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Abstract We introduce DRAKE, a numerical precision

tool for predicting the dark matter relic abundance also in

situations where the standard assumption of kinetic equi-

librium during the freeze-out process may not be satisfied.

DRAKE comes with a set of three dedicated Boltzmann equa-

tion solvers that implement, respectively, the traditionally

adopted equation for the dark matter number density, fluid-

like equations that couple the evolution of number density

and velocity dispersion, and a full numerical evolution of the

phase-space distribution. We review the general motivation

for these approaches and, for illustration, highlight three con-

crete classes of models where kinetic and chemical decou-

pling are intertwined in a way that quantitatively impacts

the relic density: (i) dark matter annihilation via a narrow

resonance, (ii) Sommerfeld-enhanced annihilation and (iii)

‘forbidden’ annihilation to final states that are kinematically

inaccessible at threshold. We discuss all these cases in some

detail, demonstrating that the commonly adopted, traditional

treatment can result in an estimate of the relic density that is

wrong by up to an order of magnitude. The public release

of DRAKE, along with several examples of how to cal-

culate the relic density in concrete models, is provided at

drake.hepforge.org
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1 Introduction

The most often studied scenario to explain the observed cos-

mological dark matter (DM) abundance [1] considers new

elementary particles that have been thermally produced in

the early universe. This freeze-out scenario [2] provides an

intriguing solution to the DM puzzle not only for classi-

cal Weakly Interacting Massive Particle (WIMP) candidates

[2–6], with masses at the electroweak scale, but also for

much lighter DM particles (which is sometimes referred to as

‘WIMP-less miracle’ [7]). Various numerical codes are avail-

able to provide precision calculations of the DM relic density

in these models, including public tools like DarkSUSY [8],

MadDM [9], micrOMEGAs [10] and SuperISOrelic [11].
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In fact, precision calculations are necessary in order to match

the percent-level observational accuracy. In global fits of the

full underlying model parameter space, for example, the relic

density often provides one of the most relevant observables

in terms of contributions to the total likelihood [12–20].

All these codes currently rely on the standard approach

[21,22] to calculate the relic density,1 which can be re-cast in

the form of a single Boltzmann equation for the DM number

density even when including sharp resonances, thresholds

or co-annihilations (all of which were initially considered

complications [23]). One of the main underlying assump-

tions for this formulation is that DM (along with potential

co-annihilating particles) is kept in kinetic equilibrium with

the standard model (SM) heat bath during the entire chem-

ical decoupling process. There exist however various well-

motivated scenarios where this assumption is not satisfied,

at least not for all relevant parts of the parameter space, and

where the standard approach is thus not directly applicable.

A possible solution that has received increased attention is to

derive coupled equations for the number density and higher

moments of the DM phase-space distribution, making use

of the Boltzmann hierarchy [24–29]. More recently, there

have also been attempts to solve the full Boltzmann equation

directly at the phase-space level [30–32].

Here we introduce a new public code, DRAKE, that is

written in Wolfram Language2 and implements both of

these more general approaches for the case of annihilating

DM. DRAKE thus complements existing codes to calcu-

late the relic density also in situations where the underly-

ing assumptions of the traditional approach are not satisfied.

Additionally, it allows in fact to examine the validity of these

assumptions explicitly. As an application, we also study in

some detail three concrete physics scenarios where kinetic

decoupling can interfere with the freeze-out process: (i) s-

channel resonances, (ii) Sommerfeld enhancement and (iii)

sub-threshold annihilation. In all these cases, we contrast the

results of classical relic density calculations with the more

accurate results obtained by DRAKE.

This article is organized as follows. We start in Sect. 2 by

introducing the relevant Boltzmann equations to describe the

interaction of DM particles with the thermal bath. In Sect. 3,

the structure of the code is introduced, including the main

implemented algorithms that are used to solve these Boltz-

mann equations. We then discuss in some detail the results of

relic density calculations in concrete physics applications in

Sect. 4, before concluding in Sect. 5. In two Appendices we

1 As of version 6.2.5, along with the release of DRAKE, DarkSUSY
additionally provides numerical routines to solve the coupled system of

Boltzmann equations described in Sect. 2.3.

2 DRAKE can thus be directly used within Mathematica, but its imple-

mentation also allows, without loosing any functionality, for a script

usage with the free Wolfram Engine.

provide a quick-start guide for using DRAKE (Appendix A)

and discuss examples of elastic scattering operators that can

be treated beyond the commonly adopted Fokker–Planck

approximation (Appendix B).

2 Scope

2.1 Full Boltzmann equation

We will consider situations where DM interactions with the

SM heat bath, through elastic scattering and annihilation pro-

cesses, are initially strong enough to establish both chemical

and kinetic equilibrium. As the universe expands, the DM

particles (denoted by χ ) fall out of equilibrium and even-

tually establish the present relic abundance. The evolution

of the DM phase-space density fχ (t, p) during this process

is governed by what we will refer to as the full Boltzmann

equation (fBE):

E
(

∂t − H p∂p

)

fχ = Cann[ fχ ] + Cel[ fχ ] , (1)

where

Cann = 1

2gχ

∫

d3 p̃

(2π)32Ẽ

∫

d3k

(2π)32ω

∫

d3k̃

(2π)32ω̃

×(2π)4δ(4)( p̃ + p − k̃ − k)

×
[

|M|2
χ̄χ← f̄ f

g(ω)g(ω̃) − |M|2
χ̄χ→ f̄ f

fχ (E) fχ (Ẽ)

]

(2)

describes the effect of two-body annihilations, and the colli-

sion term for elastic scattering processes is given by

Cel = 1

2gχ

∫

d3k

(2π)32ω

∫

d3k̃

(2π)32ω̃

∫

d3 p̃

(2π)32Ẽ

×(2π)4δ(4)( p̃ + k̃ − p − k)|M|2χ f ↔χ f

×
[

(

1 ∓ g±(ω)
)

g±(ω̃) fχ (Ẽ) − (ω ↔ ω̃, E ↔ Ẽ)

]

.

(3)

In the above expressions, H = ȧ/a is the Hubble param-

eter, a the scale factor, and we have assumed a Friedman-

Robertson-Walker universe, such that fχ only depends on

the absolute value of the DM momentum, p = |p|. Fur-

thermore, both collision terms and the squared amplitudes

|M|2 for the respective process are implicitly summed over

all heat bath particles f , and final and initial state inter-

nal degrees of freedom, respectively. The phase-space dis-

tribution of the heat bath particles is given by the usual

g±(ω) = 1/
[

exp(ω/T ) ± 1
]

. Since we assume that DM

is non-relativistic around freeze-out, we have neglected

Bose enhancement and Pauli blocking factors for fχ (which

implies that these factors are also negligible for the heat bath
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particles in Cann due to energy conservation). For further

details about Eq. (1), see Refs. [33,34].

2.2 Evaluating the collision terms

In practice, the greatest obstacle in solving Eq. (1) to suffi-

cient precision is often the evaluation of the collision integrals

on the right-hand side. For the annihilation term, this is some-

what less critical since – under the generic assumptions of

C P invariance and fχ ≪ 1 – the phase-space integrals can

always be reduced to only one remaining angular integration,

and one in energy [21]:

Cann = gχ E

∫

d3 p̃

(2π)3
vMσχ̄χ→ f̄ f

×
[

fχ,eq(E) fχ,eq(Ẽ) − fχ (E) fχ (Ẽ)

]

, (4)

where the non-relativistic DM particles in equilibrium fol-

low a Maxwell-Boltzmann distribution, fχ,eq(E) = e−E/T .

Further, σ is the annihilation cross-section for the process

χ̄χ → f̄ f , and vM ≡ [s(s − 4m2
χ )]1/2/(2E Ẽ) is the

Møller velocity; in the rest frame of either of the DM par-

ticles, it equals the velocity of the other particle, vM =
vlab ≡ [s(s − 4m2

χ )]1/2/(s − 2m2
χ ). For later reference, let

us here also introduce the angular (Ω̃) averaged quantity

〈σv〉θ ≡ 1
2

∫

d cos θ vMσχ̄χ→ f̄ f that is used in our numer-

ical code and depends only on the magnitude of the three-

momenta, p and p̃.

The elastic scattering term also simplifies for highly non-

relativistic DM. For m f ≪ mχ , specifically, the typical

momentum transfer per collision is then much smaller than

the average DM momentum in equilibrium. Expanding Cel

up to second order in the momentum transfer results in a

simple differential operator of Fokker–Planck type [35–37],

which can be used to describe kinetic decoupling taking place

much later than chemical decoupling (see, e.g., Ref. [38]).

To improve the description of early kinetic decoupling, we

keep in DRAKE some of the leading relativistic corrections

[30,39], resulting in the Fokker–Planck operator (FP):

Cel ≃ CFP

= E

2
γ (T )

[

T E∂2
p+
(

2T
E

p
+ p+T

p

E

)

∂p + 3

]

fχ .

(5)

It is important to note that CFP[ fχ ] = 0 for a relativistic

Maxwellian shape fχ ∝ e−E/T , which is consistent with

the stationary solution of the relativistic annihilation term

in Eq. (4) (see appendix in Ref. [30] for more details). Fur-

thermore, it is worth mentioning that the above operator can

be written as a total momentum divergence and hence man-

ifestly conserves the DM particle number. The momentum

transfer rate γ (T ) introduced above is the same as in the

highly non-relativistic version of Eq. (5), and given by (see

also Refs. [40,41])

γ = 1

3gχ mχ T

∫

d3k

(2π)3
g±(ω)

[

1∓g±(ω)
]

0
∫

−4k2
cm

dt (−t)
dσ

dt
v ,

(6)

where k2
cm ≡ m2

χ k2/(m2
χ + 2ωmχ + m2

f ) and the scat-

tering amplitude entering the differential cross-section,

(dσ/dt)v ≡ |M|2χ f ↔χ f /(64πkωm2
χ ), is evaluated at s ≃

m2
χ + 2ωmχ + m2

f .

