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ABSTRACT

Dark matter or modifications of the Newtonian inverse-square law in the Solar system are

studied with accurate planetary astrometric data. From extraperihelion precession and possi-

ble changes in the third Kepler’s law, we get an upper limit on the local dark matter density, ρDM

� 3 × 10−16 kg m−3 at the 2σ confidence level. Variations in the 1/r2 behaviour are considered

in the form of either a possible Yukawa-like interaction or a modification of gravity of Mil-

grom’s modified Newtonian dynamics (MOND) type. Up to scales of 1011 m, scale-dependent

deviations in the gravitational acceleration are really small. We examined the MOND inter-

polating function μ in the regime of strong gravity. Gradually varying μ suggested by fits of

rotation curves are excluded, whereas the standard form μ(x) = x/(1 + x2)1/2 is still compat-

ible with data. In combination with constraints from galactic rotation curves and theoretical

considerations on the external field effect, the absence of any significant deviation from inverse

square attraction in the Solar system makes the range of acceptable interpolating functions sig-

nificantly narrow. Future radio ranging observations of outer planets with an accuracy of few

tenths of a metre could either give positive evidence of dark matter or disprove modifications

of gravity.
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1 I N T RO D U C T I O N

Gravitational inverse-square law and its relativistic generalization

have passed significant tests on very different length- and time-

scales. Precision tests from laboratory and from measurements in

the Solar system and binary pulsars provide a quite impressive body

of evidence, considering the extrapolation from the empirical basis

(Adelberger, Heckel & Nelson 2003; Will 2006). First incongru-

ences seem to show up only on galactic scales with the observed

discrepancy between the Newtonian dynamical mass and the di-

rectly observable luminous mass, and they are still in order for even

larger gravitational systems. Two obvious explanations have been

proposed: either large quantities of unseen ‘dark’ matter (DM) dom-

inate the dynamics of large systems (Zwicky 1933) or gravity is not

described by Newtonian theory on every scale (Finzi 1963). DM is

all the general theory of relativity needs to overcome apparent short-

comings and provides a coherent picture for gravitational phenom-

ena from the laboratory to the cosmological context. The paradigm

of cold dark matter (CDM) when complemented with a positive cos-

mological constant (the so-called �CDM scenario) is successful in

explaining the whole range of galactic and extragalactic body of

�E-mail: sereno@physik.unizh.ch (MS); jetzer@physik.unizh.ch (PhJ)

evidence, from flat rotation curves in spiral galaxies to large-scale

structure formation and evolution (Peacock 1999).

The �CDM paradigm could be regarded as the definitive pic-

ture apart from that the presumed existence of DM relies so long

only on its putative global gravitational effect, whereas direct de-

tection by any independent mean is still lacking. This makes room

to alternative proposals based on modifications of Newtonian grav-

ity. In general, such proposals do not extend the inverse-square law

to a regime in which it has never before been tested and they do

not introduce any exotic component. Proposals are very different

from each other. Some of them can make gravity stronger on scales

of galaxies and explain flat rotation curves without DM (Milgrom

1983); others realize a mechanism for the cosmic acceleration with-

out dark energy, for example as a result of gravity leaking on scales

comparable to the horizon (Dvali, Gabadadze & Porrati 2000). Two

main alternative proposals have been discussed. In the first one, the

gravitational potential deviates from the usual form at large dis-

tances. A classical example is the inclusion of a Yukawa-like term

in the gravitational potential. This is strictly related to more fun-

damental theories where these additional contributions appear as

the static limit of interactions due to the exchange of virtual mas-

sive bosons (Adelberger et al. 2003). According to the second main

choice, Newton’s law fails when the gravitational acceleration is

small rather than when the distance is large. The prototype, and

still one of the most empirically successful alternatives to DM, is
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Milgrom’s modified Newtonian dynamics (MOND) (Milgrom

1983; Sanders & McGaugh 2002). With some basis in sensible

physics, MOND can provide an efficient description of the phe-

nomenology on scales ranging from dwarf spheroidal galaxies to

cluster of galaxies but its cosmological extension is still in its in-

fancy (Bekenstein 2004).

