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bx = im(x,y)
(I(x-1,y) +
I(x,y) +
I(x+1,y))/3

end

by = in(x,y)
(bx(x,y-1) +
bx(x,y) +
bx(x,y+1))/3

end

sharpened = im(x,y)
I(x,y) + 0.1*
(I(x,y) - by(x,y))

end Stencil Language
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Figure 1: Our compiler translates programs written in a high-level language for image processing into a line-buffered pipeline, modeled after
optimized image signal processor hardware, which is automatically compiled to an ASIC design, or code for FPGAs and CPUs. We implement
a number of example applications including a camera pipeline, edge and corner detectors, and deblurring, delivering real-time processing
rates for 60 frames per second video from 480p to 16 megapixels, depending on the platform.

Abstract

Specialized image signal processors (ISPs) exploit the structure of
image processing pipelines to minimize memory bandwidth using
the architectural pattern of line-buffering, where all intermediate data
between each stage is stored in small on-chip buffers. This provides
high energy efficiency, allowing long pipelines with tera-op/sec. im-
age processing in battery-powered devices, but traditionally requires
painstaking manual design in hardware. Based on this pattern, we
present Darkroom, a language and compiler for image processing.
The semantics of the Darkroom language allow it to compile pro-
grams directly into line-buffered pipelines, with all intermediate
values in local line-buffer storage, eliminating unnecessary com-
munication with off-chip DRAM. We formulate the problem of
optimally scheduling line-buffered pipelines to minimize buffering
as an integer linear program. Finally, given an optimally scheduled
pipeline, Darkroom synthesizes hardware descriptions for ASIC or
FPGA, or fast CPU code. We evaluate Darkroom implementations
of a range of applications, including a camera pipeline, low-level fea-
ture detection algorithms, and deblurring. For many applications, we
demonstrate gigapixel/sec. performance in under 0.5mm? of ASIC
silicon at 250 mW (simulated on a 45nm foundry process), real-
time 1080p/60 video processing using a fraction of the resources
of a modern FPGA, and tens of megapixels/sec. of throughput on a
quad-core x86 processor.
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1 Introduction

The proliferation of cameras presents enormous opportunities for
computational photography and computer vision. Researchers are
developing ways to acquire better images, including high dynamic
range imaging, motion deblurring, and burst-mode photography.
Others are investigating new applications beyond photography. For
example, augmented reality requires vision algorithms like optical
flow for tracking, and stereo correspondence for depth extraction.
However, real applications often require real-time throughput and
are limited by energy efficiency and battery life.

To process a single 16 megapixel sensor image, our implementation
of the camera pipeline requires approximately 16 billion operations.
In modern hardware, energy is dominated by storing and loading in-
termediate values in off-chip DRAM, which uses over 1,000 x more
energy than performing an arithmetic operation [Hameed et al. 2010].
Simply sending data from mobile devices to servers for processing
is not a solution, since wireless transmission uses 1,000,000 x more
energy than a local arithmetic operation.

Often the only option to implement these algorithms with the re-
quired performance and efficiency is to build specialized hardware.
Image processing on smartphones is performed by hardware image
signal processors (ISPs), implemented as deeply pipelined custom
ASIC blocks. Intermediate values in the pipeline are fed directly



http://doi.acm.org/10.1145/2601097.2601174
http://portal.acm.org/ft_gateway.cfm?id=2601174&type=pdf
http://darkroom-lang.org/

between stages. This pattern is often called line-buffering. The com-
bination of many arithmetic operations with low memory bandwidth
leads to a power efficient design. Performing image processing in
specialized hardware is at least 500x more power efficient than
performing the same calculations on a CPU [Hameed et al. 2010].

However, implementing new image processing algorithms in hard-
ware is extremely challenging and expensive. In traditional hard-
ware design languages, optimized designs must be expressed at
an extremely low level, and are dramatically more complex than
equivalent software. Worse, iterative development is hamstrung by
slow synthesis tools: compile times of hours to days are common.
Because of this complexity, designing specialized hardware, or even
programming FPGAs, is out of reach to most developers. In prac-
tice, most new algorithms are only implemented on general purpose
CPUs or GPUs, where they consume too much energy and deliver
too little performance for real-time mobile applications.

In this paper, we present a new image processing language, Dark-
room, that can be compiled into ISP-like hardware designs. Similar
to Halide and other languages [Ragan-Kelley et al. 2012], Dark-
room specifies image processing algorithms as functional DAGs
of local image operations. However, while Halide’s flexible pro-
gramming model targets general-purpose CPUs and GPUs, in order
to efficiently target FPGAs and ASICs, Darkroom restricts image
operations to static, fixed size windows, or stencils. As we will
show, this allows Darkroom to automatically schedule programs
written in a clean, functional form into line-buffered pipelines using
minimal buffering, and to compile into efficient ASIC and FPGA
implementations and CPU code.

This paper makes the following contributions:

* We demonstrate the feasibility of compiling high-level image
processing code directly into efficient hardware designs.

We formalize the optimization of ISP-like line-buffered
pipelines to minimize buffer size as an integer linear program.
It computes optimal buffering for real pipelines in < 1 sec.

We demonstrate back-ends that automatically compile line-
buffered pipelines into structural Verilog for ASICs and
FPGAs. For our camera pipeline and most tested applications,
the generated ASICs are extremely energy efficient, requiring
< 250 pl/pixel (simulated on a 45nm foundry process), while
a mid-range FPGA runs them at 125-145 megapixels/sec. On
our applications, the generated ASICs and FPGA designs use
less than 3 the optimal buffering.

We also show how to compile efficiently to CPUs. Our results
are competitive with optimized Halide, but require seconds
to schedule instead of hours. We also show performance 7 x
faster than a clean C implementation of similar complexity.

2 Background

Camera ISPs process raw data from a camera sensor to produce
appealing images for display. Most camera sensors record only one
color per pixel, requiring other channels at each pixel to be estimated
from its neighbors (“demosaicing”). ISPs also correct noise, optical
aberrations, white balance, and perform other enhancements (Fig. 2).