We will encounter one concrete example in this work, in

Sect. 4.3, where the mass of the scattering partner is compa-

rable to the DM mass, such that the momentum transfer can

no longer be assumed to be small. In this case, we have to

resort to the full scattering term in Eq. (3), which we re-write

in a form that is more suitable for numerical integration, and

which formally resembles the annihilation case, Eq. (4):3

Cel = E

∫

d3 p̃

(2π)3
W

×
[

e−(E−Ẽ)/(2T ) fχ (Ẽ) − e(E−Ẽ)/(2T ) fχ (E)

]

. (7)

Here, the quantity W is defined as

W ≡ e−(E−Ẽ)/(2T )

4gχ E Ẽ

∫

d3k

(2π)32ω

d3k̃

(2π)32ω̃
g±(ω)

[

1∓g±(ω̃)
]

× (2π)4δ4(p + k − p̃ − k̃)|M|2χ f ↔χ f (8)

and has the same physical dimension as a cross-section. For

our numerical codes it is convenient to factorise out its angu-

lar average 〈W 〉Ω̃ ≡ 1
4π

∫

dΩ̃ W , depending only on T , p

and p̃. This quantity is in general challenging to compute due

to the multidimensional integrals. In Appendix B we sum-

marize, however, some concrete cases (including the one rel-

evant for the discussion in Sect. 4.3) where the amplitude M

takes a form allowing this general expression for Cel[ f ] to

be analytically reduced to a one-dimensional integral.

2.3 Fluid equations

An alternative to the numerically challenging task of directly

computing the evolution of the phase-space density fχ con-

sists in restricting the discussion to its first moments. Instead

of the full Boltzmann Eq. (1) one thus only considers the

corresponding momentum moments of this equation, thereby

implementing a ‘hydrodynamical’ approach to the problem

3 To arrive at this form we use g±(ω̃)
[

1 ∓ g±(ω)
]

= e−(E−Ẽ)/T

g±(ω)
[

1 ∓ g±(ω̃)
]

, as implied by energy conservation.
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that essentially results in a set of fluid equations. Just as in the

case of hydrodynamics, however, additional assumptions are

needed to close the Boltzmann hierarchy at any given level.

The simplest case, and in fact the traditional way to han-

dle relic density calculations, is to only consider the low-

est moment of fχ , namely the DM number density n ≡
gχ

∫

d3 p fχ/(2π)3. The additional requirement to close the

resulting equation for n is typically met by assuming that

kinetic equilibrium is maintained until the chemical decou-

pling process is completed. For non-relativistic DM, this

implies that the DM phase-space distribution is of the form

fχ = exp[(μ− E)/T ] , which fixes fχ up to a function of T

(here parameterized as the DM chemical potential μ, in this

case related to the number density as μ/T = ln[n/neq]).
Inserting this form into Eq. (1), and integrating over the

DM momenta p, then results in what we will refer to as the

traditional number density equation (nBE):

ṅ + 3Hn = −〈σv〉T

[

n2 − n2
eq(T )

]

, (9)

where neq refers to the DM density in chemical equilibrium,

i.e. for μ = 0. The thermal average 〈. . .〉T of the velocity-

weighted annihilation cross-section can be stated in terms of

a single integral over the center-of-mass energy, as explicitly

given in Eq. (3.8) of Ref. [21].

In situations where kinetic decoupling interferes with the

chemical decoupling process, the main assumption lead-

ing to Eq. (9) is clearly too restrictive. This implies that

one needs to move (at least) one level up in the Boltz-

mann hierarchy to (approximately) describe such situations,

and thus to leave the second moment of fχ as a dynami-

cal degree of freedom. A convenient parameterization for

this is the DM velocity dispersion or ‘temperature’, Tχ ≡
gχ/(3nχ )

∫

d3 p (2π)−3(p2/E) fχ , and one way of closing

the Boltzmann hierarchy at this level is to assume, in analogy

to the case discussed above, fχ = exp[(μ − E)/Tχ ] (with

μ/Tχ = ln[n/neq(Tχ )]; see Ref. [30] for a more detailed dis-

cussion). Using Eq. (5), and assuming entropy conservation,

this results in what we will refer to as the coupled Boltzmann

equations (cBE):

Y ′

Y
= sY

x H̃

[

Y 2
eq

Y 2
〈σv〉T − 〈σv〉Tχ

]

, (10)

y′

y
= 1

x H̃
〈Cel〉2 + sY

x H̃

[

〈σv〉Tχ
− 〈σv〉2,Tχ

]

+ sY

x H̃

Y 2
eq

Y 2

[

yeq

y
〈σv〉2,T −〈σv〉T

]

+ 2(1 − w)
H

x H̃
,

(11)

where w(Tχ ) ≡ 1 − 〈p4/E3〉Tχ /(6Tχ ) parameterizes the

deviation from the highly non-relativistic case (w = 1). In

order to arrive at this compact form, we have followed the

standard convention of introducing dimensionless variables

Y (x) ≡ n/s, Yeq(x) ≡ neq(T )/s, y(x) ≡ mχ Tχ s−2/3 and

x ≡ mχ/T , where s is the entropy density.4 The thermal

average 〈σv〉2,T is a variant of the commonly used thermal

average 〈σv〉T , and is explicitly stated in Ref. [30]. We also

introduced

〈Cel〉2 ≡ gχ

3nTχ

∫

d3 p

(2π)3

p2

E2
Cel , (12)

which in the Fokker–Planck approximation of Eq. (5) sim-

plifies to 〈Cel〉2 → γ (T )w(Tχ )
[

(yeq/y) − 1
]

. Finally,

H̃ ≡ H/
[

1 + (1/3)d(log gs
eff)/d(log T )

]

, with gs
eff being

the entropy degrees of freedom of the background plasma.

The first of these equations, Eq. (10), is the analogue of the

traditional number density equation; in the limit Tχ → T

(kinetic equilibrium) it reduces as expected exactly to Eq. (9)

expressed in dimensionless variables.

Let us close this section by briefly mentioning the potential

effect of DM self-interactions [42,43] on our discussion. In

principle, this would be described by an additional collision

term Cself on the right-hand side of Eq. (1), but bringing such

a term into a form that is numerically tractable is challenging.

In light of this situation it is interesting to note that the two

beyond-nBE approaches implemented in DRAKE can be

regarded as an effective way of bracketing the impact of such

model-dependent DM self-interactions: our implementation

of fBE provides the correct description of how the DM phase-

space density evolves if the effect of DM self-interactions

is negligible, while the Eqs. (10,11) that cBE is based on

become exact under the assumption that DM self-interactions

are maximally efficient and hence force the DM distribution

to be of the form fχ = exp[(μ − E)/Tχ ].

3 Code design

DRAKE is a package of routines written in Wolfram Lan-

guage that allows to numerically compute the DM relic

abundance, Ωχ h2, in the nBE, cBE and fBE approaches

introduced above. In Sect. 3.1, we provide an overview of

the code’s modular structure and how to use it in practice to

obtain Ωχ h2 and other related quantities for a given DM par-

ticle model. The internal algorithm implemented for the time

(x) integration of the three Boltzmann equations is presented

in Sect. 3.2, and in Sect. 3.3 we summarize various validity

checks of the code that we have performed.

4 The value of Y today, Y0 ≡ Y (x → ∞), relates to the present

abundance of χ via Ωχ h2 = 2.755×1010
( mχ

100 GeV

)

(

TCMB
2.726 K

)3
Y0 [21].

For Dirac DM particles, the total DM abundance is thus given byΩDM =
2Ωχ .
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3.1 Overview

The DRAKE package provides routines to solve (time inte-

grate) the individual Boltzmann equations, as well as a set of

preparatory routines that compute quantities required by the

solvers, e.g., averages of the annihilation cross-section. This

design structure allows to perform relic abundance computa-

tions in a flexible manner, to reuse certain output quantities

from preparing routines in multiple Boltzmann solvers, and

reduce the required model input to fairly simple expressions.

To make the code design concrete, let us start with the

three Boltzmann solver routines nBE, cBE and fBE listed

in Table 1. As explained in Sect. 3.2, these are adaptive and

implicit ordinary differential equation solvers, where the par-

tial differential Eq. (1) for the fBE solver has been mapped

to a set of coupled ordinary differential equations by the so-

called method of lines (see, e.g., Ref. [44]). Each solver cal-

culates the relic abundance Ωχ h2 and the full Y (x) evolution.

cBE andfBE also give the y(x) evolution, and the latter addi-

tionally provides information on the full phase-space density

fχ (x, p).

The annihilation cross-section averages (third column)

needed in the Boltzmann equations are computed by the

preparatory routines PrepANN, PrepANN2, and

PrepANNtheta, as listed in Table 2. The only input

required from the user is the DM annihilation cross-section

in the form of σvlab as a function of the Mandelstam variable

s. The routines then adopt to adjustable accuracy settings

and the DM model at hand, in order to generate accurate

and densely tabulated outputs for the resulting interpolation

functions.

For the cBE and fBE routines also the scattering operator

Cel in Eq. (3) needs to be evaluated. If the Fokker–Planck

approximation in Eq. (5) is chosen for the scattering oper-

ator, then the momentum transfer rate γ (x) in Eq. (6) – or

just the model-dependent part containing the Mandelstam t-

average of the scattering amplitude |M|2χ f ↔χ f – should be

provided by the user. The preparatory routine PrepSCATT

then adaptively tabulates γ (x) to provide an interpolating

function for fast evaluation. However, we stress that the cBE

and fBE routines are not limited to the use of the Fokker–

Planck approximation for the scattering collision term Cel.

As explained in Appendix B, the full Cel can be used if the

quantity 〈W 〉Ω̃ from Eq. (8) is provided (which in practice

amounts to providing 〈Cel〉2 and Ĉel as defined in B.2 for

cBE and fBE, respectively).

The first code release also comes with five pre-implemented

DM model setups. These are the Scalar Singlet DM model

[45–47], 5 our three example scenarios discussed in Sect. 4,

5 Our Singlet Scalar model implementation is specified in Ref. [30],

with the annihilation cross-section updated to now follow what is cur-

rently adopted in DarkSUSY.

Table 1 The names of the three routines solving, respectively, the Boltz-

mann equation referred to in the second column. The third and fourth

column show the basic quantities that these equations are based on.