High-precision Solar system tests could provide model-

independent constraints on possible modifications of Newtonian

gravity. The Solar system is the larger one with very well known

mass distribution and can offer tight confirmations of Newtonian

gravity and general relativity. Any deviation emerging from classical

tests would give unique information either on DM and its supposed

existence or on the nature of the deviation from the inverse-square

law. Several authors have discussed this possibility. Talmadge et al.

(1988) derived limits from the analysis of various planetary astro-

metric data set on the variation in the 1/r2 behaviour of gravity.

Experimental bounds on non-luminous matter in solar orbit were

derived either by considering the third Kepler’s law (Anderson et al.

1989, 1995) or by studying its effect upon perihelion precession

(Gron & Soleng 1996). The influence of a tidal field due to Galac-

tic DM on the motion of the planets and satellites in the Solar

system was further investigated by Braginsky, Gurevich & Zybin

(1992) and Klioner & Soffel (1993). The orbital motion of Solar

system planets has been determined with higher and higher accuracy

(Pitjeva 2005a) and recent data allow us to put interesting limits on

very subtle effects, such as that of a non-null cosmological constant

(Jetzer & Sereno 2006; Sereno & Jetzer 2006). In this paper, we

discuss what state-of-art ephemerides tell us about non-Newtonian

or DM features. In Section 2, we review standard expectations about

Galactic DM at the solar circle and discuss some standard frame-

works for deviations from the inverse-square law, i.e. a Yukawa-

like fifth force and the MOND formalism. Observational constraints

from perihelion precessions and changes in the third Keplerian law

are discussed in Sections 3 and 4, respectively. Section 5 is devoted

to some final considerations.

2 BA S I C S

Let us now briefly consider the main features of DM in the Solar

system and of some alternatives to Newtonian gravity.

2.1 Dark matter

In the DM scenario, Milky Way is supposed to be embedded in a

massive dark halo. Realistic models of the Milky Way based on adi-

abatic compression of CDM haloes can be built in agreement with a

full range of observational constraints (Klypin, Zhao & Somerville

2002; Cardone & Sereno 2005). The local DM density at the solar

circle is then expected to be ρDM ∼ 0.2 × 10−21 kg m−3, in excess

of nearly five orders of magnitude with respect to the mean cosmo-

logical DM density.

2.2 MOND

MOND underpins the principle that gravitation departs from

Newtonian theory if dynamical accelerations are small. It was

initially proposed as a modification of either inertia or gravity

(Milgrom 1983). According to this second approach, the gravita-

tional acceleration g is related to the Newtonian gravitational accel-

eration gN as

μ(|g|/a0)g = gN, (1)

where a0 is a physical parameter with units of acceleration and

μ(x) is an unspecified function which runs from μ(x) = x at x � 1

to μ(x) = 1 at x � 1. Although the Newtonian trend is recovered

at large accelerations, in the low-acceleration regime the effective

gravitational acceleration becomes g � √
gNao. The asymptotically

flat rotation curves of spiral galaxies and the Tully–Fisher law are

explained by such a modification, and a wide range of observations

are fitted with the same value of a0 � 1.2 × 10−10 m s−2 (Sanders

& McGaugh 2002).

The μ function is formally free but, as a matter of fact, fits to

rotation curves or considerations on the external field effects sug-

gest a fairly narrow range (Zhao & Famaey 2006). The standard

interpolating function proposed by Milgrom (1983),

μ(x) = x/
√

1 + x2, (2)

provides a reasonable fit to rotation curves of a wide range of galax-

ies. Based on a detailed study of the velocity curves of the Milky

Way and galaxy NGC 3198, Famaey & Binney (2005) found out

that interpolating functions which trigger a slower transition from

the MONDian to the Newtonian regime should be preferred. They

proposed the alternative interpolating function,

μ(x) = x/(1 + x). (3)

Transition between the asymptotic regimes is smoother in equa-

tion (3) than in equation (2). In principle, μ could be precisely

determined from the observations of an ideal galaxy in which both

the flat rotation curve and the luminosity distribution are known with

high accuracy. The μ function that best reproduces the Milky Way’s

rotation curve rotation seems to go smoothly from equation (2) at

x � 1 to equation (3) at x � 10 (Famaey & Binney 2005).

