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We propose and analyze a scheme to cool atoms in an optical lattice to ultralow temperatures within a

Bloch band and away from commensurate filling. The protocol is inspired by ideas from dark-state laser

cooling but replaces electronic states with motional levels and spontaneous emission of photons by

emission of phonons into a Bose-Einstein condensate, in which the lattice is immersed. In our model,

achievable temperatures correspond to a small fraction of the Bloch bandwidth and are much lower than

the reservoir temperature. This is also a novel realization of an open quantum optical system, where

known tools are combined with new ideas involving cooling via a reservoir.

DOI: 10.1103/PhysRevLett.97.220403 PACS numbers: 03.75.Lm, 32.80.Pj, 42.50.�p

Fundamental advances in atomic physics are often

linked to the development of novel cooling methods, as

illustrated by laser and evaporative cooling, which led to

the recent realization of degenerate Bose and Fermi gases

[1]. This has further led to the achievement of strongly

correlated atomic ensembles in the lowest Bloch band of an

optical lattice [2–5]. However, in order to realize some of

the most interesting condensed matter phases predicted for

lattice Hamiltonians, even better purification of the mo-

tional state is necessary, in particular, for atoms in a

partially filled Bloch band [5]. Here we propose a method

for cooling atoms to mean energies much smaller than the

width of the lowest Bloch band 4J0. In our setup [cf.

Fig. 1(a)], lattice atoms a are excited to the first Bloch

band via a Raman laser pulse except when they occupy

Bloch states with quasimomentum close to zero—so-

called dark states. The lattice is immersed in a Bose-

Einstein condensate (BEC) of a different atomic species

b, so that the atoms can subsequently decay back to the

lowest band via collisional interactions with the BEC

reservoir [6,7]. Thus, the atom is recycled to the lowest

band by emission of a phonon—or more precisely, a

Bogoliubov excitation [6]. By repeated application of laser

excitation and ‘‘spontaneous emission,’’ cooling into the

dark-state region of quasimomenta is achieved without loss

of atoms [8] [cf. Fig. 1(b)].

This method is inspired by the seminal Kasevich-Chu

scheme [11] for subrecoil laser cooling [12,13] but repla-

ces internal atomic states by Bloch band excitations and

spontaneously emitted photons by phonons. Our scheme

thus operates on a much smaller energy scale than laser

cooling, with correspondingly lower temperatures. This

method can also be seen as a form of sympathetic cooling,

where the energy is removed by phonons with energies

equal to the Bloch band separation. Such phonon modes

will initially be in the vacuum state, giving an effective

T � 0 reservoir, and allowing temperatures significantly

lower than the BEC reservoir temperature, in contrast to

standard sympathetic cooling. The ability to switch the

collisional interactions via Feshbach resonances [14] en-

ables us to study the cooling scenario in the weakly inter-

acting gas, creating strongly correlated phases by ramping

up the interaction in a final step.

On a formal level, our cooling scheme can be written as

the iterative application of a map:

 M j: �̂j ! �̂j�1 � �D̂ � Êj��̂j; (1)

where the density operator �̂j describes the atoms in the

lowest Bloch band before the jth step. Each step consists of

two parts: the coherent laser excitation Êj of lattice atoms

a and the dissipative decay D̂ returning atoms to the lowest

band via coupling to the reservoir b (Fig. 1). To achieve the

best possible cooling, differently shaped excitation pulses

Êj, j � 0; . . . ; Np � 1, are applied, and this sequence is

repeated, with Êj � ÊjmodNp
. This repeated application of

the map corresponds to a purification of the density opera-

 

FIG. 1 (color online). (a) Cooling setup: Atoms a in an optical

lattice are coupled to the first excited motional state via a Raman

process and decay to the ground motional state due to collisional

interactions with a BEC of species b in which the lattice is

immersed. Tunneling between neighboring sites with amplitude

J� gives rise to Bloch bands. (b) Momentum space picture:

Atoms with higher quasimomentum q are excited to the upper

Bloch band and decay to random quasimomentum states. After

several cycles, atoms a collect in a dark-state region near q � 0
with low excitation probability.
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tor, starting from an initial mixed state (e.g., a thermal

distribution) towards a pure state (at zero temperature T �
0). In order to find appropriate forms of the Raman pulses

and the action of D̂, we analyze the dynamics of the lattice

atoms and their interaction with the reservoir gas.