Camera ISPs are typically implemented as fixed-function ASIC
pipelines. Each clock cycle, the pipeline reads one pixel of input
from the sensor or memory, and produces one pixel of output. ISPs
are extremely deep pipelines: there are many stages, and a long
delay between when a pixel enters the pipeline and when it leaves.

ISP pipelines contain two types of operation. One type only operates
on single pixels, such as gamma correction. We call these pointwise,
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Figure 2: Camera ISPs are pipelines of many image operations.
Some stages access a single point, while others access a window
around the output pixel, or stencil (indicated by blue boxes). No
stages access arbitrary pixels from the image.
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Figure 3: Each stage of the ISP is a pure function of its stencil input
and (z,y) position (top). Stencil stages communicate through a line
buffer (bottom), a local SRAM that holds a sliding window of the
data produced by the previous stage. The required buffer size is
determined by the size of the stencil consuming it. Here, it must be
large enough to store all values needed for the next iteration of g.

because they only operate on a single point at a time. The second
type needs a window of input to produce a single output pixel. For
example, demosaicing needs multiple adjacent pixels to interpolate
color information. We call these operations stencils, because they
match the well-understood structure of stencil computations.

Pointwise operations do not require buffering, because the input
required (a single pixel) is exactly what is produced by the prior
stage. In contrast, stencil operations require multiple pixels of input
from the previous stage. For example, a stencil operation could
require the pixel at (x,y — 1) when producing the output for (z, y).
However, the input stage would have produced (x,y — 1) W clock
cycles ago, where W is the width of the sensor. To provide this data,
an ISP would buffer W pixels of the input stage’s results on-chip.
Using standard terminology from ISP design, we call this buffer a
line-buffer, because it buffers lines of the input image (Fig. 3).

Each operation in the ISP is a pure function of its input stencil and
the (z, y) position of the pixel it is computing. This means that they
can be pipelined and parallelized to an arbitrary performance target
using standard techniques [Leiserson and Saxe 1991].

Camera ISPs perform an enormous amount of computation on a
large amount of data. (Our camera pipeline performs roughly 1000
arithmetic operations/pixel, or 120 Gigaops/sec. for 1080p/60 video.)
Combined with the fact that ISPs are used in battery-constrained
mobile devices, this means that energy efficiency is crucial.



Recent work has shown that a general purpose CPU uses 500 the
energy of a custom ASIC for video decoding [Hameed et al. 2010].
While the CPU can be improved, the majority of the ASIC advantage
comes from using a long pipeline that performs more arithmetic per
byte loaded. On a modern process, loading one byte from off-chip
DRAM uses 6400 the energy of a 1 byte add; even a large cache
uses 50 the energy of the add [Malladi et al. 2012; Muralimanohar
and Balasubramonian 2009]. ISPs are ideally tuned to these con-
straints: they achieve high energy efficiency by performing a large
number of operations per input loaded, and exploiting locality to
minimize off-chip DRAM bandwidth. Existing commercial ISPs
use less than 200mW to process HD video [Aptina].

3 Programming Model

Based on the patterns exploited in ISPs, we define the Darkroom
programming language. Its programming model is similar to prior
work on image processing, such as Popi, Pan, and Halide [Holzmann
1988; Elliott 2001; Ragan-Kelley et al. 2012]. Images at each stage
of computation are specified as pure functions from 2D coordinates
to the values at those coordinates, which we call image functions. Im-
age functions are defined over all integer coordinates (x, y), though
they can be explicitly cropped to a finite region using one of several
boundary conditions.

In our notation, image functions are declared using a lambda-like
syntax, im(x,y). For example, a simple brightening operation applied
to the input image I can be written as the function:

brighter = im(x,y) I(x,y) * 1.1 end

To implement stencil operations such as convolutions, Darkroom
allows image functions to access neighboring pixels:

convolve = im(x,y) (1*I(x-1,y)+2*I(x,y)+1*xI(x+1,y))/4 end

To support operations like warps, Darkroom has an explicit gather
operator. Gathers allow dynamically computed indices, but must
be explicitly bounded within a certain compile-time constant dis-
tance from the current (z, y) position. For example, the following
performs a nearest-neighbor warp on 1:

warp = im(x,y) gather(I, 4, 4, warpVX(x,y), warpVY(x,y)) end

warpvx and warpvy can be arbitrary expressions that will be clamped
to the range [—4, 4].

Compared to prior work, we make the following restrictions to fit
within the line-buffered pipeline model:

1. Image functions can only be accessed (1) at an index (x +
A,y + B) where A,B are constants, or (2) with the explicit
gather operator. Affine indices like I(xx2,y*2) are not allowed.
This means that every stage produces and consumes pixels at
the same rate, a restriction of line-buffered pipelines.

2. Image functions cannot be recursive, because this could force
a serialization in how the image is computed. This makes it
impossible to implement inherently serial techniques inside a
pipeline.

A simple pipeline in Darkroom

Let us look at a simple example program in Darkroom. The unsharp
mask operation sharpens an image I by amplifying the difference
between it and a blurred copy to enhance high frequencies. Im-
plementing the 2D blur as separate 1D passes, we could write the
pipeline as:

bx = im(x,y) (I(x-1,y) + I(x,y) + I(x+1,y))/3 end

by = im(x,y) (bx(x,y-1) + bx(x,y) + bx(x,y+1))/3 end

difference = im(x,y) I(x,y)-by(x,y) end

scaled = im(x,y) @.1 * difference(x,y) end

sharpened = im(x,y) I(x,y) + scaled(x,y) end

The final three image ful’lCtiOrlS—difference, scaled, and sharpened—
are pointwise operations, so the whole pipeline can be collapsed into
two stencil stages:

ST = im(x,y) (I(x-1,y) + I(x,y) + I(x+1,y))/3 end
S2 = im(x,y)
I(x,y) + 0. 1%(I(x,y)-(S1(x,y-1) + S1(x,y) + S1(x,y+1))/3)
end
input bx output
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It cannot be collapsed any further without changing the stencils of
the individual computations. Notice that this is not a linear pipeline,
but a general DAG of operations communicating through stencils. In
this example, the final sharpened result is composed of stencils over
both the horizontally-blurred intermediate, and the original input
image.