In the Newtonian regime, departures strongly depend on the way

μ approaches 1 asymptotically. For a quite general class of interpo-

lating functions, we can write (Milgrom 1983)

μ(x) � 1 − k0(1/x)m, (4)

which leads to the modified gravitational field (Talmadge et al. 1988)

g � gN

[
1 + k0(a0/|gN|)m

]
. (5)

For x � 1, equations (2) and (3) can be recovered for {k0, m} =
{1/2, 2} and {1, 1}, respectively.

Any viable relativistic theory embodying the MOND para-

digm, such as Bekentein’s TeVeS (Tensor–Vector–Scalar theory;

Bekenstein 2004) or Sanders’ BSTV (Bi-Scalar–Tensor–Vector

theory; Sanders 2005), seems to require scalar and vectorial fields in

addition to the usual tensor field. MOND phenomenology emerges

as an effective fifth force associated with a scalar field. The inter-

polating function μ is related to an auxiliary function of the scalar

field strength. The parametrized post-Newtonian (PPN) formalism

has been very effective in confronting metric theories of gravity with

the results of Solar system experiments (Will 2006). Unfortunately,

for the relativistic generalizations of MOND, the presence of both

a scalar and a vector field, together with the free function in the La-

grangian that yields the expected dynamics in the low-acceleration

limit, makes it problematic to derive the corresponding PPN param-

eters. To date, preliminary derivations only concern the very inner

Solar system, where μ is very close to unity (Bekenstein 2004), so

that the very accurate determination of PPN parameters cannot be

directly used to test MOND.

2.3 Yukawa-like fifth force

Many long-range deviations can be characterized by an amplitude

and a length-scale. Let us consider additional contributions to the
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gravitational potential in the form of a Yukawa-like term, whose

astrophysical consequences have been explored from the scale of

the Solar system (Adelberger et al. 2003) to the large-scale structure

of the Universe (White & Kochanek 2001; Amendola & Quercellini

2004; Sealfon, Verde & Jimenez 2005; Shirata et al. 2005; Sereno &

Peacock 2006). The weak field limit of the gravitational potential, φ,

can be written as a sum of a Newtonian and a Yukawa-like potential;

for a point mass M,

φ = − G∞ M

r

[
1 + αY exp

{
− r

λY

}]
, (6)

where αY is a dimensionless strength parameter and λY is a length

cut-off. The potential in equation (6) goes as ∝ 1/r both on a small

scale (r � λY), with an effective coupling constant G∞(1 + αY),

and on a very large scale, where the effective gravitational constant

is G∞. We will take G∞ = GN/(1 + αY), so that the value of the

coupling constant on a very small scale matches the observed labo-

ratory value, GN. The total gravitational acceleration felt by a planet

embedded in the potential (6) can be written as

g = −r̂
G∞ M

r 2

[
1 + αY

(
1 + r

λY

)
exp

{
− r

λY

}]
. (7)

For αY < 0(>0), gravity is enhanced (suppressed) on a large scale.

The potential in equation (6) can be derived in a relativistic gravity

model that obeys the equivalence principle (Zhytnikov & Nester

1994). A Yukawa-like contribution to the potential can be also con-

nected to very specific mass terms which appear in addition to the

field theoretical analogue of the usual Hilbert–Einstein Lagrangian

(Babak & Grishchuk 2003).

3 P E R I H E L I O N P R E C E S S I O N

As is well known, a test body moving under the influence of the

Newtonian potential of a central mass M will describe an ellipse

with constant orbital elements. Due to a small, entirely radial per-

turbation, the argument of pericentre ωp will precess according to

(see Soffel 1989, chapter 4)

ω̇p = − (1 − e2)1/2

nae
δAR cos f , (8)

where n ≡
√

GN M/a3 is the mean motion of the unperturbed

orbit, a the semimajor axis, e the eccentricity, f the true anomaly

counted from the pericentre and δAR the radial component of the

perturbing acceleration. The longitude of the ascending node is not

affected.

Data from space flights and modern astrometric methods made it

possible to create very accurate planetary ephemerides and to pre-

cisely determine orbital elements of Solar system planets. The latest

EPM2004 ephemerides were based on more than 317 000 position

observations collected over 1913–2003 and including radiometric

and optical astrometric observations of spacecraft, planets and their

Table 1. 2σ constraints from extraprecession of the inner planets of the Solar system. δω̇p is

the observed extraprecession rate from Pitjeva (2005b); δAR is a constant perturbative radial

acceleration at the planet orbit and ρDM is the DM density within the planet orbit.