We consider a one-dimensional model for the motion of

atoms a, which is readily generalized to higher dimensions

(with arguments similar to Ref. [11]). Including Raman

coupling, the Hamiltonian is Ĥa � Ĥ0 � ĤI, with

 Ĥ 0 �
X

q;�

"�q �Â�
q �yÂ�

q � �!� ��
X

q

�Â1
q�yÂ1

q

��

2

X

q

��Â1
q�yÂ0

q��q � H:c:	; (2)

 Ĥ I �
1

2

X

i;�

U��n̂�i �n̂�i � 1� � 2U10
X

i

n̂1i n̂
0
i : (3)

Here Â�
q and �Â�

q �y are annihilation and creation operators,

respectively, for quasimomentum q in Bloch band � 2
f0; 1g, satisfying Bose or Fermi (anti)commutation rela-

tions. The kinetic energy is "�q � �2J� cos�qd�, where d

is the lattice spacing, J� are the tunneling amplitudes

[with J0 > 0 and J1 < 0; see Fig. 1(b)], and ! is the

band separation. The effective Rabi frequency � �
�R

R

dx exp��i�qx�w1�x�w0�x�, where �R is the two

photon Rabi frequency as a function of time during the

pulse and w��x� the Wannier functions. The Hamiltonian is

a two-band model, written in a rotating frame with Raman

detuning �, and �q denotes the momentum transfer. We

choose units @ � kB � 1, where kB is the Boltzmann con-

stant. The parameters �, �, and �q will change during the

pulse sequence but be constant during a given pulse j. On

site interactions between lattice atoms are represented by

ĤI, with n̂�i the number operator for atoms in site i and

band � and U��0
the associated on site energy shifts [2].

The density-density interaction between lattice atoms a
and a three-dimensional BEC reservoir b, which gives rise

to the decay D̂, is described by the Hamiltonian [6]

 Ĥ int �
X

�;�0

X

k;q

�Gk

�;�0 b̂k�Â�
q �yÂ�0

q�k � H:c:	: (4)

Here the operator b̂y
k

creates a Bogoliubov excitation with

momentum k � �k; ky; kz� and, neglecting overlap of

Wannier functions in different lattice sites, the coupling

Gk

�;�0 
 gab�S�k��b=V�1=2
R

d3xeikxw��x�w�0�x�. The

strength of the interspecies contact interaction is denoted

gab, �b and V are the density and volume, respectively, of

the BEC reservoir, and S�k� is the static structure factor

[1]. For excitation energies less than the chemical potential

�, excitations are sound waves for which S�k� is strongly

suppressed, and S�k� ! 0 as jkj ! 0 [1]. For energies

larger than �, excitations are in the particlelike sector of

the spectrum, with much larger S�k� ! 1. Here we will

typically have 4J0 <�<!, so that decay between bands

is induced by particlelike excitations with strong coupling,

but collisional processes between the reservoir and atoms

in the lowest Bloch band are suppressed. In close analogy

to Refs. [6,7], we derive a master equation for the reduced

system density operator, describing the decay between

bands in the Born-Markov approximation [15]. The asso-

ciated Liouvillian is L��	 � P

k�k�2ck�cyk � cykck��
�cykck�=2. The momentum k along the lattice axis is

bounded by jkj � �������������

2mb!
p

due to energy conservation,

where mb is the mass of atoms b, and the jump operators

ck are defined as ck �
P

q�A0
q�k�yA1

q. The resulting decay

rates �k for spontaneous emission of a phonon with mo-

mentum k projected on the axis of the lattice can be

written explicitly for deep lattices, where ! � jJ1j; J0
and the individual lattice sites can be approximated

