kernel K numer-

ically. Unfortunately, the answer in this case depends on the choice

of regularization technique. The formulation of a complete model

for halo mergers with general initial conditions and with the advan-

tages of ellipsoidal collapse remains an open, and quite interesting,

problem.

Halo creation rates have been used to model star formation and

AGN activity. We refer the reader to Haehnelt & Rees (1993),

Haehnelt et al. (1998), Haiman & Loeb (1998), Haiman & Menou

(2000), Hosokawa (2002), Granato et al. (2004), Lapi et al. (2006)

and Wang et al. (2009) for applications of halo creation where our

results can provide an improvement. In some cases, the derivative

of the mass function dn/dz is used to replace the creation rate –

 Constant
 Exact Sqrt
 Approx Sqrt

 ST-99

 MC (Const)
 MC (Sqrt)
 N-Body

Figure 4. Distribution of creation redshifts for a number of bins in halo

mass. Filled circles show measurements in the simulations, and open tri-

angles and circles show analogous measurements made from sampling our

constant and square root barrier random walk ensembles similarly to the

simulations. Dotted curve shows the prediction associated with a constant

barrier; the exact square root solution and its series approximation are the

solid and dashed curves; long-dashed curve shows the result of inserting the

Sheth & Tormen (1999) form into equation (5).

while in others, the creation rate is extracted from dn/dz without

proper justification (see the references in the Introduction). It is our

hope that our analysis will be useful for such studies. We caution,

however, that a halo may be created smoothly through a process of

gradual accretion, or violently, through a merger. If this difference

matters, it may be more appropriate to use a full merger history tree.

Moreno et al. (2008) describes such moving barrier based trees – in

this context, also see Hiotelis & Popolo (2006), Parkinson, Cole &

Helly (2007), Neistein & Dekel (2008) and Zhang, Fakhouri & Ma

(2008b).

The phenomenon called ‘downsizing’ is often associated with

two trends: (i) the tendency for the most massive galaxies to host

the oldest stars and (ii) the tendency, at later times, for star formation

to occur in haloes of lower mass. Our creation time distributions

conditioned on final halo mass have been used to understand trend

(i): if star formation only occurs in sufficiently massive haloes, then

(i) arises naturally in hierarchical models (Sheth 2003). This was

confirmed by Neistein et al. (2006), who then found that they were

unable to explain trend (ii) using this same mechanism. However,

a corrollary of Sheth’s argument is that, if star formation does not

occur in haloes above a certain critical mass, then trend (ii) is the

result. That is to say, if stars only form in haloes between a minimum

and maximum mass range, then downsizing trend (i) is the result

of the minimum mass, and trend (ii) is the result of the maximum

mass. Therefore, we expect our results to provide further insight

into this phenomenon in general, and into the critical mass scales

in particular.
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306 J. Moreno, C. Giocoli and R. K. Sheth

Figure 5. Universality of the distribution of halo creation times. The same

theory curves as in Fig. 2 are shown. Different symbols show results for

different halo masses in the GIF2 simulation data, as indicated.

 Constant
 Exact Sqrt
 Approx Sqrt

 Constant
 Exact Sqrt
 Approx Sqrt

MC (const)
MC (Sqrt)
N-Body

MC (const)
MC (Sqrt)
N-Body

Figure 6. Conditional distribution of creation redshifts. Symbols and style

as in Fig. 4. We plot m = m⋆/10 (left-hand panels) and m = m⋆/100 (right-

hand panels) conditioned to end up in haloes of mass M = M⋆ (top panels)

and M = 10 m⋆ (bottom panels). In all cases, T denotes the present time.
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APPENDI X A : EXCURSI ON-SET R ESULTS

A1 Unconditional formulae

In this section, we provide expressions for f (ν) dν and c(νc) dνc.