Name δω̇p (arcsec yr−1) δAR (m s−2) ρDM(kg m−3)

Mercury −0.36(50) × 10−4 −1 × 10−12 � δAR � 5 × 10−13 <4 × 10−14

Venus 0.53(30) × 10−2 −4 × 10−12 � δAR � 6 × 10−11 <8 × 10−14

Earth − .2(4) × 10−5 −5 × 10−14 � δAR � 3 × 10−14 <7 × 10−16

Mars 0.1(5) × 10−5 −3 × 10−14 � δAR � 4 × 10−14 <3 × 10−16

satellites (Pitjeva 2005a). Such ephemerides were constructed by si-

multaneous numerical integration of the equations of motion in the

post-Newtonian approximation accounting for subtle effects such

as the influence of 301 large asteroids and of the ring of small

asteroids, as well as the solar oblateness. Extracorrections to the

known general relativistic predictions can be interpreted in terms

of new physics. Results are listed in Table 1. We considered the 2σ

upper bounds. When the additional non-Newtonian acceleration is

parametrized as constant, the average precession rate is given by

〈ω̇p〉 = (1 − e2)1/2

na
δAR. (9)

Best constraints on δAR come from Earth and Mars observations

(see Table 1).

Analysed data from Pioneer spacecrafts cover a heliocentric dis-

tance out to ∼70 au and show an anomalous acceleration directed

towards the Sun with a magnitude of ∼9 × 10−10 m s−2 which first

appeared at a distance of 20 au from the Sun (Anderson et al. 2002).

If such an acceleration were gravitational in origin, it would not

be universal. In fact, effects on orbits of inner and outer planets

would be large enough to have been detected given the present lev-

els of accuracy (Anderson et al. 2002; Iorio 2006b; Sanders 2006).

The upper bound from Mars in Table 1 is more than four orders of

magnitude smaller then the Pioneer acceleration.

3.1 Dark matter

Galactic DM can cause extraperihelion precession in the Solar

system. A refined analysis should consider the anisotropy in the

gravitational field in the Solar system due to tidal forces induced

by the DM distribution (Braginsky et al. 1992; Klioner & Soffel

1993). As an alternative approach, a spherically symmetric distri-

bution around the Sun can be considered (Gron & Soleng 1996;

Khriplovich & Pitjeva 2006). In fact, the effect at a given orbital

radius is essentially given by the total DM mass contained within

it, with a very weak dependence on the actual density distribution

(Anderson et al. 1989). DM density varies very slowly within the

Solar system and can be considered as nearly constant. Assuming a

constant density ρDM, the perturbing radial acceleration at a radius

r is δAR = −(4πGNρDM/3)r . After substituting in equation (8) and

averaging over a period, the extraprecession rate can be written as

〈ω̇p〉 = −2GNπρDM

n
(1 − e2)1/2. (10)

Note that for an effective uniform density of matter represented by

a cosmological constant, i.e. ρDM = −c2 �/(4πGN), the classical

result for orbital precession due to � is retrieved (Kerr, Hauck &

Mashhoon 2003; Jetzer & Sereno 2006). The best upper bound on

local DM density comes from Mars data (see Table 1). The accuracy

on Mars precession should improve by more than six orders of

magnitude to get constraints competitive with local estimates based

on Galactic observables.
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3.2 MOND

The rate of perihelion shift in the Newtonian regime of MOND (x �
1) with a generic interpolating function in the form of equation (4)

can be expressed in terms of hypergeometric functions. Here, we

report only the case of a small eccentricity when

〈ω̇p〉 = −k0n

(
a

rM

)2m

m

× {1 + e2[1 − m(5 − 2m)]/4 + O(e4)}, (11)

where rM ≡ √
GN M/a0. As for the DM case, the Mars data are

the more effective in constraining the parameter space (see Fig. 1).

