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1 Introduction

A natural scenario to explain the sub-eV neutrino masses is type-I seesaw mechanism in

which very heavy standard model (SM) singlet right-handed neutrinos are introduced. In

this case the light-neutrinos become Majorana particles and the scenario can be tested at

neutrinoless double beta decay experiments.

A more straightforward way for the generation of neutrino masses in parallel with the

generation of quark or charged lepton masses is just to introduce right-handed neutrinos

to get Dirac neutrino masses with the assumption of lepton number conservation to forbid

the Majorana mass terms of the right-handed neutrinos. The problem in this case is

the neutrino Yukawa couplings should be tiny (. 10−11) while the top quark Yukawa

coupling is of order 1. To give Dirac masses to neutrinos, while avoiding this large hierarchy

problem, neutrino-two-Higgs-doublet model (νTHDM) was suggested [1, 2]. In this model,

the small neutrino masses are explained by the small VEV of a second Higgs doublet

(v1 =
√
2〈Φ0

1〉 ∼ O(1) eV) while the neutrino Yukawa couplings can be of order 1. The

authors in ref. [1] introduced global U(1) symmetry, U(1)X , which is softly broken to forbid

Majorana mass terms of the right-handed neutrinos. In their model, all the SM fermions

except neutrinos obtain masses via Yukawa interactions with the SM-like Higgs doublet,

Φ2, while only neutrinos get masses from Yukawa interaction with Φ1:

LY = −QLY
uΦ̃2uR −QLY

dΦ2dR − LLY
eΦ2eR − LLY

νΦ̃1νR + h.c., (1.1)

where Φ̃i = iσ2Φ
∗
i (i = 1, 2). The Φ1 and νR are assigned with the global charge 1 under

U(1)X . The global symmetry forbids the Majorana mass term νRνR. If the global symme-

try is softly broken by introducing a term in the scalar potential, V ∋ −m2
12Φ

†
1Φ2 + h.c.,

the small VEV is obtained by seesaw-like formulas

v1 =
m2

12v2
M2
A

, (1.2)
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Scalar Fields New Fermion

Φ1 Φ2 S νR ψ

SU(2)L 2 2 1 1 1

U(1)Y
1
2

1
2 0 0 0

U(1)X 2 0 2 2 1

Table 1. Scalar fields and new fermion in our model where νR is Majorana type while ψ is Dirac

type.

where MA is the pseudo-scalar mass [1]. For the electroweak scale MA(∼ 100)GeV, v1 ∼
1 eV can be obtained by m12 ∼ O(100) keV.

We extend the model to include a natural dark matter (DM) candidate, ψ. In our

model the global symmetry, U(1)X , is spontaneously broken down to discrete Z2 symmetry

by VEV of a new singlet scalar, S. The remnant Z2 symmetry makes the dark matter

candidate stable. The resulting Goldstone boson provides a new annihilation channel for

the DM relic density. It is feebly coupled to the SM particles due to tiny v1, avoiding

experimental constraints. We also study the DM direct detection and indirect detection.

They are typically well below the current experimental sensitivity.

The paper is organized as follows. In section 2, we introduce our model. In section 3,

we study DM phenomenology in our model: relic abundance, direct and indirect detection

of the DM. In section 4, we conclude.

2 The model

In this section, we introduce our model which is an extension of the model given in ref. [1].

The scalar field contents and new fermions are summarized in table. 1 where we also show

the charge assignments under global U(1)X symmetry. We can write U(1)X -invariant as

well as the SM-gauge invariant scalar potential, Yukawa interactions for the leptons and

new fields as

V (Φ1,Φ2, S) = −m2
11Φ

†
1Φ1 −m2

22Φ
†
2Φ2 −m2

SS
†S − (µΦ†

1Φ2S + h.c.)

