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Abstract This paper deals with the path planning prob-

lem of a team of mobile robots, in order to cover an

area of interest, with prior-defined obstacles. For the

single robot case, also known as single robot coverage

path planning (CPP), an O(n) optimal methodology

has already been proposed and evaluated in the liter-

ature, where n is the grid size. The majority of exist-
ing algorithms for the multi robot case (mCPP), utilize

the aforementioned algorithm. Due to the complexity,

however, of the mCPP, the best the existing mCPP

algorithms can perform is at most 16 times the op-

timal solution, in terms of time needed for the robot

team to accomplish the coverage task, while the time re-

quired for calculating the solution is polynomial. In the

present paper, we propose a new algorithm which con-

verges to the optimal solution, at least in cases where
one exists. The proposed technique transforms the orig-
inal integer programming problem (mCPP) into several
single-robot problems (CPP), the solutions of which

constitute the optimal mCPP solution, alleviating the

original mCPP explosive combinatorial complexity. Al-

though it is not possible to analytically derive bounds

regarding the complexity of the proposed algorithm,
extensive numerical analysis indicates that the com-
plexity is bounded by polynomial curves for practical

sized inputs. In the heart of the proposed approach lies

the DARP algorithm, which divides the terrain into

a number of equal areas each corresponding to a spe-

cific robot, so as to guarantee complete coverage, non-

backtracking solution, minimum coverage path, while
at the same time does not need any preparatory stage
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1 Introduction

Since the 1970s, autonomous robots have been in daily
use at very low and very high altitudes, for deep-sea

and space exploration and in almost all aircrafts [20].
Today, in the era of multi robots, many of the robotic
challenges, with a definite solution for the case of sin-
gle robot, have to be revised so as to optimally in-

corporate the multi-robot dynamics. One of the fun-

damental problems in robotics is to determine an op-

timal path involving all points of a given area of in-

terest, while avoiding sub-areas with specific charac-
teristics (e.g., obstacles, no-fly zones, etc.). In the lit-
erature, this problem is often refereed to as coverage
path planning problem (CPP), but can also be found

as sweeping, exhaustive geographical search, area pa-

trolling etc. This task is directly related with a plethora

of robotic applications, such as vacuum cleaning robots

[1],[26], autonomous underwater vehicles [23],[22], un-

manned aerial vehicles [31], demining robots [4], auto-

mated harvesters [28], planetary exploration [6], search

and rescue operations[34].

The usual abstraction of the problem, consists of a
robot with an associated tool (e.g. sensor, actuator),

which is able to spatially cover at least the size of the

robot itself. Therefore, one of the most common area

representation techniques is to separate the field into

identical cells (e.g. in the size of robot), such that the

coverage of each cell can be easily achieved. Apparently,

for any arbitrary shaped area, the union of the cells only

https://youtu.be/LrGfvma41Ak
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approximates the target region, thus this technique,

which is also adopted in our approach (see section 3), is

termed as approximate cellular decomposition. A com-

prehensive analysis of the different area decomposition

techniques along with the major representatives from

each class can be found in [11].

During the previous decade, researchers focus their

effort to the aforementioned single robot coverage plan-

ning problem (inside an already known terrain), pro-

ducing a lot of different approaches (e.g. [10],[38],[36]).
One of the dominant approaches is the spanning tree
coverage (STC) algorithm [18], which is able to guar-

antee an optimal covering path in linear time, con-

structing a minimum spanning tree for all the free cells.

The term optimal encapsulates that, the generated path
does not revisit the same cell (non-backtracking prop-

erty), completely covers the area of interest and it achieves
all the above without any preparatory effort (the robot

can be initiated at any non-occupied cell). This major

accomplishment comes with the assumption that the

operation area does not get “more narrow” than the

double of the robot’s size. Our approach utilizes the

STC algorithm, thus it inherits this requirement, which

is more formally described in the section 4 of the paper.