4 Generating Line-buffered Pipelines

Given a high-level program written in Darkroom, we first transform
it into a line-buffered pipeline. This pipeline processes input in time
steps, one pixel at a time. During each time step, it consumes one
pixel of input, and produces one pixel of output. The pipeline can
contain both combinational nodes that perform arithmetic, and line
buffers that store intermediate values from the previous time step.

Fig. 4 (a) shows code for a simple 1-D convolution of an input In
with a constant kernel k;. From this code, we can create a pipeline
such that at time ¢ = 0, we read the value for In(e) and produce a
value for out(e), illustrated in Fig. 4 (b). Current values such as In(e)
can be wired directly to their consumers. Values from the past such
as In(x - 2) are stored as entries in an N pixel shift register, known
as a line buffer. Fig. 4 (c) shows the pipeline that results from our
simple example.

This model can also handle two dimensional stencils by reducing
them to one dimension, flattening the image into a continuous stream
of pixels generated from concatenated lines. Given a fixed line size
L, accesses f(z+c1,y+ c2) are replaced with f'(z’ +c1 + L*c2)

(a) A 1-D convolution of 1n against a constant kernel k:

Out = im(x) ko*In(x) + ki1*In(x-1) + koxIn(x-2) end

b) An illustration of how this convolution would execute over time:

In(e) In(1)

Out(@) Out(l))

‘ (Out(Z)J

t=0 | t=1 ‘ t=2 ‘ t=3 I ot=4

(c) A pipeline that implements this execution. Square nodes are
pixel buffers whose output is their input from the previous time step.
Two pixel buffers are required because out accesses values of 1n
two cycles in the past. This collection of pixel buffers forms a line

buffer:
Or 0l

T

Figure 4: Translation of a simple convolution stencil into a line-
buffered pipeline.



(a) Code for a 1D Richardson-Lucy deconvolution:

Rel = im(x) Obs(x) / (ko*Lat(x-1) + ki*Lat(x) + koxLat(x+1)) end
LatN = im(x) Lat(x)*(ko*Rel(x-1) + ki*Rel(x) + ko*Rel(x+1)) end

(b) Scheduling this code naively results in a non-causal pipeline—it
has accesses into the future (shown in red):
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(c) We can shift a value temporally to eliminate hazards. Here we
have shifted rel by 1:
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(d) This operation can introduce hazards later in the pipeline, which
can be fixed by later shifts:
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(e) After eliminating hazards, we can construct a pipeline using

line buffers to store previous values. Here is a correct pipeline for
deconvolution:

Figure 5: We can use shifts to make a non-causal pipeline realizable.

where ' = x + L * y is the current pixel in the stream. For the
remainder of the section, we will assume that the input code has
already been transformed in this way.

So far, we have only handled stencils that access data from the
current time step or the past. In signal processing these are referred
to as causal filters. Fig. 5 (a) shows an example program where this
is not the case. It performs a Richardson-Lucy deconvolution, taking
as input the latent estimate of the deconvolved image Lat, the blurred
input image obs, and constants k; which describe the point spread
function of the blur. It calculates the relative error rel of the latent
estimate, and produces an improved latent estimate LatN.

If we naively translate this code into a pipeline as we did before,
at time ¢, we would calculate the value of each intermediate f at
position ¢. For instance, when t = 0, we would calculate Lat(0)
and Est(e). But for this example, we cannot compute Rel(e) since it
depends on Lat(1), which is not calculated until ¢ = 1. This problem
is a read after write hazard, illustrated in Fig. 5 (b).

We can transform non-causal pipelines like this into causal ones by
shifting the time at which values are calculated relative to others.
We first introduce the shift operator, and then discuss how to choose
shifts that ensure causality and minimize line buffering.

4.1 Shift Operator

In our example, if we want to ensure Rel only relies on current or
previous values of its input, we can shift it in time to eliminate the
hazard. We define a shift operator for an integer shift s:

fo(@) = f(x =)

That is, at time step ¢t = s, f will produce the value f(0). We can
now replace uses of a value with the equivalent shifted value. For
instance, we replace Rel with Rel; and adjust the offsets:
Rel; = im(x)
Obs(x-1) / (kox*Lat(x-2) + kp*Lat(x-1) + koxLat(x))
end
Now all uses of Lat are previous values. We also need to adjust all
the uses of Rel to be in terms of Rel;:
LatN = im(x)
Lat(x)*x(ko*Relq (x) + ki*Relq (x+1) + kg*Relj (x+2))
end
The effect of this shift is visualized in Fig. 5 (c). Note that in this
case it introduced an additional hazard. We can also shift Latn by 2,
which results in this modified program that contains no hazards:
Rel; = im(x)
Obs(x-1) / (ko*Lat(x-2) + kixLat(x-1) + koxLat(x))
end
LatNg = im(x)
Lat(x-2)x(k2*Rely (x-2) + ki1*Rely(x-1) + ko*Reli(x))
end
Fig. 5 (d) illustrates how this pipeline will execute, and (e) shows the
result of translating it into a line-buffered pipeline. As before, values
accessed at the same time are piped directly to each other while
values accessed in the past are implemented by inserting buffers.
Calculating the original function (LatN) given a shifted pipeline that
executes it (LatN2) simply requires changing the indices that are
calculated each cycle, e.g. LatN2(2) at t = 0 instead of LatN(0).
Similarly, evaluating shifted leaf nodes such as inputs from DRAM
or the sensor simply requires shifting which address is read.