(i) Constant barrier (Press–Schechter):

f (ν)dν =
√

ν

2π

e− ν
2

dν

ν
. (A1)

(ii) Square root barrier (exact):

f (ν)dν =
∑

{λ}

ν
λ
2 lλ(−β)

dν

ν
, lλ(−β) ≡

e−β2/4

2

D′
λ(−β)

Iλ(−β)
, (A2)

where Dλ(x) are the parabolic cylinder functions,

D′
λ(x) =

dDλ(x)

dx
, Iλ(−β) =

∫ ∞

−β

dx D2(x), (A3)

and the {λ}-eigenvalues satisfy Dλ(−β) = 0 (Breiman 1966;

Mahmood & Rajesh 2005; Giocoli et al. 2007).

(iii) Square root barrier (series approximation):

f (ν)dν =
√

ν

2π

e
− ν

2
[1+ β√

ν
]2

[1 +
βα
√

ν
]
dν

ν
, α ≃ 0.2461 (A4)

(see Sheth & Tormen 2002).

(iv) ‘Sheth-Tormen’ result:

f (ν)dν = A

√

ν

2π

e− ν
2 [1 + ν−p]

dν

ν
, (A, p) = (0.332, 0.3) (A5)

(see Sheth & Tormen 1999).

In the above models, we have suppressed the parameter q of equa-

tion (2), which is (1, 0.55, 0.55, 0.707), respectively, for each model.

This can be incorporated by replacing ν → qν in the corresponding

formulae.

A2 Creation times from Bayes’ rule

Consider the joint probability that a random walk first upcrosses a

constant barrier (with δ-intercept between δc and δc + dδc) between

S and S + dS. Using Bayes’ Theorem, this can be written as

P (S, δc)dSdδc = f (S|δc)f̄ (δc)dSdδc = c(δc|S)c̄(S)dδcdS.

For constant barriers, Percival & Miller (1999) argue that the δc-

prior must be uniform. First, they note that all walks must have a

creation event for any barrier, regardless of its height (see Fig. 1, left-

hand panel). Moreover, for any two equal-sized intervals dδc1 and

dδc2, the probability that such a creation event exists must be equal.

This is because the steps in the walk are uncorrelated, implying that

any point along the walk can be regarded as the starting point of a

new walk. Therefore, the walk is not altered at different values of δc

and the probability of crossing two different barriers at some point

is the same. In other words, the δc-prior is given by

f̄ (δc)dδc =
dδc

�δc

, (A6)

where the constant �δc is infinite, since δc ∈ [0, ∞).

Given f̄ (δc)dδc and f (S|δc) dS, one can marginalize the joint

distribution in δc. This yields

c̄(S)dS = dS

∫ ∞

0

dδc[P (S, δc)] =
dS

2A
√

S�δc

, (A7)
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where A = (
√

π/2, 2, 2.08, 1.893), respectively, for each of the

four models presented above. Inserting (A6) and (A7) in Bayes’

formula gives

c(δc|S)dδc = 2A
√

Sf (S|δc)dδc. (A8)

But f (S|δc) = (νc/S)f (νc) (S is fixed) and c(δc|S) = (2νc/δc)c(νc),

from which

c(νc)dνc = A
√

νcf (νc)dνc. (A9)

Thus, for constant barriers, there is a remarkably simple rela-

tion between the creation time distribution c and the first crossing

distribution f .

Percival et al. (2000) argue that equations (A6) and (A9) remain

true for all choices of f , which in the present context mean, for all

barrier shapes. We will now show why this is incorrect, and also

why equation (A9) nevertheless provides a good approximation to

the correct answer.

A3 Why it does not work in general

Consider the linear barrier

B(S, δc) = δc

[

1 − β

(

S

δ2
c

)]

. (A10)

This is special case of the barrier in equation (2) with γ = 1 (we have

suppressed the parameter q). Note that we have deliberately replaced

β → −β in the above expression. In this work, we will only

consider the β > 0 case to avoid barriers that intersect. Moreover,

if β > 0, all walks are guaranteed to cross. The exact solution is

known, and it is given by

f (ν)dν =
√

ν

2π

e− ν
2

(1− β
ν )2 dν

ν
, (A11)

where ν = δ2
c/S (fixed S) (Schroedinger 1915; Sheth 1998). If

equation (A6) holds, then the creation time distribution should be

given by

c(νc)dνc = A
√

νcf (νc)dνc, where A =
√

π

2
e− β

2 , (A12)

and νc = δ2
c/S (fixed δc).

