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Abstract

In this paper, we propose a Deep Active Ray Network

(DARNet) for automatic building segmentation. Taking an

image as input, it first exploits a deep convolutional neu-

ral network (CNN) as the backbone to predict energy maps,

which are further utilized to construct an energy function.

A polygon-based contour is then evolved via minimizing the

energy function, of which the minimum defines the final seg-

mentation. Instead of parameterizing the contour using Eu-

clidean coordinates, we adopt polar coordinates, i.e., rays,

which not only prevents self-intersection but also simplifies

the design of the energy function. Moreover, we propose a

loss function that directly encourages the contours to match

building boundaries. Our DARNet is trained end-to-end by

back-propagating through the energy minimization and the

backbone CNN, which makes the CNN adapt to the dynam-

ics of the contour evolution. Experiments on three build-

ing instance segmentation datasets demonstrate our DAR-

Net achieves either state-of-the-art or comparable perfor-

mances to other competitors.

1. Introduction

The ability to automatically extract building footprints

from aerial imagery is an important task in remote sensing.

It has many applications such as cartography, urban plan-

ning, and humanitarian aid. While maps in well-established

urban areas provide precise definitions of building outlines,

in more general situations, this information may be neither

up-to-date nor available altogether. Such is the case in re-

mote population centers and in dynamic scenarios caused

by rapid urban development or natural disasters. These sit-

uations motivate the use of automatic building segmentation

to form an understanding of an area.

Convolutional neural networks (CNNs) have rapidly es-

tablished themselves as the de facto standard for tasks of

semantic and instance segmentation, as demonstrated by

their impressive performance across a variety of datasets

[25, 7, 13]. When applied to the task of building segmenta-

tion, however, there exists room for improvement. Specifi-

Figure 1: We introduce our DARNet framework, which ap-

proaches the problem of instance segmentation by defining

a contour using active rays that evolve according to energies

parameterized by a CNN. Given an input image, a CNN out-

puts three maps that define energies. An initialized contour

then moves to minimize the energy, yielding an instance

segmentation.

cally, as demonstrated in [22], while CNNs are able to gen-

erate dense, pixel-based predictions with high recall, they

have issues with precise delineation of building boundaries.

Arguably, these boundaries are the most useful features

in defining the shape and location of a building. Motivated

by this, Marcos et al. proposed the deep structured active

contours (DSAC) [15] model, which combines the power

of deep CNNs with the classic polygon-based active con-

tour model of Kass et al. [11]. This fits in particularly well

with our prior understanding of buildings, which are gen-

erally laid out as relatively simple polygons. DSAC uses

a deep CNN to predict an energy landscape on which the

active contour, also known as a snake, crawls. When the

energy reaches the minimum, the snake stops and the en-

closed region is the final predicted segmentation.

Although DSAC’s contours exhibit improved coverage

compared to CNN based segmentation, they can still be

blob-like without strict adherence to building boundaries.

Additionally, the representation of contour points with two

degrees of freedom presents some challenges. Most no-

tably, it results in extra computational overhead to mini-

mize the proposed energy, and also allows for some con-

tours to exhibit self-intersections. To address these limita-
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tions, we introduce the Deep Active Ray Network (DAR-

Net), a framework based on a polar representation of active

contours, traditionally known as active rays. This ray-based

parameterization provides several advantages: 1) contour

self-intersections are completely eliminated; 2) it allows us

to propose a simpler energy function; 3) the parameteriza-

tion lends itself to a new loss function that encourages con-

tours to match building boundaries. Our DARNet also ex-

ploits a deep CNN as the backbone network for predicting

the energy landscape. We train the whole model end-to-end

by back-propagating through the energy minimization and

the backbone CNN. We compare DARNet against DSAC on

three datasets, Vaihingen, Bing Huts, and TorontoCity, and

demonstrate its improved effectiveness in producing seg-

mentations that better align with building boundaries.

2. Related Work

Active Contour Models: First introduced in [11] by the

name of snakes, active contour models proved to be an ex-

tremely popular approach to image segmentation. In these

models, an energy is defined as a functional, and its min-

imization yields a contour that describes a segmentation.