The recent advances in robotics technology, both

in the hardware and in the associated software, expand
the variety of robots that can be deployed for a coverage
task. As a consequence, the usage of multi-robots teams

in the coverage path planning problem (forming the

multi-CPP or mCPP problem), has recently received a

lot of attention. Unfortunately, the mCPP problem was

proven to be extremely more difficult to be adequately

addressed. As a matter of a fact, solving mCPP with

the minimal covering time has been proven to be NP-

hard [39]. Previous investigations attempt to overcome

the NP nature of the problem by proposing algorithms

that solve a relaxed version of the original mCPP prob-

lem, mostly focusing only on one of the main coverage

objectives (see section 2 for more details). Moreover,

in the mCPP problem, besides the optimality features

that characterize a solution and derived directly from

the single-CPP, the challenge to design the paths in
a way to fully exploit the available multi-robot dynam-

ics arises. In essence, this condition is one of the holy

grails in any multi-robot system, since the unlock of

such a feature would allow the fully cooperation of the

robots with the ultimate utilization of their capabili-

ties. In many of the proposed approaches, the fully ex-

ploitation of multi-robots dynamics is sacrificed for the

sake of the main coverage objective (completeness, non-

backtracking). Additionally, in multi-robot approaches,

an often omitting issue is the needed cost/time in order

to “transfer” the robots in their starting cells, exclud-

ing the initial robots location from the problem. Over-

all, the best of the proposed approaches can achieve

coverage time which can be 16 times greater than the

optimal one, in strictly polynomial time.

In the present paper we propose a methodology that

is able to deliver the optimal solution for the mCPP

problem - at least where one exists- in terms of cov-

erage time, without overlooking any of the aforemen-

tioned aspects. In contrary to the traditional address-
ing of this problem [14] (usually referred as allocate-

then-decompose or decompose-then-allocate), where the

building and allocation of the tasks are tackled in a sep-
arated fashion [29], a new method in which the build-
ing task is robot-oriented is presented. Simultaneously,
extended numerical analysis in realistic environments

indicates that the computational time is polynomial in

the size of grid times the #robots. In essence, the orig-

inal mCPP is transformed into an optimization prob-

lem, where the satisfaction of a well-defined set of con-

straints will eventually give rise to the optimal solution.

More precisely, the proposed scheme is separated into

two phases.

– First, the available cells are divided into distinct

classes, as many as the #robots, by utilizing a con-
straint satisfaction scheme. The aim of this clus-
tering is to preserve the following attributes a) the
complete coverage, b) the operation without any prepara-

tory effort and - most importantly - c) the fully

exploitation of multi-robots dynamics. In the heart
of the proposed algorithm, lies the Divide Areas

based on Robot’s initial Positions (DARP) algo-
rithm which is able to produce the optimal cells
assignment with respect to the initial positions of
the robots. The later can be achieved by employ-

ing a - specifically tailored to the problem at hand

- cyclic coordinate descent approach [35] with the

known convergence properties.

– During the second phase, the STC algorithm de-

signs the optimal path for every robot’s cluster, in

a distributed manner.

The outline of the paper is as follows. The related

work is described in section 2, presenting alternative

works on the mCPP. The mCPP problem is transformed

into an optimization problem in section 3, introducing

all the essential notation. In section 4 are briefly sum-

marized the main steps of the STC algorithm, regard-

ing the optimal solution of CPP problem. The findings
of that section are going to be utilized in order to re-
lax the original mCPP problem in section 5. On the

same section, are formally described the essential con-

ditions of the optimal solution. In section 6 is proposed

the DARP algorithm, with a comprehensive discussion

about its performance. The complete scheme for the
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mCPP problem is outlined in section 7. As proof of con-

cept, in section 8 is presented the performance of the

proposed scheme in comparison with two of the state-of-

the-art algorithms, regarding the mCPP problem. Fi-

nally, the concluding remarks are drawn in section 9

together with an outlook to the future work.

2 Related Work

2.1 Multi-Robot Coverage Path Planning Problem in-

side known terrain

Despite the fact that mCPP is a relative young field

of research, there is a plethora of works that attempt

to address the limitations and the restrictions of this

problem. An in-depth discussion of this field is beyond

the scope of this paper, thus, in oder to construct a

more appropriate and homogeneous pool of alternative

works, only publications that are in line with our prob-
lem formulation (section 3) are included. For a more
detailed and complete survey with regards to the latest

achievements on the CPP/mCPP problem the reader

should refer to [19].