To test this, we performed a Monte Carlo simulation of the mass

histories associated with random walks where linear barriers (with

β = 1) are used to select creation events. Fig. A1 shows one sample

mass history of this ensemble. Compare this with Fig. 1, which

shows the same process, but with constant and square root barriers.

The jagged line is a random walk, and the brown solid circles are

the associated history. The long-dashed lines denote jumps in the

history. For completeness, we have included the linear barrier with

δc = δc0, depicted as a dotted line in the lower left. Fig. A2 shows

our Monte Carlo data (brown open squares). The solid black curve

is the prediction in equation (A12). This disagreement invalidates

the claim that c(νc)dνc is always proportional to
√

νcf (νc)dνc.

Before moving on, note that the Monte Carlo data in Fig. A2

follow a smooth curve that is quite different from that associated

with constant or square root barriers (Fig. 3). The main difference

is that the latter peak at some intermediate value of νc, whereas

the former decreases monotonically with νc. This is because it is

unlikely for a random walk to upcross a constant barrier (or a square

root barrier) after a few steps. In other words, creation events with

S ≪ δ2
c (i.e. νc ≪ 1) are very unlikely. Similarly, it is unlikely

that a walk survives for many steps without being absorbed by a

Figure A1. The mass history associated with a random walk (jagged line)

and linear barriers. The brown filled circles on the random walk denote the

creation events. Note that the barriers become steeper as δc increases, and

the separation between any two barriers increases with increasing S. For

reference, the dotted line in the lower left represents the barrier associated

with δc = δc0.

Figure A2. The creation time distribution associated with linear barriers in

self-similar form. The variable νc denotes δ2
c/S at fixed mass. The squares

show the distribution measured from an ensemble of random walks with

linear barriers. The solid curves show the associated predictions – assuming

that equation (A6) applies (the ‘Bayesian’ result). The discrepancy between

the theory prediction and the data indicates that care must be taken when

using the result in equation (5).

constant barrier. That is, creation events with S ≫ δ2
c (i.e. νc ≫ 1)

are unlikely. For the linear barrier, the ensemble of creation events

is dominated by points with small δc (i.e. small νc). This is because

the linear barrier becomes steeper as δc decreases. Since the height

of a linear barrier decreases with S, it becomes easier for walks to

upcross a barrier as δc decreases. This even allows for cases where

creation events are selected from points along a walk with δ < 0.
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Such cases would be impossible for the constant and the square root

barrier models.

In principle, the creation time distribution with linear barriers

can be computed analytically, without using the Bayesian approach

presented here (e.g. Karlin & Taylor 1975). Since the mass function

associated with linear barriers does not resemble halo abundances

in N-body simulations, we do not pursue this any further (but see

Sheth 1998, for interesting applications of this barrier).

A4 Why it is a useful approximation in practice

If equation (A9) is incorrect in general, then why then did it work

so well in the main text? The first step is to recognize that, because

of the property highlighted by equation (4), a uniform distribution

in δc is appropriate for the family of square root barriers of interest

to us (equation 3), and so, for square root barriers, equation (A9) is

exact. Our Monte Carlo simulations shown in the main text confirm

that this is indeed the case.

The second step is to note that, for barriers with general γ ,

the difference between two barriers carries additional factors of

δc (e.g. equation 2). As a result, assumption (A6) is no longer valid.

For example, for linear barriers,

B(S, δc2) − B(S, δc1) = δc2 − δc1 − β

(

S

δc2

−
S

δc1

)

�= δc2 − δc1.

(A13)

This property makes the linear barrier considerably different from

the constant and square root barriers. Fig. A2 shows that the dis-

tance between any two linear barriers increases with increasing S

(compare with Fig. 1), so the δc-prior is not uniform.

It is important to emphasize that the central conclusion of this and

the previous subsection – that the assumptions behind equation (5)

do not hold in general – does not depend on the fact that the linear

barrier decreases in height with S. For example, barriers of the form

given by equation (2) with β > 0 and 0 < γ < 1/2 increase with S.

