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Abstract: The real projective plane is a compact, non-orientable orbifold of Euler charac-

teristic 1 without boundaries, which can be described as a twisted Klein bottle. We shortly

review the motivations for choosing such a geometry among all possible two-dimensional

orbifolds, while the main part of the study will be devoted to dark matter study and limits

in Universal Extra Dimensional (UED) models based on this peculiar geometry. In the

following we consider such a UED construction based on the direct product of the real

projective plane with the standard four-dimensional Minkowski space-time and discuss its

relevance as a model of a weakly interacting Dark Matter candidate.

One important difference with other typical UED models is the origin of the symmetry

leading to the stability of the dark matter particle. This symmetry in our case is a remnant

of the six-dimensional Minkowski space-time symmetry partially broken by the compactifi-

cation. Another important difference is the very small mass splitting between the particles

of a given Kaluza-Klein tier, which gives a very important role to co-annihilation effects.

Finally the role of higher Kaluza-Klein tiers is also important and is discussed together

with a detailed numerical description of the influence of the resonances.
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1 Introduction

The motivations for building a specific model based on a compactified Extra Dimension can

be of different origins, ranging from phenomenological ones to more formal ones related for

example to string theory. For instance, the issue of the radiative stability of the Higgs boson

mass or the mass hierarchy in the fermion and gravity sectors can be addressed in novel

ways compared to 4 dimensional physics. In this paper we focus on the issue of Dark Matter

in Universal Extra Dimension (UED) type of models. In the following we shall consider

an effective theory defined on a d dimensional manifold which is the direct product of the

standard four-dimensional Minkowski space-time M4 and a (d − 4)-dimensional orbifold

defined as the quotient space of R(d−4) modulo a discrete symmetry group Γ. This general

framework can be constrained by few important theoretical requirements which will select,

in our case, a unique geometry.

One of the most attractive explanations to the presence of Dark Matter (DM) in

the universe is the existence of a weakly interacting particle (WIMP), present in many

extensions of the Standard Model. A main requirement for a particle theory model is

therefore the possibility to obtain, in a natural way, a viable Dark Matter candidate, in

the form of a neutral, stable and weakly interacting particle. From a theoretical point of

view, its stability should be obtained as the result of a symmetry conservation law. In

this respect many models impose an ad hoc parity, which may or may not have other

independent justifications. In extra dimensions, residual symmetries of the compact space

can play the role of the parity that stabilises a Dark Matter candidate [1], however such

symmetry usually requires ad hoc constraints on the effective Lagrangian of the model.

The scenario we discuss here, based on the real projective plane orbifold, has a special

status as the stability of the dark matter candidate is not imposed, but is the result of an

exact residual space-time symmetry after compactification.

The presence of exact residual symmetries is related to fixed points or lines. Fixed

points, which are points in the extra space which are left invariant by all the symmetries

of the orbifold projection, in general break the d-dimensional Lorentz invariance to the 4-

dimensional one, therefore no extra symmetry would survive in general and the predictivity

of the model is considerably reduced. Indeed the divergences appearing in loop corrections

require counter-terms localised on these fixed points. Another important theoretical and

phenomenological requirement is the presence of 4-dimensional chiral fermions as zero

modes in the low energy spectrum of the effective theory. The requirements of the absence

of fixed points and of the presence of chiral zero modes completely eliminate the possibility

of working with only one compact extra dimension, as the only 1-dimensional orbifold

without fixed points is the circle S1. However no chiral fermions can be defined on the

circle without taking a quotient introducing fixed points. In [2] it was shown that the

unique orbifold without fixed points, among the 17 orbifolds which can be defined on a

2-dimensional euclidean plane, is the real projective plane (RP2). One may consider higher

dimensional orbifolds, but naive dimensional analysis shows quite easily that increasing

the space-time dimensionality of the effective theory brings automatically an increase in

the dimension of the fields and operators which reduces drastically the predictivity of an
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effective theory based on the quantum field theory paradigm. We shall therefore limit our

study to this unique 2-dimensional orbifold, the real projective plane. Its fundamental

domain is a rectangle with opposite sides identified after being twisted, like a “double”

Möbius strip. If we were to twist only along one direction, and join the other two sides

plainly, we would obtain a Klein bottle: therefore, the real projective plane can also be

thought as a twisted Klein bottle.

The paper is organised as follows: after summarising in section 2 the basic formulas for

the DM relic density calculation, in section 3 we briefly present the real projective plane

and the corresponding UED model. In section 4 we describe in detail the peculiar spectrum

of the RP2 model, its dark matter particle candidate (LKP) and the main formulas for its

pair annihilation. In the following sections 5 and 6 we study the relic abundance using

respectively analytic and numerical calculations. These two sections complete nicely each

other for the understanding of the relic abundance behaviour of different contributions:

annihilation versus co-annihilation and different particles contributions for DM observables.

The effect of the cut-off of the effective theory is discussed in section 7, while that of the

localised Higgs mass in section 8. In section 9 we consider the present and future direct

detection bounds. Section 10 contains our conclusions.

2 Dark Matter relic density

In order to compute the dark matter relic density, we assume the cosmological standard

model, which is based on a Friedmann-Lemâıtre Universe filled with radiation, baryonic

matter and cold dark matter, approximately flat and incorporating a cosmological constant

accelerating its expansion. Before recombination, the Universe expansion is dominated by

a radiation density, and therefore the expansion rate H of the Universe is determined by

the Friedmann equation

H2 =
8πG

3
ρrad , (2.1)

where

ρrad(T ) = geff(T )
π2

30
T 4 (2.2)

is the radiation density and geff is the effective number of degrees of freedom of radiation.

The computation of the relic density is based on the solution of the Boltzmann evolution

equation [3, 4]

dn/dt = −3Hn− 〈σeffv〉(n
2 − n2

eq) , (2.3)

where n is the number density of all KK particles, neq their equilibrium density, and 〈σeffv〉
is the thermal average of the annihilation rate of the KK particles to the Standard Model

particles. The thermal average of the effective cross section is given by

〈σeffv〉 =

∫

∞

0
dpeffp

2
effWeff(

√
s)K1

(√
s

T

)

m4
LKPT

[

∑

i

gi
gLKP

m2
i

m2
1

K2

(mi

T

)

]2 , (2.4)
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where K1 and K2 are the modified Bessel functions of the second kind of order 1 and 2

respectively, and

dWeff

d cos θ
=

∑

ijkl

pijpkl
8πg2LKPpeffSkl

√
s

∑

helicities

∣

∣

∣

∣

∣

∑

diagrams

M(̃ij̃ → kl)

∣

∣

∣

∣

∣

2

, (2.5)

where M(̃ij̃ → kl) is the transition amplitude of the (co-)annihilation of KK particles ĩ

and j̃ into SM particles k and l,

g2LKPpeffWeff ≡
∑

ij

gigjpijWij (2.6)

with

peff(
√
s) =

1

2

√

(
√
s)2 − 4m2

LKP , (2.7)

and where θ is the angle between particles ĩ and k. By solving the Boltzmann equation, the

density number of KK particles in the present Universe and consequently the relic density

can be determined. The ratio of the number density to the radiation entropy density,

Y (T ) = n(T )/s(T ) can be defined, where

s(T ) = heff(T )
2π2

45
T 3 . (2.8)

heff is the effective number of entropic degrees of freedom of radiation. Combining eqs. (2.1)

and (2.3) and defining x = mLKP/T , the ratio of the LKP mass over temperature, yield

dY

dx
= −

√

π

45G

g
1/2
∗ mLKP

x2
〈σeffv〉(Y

2 − Y 2
eq) , (2.9)

with

g
1/2
∗ =

heff√
geff

(

1 +
T

3heff

dheff
dT

)

. (2.10)

The freeze-out temperature Tf is the temperature at which the LKP leaves the initial

thermal equilibrium when Y (Tf ) = (1 + δ)Yeq(Tf ), with δ ≃ 1.5. The relic density is

obtained by integrating eq. (2.9) from x = 0 to mLKP/T0, where T0 = 2.726 K is the

temperature of the Universe today [3, 4]:

ΩLKPh
2 =

mLKPs(T0)Y (T0)h
2

ρ0c
≈ 2.755× 108

mLKP
1 GeV

Y (T0) , (2.11)

where ρ0c is the critical density of the Universe, such as

H2
0 =

8πG

3
ρ0c , (2.12)

H0 being the Hubble constant. The obtained relic density ΩLKPh
2 can then be directly

compared to the observed dark matter density. The numerical calculation of the relic

density is performed using MicrOMEGAs v2.4.1 [5, 6]. To constrain the relic density,
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we consider the 7-year WMAP data (WMAP7), which have provided an unprecedented

measurement of the cold dark matter density [7]:

Ωcdmh2 = 0.1123± 0.0035 . (2.13)

Taking into consideration 10% of theoretical uncertainty in the relic density calculation,

we impose the following constraint:

0.0773 < Ωh2 < 0.1473 . (2.14)

It is important to remark however that the calculation of the relic density rely on many

cosmological assumptions. In particular, different cosmological scenarios can lead to a relic

density which is larger than that computed in the standard cosmological scenario. First,

the LKP could be only one of several dark matter components. Then, if dark energy

were the dominant component at the time of the relic freeze-out, it would result in an

acceleration of the expansion of the Universe, which would lead to an earlier freeze-out and

a much larger relic density [8–12]. Finally, entropy generation at the time of freeze-out, for

example due to the decay of a late inflaton, can also lead to an increase — or a decrease —

of the relic density [13–17]. These effects are however limited by Big-Bang nucleosynthesis

constraints, but using SuperIso Relic [18, 19] and AlterBBN [20], it can be verified that

they can nevertheless lead to an increase of three orders of magnitudes or more of the relic

density while still being compatible with BBN constraints. For this reason, the lower dark

matter density bound can be considered as a weak constraint.

3 UED on a twisted bottle

The real projective plane RP 2 is a compact, non-orientable orbifold of Euler characteristic

1 without boundaries. It can be constructed in two ways, either starting from a sphere S2

or from an infinite plane R
2. The two constructions are not equivalent as in the first case

the curvature is distributed on the surface while in the second we have a flat metric gMN =

diag(1,−1,−1,−1,−1,−1) except for two conical singularities (but not fixed points) where

curvature is concentrated. The Kaluza-Klein spectrum is also different: starting on the

sphere S2, the modes are labelled by angular momentum, while starting on the plane R
2

the modes are labelled by quantised momentum along the two directions. In this paper we

select the simplest case from the point of view of discussing fermions, so we choose the flat

version of the orbifold that was described in ref. [2]. Some aspects of the spherical RP2 are

discussed in ref. [21].

The “flat” real projective plane is defined as a quotient space RP2 = R
2/ΓRP 2 where

ΓRP 2 is a discrete symmetry group defined by two symmetry generators g and r as:

ΓRP 2 = 〈r, g|r2 = (g2r)2 = 1〉 . (3.1)

– 5 –
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0 Π R 2 Π R y4

Π R

2 Π R

y5

0 Π R 2 Π R y4

Π R

2 Π R

y5

HΠR,ΠRL

HΠR�2,ΠR�2L

Figure 1. On the left panel: fundamental domain of the real projective plane (within black dashed

lines) embedded in a torus (blue square). The red dot is π-rotation generator; the red dashed arrow

represents the glide generator g. The green and orange arrows indicate the identification of the

facing sides. On the right panel: geometrical properties of the real projective plane. The identified

pairs of singular points are marked by red and green dots. The centre of the square (black dot) is

the pKK parity centre. In this figure we set R4 = R5 = R.