as harmonic oscillator potentials. We find �k �
g2ab�bmaa

2
0k

2 exp��a20k
2=2�=2L, with a0 the size of the

ground state in each lattice site, ma the mass of atoms a,

and L the length of the 1D lattice. We denote the total

decay rate from the excited band by � � P

k�k. We con-

sider a situation where dissipation is switched off during

the excitation step, so that Êj and D̂ occur separately. This

can be achieved, e.g., by tuning the collisional interaction

so that gab 
 0. We can read the action of Êj and D̂ for a

given step j from the master equation.

We first illustrate the cooling process for a single lattice

atom, designing a sequence of Raman laser pulses, where

the jth pulse excites the atom with initial quasimomentum

q in the lowest band to the first excited band with proba-

bility Pj�q�. We require Pj�q� � 0 for q 
 0, but Pj�q� !
1 for states with high quasimomentum [cf. Fig. 1(b)]. In

analogy with Raman cooling schemes in free space [11],

we choose square pulses with duration �j � �=�j,

for which Pj�q� � sin2�
���������������������������

�2
q��qj

��2
j

q

�j=2��2
j=��2

q��qj
�

�2
j �, with the effective detuning �q��qj

� !� "1q��qj
�

"0q � �j.

An example of an efficient pulse sequence is shown in

Figs. 2(a)–2(c). We begin with an intense laser pulse which

resonantly excites atoms with momentum q �=d around

the edges of the Brillouin zone [Fig. 2(a)]. The subsequent

pulses move the resonant transition closer to q � 0 by

adjusting the momentum transfer �qj and Raman detuning

�j [Fig. 2(b)]. In order to prevent excitation of atoms with

q � 0, we decrease � and increase the pulse duration � for

the later pulses, each time achieving Pj�q � 0� � 0. To

resolve the transition, we must always have � � 8jJ1j
and, therefore, � � �=8jJ1j. Note that as the energy of the

excited band varies more rapidly with q, it is the value of J1

and not J0 that gives the resolution of the excitation.

However, the relationship between J1 and J0 is fixed by

the lattice depth (e.g., for the parameters used in Figs. 2 and

3, V0 � 10!R, we have J0 � 0:019!R and J1 �
�0:25!R). By combining a sequence of 5 pulses, one

can efficiently excite most atoms with jqj> 0, as shown

in Fig. 2(c).
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To quantitatively analyze the cooling process, we nu-

merically simulate the time evolution of the density opera-

tor �̂ using quantum trajectories [17] starting from a

completely mixed state in the lowest band (T � 4J0),

with 105 trajectories. During the cooling process, the

momentum distribution develops a sharp peak near q � 0
after very few iterations, as shown in Fig. 2(d).

The energy spread of the momentum distribution can be

interpreted as a temperature, defined by kBT � 2J0��qd�2,
where for single particles �q is the half-width of the

momentum distribution at e�1=2 of the maximum value

[13]. This is plotted in Fig. 2(e), and we find excellent

agreement between our numerical calculations and analyti-

cal results obtained with Lévy statistics [11,13]. The latter

predicts a final temperature T / t�1 for square pulses, as

shown in Fig. 2(e). For a zero-temperature reservoir, and

parameters as in the caption of Fig. 2, we reach tempera-

tures T=�4J0�  2� 10�3 in time tfJ
0  50.

Finite reservoir temperature Tb > 0 can lead to sympa-

thetic heating of lattice atoms a by absorption of thermal

phonons, as described by Ĥint. However, this process is

forbidden by energy and momentum conservation, pro-

vided J0 <
�������������������������������

�!Rma=�2mb�
p

=�. In detail, energy conser-

vation requires cjkj � �0q � �0
q0 and conservation of

momentum along the lattice direction leads to k � q�
q0 (jkj � jkj), where the atom a is scattered from quasi-

momentum q 
 0 ! q0 by absorption of a phonon with

momentum k, and c is the sound velocity in the BEC.