4.2 Finding optimal shifts

Despite being correct, this pipeline is not optimal: there is an unnec-
essary line buffer after obs which would disappear if we choose to
shift obs by 1. To create an optimal pipeline, we must choose shifts
which both ensure causality and minimize line buffer size.

The general case is complicated by the fact the program may have
multiple inputs and multiple outputs (e.g., an RGB image and a
separately-calculated depth map). Furthermore, individual line
buffers are not always the same size. For instance, some values
may be 1-byte greyscale while others might be 3-byte RGB triples.
Fig. 6 shows an example of where different sized outputs can pro-
duce different scheduling decisions.

We can formulate this optimization as an integer linear programming
problem. Let F' be the set of image functions. For each value
p(z + d) evaluated in the process of evaluating c(z), we generate a



Figure 6: Given some path between 1n and out of a fixed length, the
optimal placement of line buffers through the red node to match the
fixed path depends on the size of the pixels entering and leaving it. If
it produces the same amount of data (1), the choice does not matter,
but if it produces more data (2) then buffers should be placed before
it, while if it reduces data (3), they should be placed after it.

use triple (¢, p, d), where the consumer ¢ and producer p are image
functions, and d is an offset. Let U be the set of all uses in a program.
For instance, the program:

Out = im(x)

In(x = 1) + In(x) + In(x + 1)
end

will result in the following values for F' and U:
F = {0ut,In}

U = {(Out, In,—1), (Out, In,0), (Out,In, 1)}

Also, since the size of a pixel data type varies, we extract by, the
pixel size of each image in bytes during typechecking.

For each image function f, we want to solve for its shift s ¢ such that
we ensure causality and line buffer size is minimized. For each use
(¢, p, d) we calculate the number of delay buffers 7. ,,4) needed to
store the value between when it is produced and when it is consumed
as:

N(ep,d) = Sc — Sp —d

A negative number of delay buffers indicates a non-causal pipeline,
so, to address causality, for each use we add the following constraint
to the integer linear program:

N(e,p,d) = 0

The line buffer for an image function f can be shared by all of its
consumers, so for each image function f € F', we calculate the
size of its line buffer as the maximum number of delays needed by
any consumer scaled by the pixel size, (max(c, f,q)cv (e, f,d)) * bf-
The total size of the line buffers S is the sum of the line buffers for
each producer:

S = ¢ b
Z(@’g}g@n( ) * bp
peEF

We use S as the objective to minimize in the integer linear program.
This problem formulation is equivalent to the problem of minimizing
register counts in circuit retiming literature. This problem can also be
formulated as min-cost flow, which has a polynomial time solution
[Leiserson and Saxe 1991].

Darkroom program
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Figure 7: The stages of the Darkroom compiler.

5 Implementation

After generating an optimized line-buffered pipeline, our compiler
instantiates concrete versions of the pipeline as ASIC or FPGA hard-
ware designs, or code for CPUs (Fig. 7). The Darkroom compiler is
implemented as a library in the Terra language [DeVito et al. 2013]
that provides the im operator. When compiled, Darkroom programs
are first converted into an intermediate representation (IR) that forms
a DAG of high-level stencil operations. We perform standard com-
piler optimizations such as common sub-expression elimination and
constant propagation on this IR. A program analysis is done on this
IR to generate the ILP formulation of line buffer optimization, de-
scribed in the previous section. We solve for the optimal shifts using
an off-the-shelf ILP solver (Ipsolve), and use them to construct the
optimized pipeline [Berkelaar et al. 2004]. It converges to a global
optimum in less than a second on all of our test applications. The
optimized pipeline is then fed as input to either the hardware gener-
ator, which creates ASIC designs and FPGA code, or the software
compiler, which creates CPU code.

5.1 ASIC & FPGA synthesis

ASIC and FPGA designs are traditionally developed as “structural”
Verilog programs that instantiate combinational circuits, SRAMs,
and the connections between them. FPGAs consist of a variety
of configurable devices, including lookup tables (LUTs), SRAMs
(known as block rams or BRAMs), and ALUs called “DSPs,” which
implement operations like multiplication, combined with a config-
urable interconnect network to wire them together.

Our hardware generator implements line buffers as circularly-
addressed SRAMs or BRAMs. Each clock, a column of pixel data
from the line buffer shifts into a 2D array of registers. These regis-
ters save the bandwidth of reading the whole stencil from the line
buffer every cycle. The user’s image function is implemented as
combinational logic from this array of shift registers, writing into an
output register (Fig. 8). We add small FIFOs to absorb stalls at the
input and output of each line buffer.

Instantiating line buffers as real SRAMs presents additional diffi-
culties beyond those present in our abstract pipeline model. First,
SRAMs and BRAMs are only available in discrete sizes, each with
different costs. Second, they have limited bandwidth, preventing
multiple image functions reading from them simultaneously. To
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Figure 8: Darkroom’s hardware generators synthesize stages in
a line-buffered pipeline using a common microarchitectural tem-
plate. Columns of pixels are shifted from the input line buffer into
a stencil register, processed through arbitrary computation in the
data path, and pushed onto the output line buffer. According to
the constraints of our programming model, the data path only has
access to constants and the current contents of the stencil register.

1. Group IR nodes by distance from the input:
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2. Add passthrough nodes whenever an edge cross a stage:
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The transform results in the following code:

)

RelLatP = im(x)

{ObsLat(x)[@] / (ko*ObsLat(x-1)[1] +
ki*ObsLat(x)[1] +
ka*ObsLat(x+1)[1]),

ObsLat(x)[0]}

end
LatN = im(x)
RelLatP(x)[1]*( k2*RelLatP(x-1)[0] +
ki*RelLatP(x)[0] +
ko*RellLatP(x+1)[@])

end

The code is then transformed into a pipeline:

e i
Latp,

Buffers contain merged values, so they are twice as large.

Figure 9: Converting a generic program DAG into a linearized
pipeline by merging nodes.

simplify these issues in the first version of our hardware generator,
we only support programs that are straight pipelines with one input,
one output, and a single consumer of each intermediate.