The description of this energy is based on intuitive geomet-

ric priors and leverages features such as the intensity image

and its gradient. Of the myriad works that followed, [5]

proposed a balloon force to avoid the tendency for snakes

to collapse when initialized far from object edges. [6] re-

formulated snakes in a polar representation known as ac-

tive rays to reduce the energy optimization from two dimen-

sions to one, and addressed the issue of contour collapse by

introducing energies that encouraged circular shapes. Our

approach leverages the parameterization of active rays, but

we elect to use the curvature term proposed in snakes, as

our application of interest does not typically contain circu-

lar boundaries. Furthermore, we propose a novel balloon

energy that does not involve computing normals at every

point in our contour, but rather exploits the properties of a

polar parameterization to achieve desired effect in a manner

that can be efficiently computed, and fits in seamlessly with

our contour inference.

Deep Active Contour Models: [18] proposed to com-

bine deep learning with the active contours framework of

[20] by having a CNN predict a vector field for a patch

around a given contour point to guide it to the closest

boundary. However, this method is unable to be learned

end-to-end, as CNN learning is separated from the active

contour inference. [9, 23] propose to combine a CNN with

a level set method [16] in an end-to-end differentiable man-

ner. In contrast to level sets, which define contours im-

plicitly, snakes provide an explicit representation of con-

tour points allowing for the definition of energies based on

geometric intuition. [15] uses the snakes framework and re-

places the engineered features with ones learned by a CNN.

The problem is posed under the formulation of structured

output prediction, and the CNN is trained using a structured

support vector machine (SSVM) hinge loss [21] to optimize

for intersection-over-union. In contrast, we propose to use

an active rays parameterization alongside a largely simpli-

fied energy functional. We also propose a loss function that

encourages sharper, better aligned contours. Additionally,

we back-propagate our loss through the contour evolution,

i.e., the energy minimization. It is interesting to note that

there are other deep learning based approaches for predict-

ing polygon-based contours. For example, rather than rep-

resenting a polygon as a discretization of some continuous

function, [4, 2] use a recurrent neural network (RNN) to di-

rectly predict the polygon vertices in a sequential manner.

In [12], the authors predict the polygon or spline outlining

the object using a Graph Convolutional Network.

Building Segmentation: Current state-of-the-art ap-

proaches to building segmentation typically incorporate

CNNs in a two stage pipeline: identify instances, and ex-

tract polygons. As shown in [22], instances can be extracted

from connected components of the semantic mask predicted

by a semantic segmentation network [14, 8], or directly pre-

dicted with an instance segmentation network [3]. A poly-

gon is then extracted from the instance mask. Because the

output space of these approaches are individual pixels, the

networks do not reason about the geometry of its predic-

tions, resulting in segmentations that are blob-like around

building boundaries. In contrast, the concept of a polygo-

nal output is directly embedded in our model, where we can

encourage our outputs to match ground truth shapes.

3. Our Approach

In this section, we introduce our DARNet model. Given

an input image, our CNN predicts feature maps that define

an energy landscape. We place a polygon-based contour,

parameterized using polar coordinates, at an initial position

on this landscape. This contour then evolves to minimize its

energy via gradient descent, and its resting position defines

the predicted instance segmentation. We refer the reader

to Figure 1 for an illustration of our model. In the subse-

quent sections, we first describe our parametrization of the

contour, highlighting its advantages, such as avoiding self-

intersections. We then introduce our energy formulation, in

particular our novel balloon energy, and the contour evolu-

tion process. Last, we explain how to learn our model in an

end-to-end manner.

3.1. Contour Representation

Recall that in the active contour (or snake) model a con-

tour point v is represented as

v(s) =

[

xv(s)
yv(s)

]

(1)
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(a) (b)

Figure 2: Contours defined by (a) active rays and (b) snake.

where s denotes the arc length and is generally defined over

an interval s ∈ [0, 1]. Note that by varying the arc length s
from 0 to 1, we obtain the contour. Since this parameteriza-

tion adopts separate functions for x and y coordinates, the

contour point is free to move in any direction, which may

cause self-intersection as shown in Figure 3. In contrast, in

this paper, we propose to use a parametrization that implic-

itly avoids self-intersection.