These routines are, respectively, located in the files nBE.wl, cBE.wl

and fBE.wl (in the src/ directory)

Routine Solves Based on

nBE Eq. (9) 〈σv〉 –

cBE Eqs. (10, 11) 〈σv〉, 〈σv〉2 γ or 〈W 〉Ω
fBE Eq. (1) 〈σv〉θ γ or 〈W 〉Ω

Table 2 The preparatory routines, computing averages of the velocity-

weighted annihilation cross-section σvlab. Output of these routine calls

is stored in the session memory, such that, e.g., the quantity 〈σv〉 can

be used for both nBE and cBE routine calls. These routines are located

in rates.wl (in the src/ directory)

Routine Computes As needed for

PrepANN 〈σv〉(x) nBE, cBE

PrepANN2 〈σv〉2(x) cBE

PrepANNtheta 〈σv〉θ (p, p̃) fBE

PrepSCATT γ (x) cBE, fBE

and a WIMP-like toy model. Each of these comes with three

files: a model file (containing σvlab(s) and either γ (x) or the

scattering operators 〈Cel〉2 and Ĉel), a parameters file (with

numerical values of the DM mass, couplings, internal d.o.f.,

etc.) and a settings file (with various code options).

The DM relic abundance in these, or any other user-

defined, setups can be conveniently calculated, e.g. within a

Mathematica notebook, by sequentially calling the required

DRAKE routines. A practical alternative is to use the cus-

tomizable template script main.wls provided in the main

directory. As illustrated in Fig. 1, the calculation procedure

consists of initializing the DRAKE package, then loading the

DM model setup files, performing the required preparatory

calculations and finally executing the Boltzmann equation

solvers.

A dedicated quick start guide as well as a description

of more features and details of DRAKE are provided in

Appendix A.

3.2 Numerical implementation

All three Boltzmann equations (nBE, cBE and fBE) are

numerically time (x) integrated by essentially the same

implicit adaptive algorithm. Once the phase-space den-

sity is discretized in momentum space as fχ (t, p) →
{ f0(t), . . . , fN (t)}, in particular, all of them can be writ-

ten as a coupled system of ordinary first order differential

equations of the form
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Fig. 1 Flowchart showing DRAKE’s main routines as called by the

main.wls template script. The three user specified input < files> in the

green boxes should contain the DM model definition, numerical values

on model parameters and option settings for DRAKE (see main text

and Appendix A). The command GetModel then loads the content

from these < files> before the script continues to execute the required

preparatory routines. The preparatory routines PrepANNtheta and

PrepSCATTwill not be called if the options Analyticsvtheta or

FullCell are set to True, respectively; in that case the quantities

〈σv〉θ or, respectively, Ĉel and 〈Cel〉2, need to be provided by (any of)

the user defined < files> (as indicated by the green texts along the

dashed lines). The main physics output of each preparatory routine is

stated in the respective red box right below, and the subsequent calls of

the Boltzmann equation solvers nBE, cBE and fBE depend on these

physical quantities as indicated by their incoming arrows. The output

from each Boltzmann solver, finally, is explicitly stated in the red boxes

in the bottom row

d

dx
V(x) = F(x, V), (13)

where V(x) = {V0(x), . . . , VN (x)} and F = {F0(x, V), . . . ,

FN (x, V)}. For concreteness, V(x) = Y (x) is one-dimensional

for nBE, V(x) = {Y (x), y(x)} for cBE as in Eqs. (10) and

(11), and V(x) = { f0(x), . . . fN (x)} for the momentum-

discretized phase-space density in the fBE approach. We fol-

low standard practice for the numerical integration of these

equations, see, e.g., Ref. [48].

Concretely, we choose the Adams–Moulton time dis-

cretization methods of order one and two, which are also

known as the implicit Euler

Vi = Vi−1 + h [F(xi , Vi )] , (14)

and implicit trapezoidal method

Vi = Vi−1 + h

2

[

F(xi−1, Vi−1) + F(xi , Vi )
]

, (15)

where Vi ≡ V(xi ) and xi = xi−1 +h. The adaptive step size

h is controlled through a local relative error of the two meth-

ods, erri ≡ Max
j

{Abs
[

((VT
i ) j − (VE

i ) j )/(V
T
i ) j

]

} where VE
i

and VT
i are the solutions of the implicit Euler Eq. (14) and

trapezoidal Eq. (15), respectively. By default, the solution

VT
i is accepted if erri < 10−3.

For the single number density equation (nBE), the implicit

equations (14) and (15) can respectively be solved analyti-

cally for VT
i and VE

i , allowing for efficient time integration.

In this one-dimensional case, thus, the implemented algo-
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rithm in our nBE routine is equal to the one used in Dark-

SUSY.

In the case of cBE and fBE, the solution of Eqs. (14,15)

needs to be obtained numerically. A standard root finding

algorithm is the Newton iteration method. Defining the iter-

ation depth n and introducing Δ
(n+1)
i ≡ V

(n)
i − V

(n+1)
i , the

Newton iteration for the Euler method in Eq. (14) can be

written in the form of a linear algebraic problem for Δ
(n+1)
i

as

[

1 − h∂VF(xi , V
(n)
i )

]

Δ
(n+1)
i

= V
(n)
i − Vi−1 − h

[

F(xi , V
(n)
i )

]

, (16)

and for the trapezoidal method in Eq. (15) as

[

1 − h

2
∂VF(xi , V

(n)
i )

]

Δ
(n+1)
i

= V
(n)
i − Vi−1 − h

2

[

F(xi−1, Vi−1) + F(xi , V
(n)
i )

]

,

(17)

where ∂VF denotes the (N + 1 × N + 1) Jacobian matrix.

The improved value for each iteration can be obtained as

V
(n+1)
i = V

(n)
i − Δ

(n+1)
i . At each step in the x integration,

we choose the predictor as V
(0)
i = Vi−1 and iterate each

method until the maximum relative error, errNewton
(n+1)
i ≡

Max
j

{Abs[(Δ(n+1)
i ) j/(V

(n+1)
i ) j ]}, is one order of magni-

tude smaller than the upper bound on erri . We also require

errNewton
(n+1)
i to be smaller or equal to another accuracy

control parameter, errMaxNewtoni = 0.4, at every itera-

tion step; otherwise, the stepsize h is lowered in order to

ensure that the Newton iteration converges. Default val-

ues for the accuracy control parameters introduced above

(erri , errNewton
(n+1)
i and errMaxNewtoni ) can be adopted

by changes in the settings file, see Appendix A.5.

For the cBE and fBE routines we have implemented fur-

ther, automatized performance optimizations. In the two-

dimensional cBE case, in particular, we analytically solve

in Eqs. (14,15) the corresponding number density equation

for Yi , Eq. (10), as a function of the DM temperature yi , and

plug that solution into the DM temperature equation for yi ,

Eq. (11). Effectively, this reduces the cBE system to an one-

dimensional ordinary differential equation, which is how it

is implemented in the cBE routine.

For fBE, the computation of the Jacobian ∂VF is imple-

mented in vectorized form. Moreover, all parts in F that

depend only linearly on V, e.g., the scattering operator in

Eq. (5), are pre-computed for every time step (i) and sepa-

rated from the ones which need to be updated in every Newton

step (n).

Furthermore, we implemented two momentum coordinate

systems, A and B, for different temperature regimes, such

that the phase-space density long before and long after kinetic

decoupling remains stationary in the respective coordinates

(for Y = const.). Concretely, the phase-space density is

discretized on a uniform grid in qA ≡ p/
√

mχ T for Abs[1−
yeq/y] <qATOqB and qB ≡ (gs

eff)
−1/3 p/T otherwise. By

default, this setting variable is set to qATOqB= 0.1.

For the momentum derivatives of the phase-space den-

sity in Eq. (5) we implemented finite differentiation methods

of higher order accuracy using several neighboring points.

For central differentiation and fourth order accuracy imple-

mented as a default, the boundary values of the phase-space

density used are reflection symmetry at the origin f0, intro-

ducing the ghost points to obey f−1(x) = f1(x), f−2(x) =
f2(x), and vanishing phase-space density at numerical infin-

ity, i.e., fN+1(x) = fN+2(x) = 0.

In practice we rely on Mathematica’s LinearSolve

command for solving Eqs. (16) and (17) in thefBE approach.

This part of the code, as well as other time-consuming matrix

manipulations like collision term updates, is implemented in

a C-compiled environment (if no C compiler is available it is

targeted to the Wolfram Virtual Machine), allowing for run-

time performances comparable to pure C++ or Fortran code

based on the analogue dgesv command from the LAPACK

package [49].

3.3 Validity tests

The evolution of the number density Y (x) based on the tra-

ditional nBE approach were cross-checked against results

obtained with DarkSUSY, for a variety of models ranging

from rather generic WIMP realizations to situations where

DM annihilates through a narrow resonance. Similarly, the

temperature evolution y(x) computed with the kinetic decou-

pling (only) routines in DarkSUSY was compared to that

obtained in DRAKE in the cBE and fBE approaches after

switching off annihilation in our code through the settings

command KDonly=True. For all tested models the results

were found to be in agreement at well below the percent level.

We further checked explicitly that the number density evo-

lution in the cBE and fBE approaches correctly coincides

with the nBE solution in situations where the effect of kinetic

decoupling is irrelevant; e.g. when the DM particles remain in

full kinetic equilibrium during the freeze-out process or when

the velocity dependence of the annihilation cross-section is

insignificant.

The non-trivial interference of chemical and kinetic

decoupling, as taken into account in our two beyond-nBE

approaches, was meticulously checked against indepen-

dently implemented codes. In particular, the DRAKE cBE

results in the current implementation of the Scalar Singlet

model (c.f. footnote 4) were compared to results obtained
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from FORTRAN routines relying on the sfode [50] solver,

finding agreement at the sub-percent level.6 Furthermore, the

fBE results were compared to the phase-space solver origi-

nally developed in MatLab based on the ODE15s solver and

used in Ref. [30].7 For resonance annihilation considered in

Sect. 4.1 for example, very good agreement was found. Note

that the cBE and fBE routines in DRAKE do not rely on

pre built-in differential equation solvers (see Sect. 3.2), so

all these tests provide an independent validity check.