For k0 ∼ 1, we get m � 1.5. Results from Solar system are in dis-

agreement with expectations based on the extrapolation to the strong

acceleration regime of the free functions preferred on a galactic dy-

namics basis. From the study of rotation curves, accelerations seem

to continue to increase quite smoothly as 1/r even in the intermedi-

ate MONDian regime. As a consequence, for x � 1, free functions

which trigger a smooth transition, as equation (3), must be preferred

over expressions such as equation (2) (Famaey & Binney 2005; Zhao

& Famaey 2006). On the other hand, in the Newtonian regime, x �
1, the functional form of equation (3) is clearly excluded by Solar

system data, whereas equation (2) is still compatible. Combining

data from Solar system and galactic dynamics, in the comparison

between equations (2) and (3), the first one seems to be preferred

in both the deep MONDian and Newtonian regimes, whereas the

second one gives a better fit for the intermediate region. Similar

considerations induced Sanders (2006) to argue that the total grav-

itational acceleration is strictly Newtonian, i.e. ∝ 1/r2, on small

scales and that the transition to the total asymptotic acceleration

∝ 1/r shows up through a plateau region between 102 and 103 au

where the extra-acceleration is more or less constant. The accuracy

on Mars data should improve by nearly four orders of magnitude to

disprove the standard interpolating function in equation (2).

Figure 1. Constraints on the MOND interpolating function, parametrized as

in equation (4), arising from extraperihelion precession of inner planets. The

shadow region is ruled out at the 2σ confidence level. The points labelled

Mil and F&B locate the interpolating function in equations (2) and (3),

respectively.

Figure 2. Constraints on the Yukawa-like fifth force parameters, for positive

αY, arising from extraperihelion precession of inner planets. The shadow

region is ruled out at the 2σ confidence level.

3.3 Yukawa fifth force

The anomalous precession rate due to a Yukawa-like contribution

to the gravitational potential is

〈ω̇p〉 = αY

(
a

λY

)2

exp

{
− a

λY

}
n

2

×
{

1 − 1

8

[
4 −

(
a

λ

)2
]

e2 + O(e4)

}
. (12)

Extraprecession data for a planet with semimajor axis a mainly probe

scale-lengths of λY ∼ a/2. Solar system data allow to constrain

departures from the inverse-square law with high accuracy for a

scale-length λY ∼ 1010 − 1011 m (Talmadge et al. 1988; Iorio 2005).

Bounds are mainly determined from Mercury and Earth data (see

Figs 2 and 3). For λY ∼ 1011 m, we get −5 × 10−11 � αY � 6 ×
10−11.

4 T H I R D K E P L E R ’S L AW

A departure from the inverse-square law could affect the radial mo-

tion of a body around a central mass, and a change in the Kepler’s

third law would occur. The Newtonian law of motion for a test body

in a circular orbit around a central mass M, in the presence of a

perturbing radial acceleration δAR, can be written as

ω2r = GN M

r 2
− δAr

≡ GN Meff

r 2
, (13)

where ω is the angular frequency and Meff ≡ M(1+δAr/AN) is the

effective mass felt by the orbiting planet. In other words, the angular

frequency will differ from the mean motion n ≡
√

GN M/a3. It is
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Figure 3. Constraints on the Yukawa-like fifth force parameters, for negative

αY, arising from extraperihelion precession of inner planets. The shadow

region is ruled out at the 2σ confidence level.

δn

n
= 1

2

δAr

AN

. (14)

Variation of the effective solar mass felt by the Solar system in-

ner planets with respect to the effective masses felt by outer plan-

ets could probe new physics (Anderson et al. 1989, 1995). We

can evaluate the statistical error on the mean motion for each

major planet from the uncertainty on the semimajor axis, δn =
−(3/2)nδa/a, and translate it into an uncertainty on the effective

acceleration. Results for a constant additional acceleration term are

listed in Table 2. Assuming δAr being constant, it would be �5 ×
10−12 m s−2 in the range 20–30 au, as can be inferred from Uranus

and Neptune orbits, well below the anomalous Pioneer acceleration

(Iorio 2006b). Limits from Earth and Mars are competitive with data

from perihelion precession. Errors in Table 2 are formal and could

be underestimated. Current accuracy can be determined evaluating

the discrepancies in different ephemerides. Differences in the helio-

centric distances do not exceed 10 km for Jupiter and amount to 180,

410, 1200 and 14 000 km for Saturn, Uranus, Neptune and Pluto,

respectively (Pitjeva 2005b). Bounds from outer planets reported in

Table 2 should be increased accordingly.

Table 2. 2σ upper bounds from anomalous mean motion of the Solar system

planets; δa is the uncertainty on the semimajor axis from Pitjeva (2005b);

δAR is an anomalous constant radial acceleration and ρDM is the DM density.