Active Rays: Inspired by [6], we parameterize the con-

tour via rays. In particular, we define a contour point c as

c(θ) =

[

xc + ρ(θ) cos θ
yc + ρ(θ) sin θ

]

(2)

where (xc, yc) define the reference point of the contour,

ρ ≥ 0 is the radius and θ is the angle tracing out from the

x-axis and ranging [0, 2π). We assume (xc, yc) to be fixed

within the interior of the object of interest. To ease the com-

putation, we discretize the contour as a sequence of L points

{ci}
L
i=1. The discretization is chosen such that points have

equal angular spacing,

ci =

[

xc + ρi cos(i∆θ)
yc + ρi sin(i∆θ)

]

(3)

where ∆θ = 2π
L

and ρi = ρ(i∆θ). The above ray based

parameterization is called active rays. Importantly, if the

region enclosed by the contour forms a convex set, we can

guarantee that for any interior reference point, given any

angle θ, there is only one corresponding radius ρ based on

the following proposition.

Proposition 1. Given a closed convex set X , a ray starting

from any interior point of X will intersect with the boundary

of X once.

We leave the proof to the supplementary material. If the

region is non-convex, a ray may possibly have more than

one intersecting point with the boundary. In that case, we

pick the one with the minimum distance from the refer-

ence point, thus eliminating the possibility that there are

(a) (b)

Figure 3: Multiple boundary intersections can occur for

(a) non-convex region, (b) self-intersection.

multiple ρ corresponding to the same angle θ. Therefore,

compared to snakes, an active rays parameterization avoids

self-intersections as shown in Figure 3. Moreover, since we

fix the angle at which rays can emanate, the contour points

possess an inherent order. Such ordering does not exist for

snakes; for example, any cyclic permutation of the snake

points produces an identical contour. As we see in Sec-

tion 3.4, this allows us to naturally use a loss function that

encourages our contours to match building boundaries.

Multiple Sets of Active Rays: Note that active rays

largely preclude contours that enclose non-convex regions.

While this is not the dominating case in our application do-

main, we would like to create a solution that can handle

non-convex shapes. Towards this goal, we propose to use

multiple sets of active rays, where each set has its own fixed

reference point. First, we exploit an instance segmentation

to generate a segment over the region of interest (RoI). We

use the method in [3] as it tends to under segment the RoIs,

thus largely guaranteeing our reference point to lie in the

interior. Using this segment, we calculate a distance trans-

form on the mask, and select the location of the largest value

as the reference point of our initial contour. If this evolved

contour cannot cover the whole segment, we then repeat the

process using the distance transform of the uncovered re-

gions, until we cover the whole segment. This is illustrated

in Figure 4. The union of evolved contours is used to con-

struct the final prediction.

3.2. Contour Energy

We now introduce the formulation of the contour en-

ergy functional, of which the minimization yields the final

contour. In particular, we encourage the contour to follow

boundaries, prefer low-curvature solutions, and expand out-

wards from a small initialization. With the aforementioned

discretization, the overall energy is defined as follows,

E(c) =

L
∑

i=1

[Edata(ci) + Ecurve(ci) + Eballoon(ci)] . (4)
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(a) (b)

(c) (d)

Figure 4: Multiple initialization scheme. (a) Instance seg-

mentation from [3] (gray), and ground truth (green); (b)

First initialization and segmentation (red); (c) Initialization

from remaining segment (blue); (d) Final output.

Unlike traditional active contour models, we parameterize

the energy with the help of a backbone CNN. The hope

is that the great power of representation learning of CNN

can make the contour evolution more accurate and efficient.

We use a CNN architecture based on Dilated Residual Net-

works [24]. Specifically, we use DRN-D-22, with weights

pretrained on ImageNet [19], and append additional learned

upsampling layers using transposed convolutions. At the

last layer, we predict three outputs that match the input im-

age size, corresponding to three maps, which we denote as

(D,β, κ). We now describe each energy term in detail.

Data Term: Given an input image, the data term is de-

fined as

Edata(ci) = D(ci), (5)

where D is a non-negative feature map output by the back-

bone CNN. Note that D and all subsequently described fea-

ture maps are of the same shape as the input image. Since

we are minimizing the energy, the contour should seek out

places where D is low. Therefore, the CNN should ideally

predict low values at the boundaries.