+ λ1(Φ
†
1Φ1)

2 + λ2(Φ
†
2Φ2)

2 + λ3Φ
†
1Φ1Φ

†
2Φ2 + λ4Φ

†
1Φ2Φ

†
2Φ1 + λS(S

†S)2

+ λ1SΦ
†
1Φ1S

†S + λ2SΦ
†
2Φ2S

†S, (2.1)

L ⊃ −yeijL̄iΦ2eRj − yνijL̄iΦ̃1νRj + h.c, (2.2)

L ⊃ ψ̄iγµ∂µψ −mψψ̄ψ − f

2
ψ̄cψS† − f∗

2
ψ̄ψcS. (2.3)

Thus Dirac masses of neutrinos are generated by VEV of Φ1 which is assumed to be

much smaller than electroweak scale to obtain tiny neutrino mass [1, 2]. In addition, a

Z2 symmetry remains when U(1)X is broken by non-zero VEVs of S. Note that only ψ is

Z2 odd particle while other particles including those in SM sector are even under the Z2,

guaranteeing stability of ψ. Thus ψ can be a DM candidate in the model.

– 2 –
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Here we note that a global symmetry is considered to be broken by quantum effect

at Planck scale, Mpl. In such a case we would have a Planck suppressed effective oper-

ator ψ̄H̃†( /DL) which breaks the Z2 symmetry from global U(1)X in our model inducing

instability of DM candidate [3]. Then the lifetime of ψ becomes too short to be domi-

nant component of DM for mψ & O(0.1)GeV if the global U(1)X breaking operator is

not suppressed by very small dimensionless coupling. This instability could be avoided

assuming our global U(1)X is a subgroup of some gauge symmetry broken at scale higher

than electroweak scale. Another way is introducing local U(1)B−L symmetry where ψ does

not have B −L charge, in order to forbid the operator inducing decay of ψ. In this paper,

we just assume our DM candidate is stabilized by the Z2 from U(1)X . On the other hand,

the breaking of the global U(1)X at Planck scale does not affect neutrino mass since such

a contribution is highly suppressed by the factor of v/Mpl ∼ 10−16.

The scalar fields can be written by

Φ1 =


 φ+

1

1√
2
(v1 + h1 + ia1)


 , Φ2 =


 φ+

2

1√
2
(v2 + h2 + ia2)


 , S =

1√
2
rSe

i
aS

vS . (2.4)

Note that we write S in terms of radial field rS = vS+ρ and phase field aS with 〈aS〉 = 0 [4]

since aS becomes physical Goldstone boson as shown below. The VEVs of the scalar fields

are obtained by requiring ∂V (v1, v2, vS)/∂vi = 0 which provides following conditions:

−2m2
11v1 + 2λ1v

3
1 + v1(λ1Sv

2
S + λ3v

2
2 + λ4v

2
2)−

√
2µv2vS = 0, (2.5)

−2m2
22v2 + 2λ2v

3
2 + v2(λ2Sv

2
S + λ3v

2
1 + λ4v

2
1)−

√
2µv1vS = 0, (2.6)

−2m2
SSvS + 2λSv

3
S + vS(λ1Sv

2
1 + λ2Sv

2
2)−

√
2µv1v2 = 0. (2.7)

We then find that these conditions can be satisfied with v1 ≃ µ ≪ {v2, vS} and SM Higgs

VEV is given as v ≃ v2 ≃ 246GeV. From (2.5) we find that v1 is proportonial to and of

the same order with µ:

v1 ≃
√
2µv2vS

λ1Sv2S + (λ3 + λ4)v22 − 2m2
11

. (2.8)

Typically v1 ∼ µ is required for electroweak scale v2, vS . Taking neutrino mass scale as

mν ∼ 0.1 eV, the value of µ/v2 should be µ/v2 ∼ O(10−12)[O(10−6)] when the order of the

Yukawa coupling Y ν is O(1)[O(10−6)(∼ me/v2)]. We note, however, that small µ(≪ v)

is technically natural [5, 6] because µ ≡ 0 enhances the symmetry of the Lagrangian (2.1)

to additional U(1) under which only the S field is charged while all the others are neutral.

Here we consider masses and mass eigenstate of the scalar sector by analyzing the

scalar potential with v1 ∼ µ ≪ {v2, vS}.