Name δa(m) |δAR| (m s−2) ρDM(kg m−3)

Mercury 0.105 × 10+0 � 4 × 10−13 � 3 × 10−14

Venus 0.329 × 10+0 � 2 × 10−13 � 7 × 10−15

Earth 0.146 × 10+0 � 3 × 10−14 � 8 × 10−16

Mars 0.657 × 10+0 � 4 × 10−14 � 7 × 10−16

Jupiter 0.639 × 10+3 � 1 × 10−12 � 5 × 10−15

Saturn 0.4222 × 10+4 � 1 × 10−12 � 3 × 10−15

Uranus 0.384 84 × 10+5 � 1 × 10−12 � 2 × 10−15

Neptune 0.478 532 × 10+6 � 4 × 10−12 � 3 × 10−15

Pluto 0.346 3309 × 10+7 � 1 × 10−11 � 8 × 10−15

Figure 4. Constraints on Yukawa fifth force parameters, for the absolute

value of αY, arising from deviations from the third Kepler’s law. The shadow

region is ruled out at the 2σ confidence level.

4.1 Dark matter

Bounds on ρDM from deviations in the mean motion of inner plan-

ets (see Table 2) are of the same order of magnitude of constraints

from extraprecession. Observations of outer planets provide con-

straints that are an order of magnitude larger, but they give the best

future prospects. Unlike inner planets, radio-technical observations

of outer planet are still missing and their orbits cannot be deter-

mined with great accuracy. Since the required accuracy to probe the

effects of a given uniform background decreases as ∝a−4, whereas

the measurement precision of ranging observations is roughly pro-

portional to the range distance, exploration of outer planets seems

pretty interesting. DM with ρDM � 0.2 × 10−21 kg m−3 could be

detected if the orbital axis of the Uranus, Neptune and Pluto orbits

was determined with an accuracy of δa ∼ 3 × 10−2, 2 × 10−1 and

5 × 10−1 m, respectively. Till now, the only ranging measurements

available for Uranus and Neptune are the Voyager 2 flyby data, with

an accuracy in the determination of distance of ∼1 km (Anderson

et al. 1995), not so far from what required to probe Solar system

effects of DM.1

4.2 MOND

Results from the analysis of mean motion are similar to extrapre-

cession analysis. The interpolating function in equation (3) is not

consistent with Solar system data. From Uranus data, we get m �
1.4 assuming k0 � 1. Again, best future prospects are related to

radio-technical determination of orbits of outer planets. The stan-

dard interpolating function in equation (2) could be (dis-)probed if

1The approach followed here is more conservative than a similar analysis that

appeared in Iorio (2006a), where it is assumed that all of the observational

residuals can be fully accounted for with a suitable combination of different

effects. Furthermore, Iorio (2006a) considers a quite peculiar form of the

gravitational potential valid only for a dark mass distribution fully contained

within the considered orbit.
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the axes of the Uranus, Neptune and Pluto orbit were determined

with an accuracy of δa ∼ 3 × 10, 3 × 102 and 1 × 103 m, respec-

tively.

4.3 Yukawa fifth force

Comparison of Keplerian mean motions of inner and outer planets

can probe a Yukawa-like contribution only if planets feel different

effective gravitational constants. Such test is insensitive to values of

λY either much less than the orbit radius of the inner planet or much

larger than the orbit of the outer planets (Adelberger et al. 2003).

Differently from extraprecession of perihelion, which appears only

for departures from the inverse-square law, changes in the mean

motion can appear even if both planets feel a gravitational accelera-

tion ∝ 1/r2 but with different renormalized gravitational constants.

Observational constraints are represented in Fig. 4. Considering in-

ner planets, Earth data give |αY| � 6 × 10−12 for λY � 2 × 1010 m.

The best constraint from outer planets is due to Jupiter, with

|αY| � 5 × 10−9 for λY � 1011 m.