A final important consistency check of the numerical fBE

implementation concerns the question whether the elastic

scattering operator in Eq. (5) conserves particle number.

While this is manifestly the case in the continuous limit (and

hence also in cBE), the discretized version with a finite num-

ber and range in momentum can lead to a spurious change of

the comoving number density if γ /H ≫ 1. Therefore some

care must be taken in the initial high-temperature regime. One

way to reduce these purely numerical artifacts is to increase

the number of phase-space density elements, which however

affects the run-time of thefBE routine quadratically. We have

therefore introduced an upper limit on γ /H above which the

system is assumed to be in kinetic equilibrium and DRAKE

adopts the nBE approach. By default, this upper limit is set

to gamcap= 105. This value and the number of phase-space

elements, qN, can be adopted in the settings file.8

For specific problems, optimal accuracy settings for fBE

can differ from the default ones. We therefore provide for all

examples in Sect. 4, as well as for the Scalar Singlet Model,

suggested settings files. On a standard laptop computer the

time to compute the relic density for one parameter point in

the fBE approach can range from less than a second to tens

of minutes (e.g. in the presence of very narrow resonances).

Furthermore, DRAKE contains example benchmark files

with settings adjusted to specific cases, illustrating the usage

for more challenging models. For further details concerning

those test files see Appendix A.3, as well as Appendix A.5

for accuracy control parameters.

4 Physics scenarios

A velocity-dependent annihilation cross-section is a neces-

sary condition for deviations from the standard computation

of the relic abundance, due to the interplay of chemical and

kinetic decoupling. In this section we consider three dif-

6 These cBE routines have been released as DarkSUSY 6.2.5.

7 The MatLab phase-space solver can be provided upon request.

8 Setting KDonly=True provides a convenient way of checking for

particle number conservation in a given model. Note that including

annihilations typically implies that particle non-conservation becomes

less of an issue at early times, since annihilations and creations further

stabilizes the solution around its equilibrium value.

ferent types of physically well-motivated scenarios where

such a velocity-dependence can appear, and where kinetic

equilibrium is not necessarily maintained during chemical

decoupling. We discuss these scenarios in some detail, both

to highlight the non-trivial physics of the freeze-out process

in at least parts of the models’ parameter space, and to illus-

trate how DRAKE can be used to study the freeze-out process

beyond the simplifying assumptions usually adopted in the

literature.

4.1 Resonant annihilation

As our first example, we consider cases where the annihila-

tion cross-section has a strong velocity dependence induced

by an s-channel resonance. The effect of early kinetic decou-

pling for such a setup has been studied in detail in Ref. [30]

for the Scalar Singlet model [45–47], where the almost on-

shell particle in the s-channel is the SM Higgs. For Scalar

Singlet masses slightly smaller than half of the Higgs mass

it was found that a larger coupling to the Higgs is required to

obtain the right relic abundance, which interestingly implies

that future measurements of the Higgs-to-invisible decay

width can probe more of the parameter region than expected

from the standard relic abundance computation, see Refs.

[25,29,51] for experimental probes and also for other Higgs

resonance scenarios with similar effects.

To offer a complementary perspective, we consider here

instead a generic vector mediator Aμ inducing an s-channel

resonance (where the parameter region close to the resonance

is particularly interesting from a model-building perspective,

see, e.g., Refs. [52–55]). A minimal version of such a scenario

is described by the interaction Lagrangian

L ⊃ −gχ χ̄γ μχ Aμ − g f f̄ γ μ f Aμ , (18)

allowing a Dirac fermion DM particle χ to resonantly anni-

hilate into heat bath fermions f . The model can thus be

described by a set of 5 parameters, (mχ , r, γ̃ , δ, ρ), where

mχ is the DM mass, r ≡ m f /mχ defines the mass ratio of

heat bath fermions to DM, γ̃ ≡ ŴA/m A is a dimensionless

measure of the total decay width of Aμ, ρ ≡ √
gχ g f is the

combination of coupling constants relevant for our discus-

sion and δ ≡ (2mχ/m A)2 − 1 measures the deviation from

the exact resonance position (at δ = 0).

With these definitions, the annihilation cross-section for

this process, χχ̄ → A⋆ → f f̄ , can be written as

σvlab = ρ4

384πm2
χ

(1 − r2/s̃)1/2(1 + δ)2

2s̃ − 1
α(s̃)D(s̃), (19)

with α(s̃) = 4(2s̃ +1)(2s̃ +r2) and s̃ ≡ s/(4m2
χ ), where

√
s

is the center-of-mass energy, and the resonance is encoded
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in the Breit-Wigner propagator9

D(s̃) ≡ 1
[

s̃(1 + δ) − 1
]2 + γ̃ 2

. (20)

The scattering amplitude for χ f ↔ χ f in the non-

relativistic limit, s̃ → (1 + r2 + 2ω/mχ )/4, on the other

hand, is given by

|M|2χ f ↔χ f = 16(δ + 1)2ρ4

(

t (1 + δ) − 4m2
χ

)2
β(ω, t) , (21)

where

β(ω, t) = 8m2
χω2 + 4m2

χ

(

ω

mχ

+ 1

2
+ r2

2

)

t + t2 . (22)

Following our standard convention, Eq. (21) is summed over

both in- and out-going spin states, as well as particle and

anti-particle states of the scattering partners f .

We will concentrate here on the parameter region |δ| < 1

where the annihilation cross-section is resonantly enhanced.

This implies that ρ must be suppressed in order to obtain the

correct relic abundance, leading to a corresponding suppres-

sion of the scattering amplitude. On top of that, the momen-

tum transfer rate γ (x) can be further Boltzmann suppressed

for sufficiently massive scattering partners. In combination,

these effects can lead to very early kinetic decoupling, inter-

fering with the chemical decoupling process. In Fig. 2 we

quantify the impact on the relic abundance in such a situation,

choosing for definiteness a fixed DM mass of mχ = 1 TeV

and a resonance width of γ̃ = 10−5. Here, we fix the cou-

pling ρ in every parameter point such that the conventional

approach (nBE) matches the value of the observed DM abun-

dance, i.e., 2(Ωχ h2)nBE = ΩDMh2 = 0.120. Clearly, the

cBE and fBE approaches demonstrate significant corrections

to the standard treatment. As expected, the larger the mass

ratio r (from dotted to dashed to solid lines), the earlier DM

decouples and the stronger the effect becomes.10 Even for

very light heat bath particles, however, the correction to the

standard result remains sizeable (for r < 0.1, the resulting

curves do not significantly differ from the r = 0.1 case dis-

played in Fig. 2). The characteristic two-bump feature and the

narrow dip around the exact resonance position at δ = 0 are

a consequence of different DM cooling and heating effects

during the chemical evolution that affect the DM phase-space

9 For gχ ≫ g f and |δ| ≪ 1, Eq. (20) may require a modification due

to an energy-dependent width [25].

10 We caution that our implementation of the momentum transfer rate

γ in this case, based on Eq. (6), rests on the assumption of small momen-

tum transfer during individual scattering events – which is strictly speak-

ing not necessarily satisfied unless r ≪ 1. Still, the investigations in

Appendix B and the example of Sec. 4.3 show that the Fokker–Planck

approximation in practice can work rather well even up to values of

r ∼ 1.

Fig. 2 The relic abundance, for a model with resonant annihilation, in

the cBE (blue) and fBE (red) treatments, relative to that of the standard

approach (nBE), as a function of the distance δ to the resonance. The

different line style indicates different mass ratios r = m f /mχ . In this

example, mχ = 1 TeV, γ̃ = 10−5 and coupling values are fixed by the

requirement 2(Ωχ h2)nBE = ΩDMh2. The inset plots show zoom-ins of

the resonant region around δ = 0

distribution fχ (x, p). The phenomenology of coupled chem-

ical and kinetic evolutions here is very similar to the Scalar

Singlet DM example, and for a detailed discussion of the

origin of these features we refer to to Appendix A in Ref.

[30].

In Fig. 3, we complement this discussion by showing the

impact on the relic abundance when instead varying the reso-

nance width γ̃ and keeping the mass ratio r fixed. This leads

to a structure that is straightforward to relate to what is visible

in the previous figure; for example, the two distinctive peak

regions in the bottom left corner correspond to the two peaks

in Fig. 2 (note however that here we consider a much lighter

DM particle, mχ = 1 GeV, than in Fig. 2). For most of the

parameter space, a smaller width generally leads to a larger

effect, i.e. larger deviations from the standard computation.

It is interesting to note that even for widths as large as that of

the SM Z -boson the refined prediction of the DM abundance

can deviate at a level well exceeding the typically quoted

observational uncertainty of ∼ 1% in ΩDMh2 – and hence at

a level that would, e.g., affect global fits in a noticeable way.

It is worth noting that for the simple model considered

here, not every pair of values (δ, γ̃ ) shown in Figs. 2 and 3

may be a consistent choice. Indeed, the minimal contribution

to the width, from the interaction Lagrangian in Eq. (18), is

given by

γ̃ =
∑

i=χ, f

g2
i

12π

(

1 +
2m2

i

m2
A

)
√

1 −
4m2

i

m2
A

. (23)

In Fig. 3 we indicate (with gray shaded regions) the values of

(δ, γ̃ ) that cannot be satisfied by Eq. (23) when ρ = √
gχ g f

is fixed by the relic density condition (either because Eq. (23)

would imply a larger value of γ̃ than required, or because at
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Fig. 3 Contour lines of constant (Ωχ h2)fBE/(Ωχ h2)nBE in the δ − γ̃

plane for a model with mχ = 1 GeV and r = 0.3. As in Fig. 2, couplings

are fixed such that 2(Ωχ h2)nBE = ΩDMh2, and δ = (2mχ/m A)2 − 1.

Red (blue) colors highlight regions where the early kinetic decoupling

effect overall increases (decreases) the predicted relic abundance com-

pared to the standard treatment. Dotted black lines show, for compari-

son, the widths of the SM Z0 and Higgs bosons. The gray shaded areas

on the edges of the plot indicate parameter regions where the ρ value

satisfying the relic density condition cannot be achieved without violat-

ing perturbativity or by extending the model (see text for more details)

least one of the couplings would no longer satisfy gχ , g f <√
4π , thus indicating a breakdown of perturbativity).