Pseudo-scalar. Mass matrix for pseudo-scalars is given, in the basis of (a1, a2, aS), by

M2
A ≃ µ√

2




v2vS
v1

−vS −v2

−vS
v1vS
v2

v1

−v2 v1 0


 ≃




µv2vS√
2v1

0 0

0 0 0

0 0 0


 , (2.9)
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where we used S ≃ (vS + ρ+ iaS)/
√
2 to obtain the mass matrix. We thus find three mass

eigenstates A, a, and G0: A(≃ a1) is massive pseudo-scalar, a(≃ aS) is physical massless

Goldstone boson associated with U(1)X breaking as indicated above, and G0(≃ a2) is mass-

less Nambu-Goldstone (NG) boson which is absorbed by Z boson. The mass of A is given by

m2
A =

µ(v21v
2
2 + v21v

2
S + v22v

2
S)√

2v1v2vS
≃ µv2vS√

2v1
. (2.10)

Note that the existence of physical Goldstone boson a does not lead to serious problems in

particle physics or cosmology since it does not couple to SM particles directly except to SM

Higgs. Invisible decay width of Z-boson strongly constrains the Z → Hia decay.1 Since

vS is a free parameter, we can make ρ (or the mass eigenstate with ρ as main component)

heavier than the Z-boson mass to evade the problem [7]. In our model, a can couple also

to electron via igēea a ēγ5e interaction through mixing with the SM Higgs doublet. Stellar

energy loss constrains gēea . 10−12 model-independently [8]. The tree-level contribution in

our model, gēea ≃ mev1/(vvS) ≈ 2×10−16(v1/1 eV)(100GeV/vS), satisfies the bound safely.

Our model can also contribute about 0.39 to the effective number of neutrino species

∆Neff [4] when λ2S = 0.005 and mH3
= 500MeV. This can solve [9, 10] about 3.4σ

discrepancy between Hubble Space Telescope [9] and Plank [11] in the measurement of

Hubble constant. Since the mechanism is almost the same with that detailed in [4] we do

not further discuss implication of the Goldstone boson on ∆Neff .

Charged scalar. For charged scalar case, mass matrix in the basis of (φ±
1 , φ

±
2 ) is given by

M2
H± =

(
v2(

√
2µvS−λ4v1v2)

2v1
−1

2(
√
2µvS − λ4v1v2)

−1
2(
√
2µvS − λ4v1v2)

v1(
√
2µvS−λ4v1v2)

2v2

)
≃

(
v2(

√
2µvS−λ4v1v2)

2v1
0

0 0

)
, (2.11)

which indicates that φ±
1 is approximately physical charged scalar, H±, and φ±

2 is approx-

imately G±, the NG boson absorbed by W± boson. We obtain the charged Higgs mass as

m2
H± =

(v21 + v22)(
√
2µvS − λ4v1v2)

2v1v2
≃ v2(

√
2µvS − λ4v1v2)

2v1
. (2.12)

CP-even scalar. In the case of CP-even scalar, all three components are physical, and

the mass matrix in the basis of (h1, h2, ρ) is written as

M2
H =




2λ1v
2
1 +

µv2vS√
2v1

(λ3 + λ4)v1v2 − µvS√
2

λ1Sv1vS − µv2√
2

(λ3 + λ4)v1v2 − µvS√
2

2λ2v
2
2 +

µv1vS√
2v2

λ2Sv2vS − µv1√
2

λ1Sv1vS − µv2√
2

λ2Sv2vS − µv1√
2

2λSv
2
S + µv1v2√

2vS




≃




µv2vS√
2v1

0 0

0 2λ2v
2
2 λ2Sv2vS

0 λ2Sv2vS 2λSv
2
S


 . (2.13)

1Hi(i = 1, 2, 3) are neutral scalars defined below.
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We find that all the masses of the mass eigenstates, Hi(i = 1, 2, 3), are at the electroweak

scale and the mixings between h1 and other components are negligibly small while the h2
and ρ can have sizable mixing. The mass eigenvalue and mixing angle for h2 and ρ system

are given by

m2
H2,H3

=
1

2

[
m2

22 +m2
33 ∓

√
(m2

22 −m2
33)

2 + 4m4
23

]
, (2.14)

tan 2θ =
−2m2

23

m2
22 −m2

33

, (2.15)

m2
22 = 2λ2v

2
2, m2

33 = 2λSv
2
S , m2

23 = λ2Sv2vS . (2.16)

Then mass eigenstates are obtained as



H1

H2

H3


 ≃




1 0 0

0 cos θ − sin θ

0 sin θ cos θ







h1

h2

ρ


 (2.17)