Curvature Term: Intuitively, this term models the resis-

tance of the contour towards bending as follows

Ecurve(ci) = β(ci)|ci+1 − 2ci + ci−1|
2, (6)

where β is a non-negative feature map output by the back-

bone CNN and the squared term is a discrete approximation

of the second order derivative of the contour. This term

is flexible since the weighting scheme induced by β can

make the energy locally adaptive. This energy term will

force the contour to straighten out wherever the value is

high. Our curvature term is simpler compared to the one

in DSAC [15], where in order to prevent snake points from

clustering too close together in low-energy areas, they em-

ploy an additional membrane term based on the first order

derivative of the contour. In contrast, we do not need such

a term as our evenly spaced angles guarantee that contour

points will not group too closely.

Balloon Term: Our balloon term is defined by

Eballoon(ci) = κ(ci)(1− ρi/ρmax) (7)

where κ is a non-negative feature map output by the back-

bone CNN and ρmax is the maximum radius a contour can

reach without crossing the image boundary. The balloon

term is designed to propel a given contour point outwards

from its reference point, conditioned on the value of the un-

derlying κ map. It is necessary due to two reasons. First, the

data term may be insufficient to guide the contour towards

the boundaries, especially if the contour was initialized far

away from them. Second, as noted in [6], the curvature term

has an auxiliary effect of shrinking the contour, which can

lead to its collapse.

It is interesting to note that DSAC [15] also employs a

balloon term which can be expressed using our notation as

below,

EDSAC
balloon(v) = −

∑

(x,y)∈Ω(v)

κ (8)

where Ω(v) denotes the area enclosed by the contour v.

This term pushes the contour to encapsulate as much of the

κ map as possible. In our case, due to the active ray param-

eterization, a contour point can only move along one axis,

either towards the reference point or away. Therefore, our

balloon term is much simpler as it avoids the need to per-

form an area integral. Also, as we will see in the following

section, our balloon term fits in seamlessly with our infer-

ence procedure.

3.3. Contour Evolution

Conditioned on the energy terms predicted by the back-

bone CNN, the second inference step is achieved through

energy minimization. To evolve the initial contour towards

the optimal one, we first derive the partial derivatives and

set them to zero. We then resort to an iterative algorithm to

solve the system of partial derivatives.

Specifically, the partial derivatives of the energy terms

w.r.t. the contour are derived as below. For the data term,

∂Edata(c)

∂ρi
=

∂D(ci)

∂x
cos(i∆θ) +

∂D(ci)

∂y
sin(i∆θ) (9)

where we change the coordinates back to Cartesian to facil-

itate the computation of derivatives, e.g. with a Sobel filter.
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For the curvature term, substituting the Cartesian expres-

sion of contour points (Equation 3) into the expressions for

the energy (Equation 6 and Equation 4), we have,

∂Ecurve(c)

∂ρi
=

∂

∂ρi

L−1
∑

i=0

β(ci)[ρ
2
i+1 + 4ρ2i + ρ2i−1−

4ρi(ρi+1 + ρi−1) cos(∆θ)+

2ρi+1ρi−1 cos(2∆θ)]

≈ [2β(ci+1) cos(2∆θ)]ρi+2+

[−4(β(ci+1) + β(ci−1) cos(∆θ)]ρi+1+

2(β(ci+1) + 4β(ci) + β(ci−1))]ρi+

[−4(β(ci) + β(ci−1)) cos(∆θ)]ρi−1+

[2β(ci−1) cos(2∆θ)]ρi−2

(10)

where we discard the term arising from the product rule of

differentiation as in [15]. We interpret this approximation as

treating the β map as not varying within the small vicinity

of the contour points. Alternatively, we do not wish for the

gradient of the β map to exert pressure on the contour. Em-

pirically, we found that doing so stabilizes learning, as the

network only needs to adjust values of the β map without

attention to its gradients.