These conditions cannot be fulfilled unless the above in-

equality is violated. Higher order processes involving two

or more thermal phonons will be small. While in the above

protocol we have switched off the decay during application

of Êj, we can leave decay switched on, provided that � �
1=� � jJ1j. This will restrict the length of the possible

pulses, thus slowing the cooling process.

The cooling scheme can be readily adapted to many

bosons or fermions. For bosons, we assume that the colli-

sional interaction between atoms a is tuned to zero (ĤI !
0). We work out the efficiency of the cooling protocol by

deriving a quantum Boltzmann master equation (QBME)

[18], which describes transitions between classical con-

figurations of atoms occupying momentum states in the

Bloch bands, m � �fm0
qgq; fm1

qgq	, where m�
q is the occu-

pation number of quasimomentum state q in band �. This

is derived from the master equation by projection of the

density operator � onto diagonal elements, P �̂P �
P

mwmjmihmj, neglecting off-diagonal coherences. For

the excitation step Êj, the evolution is computed exactly

from the excitation probability Pj�q�, and for the decay D̂

we obtain

 _wm �
X

k;q

�k�m0
q�k�1�m1

q�wm
0 �m1

q�1�m0
q�k�wm	;

where m
0 � m� eq�k;q is the resulting configuration

when a particle with quasimomentum q in the upper

band decays to the lower band with new quasimomentum

q� k; i.e., eq�k;q is a configuration vector with m0
q�k � 1,

m1
q � �1 and all other entries zero. The upper (lower)

signs are for bosons (fermions). The approximation inher-

ent in neglecting off-diagonal coherences plays a role only

during the decay step, where these coherences couple to

the occupation probabilities. We remark that an exact

physical realization of the QBME can be obtained by

modulating the lattice depth after each excitation step,

randomizing the off-diagonal elements [19].

Figure 3(a) shows the decrease in temperature as a

function of time for bosons and fermions, obtained from

Monte Carlo simulations of the QBME [18]. For bosons,

we use the same excitation pulse sequence as for a single

atom in Fig. 2. The cooling process in this case outper-

forms that for a single atom, reaching low temperatures on

shorter times due to bosonic enhancement (here the mo-

mentum width is found using a Gaussian fit). For fermions,

the pulse sequence must be changed to create a dark-state

region of quasimomenta with jqj< qF, where qF is the

Fermi momentum, in order to cool towards a T � 0 Fermi

distribution. In this case, time-square pulses are no longer

efficient as there is a large secondary peak in Pj�q� [see

Fig. 2(b)], and we instead use Blackman pulses [11], which

approach Pj�q� � 0 monotonically. The momentum distri-

bution develops the expected shape of a cold Fermi distri-

bution after very few iterations [Fig. 3(b)] (we compute

 

FIG. 2 (color online). (a)–(c) Excitation probability Pj�q� for a

sequence of Np � 5 pulses: first [(a)–(c), dashed-dotted line],

second [(b),(c), dotted line], and the remaining pulses (c).

Parameters used: � � �27:9; 13:7; 13:7; 2:37; 2:37�J0, �q �
�0:16;�1:75; 1:75;�2:63; 2:63�=d, and ���!� � ��28:4;
25:8; 25:8; 24:7; 24:7�J0 for the different pulses. (d) Successive

narrowing of the momentum distribution in the lower Bloch band

after 0, 1, 3, 5, and 10 cooling cycles from numerical simulations

(M � 101 lattice sites) based on the pulse sequence in (a)–(c).