Note that H2 is the SM-like Higgs, h, and mH2
≃ mh where mixing angle θ is constrained

to be sin θ . 0.2 by data of Higgs search at the LHC [14–16].2 For small mixing, we have

H2 ≃ h and H3 ≃ ρ. Note also that our case realizes alignment limit β − α ≃ π/2 in two

Higgs doublet sector which is consistent with current SM Higgs analysis [17]. In addition,

we take into account constraint from h → aa decay which is induced by interaction term

1/(vS)ρ∂µa∂
µa from kinetic term of S. The decay width can be estimated as

Γh→aa =
sin2 θ

16π

(
mh

vS

)2

mh, (2.18)

and we require upper limit of the branching ratio asBR(h → aa) < 0.23 based on constraint

of invisible decay of SM Higgs [18–20]. The phenomenology of two Higgs doublet sector

and constraints are discussed in refs. [1, 21, 22] in detail. We thus focus on DM physics in

the following analysis.

Dark sector. To obtain interactions of ψ and physical scalar bosons, we define a field

ψ′ by [4]

ψ = ψ′e
i
aS

2vS , (2.19)

so that the direct coupling of aS to ψ′ disappears. Then the Lagrangian for ψ′ becomes

L ⊃ ψ̄′iγµ∂µψ
′ −mψψ̄

′ψ′ − 1

2vS
ψ̄′γµψ′∂µaS − f

2
√
2
ψ̄

′cψ′rS − f

2
√
2
ψ̄′ψ′crS , (2.20)

where f is taken to be real and positive by an appropriate choice of phase of ψ. Since

rS(= vS + ρ) has non-zero VEV, the mass eigenstates of Z2 odd fermions are obtained as

a pair of self-charge-conjugate fields;

ψ+ =
1√
2

(
ψ′ + ψ′c) , ψ− =

−i√
2

(
ψ′ − ψ′c) , (2.21)

2The numerical analyses on the Higgs decays are performed using the program HDECAY, see refs. [12, 13].
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which satisfy Majorana conditions ψc± = ψ± and have mass eigenvalues

m± = mψ ± fvS√
2
. (2.22)

Thus ψ− is our DM candidate in the following analysis. Finally the Lagrangian for the

mass eigenstates is given by

L ⊃ 1

2

∑

α=±
ψ̄α [iγ

µ∂µ −m±]ψα − i

4vS

[
ψ̄+γ

µψ− − ψ̄−γ
µψ+

]
∂µaS

− f

2
√
2
ρ
[
ψ̄+ψ+ − ψ̄−ψ−

]
. (2.23)

3 Dark matter physics

In this section, we discuss DM physics such as relic density, direct detection and indirect

detection. Our DM candidate is the new Majorana fermion ψ− which is stable due to

Z2 symmetry as a remnant of the global U(1)X symmetry. Interactions relevant to DM

physics are obtained from the kinetic term of S, terms in eq. (2.1), and (2.20):

L ⊃ − f

2
√
2
ρ(ψ̄+ψ+ − ψ̄−ψ−)−

i

4vS

[
ψ̄+γ

µψ− − ψ̄−γ
µψ+

]
∂µa

− µSSρ
3 +

1

vS
ρ∂µa∂

µa− µ1Sρ

(
φ+
1 φ

−
1 +

1

2
(h21 + a21)

)
− µ2S

2
ρh22, (3.1)

where we defined µSS ≡ λSvS , µ1S ≡ λ1SvS and µ2S ≡ λ2SvS , and ρ(h2) can be written in

terms of mass eigenstates via eq. (2.17). In the following analysis, we consider four different

scenarios for the coupling constants: (I) f ≤
√
4π and µ1S,2S,SS ≪ 0.1GeV, (II) f ≤

√
4π

and µSS ≫ µ1S,2S , (III) f ≤ 0.8 and µ2S ≫ µ1S,SS , (IV) f ≤ 0.8 and µ1S ≫ µ2S,SS . For

scenario (I), DM dominantly annihilate into ρρ and/or aa via interaction with coupling

f as figure 1-(A) [4, 23–25] and aa via process in figure 1-(B). In the scenario (II), final

states of DM annihilation process is same as scenario (I) where ψ−ψ− → H3 → H3H3

mode in figure 1-(B) is added. In the scenarios (III) and (IV), a DM pair dominantly

annihilates via s-channel processes where ρ(≃ H3) propagates as an intermediate particle;

the dominant final states are, depending on parameters, {hh, fSMfSM ,W+W−, ZZ} and