Let us finally remark that the more narrow the resonance,

the more momentum-selective is the annihilation process.

This can lead to shapes of the distribution function that

strongly differ from thermal ones. As a concrete example,

we demonstrate in Fig. 4 that the fBE approach implemented

in DRAKE can accurately resolve such non-trivial phase-

space evolutions even for extremely narrow resonances (in

this example a factor of a few below the Higgs width).

4.2 Sommerfeld-enhanced annihilation

As our second example, we consider a case where DM anni-

hilation is Sommerfeld-enhanced due to the presence of a

light mediator. Physically, such a light mediator induces

a long-range Yukawa potential between the DM parti-

cles that modifies their wave function, leading to a non-

perturbative enhancement of the tree-level annihilation rate

[56–61]. Because the Sommerfeld effect is strongly velocity-

dependent, it provides a prime example of interest to study

the interplay of chemical and kinetic decoupling [24,62–64].

Fig. 4 Time evolution of the phase-space density fχ (x, q), computed

by the fBE approach. The color scale shows the DM abundance Y (x),

in units of its final value, which reflects the overall normalization of fχ .

This example is for a case of DM annihilation through a narrow reso-

nance and an early kinetic decoupling (with model parameters stated in

the legend). The coupling strength is set to ρ = 1.13× 10−2 in order to

satisfy 2(Ωχ h2)fBE = ΩDMh2. The initial equilibrium phase-space dis-

tribution is strongly distorted during chemical and kinetic decoupling,

and finally remains in a highly non-thermal shape

In fact, this is the context in which coupled Boltzmann equa-

tions akin to our Eqs. (10,11) have first been proposed [24].

For simplicity, we consider the same model Lagrangian as

in the previous section, Eq. (18), but now in a very different

parameter region. Concretely, we will assume m A � αχ mχ ,

with αχ ≡ g2
χ/(4π), such that the vector mediator induces

a long-range force. Furthermore, we take the heat bath parti-

cles f to be (approximately) massless and only milli-charged

under the broken U (1)′, in the sense that g f ≪ gχ . Con-

sequently, χχ̄ → AA is the leading annihilation process.

The corresponding tree-level cross-section, expanded up to

leading order in v ≪ 1 and m A/mχ ≪ 1, is given by

(σvlab)0 ≃ πα2
χ/m2

χ . We explicitly checked that this approx-

imation holds for the range of parameters that we will con-

sider here. The full s-wave annihilation cross-section includ-

ing the Sommerfeld effect is then obtained as

σvlab = S(vlab) × (σvlab)0 , (24)

where we use the analytical expressions for the Sommer-

feld enhancement factor S(vlab) that were obtained, e.g., in

Refs. [65,66] after approximating the Yukawa potential by a

Hulthén potential:

S(vlab) =
π
ǫv

sinh
[

12ǫv

πǫA

]

cosh
[

12ǫv

πǫA

]

− cos
[

2π

√

6
π2ǫA

−
(

6ǫv

π2ǫA

)2]
, (25)

where ǫv ≡ vlab/(2αχ ) and ǫA ≡ m A/(αχ mχ ).

We concentrate on the parameter region where g f is (just)

large enough for the mediator to be in equilibrium dur-
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ing freeze-out, established by the decay and inverse decay

processes A ↔ f f̄ . Requiring the decay rate to satisfy

ŴA→ f f̄ /H � 1 for T � mχ , one finds that this is real-

ized for g f � 3 × 10−6(0.1/rA)(mχ/TeV)1/2,11 where

rA ≡ m A/mχ . For simplicity we will exclusively focus

on coupling values that are not significantly larger than

this lower bound, thus implementing the earliest possibil-

ity when DM can kinetically decouple in this model. In this

case, Coulomb-like scattering processes f χ ↔ f χ can be

neglected – as we checked explicitly – and DM is kept in

kinetic equilibrium by the Compton-like scattering with the

vector particle, χ A ↔ χ A. The corresponding scattering

amplitude is for non-relativistic DM given by

|M|2χ A↔χ A =
8g4

χβ(ω, t)

(2mχω + m2
A)2(2mχω − m2

A + t)2
, (26)

where, to leading order in the DM mass,

β(ω, t) ≃ 4m4
χ (4m4

A − 4m2
At + 8ω4 + 4ω2t + t2). (27)

In this parameter region, the phenomenology of the model

thus only depends on the coupling gχ (unlike in the previ-

ous section, where the relevant coupling combination was

ρ = √
gχ g f ). For relevant coupling values and the scatter-

ing amplitude as in Eq. (26), kinetic decoupling occurs once

the vector boson A enters the non-relativistic regime, caus-

ing a Boltzmann suppression of the momentum transfer rate

γ (x).

In Fig. 5 we show the resulting relic density in this setup,

for a range of mediator masses m A and fixed DM mass

(mχ = 2 TeV) and coupling (αχ = 0.07). As is clearly

visible in this figure, the Sommerfeld effect alone affects

the relic density by a factor of 2–3 compared to the tree-

level expectation. For selected values of mediator masses,

the difference between the standard approach and both our

beyond-nBE approaches can be even larger. For these param-

eter combinations, bound states with zero binding energy

can form; parametrically, these exist precisely at threshold

for m A/(αχ mχ ) = 6/(n2π2) in the case of the Hulthén

potential (with n ∈ Z
+). Close to these parametric reso-

nances the Sommerfeld effect scales as S(vlab) ∝ 1/v2
lab

for vlab � m A/mχ , leading to a second period of annihila-

tion after kinetic decoupling [24,62–64]. We illustrate this

in Fig. 6 by plotting the evolution of the DM abundance

11 Since m A ≪ mχ ∼ T we need to take into account relativistic

corrections to the decay rate in the form of a time dilation factor m A/E ,

see, e.g., Ref. [67]. We estimate the decay rate for m A ≪ T asŴA→ f f̄ ≃
Ŵ0

A→ f f̄
m A/(2T ), where Ŵ0

A→ f f̄
= g2

f m A/(12π) is the decay rate in

the A rest frame and m A/(2T ) is the average time dilation in the plasma

frame. In this estimate, Pauli blocking of final states was neglected

and we adopted a classical Maxwell-Boltzmann statistics for the vector

boson A.

Fig. 5 Relic abundance for the Sommerfeld-enhanced annihilation

example, for a fixed DM mass of mχ = 2 TeV and as a function of the

mediator mass m A. The coupling is fixed to αχ = 0.07 from the require-

ment 2(Ωχ h2)Tree = ΩDMh2, based on the (velocity-independent) tree-

level annihilation cross-section (σvlab)0 without Sommerfeld enhance-

ment. The predictions from the traditional nBE computation clearly

demonstrate the impact of the Sommerfeld effect on the annihilation

rate, while the improved calculations based on cBE and fBE quantify

the additional impact of kinetic decoupling on the relic abundance

Fig. 6 Evolution of DM abundance Y (x) (left) and velocity dispersion

y(x) (right) for the Sommerfeld model, with αχ and mχ as in Fig. 5.

Line colors correspond to nBE (green), cBE (blue) and fBE (red).

Line styles refer, as indicated, to different values of m A, chosen such

that n2 = 6αχ mχ/(π2m A) is close to integer (parametric resonance

condition). The second annihilation era characteristic for these models

is clearly visible as a drop of Y in the left panel; the corresponding

increase in the DM temperature visible in the right panel is caused by a

self-heating due to efficient annihilation out of thermal equilibrium

Y (x) for three selected mediator masses close to such a para-

metric resonance (left panel). Due to the inverse velocity

dependence of S(vlab), furthermore, DM particles prefer to

annihilate at smaller momenta, leading to a self-heating after

kinetic decoupling and hence an increase in y(x) (right panel)

– see also the discussion in Ref. [24].

Inspecting Fig. 5, we find significant deviations from the

standard computation also for parameter regions further away

from the exact resonance condition. Here, the Sommerfeld

effect scales only as S(vlab) ∝ 1/vlab, which correspond-
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ingly leads to a significantly weaker re-annihilation effect.

Let us point out that even for situations with a relatively

early kinetic decoupling as studied in this section (though

still much later than what we studied in Sect. 4.1), the dif-

ference between cBE and fBE is as expected rather small,

independently of the vicinity to a parametric resonance. This

holds both for the evolution of the number density and that

of the DM temperature, as also demonstrated earlier in Ref.

[68].

In general, the effect on the DM abundance due to kinetic

decoupling is of course larger for earlier kinetic decoupling

(assuming all other parameters to be fixed). However, we

remark that even for later kinetic decoupling than in the min-

imal case discussed here – e.g. in the case where Coulomb-

like scattering dominates, for much larger coupling values g f

– the correct prediction of Ωχ h2 can be sensitive to the inter-

play of kinetic and chemical freeze-out processes, making it

necessary to go beyond the traditional nBE approach.

4.3 Sub-threshold annihilation

As our final example we consider a situation where the anni-

hilation process that sets the relic density is kinematically

not accessible in the limit of vanishing velocities, sometimes

dubbed ‘forbidden’ DM [69].

For concreteness, we adopt a simple scenario with an inter-

action Lagrangian given by

L ⊃ −λ

4
φ2

1φ2
2 + y f φ2 f̄ f , (28)

where the scalar φ1 takes the role of the DM particle. It

directly interacts only with the scalar φ2, which we assume

to be close in mass with φ1, i.e., r ≡ m2/m1 ∼ 1, and to be

in thermal contact with the heat bath fermions f . To lowest

order, the total DM annihilation cross-section is determined

by the process φ1φ1 → φ2φ2, and given by

(σvlab)
2→2 = λ2

32π

√

1 − 4m2
2/s

s − 2m2
1

. (29)

For r > 1, this process is only open to particles in the high-

energy tail of the DM distribution, leading to an exponential

suppression of 〈σv〉 and a corresponding increase of Ωχ h2.