We choose parameters for 87Rb in the lattice and 23Na in the

reservoir, with � � 53J0 from ma=mb � 3:73, �b �
5� 1014 cm�3, and scattering length aab � 14 nm. V0 �
10!R, and !R � 2�� 3:8 kHz. (e) Temperature vs time for a

single atom: Crosses and circles denote numerical results and

solid lines analytical results based on Lévy statistics. Pulse

sequences for circles: Same as in (d); crosses: Np � 3 pulses

with � � �32:6; 7:9; 7:9�J0, �qd � �0:31; 2:12;�2:12�, and

���!� � ��28:4; 25:3; 25:3�J0.
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temperatures from these results by fitting a Fermi distribu-

tion function).

Our model predicts that the temperature will always

decrease with increasing cooling time. Experimental im-

perfections will, in practice, give rise to decoherence and

heating (e.g., from spontaneous emissions [2] or scattering

multiple phonons). One assumption made above for bosons

was that the interaction between lattice atoms a is approxi-

mately zero. Using time-dependent density matrix renor-

malization group (DMRG) methods [20], we computed the

population remaining in the lowest band after an excitation

pulse with interactions present [21]. For U��0 � 1=� �
jJ1j, there is no significant change in the excitation profile,

and, to ensure that the ground state is not substantially

altered, we require U�;�0 � J0, under which conditions the

above conclusions should not change. Another assumption

is that we have a homogeneous background potential,

which is a requirement for the realization of many strongly

correlated phases independent of the cooling techniques

employed. In this context, the final temperatures will be

limited as the cooled atoms become localized around in-

homogeneities. In practice, development of these tech-

niques should be iterative, as advances in clean flat-

bottomed traps will allow better cooling, and colder tem-

peratures will increase sensitivity of the atoms to the

remaining imperfections.

Finally, after the cooling, we adiabatically ramp up the

interaction strength to produce an interacting system, as-

suming that the system is decoupled from the reservoir b.

Using time-dependent DMRG methods [20], we have

computed the evolution when ramping from a noninteract-

ing to a hard-core Bose lattice gas in 1D (Tonks gas) in the

Bose-Hubbard model (Ha with no Raman coupling and

only the lowest band). For ramping times on the order of

10=J0, we observe negligible heating [21].

In a more general context, we can see these formal

analogies between cold atoms in optical lattices and famil-

iar quantum optical systems, their coherent control and

dissipative dynamics, as just one example to realize and

apply quantum optical concepts and techniques in a new

setting.
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S. Fölling et al., cond-mat/0606592; G. K. Campbell

et al., cond-mat/0606642; T. Volz et al., Nature Phys. 2,

692 (2006); J. Sebby-Strabley et al., cond-mat/0602103;

K. Günter et al., Phys. Rev. Lett. 96, 180402 (2006);

S. Ospelkaus et al., ibid. 96, 180403 (2006); L. Fallani

et al., cond-mat/0603655.

[4] A. Micheli, G. K. Brennen, and P. Zoller, Nature Phys. 2,

341 (2006); L. Santos et al., Phys. Rev. Lett. 93, 030601

(2004); J. J. Garcia-Ripoll, M. A. Martin-Delgado, and J. I.

Cirac, ibid. 93, 250405 (2004).
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FIG. 3 (color online). Numerical simulation of the QBME:

(a) Temperature as a function of cooling time for bosons

(crosses) and fermions (circles). (b) Momentum distribution in

band � � 0 for fermions after 0 (dashed line), 1 (dotted-dashed

line), 2 (dotted line), and 20 (solid line) cooling cycles, each with

Np � 4 pulses. Parameters used: Bosons: As for Figs. 2(a)–2(c),

but N � 51 particles. Fermions: N � 71, M � 101, Blackman

pulses with �J0 � �1:78; 1:78; 14:2; 14:2�, �qd � �0:19;
�0:19; 0:75;�0:75�, �!� �� � �28:4; 28:4; 27:9; 27:9�J0; V0 �
10!R, !R � 2�� 6 kHz, ma=mb � 1:74, and � � 52:6J0.
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