5 C O N C L U S I O N S

Debate between DM and departures from inverse-square law is still

open. Considering both theoretical and observational aspects, DM

seems to be slightly preferred. If on a galactic scale the two hypothe-

ses match, on the cosmological side only DM can give a consistent

framework. This might shortly change with the steady improve-

ments in relativistic generalization of the MONDian paradigm. So,

in our opinion, it is of interest to examine results on a very different

scale, that of the Solar system. Solar system data have been confirm-

ing predictions from the general theory of relativity without any need

for DM, and it is usually assumed that deviations can show up only

on a larger scale. In this paper, we have explored what we can learn

from orbital motion of major planets in the Solar system. Results

are still non-conclusive but nevertheless interesting. Best constraints

come from perihelion precession of Earth and Mars, with similar re-

sults from modifications of the third Kepler’s law. The upper bound

on the local DM density, ρDM � 3 × 10−16 kg m−3, falls short to

estimates from Galactic dynamics by six orders of magnitude.

Deviations of the gravitational acceleration from 1/r2 are really

negligible in the inner regions. A Yukawa-like fifth force is strongly

constrained on the scale of ∼1 au. For a scale-length λY ∼ 1011 m,

a Yukawa-like modification can contribute to the total gravitational

action for less then one part on 1011. Similar limits could be achieved

by precise measurements on the proof masses carried onboard the

Laser Interferometer Space Antenna (LISA) Pathfinder satellite2

(Speake, private communication). In fact, instantaneous measure-

ments of the drag-free test-mass acceleration during the transfer or-

bit towards the first Sun–Earth Lagrange point could in principle test

the inverse-square law on a scale-length of ∼1 au (Speake, private

communication). Results on a similar scale-length could be obtained

through a detailed analysis of binary pulsars. The periastron shift, the

gravitational redsfhift/second-order Doppler shift parameter and the

rate of change of orbital period are sensitive to scalar–tensor gravity

and to any other deviation from the general theory of relativity (Will

2006). Dipole gravitational radiation associated with violations of

the equivalence principle in its strong version could cause an addi-

tional form of gravitational damping and a significant change of the

orbital period could occurs, in particular for a binary pulsar system

2http://www.rssd.esa.int/index.php?project=LISAPATHFINDER

with objects of very dissimilar mass (Will 2006). A massive graviton

associated with a Yukawa-like fifth force could also affect the speed

of propagation of gravitational waves and induce radiation effects

at the reach of future gravitational wave detectors (Will 2006).

A large class of MOND interpolating function is excluded by data

in the regime of strong gravity. The onset of the asymptotic 1/r ac-

celeration should occur quite sharply at the edge of the Solar system,

excluding the more gradually varying μ(x) suggested by fits of ro-

tation curves. On the other hand, the standard MOND interpolating

function μ(x) = x/(1 + x2)1/2 is still in place. Studies on planetary

orbits could be complemented with independent observations in the

Solar system. Mild or even strong MOND behaviour might become

evident near saddle points of the total gravitational potential, where

MONDian phenomena might be put at the reach of measurements

by spacecraft equipped with sensitive accelerometers (Bekenstein &

Magueijo 2006). As a matter of fact, fits to galactic rotation curves,

theoretical considerations on the external field effects and Solar

system data could determine the shape of the interpolating function

with a good accuracy on a pretty large intermediate range between

the deep Newtonian and MONDian asymptotic behaviours.

Future experiments performing radio-ranging observations of

outer planets could greatly improve our knowledge about gravity

in the regime of large accelerations. The presence of DM could be

detected with a viable accuracy of few tenths of a metre on the mea-

surements of the orbits of Neptune or Pluto, whereas an uncertainty

as large as hundreds of metres would be enough to disprove some

pretty popular MOND interpolating functions.

In order to become really competitive with general relativity and

the �CDM paradigm, MOND should be predictive on the whole

range of observed systems from Solar system to the cosmic mi-

crowave background radiation. On a galactic scale, effects of DM

or MOND are pretty similar and very difficult to distinguish each

other, but there might be some detectable differences on a smaller

scale. In fact, the local value of DM at the solar circle is pretty

much fixed by Galactic dynamics whereas the MOND behaviour

in the regime of strong accelerations probed locally is not univo-

cal on a theoretical and observational basis. Nevertheless, only a

very small class of interpolating free functions would give the same

perturbation on the orbits of outer planets as that from local DM.

Matching the expectations from DM with future radio ranging ob-

servations would be an important, nearly conclusive confirmation

of its existence. On the other hand, deviations at a different order of

magnitude, as those expected for a large variety of MOND interpo-

lating functions, would be a strong indication of departure from the

inverse-square gravitational law.
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