{H1H1, AA,H
+H−} for the scenarios (III) and (IV) respectively as shown in figure 1 (C)

and (D), and aa channel in figure 1-(B) which contributes to both scenarios. Note that, µ2S

induces mixing between h2 and ρ and we discuss constraint from direct detection taking

into account Higgs portal interaction [26–32] with the mixing effect for scenario (III).

3.1 Relic density

We estimate the thermal relic density of DM numerically using micrOMEGAs 4.3.1 [33] to

solve the Boltzmann equation by implementing relevant interactions inducing the DM pair

annihilation processes. Then we search for parameter sets which satisfy the approximate

region for the relic density [34]

0.11 . Ωh2 . 0.13. (3.2)

– 6 –



J
H
E
P
0
3
(
2
0
1
7
)
0
5
9

Figure 1. The DM annihilation processes.

In numerical calculations random parameter sets are prepared in the following parameter

ranges for each scenario:

For all scenario : m− ∈ [50, 1100]GeV, mH3
∈ [30, 2200], vS = 1000GeV, (3.3)

scenario (I) : f ∈ [0.1,
√
4π], µ1S = µ2S = µSS = 10−3GeV, (3.4)

scenario (II) : f ∈ [0.01,
√
4π], µSS∈ [0.1,mH3

] GeV, µ1S=µ2S=10−3GeV, (3.5)

scenario (III) : f ∈ [0.01, 0.8], µ2S∈ [0.1,mH3
] GeV, µ1S=µSS=10−3GeV, (3.6)

scenario (IV) : f ∈ [0.01, 0.8], µ1S∈ [0.1,mH3
] GeV, µ2S=µSS=10−3GeV,

mH1
= mH± = mA ∈ [70,mψ] GeV, (3.7)

where we assumed mH1
= mH± = mA for simplicity and they are taken to be larger than

mψ in scenario (I) to (III).

In figure 2, we show parameter points which explain the observed relic density of DM for

scenario (I) where red and blue points correspond to the case of (a) m−+m+ > mH3
> m−

and (b)m− > mH3
. We find that the case of mH3

> m− + m+ cannot provide observed

relic density with f <
√
4π since only ψ±ψ± → aa channel is allowed. In the case (a),

ψ−ψ− → H3 → aa in figure 1-(B) dominates and the region near resonance, mH3
∼ 2m−,

is preferred as shown in the right plot of figure 2 where |mH3
− 2m−|/mH3

. 10-30% is

required. Also in the case (a), for smaller f , t-channel coannihilation process ψ−ψ+ →
H3a is enhanced near threshold mH3

≃ m− +m+ due to the t-channel propagator of ψ±
contributes 1/(m2

+ −m2
−) factor to the amplitude. In the case (b), the relevant process is

coannihilation ψ−ψ+ → H3a as well as ψ−ψ− → H3H3, aa, shown in figure 1-(A),(B). The

case (a) allows wide parameter space than the case (b) in the (m−, f)-plane simply due to

resonance dominance in the case (a).

– 7 –
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Figure 2. The parameter points providing required relic density of DM in scenario (I) where red

and blue points correspond to the case of m
−
+m+ > mH3

> m
−

and m
−
> mH3

respectively.

We find that the allowed parameter points for scenario (II) is similar to scenario (I)

since new contribution from the process ψ−ψ− → H3 → H3H3 is subdominant. The allowed

region in (m−, f)-plane becomes slightly wider due to new contribution form− > mH3
while

most of µSS region can be allowed. Since the result is similar to that of scenario (I) we

omit the plot for scenario (II).

The allowed parameter points for scenario (III) and (IV) are given in figure 3 in

(m−, µ2S(1S))- and (m−,mH3
)-plane. We find that parameter space with mH3

∼ 2m− as

can be seen from figure 1-(C) and (D) can explain the relic density since resonant enhance-

ment is required to achieve sufficient annihilation cross section where |mH3
−2m−|/mH3

.