The authors in [21] transformed, for the first time,

the single robot Spanning Tree Coverage (STC) Algo-

rithm [18] into a method that is able to incorporate

team of robots. Their centralized algorithm (referred as

MSTC) guarantees the complete coverage of the opera-

tional area while avoids a-priori known obstacles. More-

over, the non-backtracking version produces a solution

that visits every cell only once, while it is robust to

robot’s failures. Unfortunately, the path length for each

robot is critically depended on the initial position of the

robots and indeed in the worst case scenario, the maxi-

mum path length for the one robot is almost equivalent

to that of a single robot case, even though there may

exist alternative optimal paths configurations.

The same authors, in an attempt to alleviate the

aforementioned shortcoming, proposed an enhanced ver-

sion (referred as OPT-MSTC) [5], in which the form of

the spanning tree is modified so as to minimize the max-

imum distance between every two consecutive robots

along the spanning tree path. This technique performs

statistically better than the random generated tree, but

again without any guarantee with respect to the initial

robots’ positions.
An alternative technique that also utilizes spanning

trees, was presented in [39]. In this work, the authors

provide an upper bound on the performance of a multi-

robot coverage algorithm on known terrain, guarantee-

ing a performance at most sixteen times the optimal
cost, preserving at the same time the key feature of com-

plete coverage. Although the non-backtracking guaran-

tee has been now removed, the MFC algorithm per-

forms significantly better from both MSTC and OPT-
MSTC in terms of minimizing the maximum robot’s
path length, revealing that solutions without the equal-

ity constraint in the robot’s path length are far away

from the optimal team utilization.

The authors in [17], developed a methodology that

attempts to solve the problem of patrolling a known

environment by a team of mobile robots, which can be

translated to visiting all the points of the terrain with a

certain frequency. Indeed, the patrol problem is closely

related to the mCPP problem, therefore solutions that

are used for patrolling might be used for mCPP as well.

In this work, the authors first produce a minimal cyclic

path, similar to [18], that traverse every single cell of

the operation area and afterwards they search for the

best “new” robots initial positions. These new locations

are calculated so as to minimize the maximum distance

from their initial positions and these to-be-traveled dis-

tances to be more or less the same. Unfortunately, this

separation into two independent tasks, restricts the per-

formance of the proposed algorithm. As a matter of

fact, there is no upper bound regarding of number of the
cells that are going to be visited in the worst case sce-
nario, in order to fulfill the condition about the equality

in robots’ paths, even in cases where an alternative op-

timal solution actually exists.

2.2 Area division, for multi-robot tasks

This subsection presents the dominant area division
techniques, in order to assist multi-robot tasks - not
limited to coverage.

An interesting method that falls in this class, has

been presented in [25]. The operation area is divided
using sweep-line approach and in the sequel, each sub-
area is assigned to the most appropriate robot, based

on their relative capabilities. However, the approach as-

sumes as essential the unrealistic condition that the

robots are initially located on the boundaries of the

operation area. Moreover, the presented algorithm con-

siders only convex areas without obstacles.

In [8], the authors proposed a complete approach

for multi-UAV area coverage problem with a direct ap-

plication to the task of remote sensing in agriculture.
As first step, the authors proposed an area subdivision
method, which expands the well-known alternate-offer

protocol [30]. This technique, aims to perform the tasks

of area division and assignment simultaneously, but in

a distributed effective way. Despite the well establish-

ment of the method in terms of implementation details,

there is no performance guarantee. The authors state
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that the final subareas assignment is a perfect equilib-

rium, but there is no reference on how the approach

overcomes sub-optimal cases, which will be inevitably

appeared in cases of non-convex areas or “difficult” ini-

tial robots’ placement.

The authors in [3], presented an alternative method

using a heuristic algorithm to tackle the problem of ar-

bitrary polygon division. Despite the fact that the re-

sults are rather promising and their algorithm runs in

polynomial time, the produced solution has two main

disadvantages. On the one hand, there is no specific

guarantee about the optimality of the area division,

while at the other hand the initial robots’ positions are

not taking into account.