We choose a particular representation of the generators in terms of the isometries of

the plane:1

g :

{

x4 ∼ g(x4) = −x4 + πR4

x5 ∼ g(x5) = x5 + πR5
, r :

{

x4 ∼ r(x4) = −x4
x5 ∼ r(x5) = −x5

, (3.2)

so that g generates the glide (mirror reflection + translation) and r corresponds to the

rotation of π degrees around the origin. The fundamental domain of our twisted bottle can

be visualised as a rectangle of sides of length πR4 and πR5, with opposite sides identified

with a twist. The orbifold obtained in this way has no fixed points and no fixed lines as

can be seen in figure 1. In fact, the glide makes sure that no point can be identified with

itself. The corners of the rectangle, which are fixed points of the rotation, are identified by

the glide: (0, 0) ∼ (πR4, πR5) and (0, πR5) ∼ (πR4, 0). These two physically nonequivalent

points form two conical singularities with deficit angle π, which concentrate the curvature

of the real projective plane but keeping the metric finite on these points.

The two symmetries g and r generate two translations t4 ≡ (g ∗ r)2 and t5 ≡ g2 along

the two directions x4 and x5 respectively under which the space is periodic, therefore the

real projective plane can be embedded in a torus T 2. This is an important property as the

torus is an orientable orbifold and fermions can therefore be defined in the same way as

on the T 2 orbifold. The chirality of the 4-dimensional fermions can be properly defined on

this space-time geometry thanks to the rotation projection r (see ref. [2] for details).

1Note that the structure of the group is entirely defined by the relations between the generators. Their

particular representation in terms of the isometries of the plane is not necessary but helps in visualisation.
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(k, l) pKK (++) (+−) (−+) (−−)

(0, 0) + 1
2π

(0, 2l) + 1
√

2π
cos 2lx6

1
√

2π
sin 2lx6

(0, 2l − 1) −

1
√

2π
cos(2l − 1)x6

1
√

2π
sin(2l − 1)x6

(2k, 0) + 1
√

2π
cos 2kx5

1
√

2π
sin 2kx5

(2k − 1, 0) −

1
√

2π
cos(2k − 1)x5

1
√

2π
sin(2k − 1)x5

(k, l)k+l even + 1
π
cos kx5 cos lx6

1
π
sin kx5 sin lx6

1
π
sin kx5 cos lx6

1
π
cos kx5 sin lx6

(k, l)k+l odd −

1
π
sin kx5 sin lx6

1
π
cos kx5 cos lx6

1
π
cos kx5 sin lx6

1
π
sin kx5 cos lx6

Table 1. Classification of the modes with parity assignment (pr, pg) and KK number (k, l) and

corresponding normalised wave functions for a scalar field (here for simplicity we assume R4 =

R5 = 1).

3.1 Field content

We are interested in a Universal Extra Dimensions model where all the Standard Model

particles are allowed to propagate in the two extra dimensions. We consider a minimal

version of the model that can be defined on RP 2, that is we introduce only the fields whose

zero modes will reproduce the Standard Model content. The detailed construction of the

orbifold and quantum fields decomposition is presented in ref. [2]. Here we mention the

important points about the spectrum for the purpose of this paper.

Each quantum field is now a 6-dimensional field which, while projected on the orbifold,

decomposes in an infinite tower of massive Kaluza-Klein (KK) modes. Each tier of modes is

labelled by two integers (k, l) which correspond to the discretised momenta along the extra

directions. While projected on the orbifold, the fields can have in general four different

parities under orbifold projection: (pr, pg) = (±1, ±1). The parities are chosen in such a

way that the zero mode spectrum corresponds to the SM.

To each SM field there corresponds exactly one six-dimensional field and therefore one

tower of massive KK resonances. The only exception are fermions: we have to introduce

two six-dimensional spinors Ψ6D = (χ+, η̄−, χ−, η̄+)
T with opposite rotation parities for

each four-dimensional Dirac spinor. In this notation ± subscripts correspond to the 6D

chiralities while χ, η are the 4D chirality eigenstates. The rotation projection will cancel

the the zero-more wave functions of left or right handed components (χ or η) in Ψ6D

assuring a chiral 4D zero mode. For example, for a 4-dimensional Dirac spinor e4D we

should introduce a 6-dimensional spinor e6DL corresponding to a left handed component of

e4D and a e6DR corresponding to a right handed component of e4D, and as a result for a SM

electron we will have two infinite towers of massive KK states which will differ by rotation

parity assignment pr.

The mass eigenstates can be labelled by their parity assignment (pr, pg) and KK num-

ber (k, l). As an illustration, the classification of the modes with normalised wave functions

for a scalar field from [2] is (here for simplicity we fix R4 = R5 = 1):

The fundamental space in figure 1, including boundaries and corners, is invariant

under a π-rotation around the centre of the rectangle r′. Under this rotation, however, the

opposite chiralities will pick a different parity under rotation r′ therefore it can not be a

– 7 –
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good KK parity. An equivalent symmetry can however be defined in terms of translation

(see ref. [22] for details):

pKK = r′ ∗ r :

{

x4 ∼ pKK(x4) = x4 + πR4

x5 ∼ pKK(x5) = x5 + πR5
. (3.3)

This exact symmetry of the space can be translated into a parity on the KK states as

all the fields in a (k, l) mode will pick up the same phase (−1)k+l, therefore modes with

even k+ l are even and modes with odd k+ l are odd. This parity ensures the stability of

the lightest odd states as they can never decay into a pair of lighter states which are even

under KK parity. It follows that the lightest odd state belongs to either (1, 0) or (0, 1),

thus it is in such tiers that we will look for a suitable Dark Matter candidate.

4 Particle spectrum and the Dark Matter candidate

In this section we present the detailed spectrum of the (1, 0)-(0, 1) and (2, 0)-(0, 2) tiers

at one loop level. We see that the first KK excitation of the photon A(1,0) and/or A(0,1)

is the viable Dark Matter candidate. We emphasise also an interesting property of the

spectrum in our model, that all the particles in the same tier are nearly degenerated in

mass even after the introduction of radiative corrections. This feature is important for the

calculation of the relic abundance of the LKP, since the abundance is strongly affected by

co-annihilation processes. Note that in other UED models [24, 25] the mass splitting are

naturally larger.

At leading order, all the states in each tier are degenerate with mass determined by

the two integers (l, k) as

m2
l,k =

l2

R2
4

+
k2

R2
5

. (4.1)

Splittings within the modes in each tier (k,l) can be generated by three mechanisms:

the Higgs vacuum expectation value (VEV), bulk interaction loop corrections and higher

order operators localised on the singular points.

At one loop order the mass of an (n, 0) or (0, n) state can be generically written as

m2
(n,0) =

1

R2
4/5

(

n2 +m2
SMR2

4/5 + δ
(n,0)
finite(R4, R5) + n2δlog

)

, (4.2)

where mSM is the mass of the correspondent SM state, δfinite is a finite contribution while

δlog is a divergent contribution depending on the log of a cut-off scale δlog ∼ log ΛR4/5.

Detailed formulas for the mass corrections for the tiers (1, 0) and (0, 1) can be found in

ref. [23], while formulas for the even tiers (2, 0) and (0, 2) can be found in ref. [22]. We see

that at loop level the masses depend on 3 free parameters: the two radii R4 and R5, and

the cut-off ΛR. The only exceptions are the massive Higgs modes, which are only present

in the even tier (2, 0) and (0, 2): for the scalar field the most generic Lagrangian contains

a mass term ∼ mloc localised on the singular points therefore the (2,0) KK scalar mass at

loop level is given by [22]:

m2
H(n,0) =

1

R2
4/5

(

n2 +m2
SMR2

4/5 +m2
locR

2
4/5 + δ

(n,0)
finite(R4, R5) + 4δlog

)

, (4.3)

where mloc is a free parameter of the model.

– 8 –
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As it can be seen in the formulas 4.2 and 4.3 the finite loop corrections δ
(n,0)
finite depend on

whether we consider the (n, 0) or (0, n) mode. However the mass correction is dominated

by the log-divergent term, which is enhanced for heavier tiers while the δ
(n,0)
finite dependence

on R4/R5 is very mild [22], thus here for simplicity we consider that δ
(n,0)
finite = δ

(0,n)
finite and

the correction relative to the tree level one is almost independent on the value of the radii

R4 and R5.

Moreover we should consider a generic cross level mixing between the modes with

different KK numbers: (n, 0)− (m, 0), (0, n)− (0,m) and (n, 0)− (0,m). Mixing for n 6= m

can be safely neglected. For n odd the modes (n, 0) − (0, n) cannot mix via loops as the

vertexes would break the KK parity, therefore only the even modes (n, 0)− (0, n) can mix

and the mixing angle depends on the ratio R4/R5. In our numerical study we will focus

on two limiting cases: the degenerate case R4 = R5 and the decoupling limit R4 ≫ R5 and

we describe the properties of the spectrum in each of the cases below.

4.1 Decoupling limit R4 ≫ R5

In the decoupling limit R4 ≫ R5, all the states (0, n) and (n,m), whose tree level masses

have a contribution proportional to 1/R2
5 decouple from the spectrum. Therefore, for our

purposes, only (n, 0) states will contribute. Moreover, the spectrum of the tiers is only

mildly dependent on the value of R5 via the finite contributions δ
(n,0)
finite, therefore as a good

approximation we can use the formulas for the mass corrections with R4 = R5. In this limit

no mixing between even modes appears. Regarding the relic abundance calculation, in fact,

the potential Dark Matter candidate from (0, 1) is irrelevant as long as the difference in

mass 1/R5−1/R4 is or order a few times the freeze-out temperature. As the typical freeze-

out temperature is of order few tens of GeV, the decoupling limit is reached even for mildly

asymmetrical radii. Therefore in the decoupling limit the model will contain only one even

tier, labelled by a superscript “(2)”, and one odd tier, labelled by a superscript “(1)”.

4.2 Degenerate radii R4 = R5

In the symmetric R4 = R5 = R case, the masses of the two tiers (0, 1) and (1, 0) are

exactly degenerated: in this case we have two dark matter particles, A(0,1) and A(1,0), with

exactly the same masses and spins. States in the two degenerate tires cannot annihilate

each other, therefore, in the relic abundance calculation, they must be treated as indepen-

dent. They can scatter via states (1, 1), however such processes will only contribute to

the thermalisation of the Dark Matter states. This situation is true up to the presence of

localised operators: in fact, adding different operators on the two singular points breaks

the degeneracy and generates both mass mixing between (1, 0) and (0, 1) states and the

possibility of the direct coupling of (1, 1) states to SM ones. In the following however we

will work in the approximation where such localised operators are absent or negligible. In

the relic abundance calculation we will consider a single odd tier, and multiply the final

results by 2.