10% is required. For the resonant region, wide range of µ2S(1S) is allowed as shown in left

plots of figure 3. For scenario (III), parameter space with large value of µ2S is constrained

by constraint from mixing angle sin θ < 0.2 and invisible decay branching ratio of SM

Higgs. In addition, larger resonant enhancement is required to obtain sufficient annihila-

tion cross section. In scenario (IV), also dependence on the value of mH1
is small unless it

is not very close to that of m−.

3.2 Direct detection

Here we discuss direct detection of DM in our model focusing on our scenario (III) since

ρ-h2 mixing is negligibly small in other scenarios. The DM-nucleon scattering is induced

by the SM Higgs exchanging process via mixing effect in scalar sector in our model, which

is calculated in non-relativistic limit. We obtain the following effective Lagrangian by

integrating out h and H3;

Leff =
∑

q

fmqsθcθ

2
√
2v

(
1

m2
h

− 1

m2
H3

)
ψ̄−ψ−q̄q (3.8)
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Figure 3. The parameter points providing required relic density of DM in scenarios (II) and (III)

on the mψ-µSS(2S) plane (left plot) and the mψ-mH3
plane (right plot).

where sθ(cθ) = sin θ(cos θ), q and mq denote the corresponding quark field and the quark

mass respectively, and the sum is over all quark flavors. The effective Lagrangian can be

rewritten as ψ-nucleon (N) interaction:

Leff =
fNmNfsθcθ

2
√
2v

(
1

m2
h

− 1

m2
H3

)
ψ̄−ψ−N̄N, (3.9)

where the effective coupling constant fN is obtained by

fN =
∑

q

fNq =
∑

q

mq

mN
〈N |q̄q|N〉. (3.10)

Here we replace the heavy quark contribution by the gluon contributions such that [30]

∑

q=c,b,t

fNq =
1

mN

∑

q=c,b,t

〈N |
(
− αs
12π

Ga
µνG

aµν
)
|N〉, (3.11)
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which is obtained by calculating the triangle diagram. The trace of the stress energy tensor

is written as follows by considering the scale anomaly;

θµµ = mN N̄N =
∑

q

mq q̄q −
7αs
8π

Ga
µνG

aµν . (3.12)

Combining eqs. (3.11) and (3.12), we obtain

∑

q=c,b,t

fNq =
2

9


1−

∑

q=u,d,s

fNq


 , (3.13)

which provides

fN =
2

9
+

7

9

∑

q=u,d,s

fNq . (3.14)

Finally the spin independent ψ-N scattering cross section is given by [35]

σSI(ψN → ψN) =
1

2π

µ2
Nψf

2
Nm

2
Nf

2s2θc
2
θ

v2

(
1

m2
h

− 1

m2
H3

)2

(3.15)

where mN is the nucleon mass and µNψ = mNm−/(mN + m−) is the reduced mass of

nucleon and DM. For simplicity, we estimate DM-neutron scattering cross section since

that of DM-proton is almost the same. In this case, we apply fn ≃ 0.287(with fnu = 0.0110,

fnd = 0.0273, f bs = 0.0447) for the sum of the contributions of partons to the mass fraction

of neutron [36]. The figure 4 shows the DM-nucleon scattering cross section for the allowed

parameter sets in scenario (III); for other scenarios the cross section is negligibly small

due to small mixing angle θ. We find that the cross section is mostly smaller than current

constraint from LUX [37] (few parameter space is excluded), and some parameter sets

would be tested in future direct detection experiments [38].

3.3 Indirect detection

Here we discuss possibility of indirect detection in our model. The thermally averaged

cross section in current Universe is estimated with micrOMEGAs 4.3.1 applying allowed

parameter sets. The figure 5 shows the cross section for scenario (I) and scenarios (III,IV)

in left and right panel respectively; the scenario (II) provide same feature as scenario (I)

and the corresponding plot is omitted here.