For the balloon term, we use the same approach as the

curvature term to obtain the partial derivative,

∂Eballoon(c)

∂ρi
≈ −

κ(ci)

ρmax

(11)

With the above derivation, we have a collection of L partial

differential equations w.r.t. individual contour points. We

can summarize this system of equations in a compact matrix

form,
∂E

∂ρ
= Aρ+ f (12)

where ρ is a column vector of size L, A is an L × L cyclic

pentadiagonal matrix comprised of Ecurve derivatives, and f

is a column vector comprised of Edata and Eballoon deriva-

tives.

This system of partial differential equations can be

solved with an iterative method. The approach taken by [11]

and [15] is an implicit-explicit method. For the purposes of

our implementation, we adopt an explicit method instead,

as it avoids the matrix inverse operation. Specifically, the

contour evolves according to

ρ(t+1) = ρ(t) −∆t (Aρ(t) + f) (13)

where ∆t is a time step hyperparameter. In practice, we

found setting ∆t as 2e−4 is stable enough for solving the

system.

Figure 5: Ground truth rays (green) are defined as the clos-

est distance to the ground truth polygon.

Algorithm 1: DARNet training algorithm.

Given: Input image I , CNN F with parameters ω,

ground truth rays ρGT , initial rays ρ(0), time

step hyperparameter ∆t, number of training

steps N
for j = 1 to N do

(D,β, κ) = F (Ij ; θ)
while not converged do

A, f = collection of ∂E

∂ρ
(t)
j

using (D,β, κ)

ρ
(t+1)
j = ρ

(t)
j −∆t(Aρ

(t)
j + f)

end

L = ℓ(ρ
(T )
j , ρGT

j )

Compute ∂L
∂ω

using backpropagation

Update ω with gradient-based optimization

end

3.4. Learning

Since there exists an explicit ordering of the contour

points, we can naturally generate a ground truth active ray

and use it to supervise the prediction. Using the same ref-

erence point (xc, yc) and angle discretization ∆θ, we cast

rays outwards and record the distances at which they inter-

sect the ground truth polygon. In the case of multiple inter-

sections, we take the smallest distance, to prioritize hitting

the correct boundaries over increasing coverage. This is il-

lustrated in Figure 5. We use this collection of ground truth

distances, {ρGT
i }Li=1, to compute an L1 loss:

ℓ(ρ, ρGT ) =

L
∑

i=1

|ρGT
i − ρi|. (14)

It differs from the loss employed by DSAC, which used

a SSVM hinge loss to optimize for intersection-over-union.

Instead, our loss encourages contour points to target build-

ing boundaries which is simpler and more efficient.

To allow for gradients to backpropagate to the D, β, and

κ maps, we interpret the value of a given contour point as

a floating point number, and compute the value of a map

at that point (e.g. D(ci)) using bilinear interpolation from

its four adjacent map entries, in a manner similar to what is

used in Spatial Transformer Networks [10]. We summarize

the learning process in Algorithm 1.
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4. Experiments

4.1. Experimental Setup

Datasets: We evaluate DARNet on several building

instance segmentation datasets: Vaihingen [1], Bing

Huts [15], and TorontoCity [22]. The Vaihingen dataset

consists primarily of detached buildings in a town in south-

ern Germany. The original images are 512× 512 at a reso-

lution of 9 cm/pixel. There are 168 buildings in total, which

are divided into 100/68 examples for train/test according to

the same split used in [15]. The Bing Huts dataset consists

of huts located in a rural area of Tanzania, with an origi-

nal size of 80 × 80 at a resolution of 30 cm/pixel. There

are 605 images in total, divided into 335/270 examples

for train/test, again using the same splits. For these two

datasets, we further partition the existing training data in

an 80%/20% split to form a validation set, and use this for

model selection. We do this for 5 disjoint validation sets,

while the test set remains the same. The TorontoCity dataset

contains aerial images captured over a dense urban area in

Toronto. The images used have a resolution of 10 cm/pixel.

The dataset consists of approximately 28, 000/12, 000 im-

ages for train/test which covers a diverse mixture of build-

ings, including residential, commercial, and industrial. We

divide the training set of TorontoCity into a 80%/20% split

for training and validation respectively.