The situation is different for the odd tiers: in fact, loop corrections can generate

mass mixing between (2, 0) and (0, 2) states. Now the diagonal mass corrections are equal

– 9 –
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δ
(n,0)
finite = δ

(0,n)
finite = δ

(n)
finite and the off diagonal corrections δ′ introduce a mixing between the two

degenerate states. The off diagonal terms can be calculated by use of the localised counter-

terms [23] and they are equal to the log-divergent diagonal term [22]. As a consequence,

the mass eigenstates are given by A(2±) ∝ A(2,0)±A(0,2) with the mass eigenstates equal to

m2
n±) =

1

R2

(

n2 +m2
SMR2 + δ

(n)
finite(R) + n2δlog ± δ′

)

, (4.4)

with δ′ = n2δlog. Therefore, the sum and difference eigenstates correspond to eigenvalues

with by double or no log-divergent terms. In other words, only one of the mass eigenstates,

A(2+), will have log-divergent contribution to the masses while the A(2−) will have no

log-divergent contribution. Moreover, only the A(2+) plays a significant role in the relic

abundance calculation, as it is the only one to couple to a pair of SM states via divergent

loop contributions. In our model implementation, therefore, we only include this tier [22].

Therefore we can study the degenerate case by considering one odd tier and one even tier

with doubled log-divergent contribution to the mass, and finally multiply by 2 the result of

the relic abundance. As in the asymmetric limit the two tiers will be labelled for simplicity

with the superscripts “(1)” and “(2)” respectively.

4.3 Full numerical spectra and bound on parameters of the model

In the following we will focus on the lightest odd tiers (1, 0) and (0, 1) and the next even

tiers (2, 0) and (0, 2).2 As shown in the previous section the mass spectrum at loop level

depends on four parameters: the two radii of extra dimensions R4 and R5 as well as on the

cut-off scale Λ and, for the scalar field only, on the localised mass parameter mloc.

The radii R4 and R5 which set the characteristic scale of the spectrum are to be

determined by the relic abundance calculation which should be compared with the available

cosmological data WMAP 0.0773 < Ωh2 < 0.1473 [7]. On the other hand the mass

splittings crucially depend on the cut-off Λ of the effective 6D model which enters in the

logarithmically divergent term δlog. Naive dimensional analysis allows us to estimate the

cut off to be a few times mKK , up to about a factor of 10. In figure 2 we show the relative

mass splitting ∆i =
mi

m
A(1)

− 1 with respect to the Dark Matter candidate for the odd tier

as a function of mKK . The corrections range from ∼ 0.2% for the leptons to a ∼ 10%

for strongly interacting states, as it is also clear in table 2, thus justifying the necessity to

consider co-annihilation in the relic abundance calculation. The mass corrections show a

mild logarithmic dependence on the cut-off, as shown in figure 3.

The mloc parameter is another free parameter of the model. It corresponds to the

Higgs mass operator localised on the singular points of the orbifold. Note that in principle

such mass term might be wrong-signed, i.e. m2
loc < 0, and thus help trigger the electroweak

symmetry breaking. This parameter plays a crucial role in the relic abundance calculation,

as it enters the Higgs mass (see eq. (4.3)) and thus can change the position of the H(2)

resonance. Effective theory order of magnitude estimates suggest that reasonable values

2The even tier (1, 1) may also be relevant, however it only enters in the elastic scattering of (1, 0) states

off (0, 1), therefore it can be safely ignored in this discussion.
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mKK ΛR l
(1)
R l

(1)
L q

(1)
S q

(1)
D t

(1)
S t

(1)
D Z(1), W (1) G(1)

500 10 0.0026 0.0099 0.0458 0.0545 0.1078 0.1165 0.0373 0.0854

500 5 0.0020 0.0073 0.0336 0.0399 0.0952 0.1016 0.0288 0.0602

800 10 0.0039 0.0111 0.0471 0.0558 0.0751 0.0838 0.0298 0.0867

800 5 0.0030 0.0083 0.0346 0.0409 0.0619 0.0682 0.0223 0.0613

Table 2. Relative mass splittings ∆i = mi

m
A1

− 1 in the L1 model for two values of mKK =

500, 800GeV and for two different values of the cut-off ΛR = 10 and ΛR = 5.

200 300 400 500 600 700 800 900
0.00

0.05

0.10

0.15

0.20

MKK@GeVD

D
i

Figure 2. First KK level mass splittings as a function of mKK relative to the lightest state

(A(1)). From bottom to the top: right handed leptons (green), left handed leptons (green dotted),

electroweak gauge bosons (blue dashed), singlet light quarks (red), doublet light quarks (red dotted),

tops (magenta dashed), gluons (black dotted).

2 4 6 8 10
0.00
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0.04
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i

Mkk=500

2 4 6 8 10
0.00
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0.04
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0.10
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0.14
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D
i

Mkk=800

Figure 3. First KK level mass splittings as a function of ΛR. On the left panel: splittings for

mKK = 500GeV, on the right panel: splittings for mKK = 800GeV. On both panels we adopt

the colours from bottom to the top at ΛR = 10: leptons (green), electroweak gauge bosons (blue

dashed), light quarks (red), tops (magenta dashed), gluons (black dotted).
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for the localised term should be mloc < mKK . This estimate is a good starting point as it

allows us to expand for small mloc/mKK . It is however important to have a more precise

limit on mloc than just the effective theory estimate mloc < mKK .

The most relevant bound on mloc comes from electroweak precision measurements, in

particular from the ρ parameter. This can be understood as follows: deriving from localised

terms, mloc induces a mass mixing of the SM Higgs (zero mode) with all the heavy KK

Higgses. In turn, after the SM Higgs boson develops a vacuum expectation value (VEV)

v, the tadpole generated by the above mixing will propagate the VEV to each massive KK

Higgs in the form

<H(n,0)>= − m2
loc

m2
KK

v

n2
, <H(0,m)>= − m2

loc

ξ2m2
KK

v

m2
, <H(n,m)>= − m2

loc

m2
KK

√
2v

n2 + ξ2m2
;

(4.5)

where mKK = 1/R4 is the mass scale related to the larger radius and ξ = R4/R5 ≥ 1.

The bulk kinetic term of the Higgs contains quadrilinear terms between the standard Higgs

boson, the higher level Higgs bosons and the correspondingW ’s or Z’s. When these Higgses

are set to the VEV, we automatically get a mass mixing between the SM W and the heavy

W ’s (and similar mixing for the SM Z and the heavy Z’s). These effects are not suppressed

by the cut-off as we deal with mloc which is a dimension 6 operators in 6 dimensions: the

only suppressions are due to negative powers of the heavy mass scale mKK . These mixings

will in turn correct the masses of the W and Z, thus potentially affect the ρ parameter.

Other corrections are also generated to the S parameter, however they turn out to be

suppressed by extra powers of mKK . The resulting correction to the ρ parameter is

δρ =
m2

W

m2
Z cos2 θW

− 1 = −8

(

m2
loc

m2
KK

)2
m2

Z −m2
W

m2
KK

f(ξ) (4.6)

where ξ = R4
R5

and f(ξ) is a number of order 1, given by the function

f(ξ) =
π6

945

ξ6 + 1

ξ6
+ 2

∞
∑

n,m=1

1

(n2 + ξ2m2)3
. (4.7)

Numerically, f(ξ) smoothly decreases with increasing ξ and varies from f(1) = 2.33 to

f(∞) = 1.017. We finally compare the correction δρ (which is negative in this model)

to the value given in PDG ρ = 1.0004+0.0003
−0.0004 and obtain the corresponding bounds in the

mloc/mKK plane at 3σ, which are shown in figure 4. Note that the bound is independent

on the sign of m2
loc.

The localised counter-terms, that encode the divergent loop corrections to the mass,

generate additional corrections to the ρ parameter: for instance log divergent mass correc-

tions to the Higgs will generate a similar contribution to the ρ parameter, while corrections

to the Higgs kinetic terms can generate mixing between light and heavy gauge bosons via

the SM Higgs VEV. Such corrections are suppressed by a loop factor compared to mloc,

however they may be numerically relevant for the extraction of a precise bound on mloc.

This task would however require a full one-loop study of the corrections to electroweak

precision measurements, which is beyond the scope of this paper. In this section, we will
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Figure 4. Bound on mloc as a function of the mKK mass, obtained imposing that the effect on the

ρ parameter is not larger than the allowed measured value within 3 sigmas. Plain line correspond to

the bound in the symmetric scenario R4 = R5, while dashed line to the asymmetric case R4 ≫ R5.

take the bound on mloc as an indicative value, assuming that there will be no important

cancellations with the loop-induced corrections.

Full spectrum for the first and second tiers. In tables 3 and 4 we give values of

masses of all the particles present in the model for three benchmark points which will be

important for the phenomenological analysis: mKK = 300, 500, 800GeV. The radiative

corrections to the KK masses depend on whether we assume R4 = R5 or R4 ≫ R5 only in

the second tier (2, 0)− (0, 2) as there are cross-level mixing terms in this case. We give the

mass spectrum in both cases.

In the first tier the lightest state is always A(1), which is a neutral spin-0 particle

and corresponds to the Dark Matter candidate in our model. For mKK < 200GeV the

lightest particle in the first tier is the singlet electron which excludes the model in this

range of mKK . A(1) is the KK resonance of the photon, however the mixing angle between

SU(2) and U(1) components is different from the SM one. In particular, it is smaller

than the Weinberg angle and, for large mKK , the DM candidate is predominantly a U(1)

gauge boson. In the degenerate case, two such particles with the same mass exist while in

the decoupling limit only the lightest one will significantly contribute to the Dark Matter

abundance. The next lightest particles are singlet and doublet leptons and the SU(2)

gauge bosons which will play an important role in the dark matter phenomenology in

the co-annihilation processes. Coloured particles are heavier but still their role cannot be

neglected in the dark matter prediction and in collider phenomenology as they have strong

couplings which will enhance all the processes where quarks are involved. Note that there

may be additional contributions from the cut-off scale physics to operators localised at the

two singular points of the fundamental domain. In principle, these could turn some other
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mKK [GeV] 300 500 800

A(1) 300.9 500.5 800.2

l
(1)
S 301.3 501.5 803.0

l
(1)
D 303.4 504.5 808.4

d
(1)
S 313.8 519.2 836.6

u
(1)
S 314.2 519.7 837.6

W (1) 317.8 515.0 822.1

Z(1) 319.6 515.8 822.3

q
(1)
D 316.8 522.9 843.9

t
(1)
S 361.0 550.5 859.8

t
(1)
D 363.6 553.6 866.1

G(1) 326.1 534.9 868.4

Table 3. Typical masses of the particles of the level (1) at mKK = 300 , 500 and 800GeV. The mass

splittings are independent on the symmetric or asymmetric case as there is no cross-level mixing.

mKK [GeV] 300 500 800

S(2) 600.0 993.4 1568.3

A(2) 600.9 1000.3 1599.8

H(2) 600.0 1001.3 1573.3

l
(2)
S 602.3 1001.2 1605.4

l
(2)
D 606.2 1003.2 1615.0

W (2) 619.6 1010.5 1636.8

Z(2) 620.0 1010.8 1636.8

d
(2)
S 625.0 1014.7 1665.5

u
(2)
S 625.7 1015.0 1667.3

q
(2)
D 630.4 1017.5 1678.6

t
(2)
S 651.9 1031.3 1682.0

G(2) 653.1 1031.8 1739.2

t
(2)
D 656.6 1033.7 1693.3

mKK [GeV] 300 500 800

S(2) 573.3 955.6 1528.9

A(2) 601.0 1000.2 1599.5

H(2) 586.8 963.7 1534.0

l
(2)
S 604.5 1007.5 1612.0

l
(2)
D 612.3 1020.6 1632.9

W (2) 633.5 1050.5 1677.9

Z(2) 633.8 1050.6 1677.9

d
(2)
S 659.9 1094.4 1744.0

u
(2)
S 661.4 1096.9 1748.0

q
(2)
D 670.7 1112.5 1772.9

t
(2)
S 688.4 1118.2 1768.7

G(2) 721.1 1191.8 1893.5

t
(2)
D 697.7 1133.8 1793.6

Table 4. Typical masses of the particles of the level (2) at mKK = 300 , 500 and 800GeV. On the

left the non-symmetric case R4 ≫ R5. On the right the symmetric case R4 = R5. In both cases,

for the Higgses mloc = 0.

particle into the lightest KK-odd state. Hence, the odd modes of neutrinos ν(1) or the

neutral electroweak gauge boson Z(1) could all be viable dark matter candidates too. We

leave the investigation of these possibilities for future work.