Many Darkroom programs we have written contain a DAG of depen-
dencies, where image functions have multiple inputs and multiple
outputs. In order to support these programs in our hardware imple-
mentation, we first translate the Darkroom program into an equiva-
lent Darkroom program that is a straight pipeline. This process is
described in Fig. 9. While this process always produces semanti-
cally correct results, the merging of nodes in the programs can create
larger line buffers than what could be achieved with a hardware
implementation that supported DAG pipelines. In the future, we
plan to multi-port the buffers to eliminate this restriction.

Following DAG linearization, we use Genesis2, a Verilog meta-
programming language [Shacham et al. 2012] to elaborate the topol-
ogy into a SystemVerilog hardware description for synthesis. We
verify functionality of the hardware description using Synopsys
VCS G-2012.09, which also produces the activity factor required for
ASIC power analysis. The ASIC design is synthesized and analyzed
using Synopsys Design Compiler Topographical G-2012.06-SP5-1
for a 45nm cell library. The FPGA design uses Synopsys Synplify
G-2012.09-SP1 to synthesize the design and Xilinx Vivado 2013.3 to
place and route the design for the Zynq XC7Z045 system-on-a-chip
on the Zynq 706 demo board. The FPGA performance is measured
on the demo board using a custom Linux kernel module.

5.2 CPU compilation

Our CPU compiler implements the line-buffered pipeline as a multi-
threaded function. To enable parallelism, we tile the output image
into multiple strips and compute each strip on a different core. Inter-
mediates along strip boundaries are recomputed.

Within a thread, the code follows the line-buffered pipeline model.
A simple approach is to have the thread’s main loop correspond
to one clock cycle of the hardware, with the individual operations
scheduled in topological order to satisfy dependencies. However, the
entire set of line buffers will often exceed the size of the fastest level
of cache. We found that blocking the computation at the granularity
of lines improved locality for this cache. The main loop calculates
one line of each stencil operation with the line buffers expanded to
the granularity of lines. In addition to keeping the line buffer values
in the fastest level of the cache, this blocking reduces register spills
in the inner loop by reducing the number of live induction variables.
A stencil stage S2 that consumes from S/ yields the following code:

for each line y
for each pixel x in line of S/
compute S1(z,y)
for each pixel z in line of S2
compute S2(x,y) / loading S1 from line buffer
rotate line buffers

To exploit vector instructions available on modern hardware, we
vectorize the computation within each line of each stage. For inter-
mediates, we store pixels in struct-of-array form to avoid expensive
gather instructions.

Line buffers are implemented using a small block of memory that
we ensure stays in cache using the technique of Gummaraju and
Rosenblum to simulate a scratchpad memory by restricting most
memory access to this block and issuing non-temporal writes for our
output images [2005]. We manage the modular arithmetic of the line
buffers in the outer loop over the lines of an image so that each inner
loop over pixels contains fewer instructions. For each line required
of an intermediate we use one loop induction variable to track the
current address in the line buffer for pixels from that line.

The compiler is implemented using Terra to generate low-level CPU
code including vectors and threads, which is compiled and optimized
using LLVM [Lattner and Adve 2004].



6 Results

To evaluate Darkroom, we implemented a camera pipeline (ISP),
and three possible future extensions—CORNER DETECTION, EDGE
DETECTION, and DEBLUR—in hardware. ISP, DEBLUR, and COR-
NER DETECTION are all stencil pipelines that map directly into
Darkroom’s programming model. EDGE DETECTION traditionally
requires a long sequential iteration, which does not fit within the
Darkroom model. Our implementation demonstrates that it is pos-
sible to work around some restrictions in our programming model,
widening the range of applications we support at the cost of effi-
ciency. All applications use fixed-point arithmetic for efficiency.
Note also that, throughout this section, all pipelines are tested in-
dependently; on a real camera, each extension would likely be fed
with the output from I1SP. The input images and outputs from our
test pipelines are shown in Figure 10.

ISP is a camera pipeline, including basic raw conversion operations
(demosaicing, white balance, and color correction), in addition to
enhancement and error correction operations (crosstalk correction,
dead pixel suppression, and black level correction). Mapping ISP
to Darkroom is straightforward: it is a linear pipeline of stencil
operations, each of which becomes an image function. ISP is non-
trivial, however, due to its size: it is 472 lines of Darkroom code,
which must be scheduled, and compiled into hardware or software.

CORNER DETECTION is a classic corner detection algorithm [Har-
ris and Stephens 1988], used as an early stage in many computer
vision algorithms, and implemented as a series of local stencils.

EDGE DETECTION is a classic edge detection algorithm [Canny
1986]. It first takes a gradient of the image in = and y, classifies pix-
els as edges at local gradient maxima, and finally traces along these
edge pixels sequentially. To implement this algorithm in Darkroom,
we adapted the classic serial algorithm into a parallel equivalent,
at the expense of some wasted computation and bounded informa-
tion propagation. EDGE DETECTION traces along edges with a fixed
pipeline of 10 3 x 3 stencil operations, each propagating connection
information by one pixel. As a result, this implementation can only
detect edges at most 10 pixels long.

DEBLUR is an implementation of the Richardson-Lucy non-blind
deconvolution algorithm [Richardson 1972]. Much recent work sug-
gests that adding deblurring capabilities to the camera pipeline could
help improve photographs. DEBLUR is computationally-intense it-
erative algorithm, which we use as a stress test of our system. We
unrolled DEBLUR to 8 iterations, which was the maximum size our
hardware synthesis tools could support.

Additional applications To test the expressiveness of our lan-
guage, we also implemented several additional algorithms which we
evaluate on the CPU, but have not yet synthesized as hardware.

OPTICAL FLOW implements the Lucas-Kanade algorithm for dense
optical flow [Lucas et al. 1981]. Optical flow serves as input to many
higher-level computer vision algorithms. It is often implemented as
a multi-scale algorithm, which uses an image pyramid to efficiently
search a large area [Bouguet 2001]. Multi-resolution pyramid algo-
rithms are not supported by Darkroom, so we have implemented the
single-scale version that operates only at the finest resolution.