Similar to the Sommerfeld enhancement example dis-

cussed in the previous section, we restrict our discussion

for simplicity to couplings y f (just) large enough to bring

φ2 into equilibrium before the onset of the freeze-out pro-

cess, through (inverse) decays φ2 ↔ f̄ f . Demanding for

concreteness Ŵφ2↔ f̄ f /H � 1 for T � m1, this requires

y f � 10−7 r− 1
2 (m1/TeV)

1
2 . At the same time we require

for consistency that y f is small enough such that i) close

to the threshold at r ∼ 1, 3-body processes of the form

φ1φ1 → φ2φ
∗
2 → φ2 f f̄ can be neglected and that ii) the

loop-induced scattering with f is subdominant compared to

the tree-level scattering with the Boltzmann-suppressed φ2

particles, via φ1φ2 ↔ φ1φ2.12 In this parameter region, the

momentum transfer rate, Eq. (5), is then given by

γ (x) ≈ m1
λ2

6π3

r2

(1 + r)4
x−2e−r x . (31)

We note that this expression explicitly features the already

mentioned exponential suppression due to scattering with

non-relativistic φ2 particles. Hence, we expect kinetic decou-

pling to happen very early in this model, around the time of

chemical decoupling.

As already stressed in Sect. 2.2, however, the approximate

scattering collision term in Eq. (5), including the momentum

transfer rate, relies on the assumption of small momentum

transfer compared to the average DM momentum – which

is typically not satisfied for scattering partners that are close

in mass to the DM particle. For the simple case of a con-

stant scattering amplitude, consistent with our interaction

Lagrangian in Eq. (28), we demonstrate in Appendix B that

it is possible to instead implement the scattering collision

term Cel without this assumption. Concretely, we perform

analytically all integrals for W in Eq. (8) , c.f. Eq. (B.2), and

use this expression to compute Cel in Eq. (7). This allows

us to contrast our results to those based on the approximate

scattering term CFP (relying on small momentum transfer).

In Fig. 7 we plot the relic density that results from

the fBE and cBE approaches, with different implementa-

tions of the scattering terms, relative to that from the nBE

approach. Here, for each value of r , the coupling λ is fixed

by the requirement that the standard nBE prediction matches

the observed abundance. As is clearly visible, early kinetic

decoupling can have a significant impact on the relic abun-

dance also for this threshold example, at least for r � 1.

While it is remarkable that both scattering term prescriptions

show qualitatively the same result, however, in this model

DM turns out to be kept slightly more efficiently in kinetic

equilibrium with the more correct Cel approach; see also

Fig. 10 in Appendix B. This explains why the Cel prescription

12 We explicitly checked that these requirements actually allow values

of y f up to a few orders of magnitude above the lower bound due to

the thermalization condition, with condition i) being the more stringent

requirement. Concretely, we followed Ref. [70] to compute (for m f ≪
m2)

σv2→3
lab ≃ g2/(8π)

s − 2m2
1

∫ μ̃

0

dμ

π

γ̃μ

(μ−1)2+γ̃ 2
λ

1
2

(

1,
m2

2

s
,
μm2

2

s

)

. (30)

Here, λ is the Källén (or triangle) function, μ̃ ≡ (1 − √
s/m2)

2 and

γ̃ ≡ Ŵφ2→ f̄ f /m2 = y2
f /(8π). The total annihilation cross-section

entering the Boltzmann equation, taking into account double-counting

issues, is thus obtained as σvlab = σv2→3
lab − σv2→2

lab (which correctly

reduces to σvlab ≃ σv2→2
lab for s � 4m2

2).
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Fig. 7 Relic abundance for the sub-threshold annihilation example, for

a fixed DM mass of m1 = 100 GeV and in function of the final state mass

ratio r = m2/m1. The value of the φ1 − φ2 coupling, λ, is determined

by the requirement (Ωχ h2)nBE = ΩDMh2; in the ‘forbidden’ region,

for r > 1, λ is thus exponentially sensitive to r . Solid red (blue) lines

correspond to results from the fBE (cBE) treatment based on the full

scattering term of this example, while the corresponding results based

on the small-momentum transfer approximation in Eq. (5) are plotted

with lighter shading

Fig. 8 Evolution of DM abundance Y (x) (left) and velocity disper-

sion y(x) (right) for the sub-threshold model with three selected values

of r . DM mass and couplings are fixed as in Fig. 7, and line styles

chosen in accordance with that figure. For these threshold examples,

DM needs high momenta for annihilation to be kinematically allowed,

which results in a phase of cooling around and after kinetic decoupling,

and hence a drop in y(x)

leads to a relic density slightly closer to that of the standard

nBE approach than what we find with the Fokker–Planck

approximation.

In Fig. 8, we show the abundance and temperature evolu-

tion for selected values of r > 1. Qualitatively, DM needs

higher momenta to overcome the annihilation threshold,

leading to a self-cooling phase as soon as it is no longer

(fully) kinetically coupled to the particles φ2 that remain in

equilibrium with the heat bath. Due to this cooling, annihila-

tion becomes less efficient earlier, resulting in a higher DM

abundance than in the standard computation.

Let us close this section by briefly mentioning again

that the kinematically suppressed annihilation cross-section

implies that the coupling λ must grow exponentially with r in

order to maintain the correct DM abundance. For example,

in the nBE approach with m1 = 100 GeV very large cou-

plings λ � 4π are reached at r � 1.2; for the cBE and fBE

approaches this happens at even smaller values of r , closer

to the peak visible in Fig. 7.

5 Summary

Thermal freeze-out is widely considered one of the most

intriguing mechanisms for the production of DM. The under-

lying assumption of by far most relic density calculations in

the literature is that kinetic equilibrium is maintained during

the freeze-out. Here we have presented a new public tool,

DRAKE, to explicitly gauge the impact of this assumption

in cases where it might not be valid. To do so, the code offers

various alternative schemes to calculate the relic density that

take into account the intriguing effects of kinetic decoupling

during the chemical freeze-out process, including a full cal-

culation at the phase-space level.

In fact, it has repeatedly been pointed out that chemical

and kinetic decoupling can be intertwined in a way that sig-

nificantly affects the result of relic density calculations [24–

32,71–75]. To provide context, we have therefore devoted

a large part of this article (Sect. 4) to a comprehensive and

updated study of three physically well-motivated scenarios

of annihilating DM where this is the case, illustrating the

need to move beyond the standard treatment and demonstrat-

ing that this is possible without compromising on accuracy.

This is clearly important for global fits that include parameter

regions in their scans where the interplay between kinetic and

chemical equilibrium cannot be neglected, but can turn out

to be relevant also in various model-building considerations.

Let us finally stress that, while the main focus of DRAKE

is the relic density, its output is by no means restricted to a

single number. Rather, it allows to compute the full time evo-

lution of the DM phase-space density, or its lowest moments,

which may be connected to further late-time observables. For

example, a non-standard velocity distribution would affect

how free streaming impacts the matter power spectrum of

density perturbations [76,77], which is one of the main moti-

vations for why linear perturbation solvers like CLASS [78]

explicitly support externally tabulated (non-standard) phase-

space densities. An exploration of such effects in the context

of kinetic decoupling interfering with chemical decoupling

would be warranted, but beyond the scope of this work.
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Appendices

A: Getting started

DRAKE can be downloaded as a zipball from drake.hepforge

.org. The only prerequisite for using it is to have Mathemat-

ica or the free Wolfram Engine installed.

A.1: Quick start

Unpack the zipball and open the Mathematica notebook

main.nb located in the main directory. This example pro-

gram demonstrates the loading of the DRAKE package, code

usage, printing routine output in form of plots, and saving the

results. In the following, we expand on the description of all

the consecutive steps in this example program.

To load the package, start a fresh kernel and execute

SetDirectory["<path>"];

Needs["DRAKE`"]

where <path> is the path to the main directory. From this

point on, all new symbols can be listed with

Names["DRAKE`*"]

and documentation of the main functions and variables are

provided with the usual syntax, e.g., calling ?cBE returns

information about the cBE routine.

All input quantities can be loaded with the command

GetModel["<model>", "<parameters>",

"<settings>"];

The three arguments are names of files (without their exten-

sion .wl), located in the sub-directory ./models/<model

>/. DRAKE comes with a set of pre-implemented mod-

els, where <model> ∈ {ScalarSingletDM, WIMP, VRES, SE,

TH}. The first element in this set is the Scalar Singlet DM

model, the second is a WIMP-like test model, while the last

three are the scenarios presented in Sect. 4. For any of these

models, choose one of the parameter files <parameters>

∈ {bm1, bm2, bm3}, implementing different benchmark values

of model parameters. Correspondingly, the files <settings>

∈ {settings_bm1,settings_bm2,settings_bm3} contain

suggested values of accuracy control parameters and Boolean

variables for run options.

After these initialization steps, the main DRAKE rou-

tines are ready to perform Ωχ h2 computations. For results

obtained with the nBE approach, e.g., this amounts to calling

PrepANN;

nBE

for any of the pre-implemented models. In the default usage

with the Fokker–Planck approximation for Cel, on the other

hand, the cBE approach consists of the calls

PrepANN;

PrepANN2;

PrepSCATT;

cBE

and the default fBE approach consists of the calls

PrepANNtheta;

PrepSCATT;

fBE

When working with all approaches simultaneously, it is suf-

ficient to call each preparatory routine once. Optional proce-

dures, where e.g. PrepANNtheta and PrepSCATT are omit-

ted, are explained in Sect. A.5.

The output of the preparatory routines and Boltzmann

solvers is summarized in Table 3.

All listed output variables are stored in the kernel ses-

sion memory and can be directly accessed and saved to a file

<outfile> with, e.g., DRAKE’s command

save["<outfile>"].