– 14 –



J
H
E
P
0
1
(
2
0
1
3
)
1
4
7

200 400 600 800 1000

0

50

100

150

200

250

mKK @GeVD

D
m
@G

eV
D

200 400 600 800 1000

0

100

200

300

400

500

mKK @GeVD

D
m
@G

eV
D

Figure 5. Mass splitting ∆m = m−mtree in the Higgs sector in tier (2). We show the splittings of

H(2) for three values of mloc parameter: mloc = 0GeV in blue, mloc = 250GeV in blue dashed and

mloc = 500GeV in blue dotted. On the left non-symmetric case R4 ≫ R5. On the right symmetric

case R4 = R5. Red line corresponds to the A(2) splitting for comparison.

In the second tier, the lightest particle is a vector gauge boson A(2) and Higgs ex-

citations H(2) and S
(2)
±,0, if the localised mass parameter mloc is very small or m2

loc < 0.

The dependence of the Higgs resonance masses to mloc is shown in figure 5. Due to the

extremely small mass corrections, A(2) can only decay into SM particles via loop induced

interactions and thus will play an important role in the Dark Matter and LHC phenomenol-

ogy enhancing the resonant productions of SM particles. The weak gauge bosons W (2) and

Z(2) will decay into other heavy particles but the resonant decays into SM fermions will

not be negligible as well. All the level (2) particles will also participate as final states of the

annihilations and co-annihilations of the primordial cosmic plasma reducing significantly

the relic abundance of the dark matter and thus changing strongly the bounds of the cos-

mologically allowed mKK values [26]. We will present those phenomenological aspects of

the model in the following sections.

Note that, in contrast to the chiral square [24, 25] and to the 5D mUED [27, 28] models

where the odd level Higgs boson is also a viable dark matter candidate in some parameter

space, the Higgs boson of level (1, 0) and (0, 1) mode is not present on the RP2. In the

following, we will neglect the contributions of the localised operators under the assumption

that their contribution is smaller that the loop ones. We will first discuss some features of

the two limiting cases under study and the numerical results for the spectra before turning

our attention to the calculation of the relic abundance.

5 Analytical results

In our computation we consider a general particle spectrum without any simplifying as-

sumptions. In particular we do not assume a completely degenerate particle spectrum but

we keep the KK masses after one-loop corrections to the (1) modes (the analytic formulas,

to simplify the notation, will be however shown assuming the masses at each KK level

degenerate: i.e. for the first level particles (1) we assume mX(1) = mA(1) and for the second

level particles (2) the mass will be mX(2) = 2mA(1) for every particle X in a given tier). We
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Figure 6. Annihilations of A(1)A(1) into Standard Model Z gauge bosons.

keep all the SM particle masses non zero, except the electron mass which will be neglected.

Moreover we do not neglect the mixing between the U(1) B(1) and SU(2) W
(1)
3 components,

which originates from the electroweak symmetry breaking and is expected to be small for

large mKK but effectively is important for small values of mKK .

In our analytic and numerical calculations we make some simplifying assumptions

for the Yukawa couplings. We neglect all the Yukawa couplings, which are proportional

to the corresponding fermion mass, for all the light SM particles except the top quark.

This assumption is well justified as the top Yukawa coupling can alter significantly the

cross section result as it leads to resonant s-channel diagrams. Those resonant effects are

important only for the exchange of the (2) level particles and as we will see, they enhance

the effective cross section in a small region of mKK near the resonant value. Aside those

effects, we do not expect our results to be sensitive to the masses of light fermions.

In all the analytic calculations when examining the relic density as a function of mass

mKK we neglect the mass dependence of xF . The value of xF depends weakly on the mass.

This dependence is approximately logarithmic. Typically, over the mass range mKK =

0.2 − 1TeV, xF varies by about 0.1GeV/degree, or less than 15%. This variation has

small effects on the relic density. This also shows that the dark matter is cold. In all cases

considered here we obtain 22 / xF / 30GeV, so that the particles are well approximated as

non-relativistic. This implies freeze-out temperatures in the range 34÷ 45GeV depending

on the scenario.

5.1 LKP annihilations — analytic expressions for the cross sections

In this section we show the calculation of annihilation cross section in details in order to fix

the notation. The dark matter candidate can annihilate into all SM particles. As we will

see the cross sections into SM gauge bosons give the leading contributions. The fermionic

final states will not contribute once we develop the cross section for small velocities.

5.1.1 A(1)A(1) → ZZ

The annihilation A(1) into Z gauge bosons is mediated only by the SM Higgs exchange

presented in figure 6. The interaction of the A(1) with the Standard Model Higgs boson h

is given by

L4D
h = −g22

2

(cwsw1 − cw1sw)
2

c2w
A(1)A(1)h(h+ v) (5.1)
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Figure 7. Annihilations of A(1)A(1) into SM W gauge bosons.

where g2 is the SU(2) gauge coupling constant, sw and cw are the sine and cosine of the

Standard Model Weinberg mixing angle (s2w = 0.23) and sw1, cw1 are the electroweak mix-

ing angles in the first KK tier and v ≈ 246GeV is the electroweak scale. The annihilation

cross section into a pair of Z bosons reads

σ(A(1)A(1) → ZZ) = Y 2
A1Y

2
Z

s2 − 4sm2
Z + 12m4

z

128πsm4
Z(s−m2

h)
2

√

s− 4m2
Z

s− 4m2
A1

(5.2)

where YA1 =
g22v(cwsw1−cw1sw)2

2c2w
is the Higgs-A(1) coupling and YZ =

g22v
2c2w

is the SM Higgs-Z

coupling constant. Expanding the cross section in powers of the relative speed vrel between

the A(1) photons gives

vrelσ(A
(1)A(1) → ZZ) ≈ aZZ + bZZv

2
rel +O(v4rel) (5.3)

and the first two terms in this non-relativistic expansion are

aZZ = Y 2
A1Y

2
Z

4m4
A1 − 4m2

A1m
2
Z + 3m4

Z

√

m2
A1 −m2

Z

64πm3
A1m

4
Z(m

2
h − 4m2

A1)2
(5.4)

and

bZZ = −Y 2
A1Y

2
Z × (5.5)

64m8
A1−176m6

A1m
2
Z + 4m4

A1(3m
2
hm

2
Z + 52m4

Z)−12m2
A1(2m

2
hm

4
Z + 9m6

Z)+15m2
hm

6
Z

512πm4
Z(4m

3
A1 −mA1m2

h)
3
√

m2
A1 −m2

Z

.

5.1.2 A(1)A(1) → W+W−

The annihilation of A(1) into W± gauge bosons is mediated by the SM Higgs exchange

in the s-channel, by the W (1) scalar partners of W in t and u-channels and finally by a

direct quartic coupling with two Standard Model W± gauge bosons (see figure 7). For the

annihilation cross section we obtain: (here for simplicity we give the results with all the

SM masses neglected and for the degenerated KK masses, but the full results are retained
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Figure 8. Annihilations of A(1) into SM Higgs bosons.

in the numerical analysis)

σ(A(1)A(1) → W+W−) =
g2sw1

2πs(s− 4m2
A1)

× (5.6)





s3 − 16sm4
A1

√

s(s− 4m2
A1)

− 4m2
A1(s− 2m2

A1) ln
s+

√

s(s− 4m2
A1)

s−
√

s(s− 4m2
A1)



 ,

and the first two coefficients of the non-relativistic expansion are

aWW =
g42s

4
w1

4πm2
A1

, (5.7)

bWW = −5

6
aWW . (5.8)

5.1.3 A(1)A(1) → hh

Finally for the Higgs boson production (figure 8), neglecting all the SM masses, we get

σ(A(1)A(1) → hh) =
g4w(cw1sw − cwsw1)

4

128πc4w

√

s(s− 4m2
A1)

, (5.9)

and the non-relativistic coefficients read:

ahh =
g4w(cw1sw − cwsw1)

4

256πc4wm
2
A1

, (5.10)

bhh = = −1

2
ahh . (5.11)

5.1.4 A(1)A(1) → ff̄

The annihilation of A(1) into light fermionic degrees of freedom f (quarks u, d, s, c, b and

all the leptons) is mediated through the exchange of level one singlet and doublet fermions

f1
D/S into t and u channels, see figure 9. Moreover we include the Yukawa couplings of the

top quark tt̄h, thus the annihilation into two top quarks will have additional contribution

form the SM Higgs in the s-channel. The production of neutrinos is mediated only by the

exchange of doublet neutrinos ν
(1)
D in t and u channel. The coefficients aFF and bFF are

both proportional to the SM fermion mass. In the first approximation they will give both
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Figure 9. Annihilations of A1A1 into light SM fermions.

fS qfA

lD
1
2(A+B)

νD
1
2(A−B)

uD
1
6A+ 1

2B

dD
1
6A− 1

2B

Table 5. Couplings of A(1) with fermions.

a zero result, therefore we give their expressions without neglecting the SM masses but

assuming degenerated KK spectrum for simplicity:

aFF = (Y 2
D + Y 2

S )
2

m2
q(m

2
A1 −m2

q)
3/2

8πm3
A1(m2

q − 2m2
A1)2

, (5.12)

bFF = −(Y 2
D + Y 2

S )
2
m2

q

√

m2
A1 −m2

q(72m
6
A1 − 148m4

A1m
2
q + 82m2

A1m
4
q − 15m6

q)

192πm3(m2
q − 2m2

A1)4
, (5.13)

where mq is the outgoing quark mass and YS/D are the couplings ff
(1)
S/DA

1 defined in

table 5 in terms of A = g2swcw1

cw
, B = g2cwsw1

cw
and the fermion electric charge qf . For the

top quarks one has to include the Yukawa mixings between singlet and doublet states by

multiplying the corresponding constants by the top mixing angle cosα for t
(1)
S and sinα

for t
(1)
D . The neutrino production cross section expansion will then simply vanish. The

top quarks production coefficients will have additional contributions from the s-channel

Higgs exchange.

aTT = aFF +
g42(cwsw1 − cw1sw)

4

4c4w

m2
q

√

m2
A1 −m2

q

8πmA1(m2
h − 4m2

A1)2
, (5.14)

bTT = bFF − g42(cwsw1 − cw1sw)
4

4c4w

m2
q(24m

4
A1 − 2m2

A1(m
2
h + 14m2

q) + 3m2
hm

2
f )

64πmA1(m2
h − 4m2

A1)2
√

m2
A1 −m2

q

. (5.15)

5.2 Influence of KK mass degeneracy and Higgs contribution

In this section we will carefully study the influence of various effects on the relic abundance

of Dark Matter:
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Figure 10. Analytic result of the relic abundance calculation from annihilations only on the real

projective plain. In these plots we show the impact of several factors on the relic abundance: we

start with the simplest case (blue dotted line) where we assume equal masses for the first KK level

and no SM Higgs exchange in s channel. Then progressively we add the contributions: the (1)

level mass corrections (blue dotted), Higgs s-channel contribution (blue dot-dashed), relativistic

corrections (blue solid line). We add also the same result assuming the symmetric radii R4 = R5

with all the above corrections included (red solid line).
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Figure 11. Averaged annihilation cross sections σ(A(1)A(1) → SM) of the LKP into Standard

Model final states. In red (red-dashed) up (down) type quarks, magenta — tops, green (green-

dashed) — charged leptons (neutrinos), blue (blue dashed) — WW (ZZ) gauge bosons, in black

— HH. The cross section is calculated at pcms = 100GeV (consistent for non-relativistic DM, the

maximum of the Boltzmann distribution is given by p0 =
√
2mkT = m

√

2k/xF ≈ 0.28mKK for

k = 1, xF = 25 and vary between 56− 280GeV for mKK = 200− 1000GeV).