DEPTH FROM STEREO is a simple implementation of depth from
stereo. First, it rectifies the left and right images based on camera
calibration parameters, so that all correspondences are on the same
horizontal line in the image. This resampling is accomplished using
Darkroom’s bounded gather, with the bound determined by the
largest offset in the rectification map. Then, for each pixel in the
left channel, it searches 80 horizontal pixels neighboring that point
in the right channel, evaluating a 9x9 sum of absolute differences

s g

CORNER DETECTION

DEBLUR

OPTICAL FLOW

DEPTH FROM STEREO

Figure 10: To evaluate Darkroom, we implemented a camera
pipeline and several extensions. Long pipelines test Darkroom’s
ability to analyze large programs. Acyclic pipelines test our schedul-
ing algorithm. Multirate and serial pipelines test the overhead of
programs that do not map directly into our programming model.

(SAD) between two. The correspondence with the lowest SAD gives
the most likely depth. DEPTH FROM STEREO is a simple pipeline,
but it performs an enormous amount of computation due to the large
search window, testing our system’s ability to cope with large image
functions.

6.1 Scheduling for hardware synthesis

We designed Darkroom primarily as a language for hardware syn-
thesis. Using our system, we automatically scheduled, compiled,
and synthesized ISP, EDGE DETECTION, CORNER DETECTION,
and DEBLUR from relatively simple Darkroom code into real-time,
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Figure 11: Darkroom compiles our applications into efficient hard-
ware implementations targeting a leading foundry’s 45nm process
(top), and a mid-range FPGA (bottom). In ASIC, a single pipeline
achieves 940-1040 megapixels/sec, enough to process 16 megapixel
images at 60 FPS. On the FPGA, a single-pixel pipeline achieves
125-145 megapixels/sec, enough to process 1080p/60 in real-time
(124 megapixels/sec).

Energy (pJ/pix) Area (mm?)
Pipeline Compute DRAM Total LB
ISP 224 1360 0.36  0.19
EDGE DETECTION 202 1040 0.29  0.17
CORNER DETECTION 165 1000 025 0.12
DEBLUR 1280 1920 256  1.10

Figure 12: Darkroom compiles our applications into efficient ASIC,
using a chip area of 0.3-2.6 mm? and energy efficiency of 165 — 1280
pJ/pixel for compute, and < 3.2 nJ/pixel including the communica-
tion with DRAM. Processing 1080p/60 footage requires < 30 mW
for most pipelines (ignoring fixed DRAM cost), similar to commer-
cially available ISPs [Aptina]. At peak throughput, most pipelines
can process 16 megapixel images at 60 frames per second using
< 210 mW for synthesized logic.

940-1040 megapixel/sec. implementations simulated on a leading
foundry’s 45nm ASIC process, and 125-145 megapixel/sec imple-
mentations on a mid-range FPGA. This throughput is sufficient to
process 60 frame per second video at 16 megapixels on the ASICs,
or 1920 1080 on the FPGA. At this performance, most ASIC im-
plementations consume less than 0.36mm? of die area and 210 mW
of power for the synthesized hardware (Fig. 12), both of which are
similar to hand-designed commercial ISP pipelines [Aptina]. Each
FPGA implementation uses at most 59% of any critical resource on
the FPGA, suggesting that it is feasible to prototype large imaging
and vision pipelines on an FPGA platform (Fig. 13). DEBLUR uses
significantly more area and energy than the other designs because it
is a stress test which we unrolled to the maximum size our hardware
synthesis tools will support.

ASIC

Efficient ASIC implementations are limited by both the energy and
area cost of the synthesized circuit. Our ASIC implementations
(Fig. 12) were synthesized using Synopsys Design Compiler. We
see that the dominant area cost is memory and logic for line buffers.
The computational logic and all other overhead uses at most half
the total area. Most designs are able to process approximately 1
gigapixel/sec using approximately 200 mW of power for the en-
tire synthesized pipeline. At this rate, the energy usage of each
design is still dwarfed by the DRAM cost (60-86% of total energy

Resource Utilization

Pipeline MPix/s LUTs BRAMs DSPs
ISP 143 26% 7.5% 6.3%
EDGE DETECTION 131 7.2% 6.5% 3.9%
CORNER DETECTION 146 5.6% 4.8% 3.8%
DEBLUR 125 49% 59% 50%

Figure 13: Darkroom compiles our applications well within the
resource limits of a mid-range FPGA, while delivering enough per-
formance from all pipelines to process 1080p/60 video in real-time.
Resource utilization is reported as a percentage of the available
resources on a Xilinx Zyng 7045. In practice, this platform provides
enough resources to compile much larger pipelines, implementing
multiple vision and image processing algorithms simultaneously in
real-time.

M Linearized pipeline
(ASIC)

FPGA synthesis

ISP EDGE CORNER
DETECTION DETECTION

Buffering
(normalized to ILP-optimal)
0~

[=)

DEBLUR

Figure 14: Buffering efficiency of our synthesized hardware relative
to the optimal line-buffered pipeline computed by ILP . Overhead in
ASIC designs comes from our hardware backend’s requirement that
pipelines be linearized. FPGA designs introduce additional over-
head due to the coarse granularity of BRAM allocation, combined
with simplifying assumptions in our FPGA logic generator.

in each pipeline), meaning there is room to build much deeper, more
complex Darkroom pipelines without significantly changing the
overall energy budget (e.g., in many of these applications, 10x more
pipeline energy per pixel would only double the total energy budget).