Values of any model or setting parameters can be changed

actively during a notebook session. This makes scans over,

e.g., the DM mass simple to perform. Alternatively, one can

create different <parameters> and <settings> files and

repeatedly use GetModel.
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Table 3 Output summary of DRAKE routines. The last column lists

the main output variables, tables, and functions stored in the kernel

session memory after calling the routine. Cross-section outputs are in

units of GeV−2 and γ in GeV. All output names starting with ‘t’ are

tables and names with an [x] dependence are interpolating functions

based on these tables. The tables of the Boltzmann solvers contain all

computed Y and y values from initial to final x except tfDM, which

contains for memory reason only snapshots of the unity-normalized

phase-space density at the initial, intermediate (when switching from

momentum coordinates qA to qB , see Sect. 3.2) and final x value. The

preparatory routines are stored in the file rates.wl and the Boltzmann

solvers in nBE.wl, cBE.wl, and fBE.wl files in the DRAKE source

directory

Call Output Output names

PrepANN 〈σv〉 tsv,svx[x]

PrepANN2 〈σv〉2 tsv2,sv2x[x]

PrepANNtheta 〈σv〉θ tsvtheta,

isvtheta

PrepSCATT γ (x) tgamma,gam[x]

nBE (Ωχ h2)nBE Oh2nBE

YnBE(x) tYnBE={x,YnBE}

cBE (Ωχ h2)cBE Oh2cBE

YcBE(x) tYcBE={x,YcBE}

ycBE(x) tycBE={x,ycBE}

fBE (Ωχ h2)fBE Oh2fBE

YfBE(x) tYfBE={x,YfBE}

yfBE(x) tyfBE={x,yfBE}

q2 fχ (x, q) tfDM={x,{q2 fχ }}

A.2: Template script

The release also contains a template script main.wls, which

serves as a streamlined and customizable way to use DRAKE

directly from a terminal. For any of the five pre-implemented

models (see Section A.1 for file names), in particular, the

template script can be executed as

> wolframscript main.wls <model>

<parameters> <settings>

This loads DRAKE, executes GetModel and runs the nBE,

cBE, and fBE approaches with a minimum amount of rou-

tine calls and according to the user’s option settings (dis-

cussed in Sect. A.5). Figure 1, in Sect. 3, graphically illus-

trates its workflow. Results stored in the session’s memory

are then saved to a file, with name and path specified in the

<settings>file. Important results are also directly displayed

in text format, along with the computation time. The template

script can also be called in a notebook environment with a

convenient wrapper RunMain, as demonstrated in main.nb.

A.3: Tests

The release contains a test notebook, test.nb, located in the

"./test" sub-directory. It can be used for checking the

DRAKE installation against pre-computed results. While for

the simplest pre-implemented model (WIMP) the calculation

takes seconds, it can take up to several minutes for the most

complicated benchmark scenario (VRES, close to a narrow

resonance). The computational time of the Boltzmann solvers

is typically less than it takes for the corresponding prepara-

tory routine calls.

For Wolfram Engine users, move to the "./test" direc-

tory and run the test script by, e.g.,

> wolframscript test.wls WIMP bm_WIMP

settings_WIMP

which displays the test results for the WIMP model.

A.4: Adding a new model

For adding a new model, choose a model name and run

AddModel["<modelname>"];

A sub-directory <modelname> is then created in "<path>/

models", including new model, parameter and setting files.

For default usage, fill out the template functions sv[s_]:=

... ; [σvlab(s)] and gam[x_]:= ... ; [γ (x)] in the model

file, specify the DM mass mDM= ... ; (mχ ) and internal

degrees of freedom gDM= ... ; (gχ ) in the parameter file,

and save the changes. After these four necessary specifica-

tions, the new model can already be used as described in

Sect. A.1, or with the template script as in Sect. A.2. Note

that the setting file can require some accuracy control param-

eter adaption for optimal usage, see Sect. A.5 for rather

detailed checks. For optional usage (e.g., beyond Fokker–

Planck approximation), uncomment the template routines in

the model file, specify model dependent parts at the high-

lighted places, and change Boolean variables in the settings

file according to Sect. A.5.

To create the new model from a terminal execute

> wolframscript AddModel.wls <modelname>

A.5: Settings

Code settings are stored in <settings> files for all pre-

implemented models. These consist of accuracy control

parameters and Boolean variables for optional code usage. A

possible way of directly checking the effect of these param-

eters is to plot the output variables of the relevant routines,

as listed in Table 3. All parameters introduced in this section

are also briefly described in the <settings> files.
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Options The options for preparatory and Boltzmann solver

routines are determined by a set of global Boolean variables.

In particular, the Boolean variable RelThermalAv deter-

mines how σvlab is averaged in the PrepANN and PrepANN2

routines. If set to true, σvlab must be provided as a function of

the Mandelstam s variable and averages are computed fully

relativistically as in Refs. [21,30]. Setting RelThermalAv

to false, σvlab must be provided as a function of vlab, and

the calls PrepANN and PrepANN2 compute averages in the

highly non-relativistic limit, as in Ref. [24]. The Sommerfeld

enhanced annihilation scenario, as described in Sect. 4.2 and

implemented in SE.wl, is one example where σvlab is a suffi-

ciently smooth function for accurate non-relativistic thermal

averages. Especially for PrepANN2 this is of great advantage

since the amount of numerical integrals to be performed is

reduced to one [24].

The Boltzmann solvers cBE and fBE can take optional

routines as input. These are summarized in Table 4.

The first routine allows for directly implementing 〈σv〉θ –

especially useful if the angular average can be performed ana-

lytically. By setting the Boolean variable

Analyticsvtheta in <settings> to true, fBE then

adopts this first optional routine, making the call to

PrepANNtheta redundant. The other two routines imple-

ment 〈W 〉Ω̃ and allow for Cel usage beyond the Fokker–

Planck approximation. This is activated in cBE and fBE,

if FullCel is set to true in <settings>. PrepSCATT calls

are then redundant. For a concrete example implementing all

these optional routines, see TH.wl (threshold annihilation,

as in Sect. 4.3).

Lastly, if the Boolean variable KDonly is true, annihila-

tion is switched off, and one can investigate kinetic decou-

pling only (see, e.g., Ref. [37]) with the cBE and fBE rou-

tines. All preparing routine calls for annihilation are then

redundant. For the fBE routine, this also allows to check

accuracy settings, see Sect. 3.3.

Accuracy control parameters The accuracy of prepara-

tory and Boltzmann solver routines is controlled by a set

Table 4 Optional input routines that can be provided in a <model>

file. The routine output shown here is symbolic and we refer to the

model file TH.wl for a more detailed description

Routine (substitutes) Implements Returns

GetAnnMatrixAnalytic 〈σv〉θ 〈σv〉θ
(PrepANNtheta) (as matrix)

GetScatMatrix 〈W 〉Ω̃ Ĉel

(PrepSCATT for fBE) [see Eq. (B.5)]

GetSecondMomentScat 〈W 〉Ω̃ 〈Cel〉2,

(PrepSCATT for cBE) 〈Cel〉′2

of global parameters. In particular, the accuracy param-

eters introduced in Sect. 3.2 translate to DRAKE inter-

nal names as follows. The local maximum error, erri , is

stored in nBEerr, cBEerr and fBEerr. Code-internal

names for errNewton
(n+1)
i (controlling the Newton iter-

ations) are cBEerrNewton and fBEerrNewton. The

maximum relative change for any Newton iteration depth

(n), errMaxNewtoni , is set by cBEerrMaxNewton and

fBEerrMaxNewton. The default values of these variables

are generally not expected to require adjustments.

The number of phase-space density elements used by the

fBE routine is set by the integer variable qN. For dimension-

less momenta q = p/
√

mχ T in the default interval between

qmin = 10−8 and qmax = 12, qN ranges between about

120 and 400 in the pre-implemented models. Note that the

runtime of fBE scales quadratically with qN, implying that

it is worth optimizing the choice of this parameter in a newly

added model. This can be done by, e.g., checking for numer-

ical artifacts of too low phase-space density resolution, as

described in Sect. 3.3.

We turn now to the accuracy parameters for the prepara-

tory routines. PrepANN and PrepANN2 compute 〈σv〉
and 〈σv〉2, respectively. To do so, these routines adap-

tively tabulate (ln x, ln
[

〈σv〉(2)/GeV−2
]

) pairs in a pre-set

time (x) interval. The initial, minimum number of table

entries in this time interval is governed by the parame-

ter Nx. The adaptive procedure for increasing the tabu-

lation density is based on the comparison of middle val-

ues, obtained from first and third order interpolations of

each two consecutively tabulated points. The variable iacc

and imax control this adaptive tabulation by setting the

maximum allowed relative difference between those mid-

dle values and the maximal number of refinement iterations

allowed, respectively. pg sets the precision goal (in dig-

its) for the intrinsic Mathematica function NIntegrate

that is used for numerical integration. After this construc-

tion, the tables are first interpolated and then exponentiated,

resulting in the functions svx[x] and sv2x[x] listed in

Table 3.

PrepANNtheta computes 〈σv〉θ by first construct-

ing ln
[

〈σv〉θ/GeV−2
]

values on an irregular quadratic

grid with axes ln [p/GeV] and ln
[

p̃/GeV
]

based on a

Wolfram Language adaptive mesh procedure (used in

plotting routines). The square root of the initial number

of grid points is plotPoints. The recursion limit for

grid adaption is controlled via plotMaxR. This irregu-

lar grid is then converted, by interpolation, into the reg-

ular, much denser grid tpregsvtheta that is used in

the actual calculations. The square root of the number

of points in this regular grid is set by Np, which can

require values up to several thousand to maintain sharp

features. The conversion time is rather short (compared to
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the overall fBE runtime), though scaling quadratically with

Np. 13

Effective degrees of freedom The present release of DRAKE

uses the SM effective number of energy and entropy degrees

of freedom from Drees et al. [79] in form of a table located in

the source directory. Alternative tables (in the same format)

can be used by adding a corresponding file to the source

directory, and replacing the string in dof="dof_Drees_etal

.dat" in <settings> with this new file name. For other

degree of freedom calculations, see the recent Ref. [80] and

references therein.

B: Elastic scattering beyond Fokker–Planck approxima-

tion

The DRAKE routines cBE and fBE can compute the relic

abundance with the elastic scattering collision term Cel once

the model dependent quantity 〈W 〉Ω̃ ≡ 1
4π

∫

dΩ̃W , with W

as introduced in Eq. (8), is provided. To illustrate this, we

discuss concrete examples in Sect. B.1 where many of the

integrals appearing in 〈W 〉Ω̃ can be analytically performed,

resulting in fairly simple expressions. For those cases, we

also make a direct comparison between the resulting Cel and

its Fokker–Planck approximation. Finally, in Sect. B.2 we

explain how Cel is implemented in the DRAKE code and

how to adjust it to any given 〈W 〉Ω̃ .