1. degeneracy of masses in the KK tiers,

2. SM Higgs exchange,

3. relativistic corrections,

using analytic expressions for cross sections and relic abundance. The results are shown

in figure 10. We also summarise the allowed values of mKK in table 6 where we give

the preferred ranges for the decoupling limit R4 ≫ R5 on the left and for the symmetric

degenerate radii R4 = R5 in the right column.

We first consider only annihilation processes: the average annihilation cross sections

as a function of the KK mass are shown in figure 11.
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R4 ≫ R5 R4 = R5

equal masses 266 – 307 221 – 262

corrected masses 317 – 370 263 – 313

+ s-channel Higgs 325 – 388 267 – 321

+ relativistic corrections 322 – 384 264 – 318

Table 6. Preferred ranges for mKK (in GeV) from the analytic relic abundance calculation. In

the first approximation we include only annihilations of LKP and study the impact of including

the corrections 1) non-degenerated spectrum of the first KK level (line 2), 2) including s-channel

SM Higgs exchange (line 3), including relativistic correction to the b − rel coefficient (line 4). In

the first line we show the bounds obtained for the simplest case where all the SM masses are

neglected and the KK spectrum is fully degenerate. In the left column we present the results for

the non-degenerated radii R4 ≫ R5, in the right column — for the symmetric radii R4 = R5.

The blue dotted line in figure 10 presents the relic abundance assuming all the (1) level

KK states have the same mass and the Higgs couplings are neglected as well. In this regime

only annihilations into the W gauge bosons contribute considerably. Annihilations into Z

and Higgs bosons are turned off and the fermion production is negligible (see figure 11).

Then we release the assumption of the degeneracy of the KK states (blue dashed line) and

use the full one loop spectrum: the relic abundance is considerably reduced. If we take a

representative point mKK = 350GeV, which lies in the range allowed by WMAP7 data (for

the most complete scenario) we obtain Ωh2 = 0.285 for the equal mass scenario, a value far

above the experimental data, which is pushed down to Ωh2 = 0.121 for the exact spectrum

- a value which satisfies the experimental bounds. This enormous reduction of about 60%

is due to the considerable changes in the annihilation cross section into W bosons.

As dealing with large analytic formulas is difficult, in figure 11 we compare the first

coefficient of the non-relativistic expansion arel for the three cases studied here. First note

that effectively the contributions coming from the annihilations into quark and leptons are

almost negligible when compared to the annihilations into gauge bosons which are two

orders of magnitude larger. Then when we release the equal mass approximation, as the

masses of W (1) scalars exchanged in the t and u channels appear in the numerator and

denominator it is difficult to guess what will be the overall impact of the mass degeneracy.

But from the plot we see that in the equal mass approximation, the value of the annihilation

cross section σ(A(1)A(1) → W+W−) is significantly reduced: at the sample point mKK =

350GeV we find a ratio aequalWW /aexactWW = 0.376. The behaviour of the fermion production

is completely different. The result is shown on the right panel of figure 12. We sum the

annihilations into all fermionic degrees of freedom and show the first coefficient of the

non-relativistic expansion for the equal mass spectrum of the first KK level with the red

dotted line and for the non-degenerated spectrum with the red dashed line. In this case,

in contrast to the annihilations into gauge bosons arel, we see that the degeneracy of the

spectrum will enhance the annihilation cross section σ(A(1)A(1) → ff̄). Analytically this

is simple to explain as the masses of the first level quarks q
(1)
D/S exchanged into t and u

channels cancel in the numerators while taking the trace of the S-matrix element. We
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Figure 12. First coefficients of the non relativistic expansion 〈σvrel〉 ≈ arel + v2relbrel. On the left

panel the coefficients of the annihilations into gauge boson are shown, in blue dotted - for equal

KK masses, in blue dashed — exact KK masses, in blue dot dashed line — the Higgs contribution.

On the right panel — coefficients of the annihilations into all fermions summed. In red dotted —

equal m(1) masses, in red dashed — exact m(1) masses and in green we add the Higgs contribution.

are then left with the mq(1) into denominators only. Schematically we can write that the

annihilation cross section into fermions is proportional to

σ ∼ 1

(m2
1 +m2

D/S −m2
q)

2
≈ 1

(m2
1 +m2

D/S)
2
=

1

m4
1(1 + x2)2

. (5.16)

As the quarks receive large loop corrections to the masses, for mKK = 350GeV we have

x = mD

m1
= 1.17 for the t

(1)
D top quark we obtain

σexact
σequal

≈ 4

(1 + x2)2
= 0.71 . (5.17)

Thus effectively the annihilation cross section into fermions is overestimated if one assumes

degenerate KK spectrum. Contributions coming from quarks being considerably smaller

than the gauge boson contribution, the enhancement of the bosonic cross section wins and

we observe the decrease of the relic abundance.

Next we add the s-channel Higgs exchange, blue dot-dashed line in figure 10. The

effect is small but visible. As we add new channels to the annihilation cross section the

relic abundance is reduced. The modification is of about 13% compared to the previous

case where we have considered the non-degenerate KK spectrum without Higgs contribu-

tions. Note that now all the annihilation channels contribute, that is the cross sections

σ(A(1)A(1) → ZZ, hh) are present. The right panel on figure 13 shows the relative con-

tributions of different final states into the total annihilation cross section. The W+W−

gauge boson production still gives the leading contribution, but we can observe the growing

contributions of ZZ and hh final states. What is worth noticing is that while we do not

neglect the Standard Model masses we effectively get new contributions to the total anni-

hilation cross section coming from fermionic, ZZ and hh final states. From this analysis

we see that these processes cannot simply be neglected as their contribution changes of

about 13% the relic abundance prediction.
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Figure 13. On the left: relative contribution of WW annihilation (blue line) and all fermion

annihilations (dashed magenta) for the equal mass spectrum. On the right: relative contributions

aXX/atot for the exact spectrum and Higgs channel added. In blue WW , in dotted green hh, in

red dot-dashed ZZ, in magenta dashed — ff̄ final states.

6 Relic abundance — numerical results

We now turn to studying the RP2 model numerically. In the following we estimate the

WMAP preferred range of the compactification scalemKK of the extra dimensions using the

relic abundance calculation performed numerically with MicrOMEGAs [5, 6]. The general

assumptions are the same as for the analytic calculations, presented at the beginning

of section 5.

First we have implemented the model into FeynRules [29] where all the effective La-

grangians of the model in terms of 4-dimensional fields and couplings are given in Mathe-

matica language and interfaced with Monte Carlo generators like CalcHEP [30]. We have

implemented the full set of states in tiers (1) and (2) including all bulk couplings and

one-loop order masses. We also implemented the loop induced couplings that mediate the

decays of the even states into a pair of SM states: the coefficients are calculated in [23]

using the effective counter-terms in the “magic gauge” ξ = −3, however they are only valid

for on-shell external particles. Therefore, the loop induced couplings can only be used con-

sistently to compute decay widths or processes with a resonant exchange of a (2) state. A

full implementation would require the inclusion of gauge-dependent loop corrections to all

vertexes, including bulk ones, and is beyond the scope of this work. We also modified the

implementation in order to reproduce the symmetric radii case (R4 = R5), in which case

the loop corrections to the masses of the even states and their loop induced couplings are

corrected by a factor of 2 and
√
2 respectively. The presence of two degenerate odd tiers

is taken into account by doubling the final result of the relic abundance. The CalcHEP

output from FeynRules was then incorporated into MicrOMEGAs, and we validated the

numerical implementation against the analytic results of the previous sections. Unless oth-

erwise stated, the free parameters of the model are fixed to mloc = 0 and ΛR = 10, while

the SM Higgs mass is taken to be 125GeV. The WMAP7 bound on the relic density is

0.0773 < Ωh2 < 0.1473. We calculate the relic abundance using the implementation of

the model to MicrOMEGAs v2.4.1. We study two main cases, in order to understand the

impact of various effects on the relic abundance:

– 23 –



J
H
E
P
0
1
(
2
0
1
3
)
1
4
7

Figure 14. Schematic process included in the L2 scenario. The loop couplings marked as red

vertexes.

• L1, where the relic abundance calculation includes only the SM final states (0), i.e.

we only consider (co-)annihilation processes (1) + (1) → (0) + (0);

• L2, where we allow for the even (2) KK modes in the final state, therefore we also

consider the processes (1) + (1) → (2) + (0).

In both cases, L1 and L2, the intermediate states are (0) or (2) modes in s-channel or

(1) KK modes in t-channel with the couplings at tree level. A schematic depiction of the

(co-)annihilation processes can be found in figure 14, where we label with a red dot the

loop induced couplings.

In each case, we will also show partial results including:

• L1A and L2A, where we include only annihilation processes mediated by tree level

couplings;

• L1AL and L2AL, where only annihilation including loop couplings (s-channel (2)

resonances) are considered;

• L1C and L2C, with the full set of co-annihilation processes with tree level cou-

plings only;

• L1CL and L2CL, where co-annihilation including s-channel (2) resonances are in-

cluded.

For each case, we will study the asymmetric R4 ≫ R5 and symmetric R4 = R5 cases. Note

that the physically meaningful results are given by the most complete case L2CL.

6.1 L1 scenario

First we focus on the L1 scenario where the relic abundance calculation includes final states

with only a pair SM states (0). In general, an odd (1) state can never decay directly into

a pair of SM states but will always decay in a lighter (1) state and an SM particle. Each

heavy state produced in (co-)annihilations will therefore undergo a chain decay which will

end up with the Dark Matter candidate and SM particles.