For scenario (I), colors of points correspond to that of in figure 2. We find that the

cross section is suppressed since the amplitude of the process decreases as momentum of

DM decreases. The cross section for ψ−ψ− → H3H3 does not change much while that for

ψ−ψ− → H3a(aa) has wide range of value since resonant region mH3
∼ 2m− is required in

the latter case and the current cross section can be much different from that in freeze out

era; the case of mH3
≃ (.)2m− induce large Breit-Wigner enhancement while the case of

mH3
& 2m− does not induce large enhancement and the cross section is suppressed as the

amplitude decreases as DM momentum. The H3 further decays into hh and SM particles

via the effect of mixing with SM Higgs which lead γ-ray spectrum. Since the cross section

– 10 –
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Figure 4. The DM-nucleon scattering cross section for scenario (III) which is compared with

current constraint by LUX [37] and future prospect by XENON 1t [38].
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Figure 5. The thermally averaged DM annihilation cross section at current Universe for parameter

sets which provides observed relic density. In the left plot, colors of points correspond to that in

figure 2. In the right plot, red and blue points correspond to scenario (III) and (IV) respectively.

is small, γ-ray flux is free from current constraint and the γ-ray spectrum depends on decay

pattern of H3 and detailed analysis is beyond the scope of this paper. The scenario (II)

provide same result as scenario (I) since annihilation processes are almost same.

For scenario (III) and (IV), the s-channel processes with µ2S and µ1S can be also

enhanced. The process ψ−ψ− → H3 → {hh} is . 10−28cm2/s due to constraint on

µ2S from mixing with H3 and SM Higgs. Note that due to resonant enhancement the

cross section can be ∼ 10−27cm2/s for the processe ψ−ψ− → H3 → {H1H1, AA,H
+H−}

with m− . 150GeV in scenario (IV) which can be tested by γ-ray search experiments

such as Fermi-LAT [39] since H± decay into charged leptons. The decays of {H1, A,H
±}
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also provide neutrino flux, which is much smaller than current constraint by High energy

neutrino search such as IceCube [40, 41], and It would be tested in future observation.

4 Conclusions and discussions

We have studied a dark matter model in which neutrinos get Dirac masses. The global

U(1)X symmetry forbids the Majorana mass terms of the right-handed neutrinos, thereby

allowing the Dirac masses for the neutrinos. The same symmetry, broken down to a discrete

Z2 symmetry, guarantees the stability of a dark matter candidate which is a hidden sector

fermion charged under the global U(1)X . The spontaneous symmetry breaking of U(1)X
occurs due to VEV, vS , of a hidden sector scalar S whose pseudo-scalar component becomes

Goldstone boson, providing a new channel to the DM annihilations.

We considered four scenarios depending on the size of coupling constants, f , λSSvS ,

λ2SvS , and λ1SvS which regulate the interaction strength of DM and S, self-coupling of

S, SM Higgs and S, and scalar doublet for neutrinos and S, respectively. In scenario (I),

we assumed f can be large while suppressing λSSvS , λ2SvS , and λ1SvS . In scenarios (II),

(III), (IV), we suppressed f < 0.8, allowing large λSSvS , λ2SvS , and λ1SvS , respectively.

In scenarios (I) and (II), depending on the DM mass, coupling f & 0.05 can explain

the current DM relic abundance. In scenarios (III) and (IV), the DM relic density can be

accommodated near the resonance, 2m− ≈ mH3
, where the DM annihilation cross section

is enhanced.

Only scenario (III) has tree-level contribution to the direct detection via dark-scalar

mixing with the SM Higgs boson. Even in this case the direct detection cross section is

marginal or well below the current LUX bound due to small mixing as observed at the LHC.

We also investigated the implications of our model on the indirect detection of DM.

In scenarios (I) and (II), the channels, ψ−ψ− → {aH3, H3H3}, are suppressed because the

amplitude is momentum-dependent while the channel ψ−ψ− → aa can be sizable due to

Breit-Wigner enhancement. However, aa channel can not be detected by the observation.

In scenario (III), the cross section for hh channel is suppressed due to constraint from H3

and SM mixing. On the other hand, In scenario (IV), with resonant enhancement the

annihilation cross section for hh and {H1H1, H
+H−, AA} can be, 〈σv〉 & 10−27 cm3/s, for

mψ . 150GeV which is in the ballpark of the sensitivity of experiments such as Fermi-LAT

when scalar bosons decay into charged fermions.
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