Metrics: We measure performance using intersection-

over-union (IoU) averaged over number of instances,

weighted coverage, and polygon similarity as in [22]. Addi-

tionally, we evaluate the boundary F-score (BoundF) intro-

duced in [17], averaged over thresholds from 1 to 5 pix-

els, inclusive. For Vaihingen and Bing Huts, we aggre-

gate these metrics over all models selected with the various

validation sets, measuring their mean and standard devia-

tion. Lastly, for TorontoCity, we also evaluate the quality

of alignment for the predicted boundaries. Specifically, we

gather predicted contour pixels that match with the ground

truth boundaries, within a threshold of 5 pixels. For these

matches, we evaluate the alignment error with respect to

the ground truth, which is determined as the cosine simi-

larity between the ground truth boundary and the predicted

boundary. We then rank these pixels by their alignment er-

ror, and plot the recall at various thresholds of this error.

Hyper-parameters: We discretize our contour with

L = 60 points. For training, we use SGD with momentum,

with learning rate 4 × 10−5, momentum 0.3, and a batch

size of 10. The learning rate decay schedule is explained

in supplementary material. We perform 200-step inference

as it is found to be sufficient for convergence in practice.

We initialize the contour randomly within the ground truth

boundary during training. For testing, we initialize in im-

Figure 6: Recall-alignment curve. The recall for all match-

ing boundary pixels (within a 5 pixel threshold of ground

truth) is plotted at a given alignment error. Our method ex-

hibits increased recall overall.

age centers for Vaihingen and Bing Huts due to the fact that

most buildings of these two datasets are of regular shape.

As for TorontoCity, we leverage the deep watershed trans-

form (DWT) [3] to get instance proposals and initialize as

described in Section 3.1. Standard data augmentation tech-

niques (random rotation, flipping, scaling, color jitter) are

used. We do not adopt common stabilization tricks during

inference as they are non-differentiable. Instead, we found

using the Euclidean distance transform to pre-train our D,

β and κ maps helps stabilize the inference during training.

We leave more details of pre-training in the supplementary

material.

4.2. Results

Vaihingen and Bing Huts: We compare against the

baseline methods and DSAC [15]. In particular, the base-

line exploits a fully convolutional network (FCN) [14] as

the backbone to perform semantic segmentation of build-

ings (interior, boundary, and exterior) and then the post-

processing following [15] to obtain the predicted contour.

For fair comparison, we also replace the backbone of DSAC

and the baseline with ours. We summarize results in Ta-

ble 1. Compared to the strong FCN baselines, our method

exhibits improved performance across the majority of met-

rics. In particular, the significant improvement on PolySim

suggest our segmentations are more geometrically similar.

Furthermore, our method significantly outperforms DSAC

on all metrics. Even in instances where DSAC exhibits good

coverage-based metrics, our method is significantly better

at capturing edges. It is interesting to note that substitut-

ing our backbone in DSAC does not increase performance,

while DSAC’s results generally exhibits higher variance, re-

gardless of backbone.

TorontoCity: We compare against the semantic seg-

mentation based methods that utilize FCN-8s [14] or
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Method Vaihingen Bing Huts

Approach Backbone
mIoU WCov PolySim BoundF mIoU WCov PolySim BoundF

µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

FCN DSAC’s [15] 81.09 0.32 81.48 0.52 68.78 0.66 64.60 0.77 69.88 0.65 73.36 0.40 64.01 0.36 30.39 0.95

FCN Ours 87.27 0.50 86.89 0.40 76.41 0.77 76.84 0.48 74.54 1.22 77.55 0.96 67.98 2.20 37.77 2.69

DSAC [15] DSAC’s [15] 71.10 3.88 70.76 4.07 61.71 3.97 36.44 5.16 38.74 1.07 44.61 3.00 38.91 2.66 37.16 0.85

DSAC [15] Ours 60.37 5.97 61.12 6.22 52.96 5.89 24.34 5.73 57.23 3.89 63.09 2.25 55.43 2.20 15.98 2.62

Ours Ours 88.24 0.38 88.16 0.35 81.33 0.37 75.91 0.89 75.29 0.45 77.07 0.63 72.12 0.57 38.08 0.76

Table 1: Test set results (mean and standard deviation) on Vaihingen and Bing Huts from models selected across 5 disjoint

validation sets. mIoU is averaged over instances. WCov is weighted coverage. PolySim is polygon similarity. BoundF is

average boundary-F score at 1 pixel to 5 pixel thresholds.