6.1.1 Influence of co-annihilations

First we examine co-annihilation effects on the relic abundance. As it was stated in sec-

tion 4, the mass splittings are very small in our model. We start by adding the next
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Figure 15. On the left. Relic abundance in the asymmetric L1 scenario including co-annihilation

with: right-handed leptons (blue dotted), left-handed leptons (blue dashed), and WZ bosons (blue

dot-dashed). On the right. Relic abundance including co-annihilations with all the U(1) and

SU(2)-only interacting particles (blue dot-dashed); the red line corresponds to annihilations only.

to LKP particles to co-annihilation channels. In figure 15 we show the influence of co-

annihilations with: a) right-handed leptons, b) left-handed leptons, and c) electroweak

gauge bosons W (1) and Z(1). In all three cases the result is to lower the relic abundance.

Right-handed leptons, although having the smallest mass splitting, have weaker interac-

tions than left-handed leptons, which couple also to SU(2) gauge bosons. Therefore the

effective cross section with right-handed leptons will be weaker and the thus the relative

reduction in the relic abundance smaller. We should notice that for light mKK ≈ 200GeV

the right-handed leptons induce a small enhancement of the relic abundance, this effect

can be explained by very small mass splittings in this region (recall that for mKK GeV the

LKP is the right-handed electron) therefore we add only a small contribution to the cross

section while the effective number of degrees of freedom increases, becoming geff ≈ 13 in

the Λ = 0 approximation. For the electroweak gauge bosons, although their interactions

are of the same strength as those of left-handed leptons, larger mass splittings will reduce

the effect of co-annihilations and the relic abundance will be lager than when including

much lighter leptons. The result including co-annihilations with all the leptons and W (1)

and Z(1) particles is shown in the right panel of figure 15.

The influence of adding coloured particles is shown in figure 16. They have the largest

mass splitting, however the strong SU(3) interactions enhance the effective cross section

and highly reduce the relic abundance. We see that the effect is almost independent of the

number of new particles we add: the relic abundance does not change whether we add only

singlet quarks, both singlet and doublet quarks, or all quarks together with gauge bosons.

This means that the main effect is due to the large value of the annihilation cross section of

strongly interacting particles and that, once its addition changes the scale of the effective

cross section, the result is not sensitive to the number of states added to the model. In

the right panel we show the final result of adding all the possible co-annihilation channels.

This plot correspond to the most physical scenario at tree level where we include all the

co-annihilations. Note however that it is quite difficult to interpret the enhancement of

the relic abundance for low mKK masses as compared to the annihilations only as one
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would expect the reduction of Ωh2 for all the range of KK masses. We take therefore the

bounds obtained in the case when all the co-annihilations are included as physical bounds

260 < mKK < 355GeV in the asymmetric case R4 ≫ R5. On the symmetric orbifold

the result is simply twice higher relic abundance as we have two independent Dark Matter

candidates with degenerate masses and thus the bounds on the KK mass scale are lowered

to mKK < 255GeV.

6.1.2 Influence of the resonances of (2) modes and loop induced couplings

We study the influence of adding the loop induced couplings. The formal calculation of

the effective couplings was performed in [23]. The mass of the (2) KK particles is close

to twice the mass of (1) KK particles. Thus, resonant processes in which the (2) KK

modes propagates in the s-channel are important for the calculation of the relic abun-

dance. Such effects in the mUED model were partially investigated in [26, 28, 31]. In

the works [26, 28] the second KK particle resonances are studied for the LKP annihilation

and co-annihilations relevant to the SU(2) singlet leptons, e1S . However, it is found that

the second KK resonance processes also play an important role in co-annihilation modes

relevant to KK SU(2) doublet leptons and KK Higgs particles. In our model the possible

resonances can come from the following particles propagating into s-channel: t
(2)
S/D, W

(2),

Z(2), G(2), H(2). Other (2) states do not directly couple to a pair of SM particles and thus

will not contribute in the co-annihilation processes. In table 7 we give the partial widths

of the (2) states to a pair of SM particles. For the resonant particles mentioned above the

corresponding co-annihilation processes are

t
(1)
S/D +A(1)/Z(1)

b(1) +W (1)

}

→ t
(2)
S/D → SM (6.1)

A(1) +W (1)

l
(1)
D + ν(1)

}

→ W 2 → SM (6.2)

l
(1)
S/D + l̄

(1)
S/D → Z(2) → SM (6.3)

G(1) +G(1)

q
(1)
S/D + q̄

(1)
S/D

}

→ G(2) → SM (6.4)

V (1) + V (1)

f
(1)
S/D + f̄

(1)
S/D

}

→ H(2) → SM (6.5)

Note however that the processes can be suppressed by several factors:

1. If the initial particles are heavy, then the process will be Boltzmann suppressed.

This condition will be relevant for the initial G(1), W (1), Z(1), q
(1)
S/D which receive the

largest loop corrections to masses.

2. The BR of the (2) to the SM is small. This condition will reduce the resonant

contributions but is much less important than the Boltzmann suppression factors.
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Figure 16. On the left: co-annihilations with all the coloured particles in blue dot dashed. On the

right: all the possible co-annihilations are included (blue dot dashed line). The red line corresponds

to annihilations only.

Width [GeV] (Br [%])

mKK [GeV] 500 1000 1500

Z5 43% 45% 43%

W 5 43% 45% 43%

G5 15% 14% 14%

H5 100% 100% 100%

A5 100% 100% 100%

Table 7. Branching ratios of the even (2) KK modes into a SM pair.

3. As the velocities of the particles near the freeze out temperature are non-relativistic,

if one is far below the resonance condition, that is the inequality m(1) +m′

(1) ≪ m(2)

holds, then the process will be Boltzmann suppressed as well due to large momenta

of the incoming particles required to produce the resonance.

We define mKKres the KK mass at which the resonant condition

m(1) +m′

(1) = m(2) (6.6)

is verified. Among many of the kinematically allowed resonances listed above, the contri-

butions of some of them will be highly reduced:

1. t
(2)
S/D have low branching ratios into SM particles and the initial states producing this

resonance are heavy, thus these processes will be both Boltzmann and BR suppressed.

2. Z(2) and W (2) resonances have order 1 BRs to SM particles. The initial states l(1)

however are quite light and the process will be Boltzmann suppressed as we are far

below the resonance condition.

3. G(2) also has sizeable BRs into SM states. However the (1) modes producing the

resonance are the particles with the largest mass splittings in the model, therefore

the processes will be strongly suppressed by Boltzmann factors.
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Figure 17. Relic abundance as a function of mKK in the L1 scenario. In both plots we use the

convention: dot-dashed lines for co-annihilations (L1C); solid line for co-annihilations + resonances

(L1CL). In green (left panel) the asymmetric R4 ≫ R5 case, in blue (right) the symmetric one

R4 = R5.

4. H(2) particles, in spite of very weak couplings are produced by all the (1) co-

annihilating states including A(1), therefore the effective cross section will be en-

hanced mainly due to the process A(1) + A(1) → H(2) → SM. This process will also

be very sensitive to the mass of H(2), which is controlled by the free parameter mloc.

The numerical results in the asymmetric (left panel) and symmetric (right panel)

cases in L1 scenario are shown in figure 17: we can immediately see that the loop mediated

resonances play a crucial role in the relic abundance calculation. In the symmetric case,

the effect seems to be smaller: this is due to the fact that the divergent loop corrections to

the masses of (2) states are larger, therefore many of the resonances are too heavy to be

produced in highly non-relativistic collisions of lighter KK modes.

The effect of including loop induced couplings (tier (2) resonances) when only an-

nihilations are taken into account is quite small. The only resonant particle present in

annihilation processes is the Higgs H(2) in the reaction A(1)A(1) → tt̄. The resonant con-

dition mA(1) = mH(2) is reached from below: for mKK ≤ mKKres = 267GeV the condition

2mA1 < mH5 holds therefore we are below the resonance and heavy Higgs can effectively

enter as a resonant state lowering the relic abundance. Once the resonant value is exceeded

mKK > mKKres we enter in the regime above the resonance and thus resonant contribu-

tions stop. The effect of Higgs resonance can only be seen when only annihilations are taken

into account. When we include co-annihilations, all the resonant particles mentioned above

contribute. The condition (6.6) can be met for the processes

t
(1)
S/D +A(1)/Z(1) → t

(2)
S/D at mKKres ≈ 385/680GeV,

W (1) +A(1) → W (2) at mKKres = 277GeV,

t
(1)
S/D + t

(1)
S/D → G(2) at mKKres = 740GeV.

In all the above processes, the resonant condition is achieved from above, i.e. for

mKK ≤ mKKres we the inequality 2m(1) > m(2) holds and the resonances will be turned on

for mKK higher than the threshold values. The result of this is a strong reduction of the

– 28 –



J
H
E
P
0
1
(
2
0
1
3
)
1
4
7

200 300 400 500 600 700 800 900
0.0

0.1

0.2

0.3

0.4

m_KK @GeVD

W
h

2

200 300 400 500 600 700 800 900
0.0

0.1

0.2

0.3

0.4

m_KK @GeVD

W
h

2

Figure 18. Relic abundance as a function of mKK in the L2 scenario. In all the plots we use

the convention: dot-dashed lines for co-annihilations only (L2C), solid line for co-annihilations +

resonances (L2CL). In magenta (left panel) the asymmetric case R4 ≫ R5, in red (right panel) the

symmetric one R4 = R5.

relic abundance for high mKK masses (compare dot-dashed and solid lines in figure 17).

The co-annihilations into H(2) always pass through the resonant condition from below and

contribute at low masses but the minimum corresponding to A(1)A(1) → H(2) spread out

by stronger contributions of W (2). The main contribution of about 30% comes although

from the W (2) gauge boson as its decay width into SM particle is larger than for other (2)

states. The (2) gluons have large decay rates into two SM states but due to their large

mass splittings their influence will be strongly suppressed by the Boltzmann factor.

Note finally that here we always fix mloc = 0GeV, and we will study the dependence

of the resonance on this parameter in a following dedicated section.

6.2 L2 scenario

In general, an even (2) state can decay into a pair of odd (1) states, into a lighter (2) state

plus a SM state or into a pair of SM states. All such final states give comparable partial

widths: the first two are mediated by tree level couplings however they are phase space

suppressed by the small loop-induced mass splittings (the decays are nearly on-threshold),

while the latter is mediated by a loop induced coupling. Each state will therefore undergo

a chain decay which will end up with only SM particles if a decay via loop couplings is

finally met, or into a pair of Dark Matter candidate if a decay into a pair of odd states is

met. In the former case, the annihilation into a (2) state will contribute to the annihilation

into SM states. In table 8 we list the inclusive branching ratio into SM states, which takes

into account the full decay chains. As we can see, the lighter states (in particular A(2),

H(2) and leptons), have a 100% decay rate into SM final states: this is due to the smallness

of the loop corrections that strongly suppresses or closes the phase space of the decays into

odd states (the situation for the Higgs may change for large and positive m2
loc, which will

significantly increase its mass). Therefore, in the following numerical calculations we will

consider all the level-(2) modes in the final state as SM states, thus contributing to the

(co-)annihilation cross sections.
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Inclusive BR into SM

mKK [GeV] 500 1000

l
(2)
S 100% 100%

l
(2)
D 100% 100%

q
(2)
S 87% 86%

q
(2)
D 58% 54%

t
(2)
S 87% 80%

t
(2)
D 60% 52%

Z(2) 60% 60%

W (2) 60% 60%

G(2) 38% 51%

H(2) 100% 100%

A(2) 100% 100%

Table 8. Inclusive Branching Ratios of (2) KK modes into final states with only SM particles.
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Figure 19. Relative contributions of the partial annihilation cross sections to the relic abundance

in L2 scenario when all the co-annihilation channels are open. On the left panel we see the dominant

contribution of l
(1)
S/DA(1) → lA(2) in red . Other channel are l

(1)
D ν(1) → qq̄ co-annihilation in green,

l
(1)
D ν(1) → AH(2) in magenta, q(1)A(1) → qA(2) in blue and b

(1)
D W (1) → bW (2) in black. On the

right panel the same colours are applied for the contributions when we include the loop couplings

((2) resonances). We see the importance of the W (2) resonance in the l
(1)
D ν(1) → qq̄ processes when

the loop couplings are turned on.