B.1: Examples

As a first example, we consider non-relativistic heat bath par-

ticles, with g±(ω)
[

1 ∓ g±(ω̃)
]

≃ e−[m f +k2/(2m f )]/T , and

scattering amplitudes independent of Mandelstam variable

s. In this case most of the integrals entering in 〈W 〉Ω̃ can be

solved analytically, leading to

〈W 〉Ω̃ (p, p̃, T ) = e−m f /T T

64πgχ E Ẽ p p̃

×
p+ p̃
∫

|p− p̃|

dq |M|2χ f ↔χ f exp

(

−m f

2T

[

(

q0

q

)2

+
(

q

2m f

)2
])

.

(B.1)

We note that this expression is valid also for relativistic DM,

and for an arbitrary dependence of |M|2χ f ↔χ f on t = q2
0 −

13 fBE needs for every time step a qN2-sized matrix, whose entries are

〈σv〉θ as a function of qi and q j . This matrix is provided by the sub-

routine GetAnnMatrixTab, which linearly interpolates the regular

tpregsvtheta in natural logarithm space. The regularity ensures

fast access time, which overall saves much more computational time

than needed for the conversion of the irregular to this regular table.

q2, where q = |p̃ − p| is the momentum transfer and q0 =
Ẽ − E the energy transfer. The remaining integral can be

performed analytically for amplitudes with a simple power

law dependence on the Mandelstam variable t . In particular,

in the case of a constant scattering amplitude, as in the sub-

threshold annihilation scenario discussed in Sect. 4.3, this

can be further simplified to:

〈W 〉Ω̃ = |M|2χ f ↔χ f

T 2

64gχ E Ẽ p p̃

√

m f

2πT
e−m f /T

×
{

e|E−Ẽ |/(2T )
(

erfc
[

a− + b−
]

− erfc
[

a+ + b+
])

− e−|E−Ẽ |/(2T )
(

erfc
[

a− − b−
]

− erfc
[

a+ − b+
])

}

,

(B.2)

with erfc(x) being the complementary error function and

a± ≡

√

m f (E − Ẽ)2

2T (p ± p̃)2
, b± ≡

√

(p ± p̃)2

8m f T
. (B.3)

As our second example, we consider again a scattering

amplitude independent of s, but this time for ultra-relativistic

heat bath particles, with g±(ω)
[

1 ∓ g±(ω̃)
]

≃ e−k/T (1 ∓
e−k̃/T ). In that case, 〈W 〉Ω̃ can be reduced to two remaining

integrals:

〈W 〉Ω̃ = e−(E−Ẽ)/(2T )

64πgχ E Ẽ p p̃

∫ p+ p̃

|p− p̃|
dq q|M|2χ f ↔χ f

×
1
∫

q0/q

dτ
ω⋆

qτ − q0
g±(ω⋆)

[

1 ∓ g±(ω̃⋆)
]

. (B.4)

As before, this holds also for relativistic DM, and an arbi-

trary t-dependence of the scattering amplitude. In the above

expression, the energies are given by ω⋆ = (q2−q2
0 )/[2(qτ−

q0)] and ω̃⋆ =
√

(ω⋆)2 − 2ω⋆qτ + q2.

We now turn to explicit comparisons between Cel[ fχ ] cal-

culated in these limits and the Fokker–Planck approximation

CFP[ fχ ]. For definiteness, and to have a non-vanishing scat-

tering term, we choose a classical DM phase-space distribu-

tion fχ = e−E/Tχ , but with Tχ slightly different from the

heat bath temperature T . We will further always consider the

product of p4/E2 with the collision terms in these compar-

isons, because it is
∫

dp(p4/E2)Cel,FP that determines the

scattering strength 〈Cel〉2 in Eq. (11), giving the y(x) evolu-

tion in the cBE approach.

We start by comparing, in Fig. 9, Cel with 〈W 〉Ω̃ from

Eq. (B.2) to CFP with γ (x) from Eq. (31). The particular

combinations of r (= m f /mχ ) and x values that we use

here, for illustration, are chosen such that i) r x ≫ 1 to

make sense of the non-relativistic bath assumption, and ii)

123
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γ /H ∼ 1 (close to kinetic decoupling) for |M|2χ f ↔χ f = λ2

with λ = 0.05. At late times, i.e. for large x values and hence

r ≪ 1, both scattering collision term descriptions are very

close to each other (right panel). This is expected because

small momentum transfer is guaranteed in this regime. For

r � 1 on the other hand, relevant for sub-threshold anni-

hilations, small momentum transfer is not guaranteed. For

example, for r = 1.1 (left panel) the Fokker–Planck approx-

imation underestimates the collision term up to about 30 %

at x=20 compared to the more accurate Cel description (at

these particular values of yeq/y). Similar differences are

shown in Fig. 10, where instead the integrated quantities
∫

dp(p4/E2)Cel,FP, as entering cBE, are compared. This

qualitatively explains the differences in the relic-abundance

results presented in Sect. 4.3: Cel is more efficient compared

to CFP in keeping DM in kinetic equilibrium, thus leading to

a relic density closer to that of the nBE approach.

Finally, we compare the scattering collision terms for

ultra-relativistic bath particles (r = 0). For illustration, we

numerically integrate Eq. (B.4) both for a constant and a

Mandelstam t-dominated amplitude, |M|2χ f ↔χ f = −t/�2,

respectively, also for different quantum statistics of the heat

bath particles.14

These results are compared to the corresponding Fokker–

Planck approximation in Figs. 11 and 12, respectively. For

low temperatures (right panels), as expected, the Fokker–

Planck scattering term is always an excellent approximation.

In the high-temperature regime (left panels), on the other

hand, less separated scales (the momentum transfer scale ∼
T versus typical DM momenta ∼

√

mχ Tχ ) can become an

issue for the Fokker–Planck approximation – especially if

amplitudes support larger momentum transfers as, e.g., in

the |M|2χ f ↔χ f = −t/�2 example.

We conclude that the error induced when adopting the

much simpler Fokker–Planck approximation, at tempera-

tures relevant for chemical freeze-out, depends on the exact

form of the scattering amplitude. The potential impact on

the relic density in scenarios with early kinetic decoupling

is therefore also unavoidably model-dependent. However, as

for example in the threshold scenario discussed in Sect. 4.3,

14 For Maxwell-Boltzmann statistics, g(ω) = e−ω/T , Eq. (B.4) sim-

plifies without further approximations to

〈W 〉Ω̃ = T 2

32πgχ E Ẽ p p̃
×
[

c1e−|p− p̃|/(2T ) − c2e−(p+ p̃)/(2T )
]

,

with coefficients c1 = c2 = |M|2χ f ↔χ f for a constant scattering

amplitude, and c1 = [(p − p̃)2 + 4|p − p̃|T − q2
0 + 8T 2]/�2 and

c2 = [(p+ p̃)2+4(p+ p̃)T −q2
0 +8T 2]/�2 for |M|2χ f ↔χ f = −t/�2.

One can notice that corrections coming from typical DM momenta,

(p + p̃) ∼
√

mχ T , are exponentially suppressed for non-relativistic

dark matter as ∼ e−√
x . Due to this suppression, indeed, the much sim-

pler CFP approximates the Cel collision term in an acceptable way even

for x ∼ 20.

Fig. 9 The relative amplitude of the scattering collision term, as a

function of the DM momentum p, for a constant scattering amplitude

(|M|2χ f ↔χ f = const.) and non-relativistic bath particles. As indicated

in the legend, the various curves correspond to different versions of

the collision terms, CFP or Cel based on Eq. (B.2), as well as different

temperature ratios yeq/y = T/Tχ . Each curve is normalized to the

same constant c = Max
[

p4/E2|Cel,FP|
]

, where the maximum is taken

over all lines of the respective plot

Fig. 10 The magnitude of the second moment of the Fokker-Plank

approximation relative to the full scattering collision term, as a func-

tion of the DM temperature, for a constant scattering amplitude and

non-relativistic bath particles. We note that for thermally produced DM

yeq/y < 1 can only be achieved through (annihilation) processes that

lead to DM self-heating

we expect that the dominant effect of early kinetic decou-

pling on the relic density can in many cases still be fairly

well captured by the Fokker–Planck approximation.

B.2: Implementation

In discretized form, the full elastic collision term can be writ-

ten as a linear operator of the form Cel[ fχ ]/E = Ĉel · f with
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Fig. 11 Same as in Fig. 9, but for the case of ultra-relativistic bath

particles with r = 0 (and constant scattering amplitude)

Fig. 12 Same as in Fig. 11, but for a scattering amplitude proportional

to Mandelstam t

f = ( f0, . . . , fN )T being the momentum-discretized phase-

space density fχ . The matrix Ĉel can be written on a momen-

tum grid, with p, p̃ ∈ {p0, . . . , pN } and equal spacing Δp,

as:

Ĉel = − Δp

2π2

×

⎛

⎜

⎜

⎜

⎜

⎜

⎝

N
∑

j �=0

〈W 〉0 j p2
j e

β(E0−E j )/2 −〈W 〉01 p2
1e−β(E0−E1)/2 . . .

−〈W 〉10 p0
2e−β(E1−E0)/2

N
∑

j �=1

〈W 〉1 j p2
j e

β(E1−E j )/2 . . .

. . . . . . . . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

(B.5)

whereβ ≡ 1/T and we introduced 〈W 〉i j ≡ 〈W 〉Ω̃(pi , p j , T )

on the momentum grid. The routines returning the matrix in

Eq. (B.5) needed for fBE, and its descretized second momen-

tum moment needed for the cBE, have the internal DRAKE

namesGetScatMatrix andGetSecondMomentScat,

respectively (see also Table 4).

For the sub-threshold annihilation case, these two rou-

tines can be found in the model file TH.wl, where Eq. (B.5)

with 〈W 〉Ω̃ as in Eq. (B.2) is implemented. To switch from

the Fokker–Planck approximation to full Cel in the cBE and

fBE approaches, set FullCel=True in the setting file. These

two routines can be adopted to other scattering scenarios, by

replacing the 〈W 〉i j dependent parts inside the routines.
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