FPGA

Efficient mapping to FPGAs is limited by effective utilization of a
fixed budget of heterogeneous resources. We ran our experiments on
a Xilinx Zynq 7045, a mid-range FPGA platform costing $1000. On
this platform, the critical resources were the look-up tables (LUTs)
used to implement combinational logic, the block RAMs (BRAMs)
used for on-chip local storage, and the “DSP” blocks which im-
plement 24-bit integer ALUs (DSPs). Our scheduling algorithm
optimizes the total amount of buffering throughout each pipeline,
minimizing BRAM usage. LUT and DSP utilization are largely
determined by the quantity and complexity of the mathematical
operations in each pipeline.

As seen in Fig. 11, Darkroom achieves throughput over 125 megapix-
els/sec. , which allows it to process 1080p/60 video in real time. Each
pipeline has been measured to produce 0.89-0.98 pixels/clock on
average, indicating that they run near 100% utilization (i.e., they
very rarely stall waiting for data). In each case, achieved throughput
is determined by clock rate, which is limited by the physical design.

Buffering efficiency

Darkroom is built around the philosophy that efficiently using on-
chip buffering is essential to minimizing expensive off-chip DRAM
traffic. In practice, two effects limit the actual buffering efficiency



Runtime (sec)

C++/GCC Darkroom  Speedup
ISP 22 0.33 6.7x

Halide autotuned = Darkroom  Speedup
DEBLUR (float)  0.37 0.35 1.1x

Figure 15: On ISP, we compared Darkroom’s performance to a ref-
erence C implementation of similar complexity which lacks vectoriza-
tion, multithreading, and line buffering optimizations. Darkroom’s
scheduling algorithm and optimizations yield a 7x speedup over the
C code. On DEBLUR, we compared Darkroom’s performance to that
delivered for the same algorithm written in and optimized by Halide.
Darkroom’s 1LP finds the optimal line-buffered schedule in under 1
second for all applications, while the Halide autotuner required 8
hours to find a comparably perfoming schedule.

of our synthesized hardware designs relative to the optimal line-
buffering schedule computed by ILP :

1. Our hardware generators currently require the acyclic graphs
to be flattened into linear pipelines to simplify synthesis, in-
troducing additional buffering where earlier values are passed
through intermediate stages.

2. Our FPGA hardware generator adds additional overhead due
to the coarse granularity of BRAM allocation, combined with
several simplifying assumptions in our logic generator.

Our ASIC backend synthesizes buffers with very little overhead, so
inefficiency in our ASIC designs comes almost exclusively from lin-
earization (1). FPGA designs can add significant additional overhead
(2). In practice, for the pipelines we studied in hardware, lineariza-
tion increases buffering by at most 2.9 x above optimal, while FPGA
overhead increases buffering up to 3.2x (Fig. 14). There are many
opportunities to improve BRAM allocation in our FPGA generator,
but it has not been limiting factor in existing FPGA designs.

6.2 Scheduling for general-purpose processors

We evaluate Darkroom’s performance on an x86 CPU (a 4 core 3.5
GHz Intel Core i7 3770) by comparing both to existing software
implementations and to the output of the Halide compiler (Fig. 15).

For 1SP, we compared Darkroom to our internal reference code
written as clean C. Our reference code has no multithreading, vec-
torization, or line buffering. Enabling these optimizations by reim-
plementing it in Darkroom yielded a 7 x speedup, with source code
of similar complexity. Of this speedup, 3.5 comes from multi-
threading, and 2x comes from vectorization.

We also compared Darkroom to Halide, an existing high-
performance image processing language and compiler [Ragan-
Kelley et al. 2012], on the DEBLUR application (Fig. 15). We
performed this comparison in floating point because it resulted in
better performance on our test machine. Halide’s programming and
scheduling models are more general than Darkroom, but as a result,
automatically optimizing programs requires an expensive brute-force
search process using autotuning [Ragan-Kelley et al. 2013]. By con-
straining the scheduling problem, Darkroom is able to automatically
optimize schedules for stencil pipelines using our direct ILP opti-
mization. As a result, we see similar performance from both Halide-
and Darkroom-compiled implementations of DEBLUR, but Dark-
room’s schedule optimization takes under 1 second and the total
compile time takes less than 2 minutes, while the Halide autotuner
required 8 hours to find a comparably performing schedule.

Throughput Buftering

(MPix/sec) (kB)
Pipeline lcore 4cores Optimal Achieved
ISP 7.5 24 427 436
EDGE DETECTION 12 34 224 228
CORNER DETECTION 78 148 108 110
DEBLUR 4 14 1596 1622
OPTICAL FLOW 7.8 22 1404 1431
DEPTH FROM STEREO  0.067  0.25 108 122

Figure 16: Darkroom programs compiled to a quad-core x86 CPU
deliver throughput sufficient to process 720p/24 video on most appli-
cations, or as high as 1080p/60 for CORNER DETECTION. DEPTH
FROM STEREO delivers a much lower pixel rate than other ap-
plications because it performs dramatically more arithmetic; its
performance is proportional to the difference in arithmetic per-pixel.
Allocated line buffer storage is near-optimal in all cases.

We additionally present the absolute throughput, and correspond-
ing buffering, of all six applications we tested (Fig. 16). ISP was
benchmarked on a 7 megapixel raw image, OPTICAL FLOW on a
1080p video, DEPTH FROM STEREO on a 480p stereo video, and
EDGE DETECTION, CORNER DETECTION, and DEBLUR were each
benchmarked on 16 megapixel images. Throughput is approximately
30 megapixels/sec on 4 cores for each of ISP, EDGE DETECTION,
DEBLUR, and OPTICAL FLOW, and as high as 148 megapixels/sec
for the relatively simple CORNER DETECTION pipeline. The CPU
consumes approximately 85 W of power under load. This corre-
sponds to approximately 500-5000 nJ/pixel (for applications other
than DEPTH FROM STEREO), 2-3 orders of magnitude more than the
ASIC hardware plus DRAM. This is in line with existing research
on specialized vs. general-purpose hardware [Hameed et al. 2010].