In the L2 scenario the bounds do not change, compared to L1 case, if we include only

annihilations. This is reasonable as the main processes that contribute in both cases are the

annihilations A(1)A(1) → W+W−, ZZ,HH which are mediated only by tree level couplings.

For kinematic reasons, the even (2) states cannot be produced from two A(1)A(1).

Including co-annihilations we have many new final states including A(2) and H(2) as

compared to the L1 scenario. Analysis of partial co-annihilation processes present similar

behaviour to the L1 scenario therefore here we consider only the final result when all the
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Figure 20. Relic abundance as a function ofmKK , after taking into account all the co-annihilations

and loop couplings. Form top to bottom we have: blue dashed symmetric L1 R4 = R5, red solid

symmetric L2 R4 = R5, green dot-dashed asymmetric L1 R4 ≫ R5, magenta dashed asymmetric

L2 R4 ≫ R5.

co-annihilations are taken into account. Due to many new channels including (2) states,

as it can be seen form figure 18, the relic abundance bounds on mKK will be pushed up

to mKK ≈ 800GeV in the asymmetric case and to mKK ≈ 400GeV in the symmetric

orbifold. The main contributions are shown in figure 19.

6.3 Comparison of mKK bounds in L1 and L2 scenarios

In table 9 we summarise the bounds on themKK mass scale deduced from the full (including

all the co-annihilation channels) relic abundance calculation in the two scenarios L1 and

L2 using MicrOMEGAs, while a plot of the relic abundance as a function of mKK is in

figure 20. The loop induced couplings do not influence the relic abundance bounds when

we open only annihilation channels. The only resonant particle in this case is the heavy

Higgs H(2) which produces a resonant minimum but for the mKK far below the expected

range compatible with the WMAP data. This behaviour is evident in both scenarios L1

and L2, moreover we have the same bounds for mKK with the expected value set quite low

at 360GeV in the asymmetric orbifolds R4 ≫ R5 and at 290GeV in the symmetric case

R4 = R5. This estimation gives the first hint of the possible KK scale of extra dimensions

but the fully consistent physical result must contain all co-annihilations and loop couplings.

In the L1 scenario when we include all the co-annihilation channels but not loop in-

duced couplings the preferred mKK values lie in the range 260 < mKK < 355GeV in the

asymmetric case and mKK < 255GeV in the symmetric orbifold. When we add the loop

couplings the resonant contributions lower the Ωh2 value of 52% and the expected mass

scale is pushed up to 440 < mKK < 620GeV for R4 ≫ R5 (210 < mKK < 310GeV for

R4 = R5). In the L2 scenario, where the (2) states are allowed in the final states, the

impact of co-annihilations is more important which translates into higher mass scales of

500 < mKK < 740GeV for R4 ≫ R5 (285 < mKK < 420GeV for R4 = R5) correspond-

ingly. Adding loop couplings, the Ωh2 value decrease further of about 36% (15%) with
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model L1 L2

mKK [GeV] mKK [GeV]

R4 ≫ R5 440 – 620 640 – 900

R4 = R5 210 – 310 315 – 470

Table 9. Preferred ranges for mKK from the relic abundance calculation in the models L1 and L2

for asymmetric radii R4 ≫ R5.

respect to the co-annihilations only setting the mass range at 640 < mKK < 900GeV

(315 < mKK < 470GeV for R4 = R5).

The relative impact of opening the (2) final states is always to decrease the relic

abundance value and in our study we observe a reduction of about 50% (45%) between the

L1 and L2 scenarios when all the co-annihilation channels and the loop induced couplings

are taken into account. The physical bounds set by the full one loop calculation are

summarised in table 9 and the relic abundance as a function of mKK is shown in figure 20.

7 Cut-off dependence of the relic abundance

In this section we are interested in the dependence on the cut-off of the relic abundance

calculation. The spectrum of the model as well as the loop induced couplings are logarith-

mically sensitive to the cut-off of the effective extra dimensional theory. The numerical

impact can be seen from table 2, where we show the mass splitting for mKK = 500 and

800GeV for two different values of the ΛR parameter, and in figure 3.

The numerical results for the L1 scenario with asymmetric radii can be found in fig-

ure 21, and very similar behaviour can be seen for symmetric radii and in L2. When we

include only annihilations, the growing cut-off has the effect of increasing the relic abun-

dance (top panels in figure 21). In contrast, when we include all the co-annihilations the

situation is reversed — with growing cut off Ωh2 is reduced (bottom panels in figure 21).

To understand these effects we need to know first of all which quantities are most influ-

enced by the cut-off. Of course the principal influence will be on the mass spectrum of

the particles which is explicitly cut-off dependent. Then, while we include loop induced

processes, the effective couplings violating the KK number are also dependent on the cut

off scale of the theory.

Let focus first on the two simple cases without resonances due to the loop couplings:

L1A (only annihilations) and L1C (all-co-annihilations included), which are shown in the

left panels in figure 21. In both cases we do not have any loop induced couplings thus the

cut off dependence will only enter in the mass spectrum. With growing cut off, for any

given mKK , the mass splittings increase (see figure 3). As the annihilations are mediated

by the (1) level particles in t-channels mainly (for (1) quarks and A(1), Z(1)), the larger

the mass splittings the smaller the individual cross sections, thus the annihilation cross

sections will be suppressed with growing ΛR. We show the effect in figure 22, where we

plot the annihilation cross section A(1)A(1) → SM for mKK = 500GeV as a function of
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Figure 21. Variations of the relic abundance for R4 ≪ R5 in L1A (top left) and L1AL (top right),

L1C (bottom left) and L1CL (bottom right) with the cut-off. Going from magenta to green the cut

off is lowered 10 > ΛR > 5. In black: ΛR = 10 as for every other calculation where we not vary

the cut-off.

Figure 22. Total annihilation cross section A(1)A(1) → SM as a function of pcms for MKK =

500GeV and ΛR = 5, 10 in red and blue respectively.

the centre of mass momentum pcms. The two lines correspond to ΛR = 5 and 10, thus

showing that the cross section is smaller for larger cut-off. The relic abundance depends

on the mean value of σv: we estimate its value by averaging over a Boltzmann distribution

of velocities for the DM

f(p)dp ∼ p2 exp

(

p2

2mkT

)

dp (7.1)
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ΛR 2 4 6 8 10

L1 R4 ≫ R5 235 – 380 360 – 530 405 – 580 425 – 605 440 – 620

R4 = R5 excluded < 285 < 300 < 305 < 310

L2 R4 ≫ R5 500 – 740 570 – 820 640 – 905 675 – 955 700 – 990

R4 = R5 240 – 365 295 – 455 330 – 480 340 – 495 350 – 505

Table 10. Preferred ranges for mKK (in GeV) for different values of ΛR in the asymmetric and

symmetric radii cases.

where T = m/x with x = 25.3 Then, for the mean value 〈σv〉, we obtain 3.76 pb for

ΛR = 5 and 3.20 pb for ΛR = 10, thus confirming that effectively the mean value 〈σv〉
is larger for larger cut-off scale. This would imply that the relic abundance is larger for

larger cut-off, as confirmed in the annihilation-only case L1A.

The case with co-annihilation shows an exactly opposite behaviour. However, a larger

cut-off would imply that the individual co-annihilation cross sections decrease; furthermore,

the larger mass splittings will also suppress the contribution of the co-annihilation channels.

We might then conclude that the larger the cut-off the larger the relic abundance, similarly

to the annihilation only case. However, increased mass splittings have another effect: the

effective number of degrees of freedom geff is also reduced. The mass splitting increases

more importantly for the leptons, while gauge bosons W (1) and Z(1) also receive a cut-

off independent contribution from the W and Z mass. As leptons contribute more to

the degrees of freedom than to the average cross section, when increasing the cut-off the

decrease in the degrees of freedom dominates and the relic abundance is reduced, as we

observe in the numerical results.

Including the loop couplings does not change the trend, as it can be seen in the right

panels in figure 21. The only visible effect is a change in the features due to the resonant

exchange of tier (2) states, namely H(2) and A(2) due to the change in the resonant value

of mKK .

We summarise the numerical bounds for different values of the cut-off ΛR for L1 and

for the complete model L2 in table 10. Note that the allowed mass values vary from

about 200GeV for the symmetric case - a value that is already excluded by the accelerator

searches, up to 1TeV - a region which is viable as not yet excluded by the LHC data.

8 Localised Higgs mass dependence

In this section we vary the mloc parameter, which is a free parameter of the model. It

corresponds to the Higgs mass operator localised on the singular points of the orbifold.

As it was mentioned in section 4, the main processes mediated by the resonant H(2)

are from the A(1)A(1) states. The resonant condition in eq. (6.6) depends on the loop

3We can safely assume x constant. We have checked that during the relic abundance calculation indeed

its value varies within the range of 22− 26 for all the relevant mKK and for all the assumed values of ΛR.

– 34 –



J
H
E
P
0
1
(
2
0
1
3
)
1
4
7

mloc mKKres [GeV] mKK > [GeV]

0 267 0

100 353 351

200 544 558

300 769 731

400 1005 886

500 1248 1028

Table 11. Values of mKKres corresponding to resonance 2mA(1) = mH(2) and the lower bounds

for mKK obtained from the electroweak precision constraints (in the asymmetric case) for different

values of mloc.

corrections to the A(1) and H(2) masses. If we parameterise

m2
A(1) = m2

KK(1 + δA) , m2
H(2) = 4m2

KK(1 + δH) +m2
H +m2

loc , (8.1)

the resonant condition reads

m2
KK ≤ m2

h +m2
loc

4δA − δH
. (8.2)

Numerically, it turns out that δA ∼ 0 and δH < 0, therefore a resonance is possible as long

as m2
loc > −m2

H . In the following we will focus on positive values of the localised mass

square, which will give rise to resonance for large values of mKK . In table 11 we show a

list of the resonant mKKres and lower bound on mKK for various values of mloc: we find

that for 110GeV < mloc < 236GeV, the resonance always appears below the upper bound

on mKK .

Finally we study the influence of the resonant H(2) exchange on the relic abundance.

First we focus on the L1A case, where the effect is more visible: the only relevant annihi-

lation process is A(1)A(1) → tt̄. In figure 23 we show the relic abundance as a function of

mKK for various values of mloc. For mloc = 0GeV, the resonance produces a dip at low

mKK where the relic abundance is well below the WMAP preferred region.