The algorithm described in [29], aims to achieve

an enhanced multi-robot exploration by dividing work-
place into separated regions for each available robot.
The authors, by employing the K-means algorithm, di-
vide the available terrain into distance-related, convex

subregions and afterwards apply a robot-subregion as-

signment mechanism to the transformed linear program-

ming problem, utilizing LP-solve software [2]. Unfortu-

nately, this two stage procedure may end up with highly
sub-optimal solutions, where it might be required for
the robots to travel long distances (in comparison to

the whole operation area) in order to reach their as-

signed subareas.

Many of the state-of-the-art approaches regarding

the area division problem in multi robot context (e.g.

[9],[13],[16]), have been relied on the Lloyd’s [24] al-

gorithm, with the known convergence properties [15],

and/or the Voronoi partitioning [7]. Although, these

approaches seem suitable for the mCPP problem, and

especially for the area division problem, they differ at

a quite important aspect. These approaches seek to

answer the following question: “Which are the most

preferable positions to place the robots, so as to cover

the non-occupied space with their on-board sensors?”

On the contrary, in the present paper the term “cover”

implies that the respective robot has to physically visit

the corresponding assigned area. The aforementioned

approaches are better suited for problems, such as to
position a team of robots in a terrain so that any lo-
cation is as close as possible to at least one robot [12]
or to optimally monitoring a dynamic event with het-

erogeneous sensory interest (e.g. oil spill) [32]. Thus,

the majority of these approaches solves the area divi-

sion problem independently of the robots/agents ini-

tial positions. Therefore, the direct appliance of these

algorithms to the mCPP problem may lead to quite

sub-optimal results as the robots’ areas may be equally

divided, but the time/cost to reach these sub-areas has

been left out of the equation.

The fine-grained analysis of the related literature

clearly indicates that there is room for contributions,

so as to enhance the fully exploitation of the robots

capabilities without jeopardizing important features of

the already produced solutions. According to this neces-

sity, this work proposes a grid-based multi-robot path

planning algorithm inside known terrains, performing

an area subdivision, according to both the number of

robots and to their initial locations. In a subsequent
stage, the exact paths inside each robot-exclusive area
are defined in a completely distributed manner. The

proposed algorithm is an approximate polynomial-time

algorithm (for practical sized inputs) for the mCPP

problem, which is able to guarantee that the solution

i) complete covers all the area ii) without backtracking

in already visited sub-areas iii) guarantees the minimum

coverage time exploiting all the available robots iv) and

does not need any preparatory stage (the robots can

start their journeys from their initial positions).

3 Multi-Robot Coverage Path Planning Formu-

lation

For ease of understanding, it is assumed that the ter-

rain to be covered is constrained within a rectangle1

in the (x, y)-coordinates and it is discretized into finite

set of equal cells, the number of which represent both

the level of required spatial resolution and the sensing

capabilities of the robots.

U = {x, y : x ∈ [1, rows], y ∈ [1, cols]} (1)

where rows, cols are the number of rows and columns

after the discretization of the terrain to be covered. Ap-

parently, the number of all the terrain’s cells is given

by n = rows× cols.

It is also assumed that there are no obstacles placed

in a-priori known positions of U . The set of unknown
obstacles is represented as:

B = {(x, y) ∈ U : (x, y) is occupied} (2)

Robots cannot traverse obstacles, thus the overall set

of cells that need to be covered is reduced to:

L = U \B (3)

and the number of cells to be covered is reduced to
l = n− no

Definition 1 Two cells (xi, yi) and (xj , yj) are consid-

ered adjacent if:

‖xi − xj‖+ ‖yi − yj‖ ≤ 1 (4)

1 However, the problem formulation along with the pro-
posed algorithm could be straightforwardly applied to differ-
ent area shapes, not necessarily convex
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As typical in many multi-robot coverage approaches,

it is assumed that the robot can perfectly localize itself
inside U and at each time-stamp, it can travel from its

current cell to any unblocked (∈ L) adjacent cell, with-
out any motion uncertainty.