However,

B(S, δc2) − B(S, δc1) �= δc2 − δc1; (A14)

the separation between any two barriers increases with S, so the

δc-prior is not uniform in this case either. For these barriers too,

equation (A9) is incorrect. Nevertheless, for γ close to 0 or 1/2,

equation (A9) should provide a reasonable approximation. This is

the fundamental reason why barriers with γ = 0.6, or of the form

required to give the Sheth & Tormen (1999) formula as the first

crossing distribution, are likely to have creation time distributions

which are well approximated by equation (A9).

A5 Conditional formulae

The conditional mass function and creation time distribution can be

obtained from the unconditional crossing distribution of the barrier

B in equation (8). The natural variables in this case are s/S0 and

ηβ = ac/
√

S0 (where ac ≡ δ1 −δ0 −β
√

S0). Explicitly, the crossing

distribution can be written as

f (s/S0|ηβ )d(s/S0) = g(s/S0, ηβ )
d(s/S0)

s/S0 + 1
, (A15)

where two forms of g are given below (Breiman 1966; Sheth &

Tormen 2002).

(i) Square root barrier (exact):

g(s/S0, ηβ ) =
∑

{λ}

eηβ
2/4 Dλ(ηβ )lλ(−β)

(s/S0 + 1)λ/2
. (A16)

(ii) Square root barrier (series approximation):

g(s/S0, ηβ ) =
|ηβ + β

√
s/S0 + 1[1 + α(s/S0)]|√

2πs/S0

× exp { −
(ηβ + β

√
s/S0 + 1)2

2s/S0

}
s/S0 + 1

s/S0

, (A17)

where

α(s/S0) =
5

∑

n=1

αn

s/S0 + 1
, α 1 = −

1

2
and αn =

(

1 −
3

2n

)

αn−1.

(iii) Bayes’ rule: the joint distribution of s/S0 and ηβ is given by

P (s/S0, ηβ )d(s/S0)dηβ = f (s/S0|ηβ )f̄ (ηβ )d(s/S0)dηβ

= c(ηβ |s/S0)c̄(s/S0)d(s/S0)dηβ .
(A18)

Following equation (A6) for δ1 and δ0 and using the fact that S0 is

fixed, it can be shown that the ηβ -prior is uniform:

f̄ (ηβ )dηβ =
dηβ

�η
, (A19)

where � η is an infinite constant. Marginalizing over the joint

distribution in ηβ , we obtain

c̄(s/S0)d(s/S0)
G

s/S0 + 1

d(s/S0)

�η
, (A20)

where

G(s/S0) =
∫ ∞

0

dηβ g(s/S0, ηβ ). (A21)

Inserting equations (A15), (A19) and (A20) in Bayes’ rule, we

obtain

c(ηβ |s/S0)dηβ =
g

G
dηβ . (A22)

Comparing (A15) to (A22), we find that

c(ηβ |s/S0)dηβ = A(s/S0)f (s/S0|ηβ )dηβ , (A23)

where

A(s/S0) = (s/S0 + 1)/G. (A24)

This result is confirmed by our Monte Carlo simulations (Fig. 6).

A P P E N D I X B: C OAG U L AT I O N TH E O RY

B1 White-noise initial conditions

The creation rate in the discrete von Smoluchowski equation is

C(m, t) =
m−1
∑

m′=1

K(m′, m − m′; t)

2
n(m′|t)n(m − m′|t). (B1)

If the kernel K is additive, the solution approaches the white-noise

Press–Schechter mass function in the continuum limit (large m and

small δc). Moreover, Sheth & Pitman (1997) showed that the above

equation can be written as

C(m, t) = n̄ n(m|t)
m − 1

1 + δc

∣

∣

∣

∣

dδc

dt

∣

∣

∣

∣

m−1
∑

m′=1

pm′|m−m′ , (B2)

where n̄ is the mean number density of particles. If we picture haloes

as a collection of particles held together by (m − 1) non-intersecting

bonds (branched polymers), pm′|m−m′ gives the probability of ob-

taining an m′-halo and (m − m′)-halo by deleting one random bond
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310 J. Moreno, C. Giocoli and R. K. Sheth

in the m-halo. The sum over a normalized probability is trivial, so

the creation term is simply

C(m, t) = n̄ n(m|t)
m − 1

1 + δc

∣

∣

∣

∣

dδc

dt

∣

∣

∣

∣

. (B3)