With increasing mloc, the resonant dip start becoming relevant opening up extra pa-

rameter space: for instance, for mloc = 300GeV, we observe that a small region 760 <

mKK < 780GeV also gives the WMAP relic abundance together with the standard low

mKK region 440 < mKK < 620GeV. After the resonant condition is met, which gives

the position of the local minimum for the relic abundance, the resonance becomes rapidly

ineffective as the DM states have a mass above the KK Higgs one. Note that the increase

in the depth of the peak for increasing mloc is not sufficient and for large values of the

localised mass the dip will not be able to touch the WMAP preferred region and no extra

parameter space opens up. In the L1 model, this happens for mloc > 400GeV.

These features remain also in the complete model, depicted in the right panel of the

figure 23, however we see that the impact of the resonance is greatly suppressed. This

is due to the fact that the only relevant resonant process remains A(1)A(1) → H(2) → tt̄,

which is however diluted by the full set of co-annihilation processes.
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Figure 23. Relic abundance as a function of mKK with all co-annihilations and resonances in-

cluded. We are particularly interested in the H(2) resonance as a function of mloc. In the plots the

dips correspond to the resonances of H(2) at, from left to right, mloc = 0, 100, 200, 300GeV. The

first two minima are almost invisible, the large two dips correspond to mloc = 200, 300GeV. On

the left: asymmetric L1CL. On the right: asymmetric L2CL.
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Figure 24. We show in blue the region of mKK−mloc preferred by WMAP in blue. The parameter

space above the red line is disfavoured by the ρ parameter. In the left panel: asymmetric L1 model.

In the right panel: asymmetric L2 scenario.

To be complete we scan the parameter space mKK − mloc. The resonance has an

important effect on the WMAP preferred parameter range, as it is shown in the right

panel of figure 24. While the usual region 640 < mKK < 900GeV is still open, for mloc >

400GeV a funnel region opens up where the resonant H(2) exchange dominates. Such

region corresponds approximately to the resonant condition in eq. (8.2), giving an allowed

region around mKK ∼ 2.5 mloc. Note that the funnel region closes up for mloc > 470GeV

(corresponding to mKK ∼ 1200GeV), where the dip in the relic abundance is not deep

enough to touch the preferred WMAP region. Interestingly, this implies that even the

resonant funnel region admits an upper bound on mKK . The bound from the ρ parameter,

indicated by a red line in figure 24, shows that large values of mloc are disfavoured, however

the funnel region is still in the allowed parameter space. A similar behaviour occurs in the

L1 model, depicted in the left panel of figure 24.
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Figure 25. Feynman diagrams for direct detection A(1)q → A(1)q via q
(1)
S/D in s and t channel; q

stands for the quarks present in the nucleon, thus mainly up and down.

9 Direct detection bounds

A number of experiments are currently searching for a Cold Dark Matter. Their sensitivity

is being continuously improved and the upper limits are upgraded regularly. The best upper

limit for the WIMP-proton spin independent cross section has been recently obtained by

Xenon, σSI
pχ < 3.4 × 10−8 pb for a 55GeV WIMP and CDMS σSI

pχ < 3.8 × 10−8 pb for a

70GeV WIMP.

In the extra-dimensional models the potential dark matter candidate is usually a KK

gauge boson, but it is also possible that a KK scalar, a KK graviton or a KK neutrino is

the Lightest KK particle. In the minimal UED model (mUED) the dark matter candidate

is the U(1) gauge boson B1.4 In our six-dimensional model the dark matter candidate is

the first level photon A(1) which is a scalar particle. Thus its interaction properties will be

different from the 5D UED models where the first level photon is a vector particle, as spin-

dependent interactions are absent. Therefore the direct detection will be mediated only

by spin-independent interactions. The case where the direct detection signal is mediated

only by the SI interaction is much less discriminating with respect to which model is being

detected. The only information that can be used is the total cross section and the mass of

the DM particle.

We compute the direct detection signal using MicrOMEGAs v2.4.1. The input model is

as defined in previous subsection. The direct detection signal is mediated by the processes

showed in figure 25. The interactions of A(1) with all the SM quark are mediated by the

level one quarks q
(1)
D/S in s and t channel. Interactions with heavy quarks c, b, t are also

mediated by the SM Higgs boson h in t-channel. The Yukawa couplings with light quarks

can be safely neglected as they are proportional to the mass of the quark.

The model has two free parameters: mloc and ΛR. The latter only influences the KK

Higgs masses and it can only enter via a H(2) t-channel exchange, which is negligible as it

is suppressed by one loop compared to the tree level diagrams in figure 25. On the other

hand, the result depends crucially on the cut-off ΛR: in fact, increasing the cut-off will

increase the mass of the tier (1) quarks and thus suppress the scattering. The effect is

important due to the closeness between the mass of the DM candidate A(1) and the heavy

4More precisely the Dark Matter Candidate is the level 1 photon A(1) - a linear superposition of B(1)

and W
(1)
3 — but the mixing angle can be safely neglected.
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quarks. In our numerical study, we vary the ΛR parameter in the range

2 < ΛR < 10 , (9.1)

The results are shown in figure 26 where we plot the spin-independent cross section as a

function of mKK for five choices of ΛR (in blue) as well as various bounds from experiences:

Zepelin [32], Edelweiss + CDMS combined data [33], Xenon limits from 2011 [34] and

2012 [35] as well as projection limits in Xenon for 2017 extracted from DMTools. The

numerical values for ΛR = 2, 4, 6, 8, and 10 are given in table 12. The best bound is

coming from Xenon 2011, and it ranges from mKK > 520 to 760GeV, increasing for smaller

cut-offs. The bound is also independent on the radii, being the same foe asymmetric and

symmetric ones. It is interesting to compare the bounds in table 12 with the preferred

WMAP ranges in table 10: we immediately see that the WMAP preferred ranges move to

higher values of mKK for larger cut-offs, while the bounds from direct detection decrease.

Numerically, the symmetric case seems to be completely excluded, while low cut-off values

ΛR . 3 are excluded for asymmetric radii. This is clear from figure 27, where we show in

yellow the region preferred by WMPA in the ΛR–mKK region together with the bounds

from direct detection experiments: the best bound is given by Xenon100 (solid blue line).

It is also interesting to compare the Direct Detection bound with bounds from accelerators

(LHC): the strongest bound should come from dilepton resonances from the decays of the

even tiers (2). An estimate [22] shows that the bound, after the analysis of the 2011 data at

7TeV, is mKK < 575GeV in the asymmetric case, and mKK < 440GeV in the symmetric

one.5 The bounds have been computed for ΛR = 10, however they should bear a minor

dependence on its precise value and this be near constant in the region under investigation.

Direct detection bounds are therefore competitive with collider ones, and in particular

dominate for smaller mass splitting (small ΛR) and in the symmetric case.

One way out of this conclusion is the funnel region opened by the H(2) resonance,

which allows for large mKK . The strong direct detection bounds can also be compared to

the bounds on other UED models in 2 dimensions, like the chiral square, where smaller

cross sections are obtained [38].

10 Conclusion

We have studied the dark matter relic abundance on the Universal Real Projective Plane

model. This model is an extra dimensional model with two extra dimensions compactified

on a twisted bottle, or real projective plane. This peculiar geometry brings an extra

argument for the stability of dark matter, which is not an imposed parity but just a

remnant of the 6-dimensional Lorentz invariance partially broken by the compactification.

One of the main features of this model is the highly degenerate spectrum in each Kaluza-

Klein tier, due to the smaller loop corrections compared to other UED models. This in

turn implies that co-annihilation effects and higher modes are important in the calculation

of the relic abundance. We have performed a detailed analytic and numerical study which

5Indirect bounds on mKK can be extracted from the Higgs physics [36, 37], and may be important.
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Figure 26. Direct detection bounds on mKK for the RP2 for ΛR = 2, 4, 6, 8, 10. The WIMP -

proton cross sections in blue correspond to the 5 values of the cut-off: from blue solid line (ΛR = 2)

down to blue dotted line (ΛR = 10). In red we show the Xenon limit: solid — 2011, dashed —

2012, dotted — 2017. In dot-dashed green/magenta the limits from Zepelin/CDMS+EDELWEISS.

Experiment Zepelin Edelweiss Xenon2011 Xenon2012 Xenon2017 ΛR

+CDMS

10−44σ[cm]2 27.089 12.589 6.422 2.061 0.05 2

mKK [GeV] 740 840 940 1140 2200

10−44σ[cm]2 185 97.285 45.308 14.555 0.251 4

mKK [GeV] 540 600 680 820 1650

10−44σ[cm]2 435.537 209.142 97.285 32.004 0.498 6

mKK [GeV] 470 530 600 720 1460

10−44σ[cm]2 643.533 337.704 166.731 54.356 0.685 8

mKK [GeV] 440 490 550 660 1380

10−44σ[cm]2 14.718 7.615 4.165 1.38922 0.028 10

mKK [GeV] 415 465 520 630 1315

Table 12. Upper bounds on mKK mass from different direct detection experiments.

allows to obtain a range of KK-masses in which the model is consistent with the relic

abundance by providing a good candidate for the stable dark matter particle. Our results

can be compared to calculations performed for other UED models [28, 31, 39, 40].

Our complete computation of the relic density of dark matter in the Universal Real

Projective Plane model includes all effects of tier (1) and tier (2) states together with the

precise spectra calculated at one-loop level, thus allows to understand in detail the role of
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Figure 27. In yellow we show the WMAP preferred region for mKK as a function of the cut-off

scale ΛR for asymmetric (left) and symmetric (right) radii. The lines delimit the lower bounds

from direct detection experiments: Zepelin (dot-dashed green), CDMS+EDELWEISS (green dot-

dashed), Xenon 2011 (blue solid), Xenon 2012 projection (blue dashed), Xenon 2017 projection

(blue dotted). The allowed mKK regions are above the direct detection lines.

the different ingredients active in this model: annihilation versus co-annihilation, different

particles contributions for DM observables, effect of the cut-off and of localised Higgs mass

terms, perspective of direct versus indirect bounds, implication for the LHC searches. We

find that the preferred range for mKK is 700 < mKK < 990GeV for the asymmetric

case and 350 < mKK < 505GeV for degenerate radii, in both cases for maximal cut-off

ΛR = 10. Decreasing the cut-off, the preferred ranges are reduced. Such ranges are well

into the reach of the LHC. We also find that the tier (2) Higgs resonance open a funnel

region in the parameter space that allows to increase mKK up to ∼ 1200GeV. We also

computed the SI direct detection cross section for the scalar Dark matter candidate, and we

found values close to the experimental bounds: in fact, we found that the 2011 Xenon100

results already exclude the degenerate radii case, and severely constraints the low cut-off

case for asymmetric radii. We expect that by the end of 2017, Xenon may be able to

exclude the full parameter space. Direct detection bounds are also competitive with LHC

bounds, even though a complete study of the Universal RP2 at the hadron collider has not

been completed.

Dark Matter in extra dimensions is still a very plausible candidate to explain the matter

density in the Universe, and it offers the possibility of an exact symmetry deriving from the

properties of the compact space. Furthermore, the mass scales required by the WMAP data

are in the range presently being explored at the LHC. We explored a particular realisation

of this idea on a twisted bottle, while many other spaces and topologies are still unexplored.
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