Definition 2 As valid robot path of length m is con-

sidered every sequence of cells

X = ((x1, y1) , . . . , (xm, ym))

where the following constraints are hold

– (xi, yi) ∈ L, ∀ i ∈ {1, . . . ,m}
– every two sequential cells, i.e. (xi, yi) and (xi+1, yi+1),

are adjacent (Definition 1), ∀i ∈ {1, . . . ,m− 1}.

Moreover, a closed path of length m is a path, as

defined in Definition 2, where the additional condition

is hold

– (x1, y1) and (xm, ym) are adjacent

The robot positions are defined as:

χi(t) = (xi, yi) ∈ L, ∀i ∈ {1, . . . , nr} (5)

where t denotes the specific time-stamp of the coverage
path and nr denotes the number of operational robots.

The (given) initial position of the ith robot inside L is
represented as χi(t0).

Having the above formulation in mind, the mCPP

problem2 can be transformed to calculate the robots’

paths X∗
i ∀i ∈ {1, . . . , nr} so as,

minimize
X

maxi∈{1,...,nr} |Xi|

subject to X1 ∪X2 ∪ · · · ∪Xnr
⊇ L

(6)

where |Xi| denotes the length of the path Xi.

4 Single Robot Coverage inside Unstructured En-

vironment

Disregarding for the moment the problem of optimal

movement for a team of robots, let us consider the prob-

lem of covering a continuous unstructured area, utiliz-

ing only a single robot. Following the notation of opti-

mization problem in equation (6), the aforementioned

single robot CPP can be defined as:

minimize
X1

|X1|

subject to X1 ⊇ L
(7)

2 The aforementioned formulation may include cases, where
the optimal solution does not exist and therefore are neglected
for the analysis. The interest reader is kindly referred to the
Appendix A.

(a) Initial cells’ discretiza-
tion, robot’s cell and obsta-
cles

(b) Subdivide the terrain
into large square cells of 4
cells and represent them as
nodes

(c) Construct a Minimum
Spanning Tree for all the
unblocked nodes

(d) Apply the ST to the orig-
inal terrain and circumnavi-
gate the robot around it

Fig. 1 Spanning Tree Coverage Algorithm, sample execution

It has been proved in the literature that the CPP

problem has an O(n) algorithm [18], where n is the

size of grid, that is able to produce always the optimal
solution. In other words, the Spanning Tree Coverage

(STC) algorithm is able to construct the minimum path
that coverages all the operation area L, starting from

any arbitrary unoccupied cell.

Figure 1 illustrates the basic steps of an example de-
signing trajectory. In this approach, the terrain’s cells
are grouped into large square-shaped cells, each of which
is either entirely blocked or entirely unblocked, and con-

tains four of the initially discretized cells (Figure 1(b)).

More precisely, the obstructed areas cannot be smaller

than 4 times the size of grid’s cell and this condition

consists of the only algorithm’s requirement. As next
step, every unobstructed large cell is translated into a
node (Figure 1(b)) and for every adjacent cell, an edge

is introduced. For the resulting graph, a minimal span-

ning tree is constructed, using any minimum-spanning-

tree algorithm, such as Kruskal’s or Prim’s algorithms

[33], as it is illustrated in Figure 1(c). The robot then

circumnavigates the spanning-tree along a (counter)
clockwise direction (Figure 1(d)). The circumnaviga-

tion of the spanning tree generates a simple closed path

X∗
1 , producing an optimal -in terms of coverage time-

solution.
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5 Reduce the original mCPP Problem

Utilizing the findings of STC algorithm for the case of
one robot, the original mCPP problem, as defined in
(6), can be reduced to

minimize
L

maxi∈{1,...,nr} |Li|

subject to L1 ∪ L2 ∪ · · · ∪ Lnr
⊇ L

(8)

where L1, L2, . . . , Lnr denote the robot sets (and not
strict paths). As next step, nr instances of the STC al-

gorithm could be employed -in a completely distributed
manner- in order to calculate the robots’ exact paths

inside these sets (problem (7)). Therefore, the exploita-

tion of STC algorithm allows the removal of the severe

adjacency constraint (Definition 2) regarding the pro-

duced robot sets. In other words, only the problem of
building the Li sets, without any concern about the ac-

tual robot’s movement, inside the L world has to be

addressed.