In the continuum limit, this becomes

C(m, t) = ρ̄ m n(m|t)
∣

∣

∣

∣

dδc

dt

∣

∣

∣

∣

. (B4)

Similarly, in the conditional case,

C(m, t |M,T ) = n̄ N (m|t,M, T )
m − 1

1 + δc

∣

∣

∣

∣

dδc

dt

∣

∣

∣

∣

(B5)

(Sheth 2003). In the continuum limit, this becomes

C(m, t |M,T ) = ρ̄ m N (m|t,M, T )

∣

∣

∣

∣

dδc

dt

∣

∣

∣

∣

. (B6)

Note that the two rates (equations B4 and B6) are related by the

following consistency condition:
∫ ∞

m

dM C(m, t |M,T ) n(M|T ) = C(m, t). (B7)

In other words, the unconditional rate is recovered from the condi-

tional rate by multiplying by the number density of M-haloes at T

and integrating over all possible M > m. This consistency relation is

true in general, not just when the initial conditions are white noise.

B2 The time-normalized creation rate

In this appendix, we show that creation rate C(m, t) (equation 14,

Section 4) is related to the creation time distribution c(t |m) (equa-

tion 5, Section 3) in a simple way. First, note that c(t |m) can be

written in terms of νc = δ2
c/S. That is,

c(t |m) = c(δc|S)

∣

∣

∣

∣

dδc

dt

∣

∣

∣

∣

= c(νc)

∣

∣

∣

∣

dνc

dδc

∣

∣

∣

∣

∣

∣

∣

∣

dδc

dt

∣

∣

∣

∣

=
2νc

δc

c(νc)

∣

∣

∣

∣

dδc

dt

∣

∣

∣

∣

, (B8)

where we have used the fact that |d ln νc/d ln δc| = 2.

Now, following equation (5), the above expression can be written

as

c(t |m) =
2νc

δc

A
√

νcf (νc)

∣

∣

∣

∣

dδc

dt

∣

∣

∣

∣

. (B9)

On the other hand,

mn(m|t)
ρ̄

= f (m|t) = f (S|δc)

∣

∣

∣

∣

dS

dm

∣

∣

∣

∣

=
ν

S
f (ν)

∣

∣

∣

∣

dS

dm

∣

∣

∣

∣

, (B10)

where we have used the fact that |d ln ν/d ln S| = 1.

Our prescription for the creation rate (equation 14) is

C(m, t) = ρ̄2 mn(m|t)
ρ̄

∣

∣

∣

∣

dδc

dt

∣

∣

∣

∣

= ρ̄2 ν

S
f (ν)

∣

∣

∣

∣

dS

dm

∣

∣

∣

∣

∣

∣

∣

∣

dδc

dt

∣

∣

∣

∣

. (B11)

Taking the ratio of (B9) and (B11), we obtain

C(m, t)

c(t |m)
=

ρ̄2 ν

S
f (ν)

∣

∣

∣

∣

dS

dm

∣

∣

∣

∣

∣

∣

∣

∣

dδc

dt

∣

∣

∣

∣

2νc

δc
A

√
νcf (νc)

∣

∣

∣

∣

dδc

dt

∣

∣

∣

∣

=
ρ̄2

2A
√
S

∣

∣

∣

∣

dS

dm

∣

∣

∣

∣

≡ g(m), (B12)

where we have dropped the distinction in notation between ν and

νc. Simply put,

C(m, t) = g(m)c(t |m). (B13)

Integrating both sides with respect to time,
∫

C(m, t)dt =
∫

g(m)c(t |m)dt = g(m)

∫

c(t |m)dt = g(m),

(B14)

since c(t |m) is, by definition, a time-normalized distribution. Thus,

c(t |m) =
C(m, t)

g(m)
=

C(m, t)
∫

C(m, t)dt
. (B15)

In other words, c(t |m) can be obtained from C(m, t) by normalizing

the latter in time.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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