Method mIoU WCov PolySim BoundF

FCN-8s [14] - 45.6 32.3 -

ResNet50 [8] - 40.1 29.2 -

DWT [3] - 52.0 24.0 -

DSAC [15] 60.0 58.0 27.2 25.4

Ours, single init 57.9 52.2 23.9 29.0

Ours, multi init 60.1 57.5 26.8 29.6

Table 2: Results on TorontoCity.

ResNet50 [8], along with the instance segmentation method

that relies on DWT. Additionally, because the commercial

and industrial buildings contained in TorontoCity tend to

possess complex boundaries, we examine the effects of us-

ing one versus multiple initializations described in Sec-

tion 3.1. We summarize results in Table 2. Our method

shows improved performance compared to DSAC on the

mIOU. For weighted coverage, which accounts for the area

of the building, we achieve comparable performance to

DSAC. Our performance on this metric is influenced pri-

marily by larger buildings, as moving from a single initial-

ization to multiple initializations significantly improves the

performance. We find that large areas presented by com-

mercial and industrial lots present many ambiguous features

such as mechanical penthouses and visible facades due to

parallax error. Our single initialization method tends to pro-

duce smaller segmentations as it focuses on the boundaries

offered by these features. This is alleviated by using mul-

tiple initializations. The weighting from larger buildings is

also reflected in polygon similarity. The average BoundF

metric demonstrates our method is significantly better at

capturing building boundaries than DSAC. It is important

to note that even our segmentations generated with a sin-

gle initialization showed improved performance. To delve

deeper into the quality of these segmentations, we exam-

ine their alignment with respect to the ground truth in Fig-

ure 6. We see that, for a given threshold for alignment error,

our method exhibits superior recall. Overall, our multiple

initialization scheme performs the best, although for lower

error thresholds our single initialization is also very com-

petitive.

Number of Initializations: In TorontoCity, we found

(a) (b) (c) (d)

Figure 7: Energies predicted by our CNN on an example

from the Vaihingen test set. (a) Input image, initial con-

tour (yellow), and final contour (cyan). (b) Data term. (c)

Curvature term. (d) Balloon term.

that 25.7% of examples required multiple initializations.

For these examples, on average 3.71 initializations were re-

quired.

Qualitative Discussion: We visualize some energies

predicted by our CNN in Figure 7. We see the CNN opts to

predict a D term that has deep valleys at the building con-

tours. The β term adopts small values along the edges to

encourage straightness at the boundaries, while the κ term

acts to propel the contour points from inside. We show

additional segmentations in Figure 8. The segmentations

produced by our method are generally more adherent to

the edges of the buildings. This is especially helpful when

buildings are densely packed together, as seen in the Toron-

toCity results (columns e-f). Additionally, in comparison

to DSAC, our parameterization successfully prevents self-

intersecting contours (column b, second last row).

Failure Modes: The last two rows in Figure 8 demon-

strate some weaknesses of our model. In cases where the

model is unsure about the extent of one building, it will ex-

pand the contour until it meets the edge of another building

(column (b), last row). Also, on large commercial lots (col-

umn f, last two rows), our method becomes confused by the

shapes and features of the buildings.

5. Conclusion

In this paper, we presented an approach to building in-

stance segmentation using a combination of active rays with

energies predicted by a CNN. The use of a polar represen-

tation of contours enables us to predict contours that cannot

self-intersect, and to employ a loss function that encourages
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(a) (b) (c) (d) (e) (f)

Figure 8: Results on (a-b) Vaihingen, (c-d) Bing Huts, (e-f) TorontoCity. Bottom two rows highlight failure cases. Original

image shown in left. On right, our output is shown in cyan; DSAC output in yellow; ground truth is shaded.

our predicted contours to match building boundaries. Fur-

thermore, we demonstrate a method to combine several pre-

dictions to generate more complex contours. Comparisons

against other state-of-the-art methods on various buliding

segmentation datasets demonstrate our method’s power in

generating segmentations that better capture, and are better

aligned with, building boundaries.
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