In the rest of this section we investigate the funda-

mental conditions, that have to be hold regrading the
Li sets, so as the optimal solution to the overall mCPP

(6) problem to be guaranteed.

Definition 3 A selection {L1, L2, . . . , Lnr
} composes

an optimal solution for the mCPP, iff

1. Li ∩ Lj = ∅, ∀i, j ∈ 1, . . . , nr , i 6= j

2. L1 ∪ L2 ∪ · · · ∪ Lnr
= L

3. |L1| ≈ |L2| · · · ≈ |Lnr
|

4. Li is connected ∀i ∈ 1, . . . , nr

5. χi(t0) ∈ Li

The first condition secures that every cell must be

contained strictly in one robot’s set, constituting the
non-backtracking guarantee for the produced solution.

The second condition states that the union of all Li

sets must contain every unblocked cell of the area to
be covered (3) and depicts the fundamental coverage

objective of completeness. The third condition estab-

lishes the fully exploitation of the multi-robot dynam-

ics, by making certain that the number of cells |Li| in
each robot’s set are more or less the same3. The forth

condition declares that the cells inside each robot’s set
Li should be compact, forming a solid sub-region. In

other words, this condition ensures that the division

3 This ambiguity is introduced mainly for two reasons. On
one hand, it might be impossible to perfect divide the number
of cells to be covered |L| with the number of robots nr. On the
other hand, even in cases where the perfect division is possible
the initial configuration - placement of both the robots and
obstacles - may raise limitations according to the optimal
solution.

is absolutely fair and guarantees a seamlessness navi-

gation scheme, inside spatially cohesive areas. Accord-
ing to that statement, no robot may spend extra/non-
inclusive time to travel between unconnected areas. The

final condition refines that the initial position of each

robot χi(t0) must be contained on its own set Li, pro-
viding the ultimate layer of effectiveness, ensuring zero

preparation time and energy. Any algorithm that is able
to construct the Li sets, ensuring the Definition’s 3 con-

ditions, can be utilized (in combination with the STC)

to construct optimal solutions to the original mCPP

problm (6).

Regarding to the existence of these solutions, it has
been proved [27] that, a fair partition, which does not

require convex pieces, always exists for any polygon and

any number of partitions. The problem which is formu-

lated here is a variation of the aforementioned one, with

an extra condition, that indicates the inclusion of any

arbitrary point of the polygon inside each partition.
Apparently, the above problem cannot always have a
solution and strongly depends on the arrangement of
the arbitrary points, that need to be included in the

produced fair partitions. The overall formulation of the

problem along with proposed algorithm are referred to

cases where at least, one optimal solution exists.

6 Divide Areas based on Robots Initial Positions

(DARP)

In this section is described the DARP (Divide Areas

based on Robots Initial Positions) algorithm, a specifi-

cally tailored, optimality preserving technique that di-
vides the terrain into nr robot-exclusive regions. To

start with, DARP algorithm adopts the following cell-

to-robot assignment scheme. For every ith operational

robot an evaluation matrix Ei is maintained. This eval-

uation matrix Ei expresses the level of reachability (e.g.
distance) between the cells of L and the ith robot’s ini-

tial position χi(t0). During each iteration the assign-
ment matrix A is constructed as follows:

Ax,y = argmin
i∈{1,...,nr}

Ei|x,y, ∀(x, y) ∈ L (9)

Afterwards, each robot’s region Li can be computed
straightforwardly by the assignment matrix A as fol-

lows:

Li = {(x, y) ∈ L : A(x, y) = i} , ∀i ∈ {1, . . . , nr} (10)

Additionally, the number of assigned cells per robot

can be defined as the cardinality of the Li set

ki = |Li| , ∀i ∈ {1, . . . , nr} (11)
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By adopting the aforementioned cells assignments pol-

icy, regardless of the robots’ evaluation matrices E,
the first, second and fifth conditions of Definition 3

are always satisfied. Concretely, one cell can only be

assigned to one robot (first condition), every cell has

been assigned to some robot’s operation plan (second

condition) and it is assumed that the initial robot po-

sitions are always assigned to the corresponding robot
area (fifth condition). In a nutshell, DARP algorithm
is an iterative process, which appropriately modifies

the robots’ evaluations Ei in a coordinated fashion, in

order to meet the two remaining -and in many cases

conflicting- requirements.
Furthermore, the aforementioned cells’ assignment

policy automatically undertakes an additional task re-

lated to the robots’ trajectories time-scheduling. If it

is allowed for robots to occupy the same cells, then a

fine-grained analysis should take place to prevent robot-

to-robot collisions. This fact could result in a serious

downgrade regarding the quality of the overall solution,

even in case where the sets Li are equal.