The brute-force DEPTH FROM STEREO algorithm delivers a much
lower pixel rate than the other applications, but the algorithm is
simply bound by the large amount of computation it performs per-
pixel. Its performance relative to the fastest pipeline (CORNER
DETECTION) is proportional to the difference in arithmetic per-pixel.

Our CPU compiler places fewer constraints on scheduling than our
hardware generators. In particular, it does not require linearizing
the scheduled pipeline graph. It does introduce modest overhead for
implementation efficiency (e.g., enlarging buffers for better vector
alignment), but achieved buffering is always within 13% of optimal,
and generally less than 2%.

7 Prior Work
7.1 Image Processing Languages

A number of existing image processing languages and systems have
been proposed. Languages have treated images as functions of
continuous (x,y) coordinates [Holzmann 1988; Elliott 2001], and
as a tree of image-wide operators [Shantzis 1994].

Halide is an image processing language that has a separate algorithm
language and scheduling language [Ragan-Kelley et al. 2012]. The
algorithm language describes what should be computed, and the
scheduling language describes in what order to execute the opera-
tions. Different schedules can have vastly different performance:
an autotuner is used to automatically find good schedules [Ragan-
Kelley et al. 2013]. Darkroom is less expressive than Halide. In
particular, stencil sizes must be known at compile time, but as a con-
sequence we have shown that a deterministic scheduling algorithm
can yield competitive performance to autotuned Halide schedules
on CPUs, and also map to efficient custom hardware.



Stencil computations are common in physical simulations, so opti-
mizing their performance has been extensively studied. Prior work
has examined a cache oblivious approach [Frigo and Strumpen
2005], code generators [Tang et al. 2011], blocking techniques
[Nguyen et al. 2010], and autotuning [Datta et al. 2008]. Most
of these systems optimize a single stencil operation. Darkroom
uses some of the optimizations discussed in prior work, but focuses
on scheduling a large graph involving multiple stencil operations
in hardware, which to our knowledge has not been be previously
studied.

OpenCV is a C library that provides a number of common image
processing algorithms [OpenCV]. Portions of OpenCV have been
implemented on FPGAs using high-level synthesis tools [Vivado].
Due to its nature as a library of independent function calls, OpenCV
isn’t able to optimize memory usage between operations, which we
believe is the most important optimization in image processing.

7.2 Synchronous Dataflow

In Synchronous Dataflow (SDF), the user specifies their algorithm
as an acyclic data flow graph. Each node, or kernel, in the graph
consumes M values from its inputs, and produces N values as out-
put. SDF kernels are able to look at D past values. SDF graphs
are normally implemented as pipelines with delays. All rates and
delays are known at compile time, so SDF graphs can be statically
scheduled. However, not all SDF programs can be scheduled within
bounded memory, and when schedulable, the problem of minimizing
buffering is NP-Complete [Lee and Messerschmitt 1987; Murthy
et al. 1997]. Subsequent work reduced restrictions on the program-
ming model, resulting in either more complex static scheduling, or
dynamic scheduling [Bilsen et al. 1995; Sugerman et al. 2009].

Unlike SDF, Darkroom requires kernels to have a fixed input and
output rate throughout the pipeline, which significantly simplifies
scheduling. In addition, Darkroom is aware of the 2D nature of
images, which makes it easier to apply optimizations like tiling.

7.3 Systolic Arrays and DSPs

Camera ISPs are similar to systolic arrays, a well-studied style
of energy efficient and compute-dense architectures [Kung 1979].
Systolic arrays are grids of simple processors where each processor
can communicate with its neighbors in the grid. DSPs are general-
purpose processors augmented with DMAs, VLIW, vector units
and special-purpose datapaths to help them perform well on certain
multimedia applications [Qualcomm]. DSPs are sometimes used to
implement video or image processing applications. In this paper, we
have chosen to target a general-purpose x86 processor, due to their
prevalence and well-tested toolchain. We believe the same locality
and data-parallel optimization we make on x86 apply directly to
good performance on DSPs.

8 Discussion and Future Work

We presented Darkroom, a compiler which takes a high-level def-
inition of image processing code and maps it efficiently to ASICs,
FPGAs and modern CPUs. Minimizing working set is crucial on
CPU, FPGA, and ASIC, because each has a hard limit on the amount
of local fast storage available: CPUs have a limited cache, FPGAs
have a limited number of BRAMs, and ASICs are often limited by
area. We showed that, thanks to Darkroom’s carefully restricted
programming model, an ILP scheduling algorithm is able to quickly
schedule image processing programs into line-buffered pipelines
with minimal intermediate storage. Darkroom synthesizes these
optimized pipelines into efficient ASIC designs and FPGA imple-

mentations capable of real-time processing of high resolution images
at video rates, and CPU code competitive with state of the art image
processing compilers. Our initial ASIC and FPGA results are espe-
cially exciting, because they fit within a modest hardware budget on
a45nm process, or a small fraction of a mid-range FPGA, suggesting
that there is opportunity to prototype much larger real-time image
processing pipelines, given the right tools.

‘We have shown that Darkroom’s programming model has enough
generality to be useful, but we also believe that some of its re-
strictions could be reduced without eliminating its fast, predictable
scheduling. We are interested in extending Darkroom to support
image pyramids and serial operations, both of which would allow
it to support operations that can propagate information further than
the stencil size. This would enable applications like optical flow
with larger search windows, or region labeling. In addition, there
is significant interest in further investigating how to best map our
programming model to existing architectures like CPUs, GPUs and
DSPs, with an eye towards understanding how these architectures
could be modified to support these image processing workloads with
better energy efficiency.

We are excited about new areas of research Darkroom enables for
the graphics and imaging community. First, extending prior work on
the Frankencamera, mobile camera platforms that include FPGAs
programmed by Darkroom would allow researchers to quickly ex-
periment with new applications in real cameras, with real-time per-
formance [Adams et al. 2010]. Second, we believe our approach
has the potential to accelerate the development of commercial ISP
ASICs, eventually enabling new image processing and computer
vision applications on future cameras.
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