6.1 Equally Divide the Space

Initially, the robots evaluation matrices Ei contain dis-

tance only information:

Ei|x,y = d (χi(t0), [x, y]
τ ) , ∀i ∈ {1, . . . , nr} (12)

where d(·) denotes the chosen distance function (e.g.

Euclidean). Thus, the initial assignment matrix A (9)

should be a classical Voronoi diagram.
The DARP algorithm’s core idea is that each eval-

uation matrix Ei can be appropriately “corrected” by

a term mi as follows:

Ei = miEi (13)

where mi is a scalar correction factor for the ith robot.

The third condition of Definition 3 is equivalent with
the minimization of the:

J =
1

2

nr
∑

r=1

(ki − f)
2

(14)

where f denotes the global “fair share”: f = l/nr (#Un-

occupied cells divided by the #robots).
A standard gradient descent method for updating

m

mi = mi − η
∂J

∂mi

, η > 0, ∀i ∈ {1, . . . , nr} (15)

can be employed, in an attempt to minimize the value

of the cost function (14). When attempting to apply

(15), two shortcomings arise. At first, ∂J/∂mi cannot

be computed algebraically, as the analytical form that

relates J with mi is not available. On the other hand,
there is no guarantee that J has only one (global) min-

imum.

To overcome the above problems, a cyclic Coordi-

nate Descent (CD) methodology is adopted [35, Al-

gorithm 1]. Coordinate descent algorithms solve opti-

mization problems by successively performing approx-

imate minimization along coordinate directions or co-

ordinate hyperplanes. The global cost function is min-

imized cyclically over each of one of the coordinates
while fixing the remaining ones at their last updated
values. Each such subproblem is a scalar minimization
problem, and thus can typically solved more easily than

the full problem.

To start with, the global minimum of this function
will always be in case where k1 = k2 = · · · = knr

= f .

Therefore, the global minimum of (14) can be obtained
if we solve nr single dimension optimization problems

with the following objective function:

Ji =
1

2
(ki − f)

2
(16)

By applying the above transformation, we can achieve

the following:

First and foremost, the above search is performed

in local-minima free space.

Lemma 1 All sub-problems of (16) are convex to the
corresponding controllable parameter mi.

Proof Let’s assume that the ith robot during the pre-

vious iteration, based on its evaluation matrix Ei, oc-
cupied less cells than the desirable threshold (< f). It

is obvious from (13) and (9) that a “small” decrease

in the corresponding correction factor, mi (< 1), will

lead to an increase in the number of assigned cells ki,

assuming that the other robots’ evaluation matrices E

remain the same. Therefore, the corresponding objec-
tive function Ji (16) will be decreased. Although, if we

“over-decrease” the mi factor “many” cells will be as-

signed to the ith robot. Now, the Ji will start to rise

again, as the ki will be greater that the f . From this

point and after, if we continue to decrease mi, the ith
robot will be assigned to more and more cells, as ki can

only be increased in response to mi decrease. The value
of Ji is saturated when all the available cells4 (l−nr+1)

have been assigned to the ith cell, and further decreases

of mi cannot affect neither ki nor Ji. Hence, Ji will

monotonically be increased, as mi is decreased until the

maximum possible Ji |ki=l−nr+1 = 1
2

(

(l−nr)(nr−1)
nr

)2

.

4 The available cells are l− nr + 1 as the initial robot cells
are a-priori allocated to the corresponding robot.
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Fig. 2 DARP algorithm flowchart - Divide Areas based on Robots Initial Positions

Therefore, the previously encountered minimum is the

global one. The proof continues to hold if, instead, we

had assumed that the ith robot had been assigned to

more cells than f . ⊓⊔

Additionally, the update rule of mi can be straight-

forwardly calculated for each objective function (16)
separately as:

mi = mi − η
∂Ji
∂mi

= mi − η (ki − f)
∂ki
∂mi

(17)

Due to the nature of the problem, the changes in ki
with respect to mi will always be negative (see proof in

Lemma 1) and they are almost identical for each robot

(for a given sub-problem (16)). Additionally, two sets of

evaluation matrices {E1, . . . , Enr
} and {αE1, . . . , αEnr

},
where α denotes any positive constant, correspond to
the identical assignment matrices (9). Therefore, the

influence of |∂ki/∂mi| can be securely omitted and the
final update policy can be approximated as follows:

mi = mi + c (ki − f) (18)

where c denotes a positive tunable parameter.
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Summarizing, using Lemma 1 we can establish that

even thought the global cost function f can be gener-
ally non-convex - depending of the robots and obstacles

formation - with many local minima , each robot’s con-

tribution Ji is a convex function with respect to the con-

trollable parameter mi. As shown in [37], cyclic Coordi-
nate Descent methodologies, where the above property

holds, are able to converge to a global optimal solution
set m∗, i.e.

J(m∗) ≤ J(m), ∀m ∈ dom(J) (19)

with respect to the initial evaluation matrices Ei (12).

6.2 Build Spatial Connected Areas

Although, the aforementioned procedure can be easily

converge to share the available cells L among the differ-

ent robots, it cannot guarantee the continuity of each

robot’s sub-region (condition 4, Definition 3). In oder

to deal with such situations, for every ith robot that

occupies more than one distinct regions the following

matrix is introduced

Ci|x,y = min (||[x, y]− r||)−min (||[x, y]− q||) ,
∀r ∈ Ri, q ∈ Qi

(20)

where Ri denotes the connected set of cells where

the ith robot actual lies in (χi(t0)) and Qi denotes the

union of all other connected sets, which have been as-

signed to the ith robot but they do not have spatial

connectivity with Ri set. In a more abstract conceptu-
alization, the Ci is constructed in a way, to reward the

regions around the ith robot location’s subset, and to

penalize the regions around other unconnected subsets,

constructing gradually a closed-shape region. If all the

assigned cells to ith robot belong to the same closed-
shape region, the Ci is set to be the all-one-matrix.

The final update in the ith evaluation matrices is

calculated as

Ei = Ci ⊙ (miEi) (21)

where ⊙ denotes the element-wise multiplication.

The findings of the previous subsections are illustrated

in figure 2, where a flowchart of the proposed algorithm

is presented.

6.3 Performance Discussion

Although simple in concept, the DARP algorithm aims

to provide the optimal cells’ assignment, in cases where

at least one exists. A sample execution is illustrated in

Figure 3, where the terrain is constituted of 42 × 42

cells and the number of robots is nr = 5. The initial

robots’ positions were squeezed inside a sub-region of

the whole operation area, at the left bottom space of

the grid, with dimension 10× 10 cells. Each sub-figure

illustrates the condition of the assignment matrix A

(9) at the corresponding iteration. Apparently, the al-

gorithm was terminated after 260 iterations, fulfilling

all the conditions of Definition 35.

It is worth highlighting, that contrary to robot’s

evaluation matrix Ei which is continuous, the produced

sub-areas that are finally assigned to each robot, may

be arbitrary unconnected (at least temporary, e.g. fig-

ure 3(b)) non-convex areas. In fact, this DARP algo-

rithm’s key feature, allows the gradually inclusion to

each robot’s sub-region, of any arbitrary located cell.
More precisely, DARP algorithm is capable of escaping
the local minima by temporarily violating the condition

about the connectivity of the each ith robot assignment

matrix. Afterwards, the algorithm gradually eliminates

the presence of unconnected areas, by reinforcing the
robot’s evaluation Ei around the original (the one that

the robot actually lies in) sub-area. By the time, the
connectivity inside the exclusive robot sets Li is re-

stored, the evaluation matrices Ei will have completely

changed their forms, and ideally towards to the optimal
cells assignment.

The proposed algorithm diverges from the general

class of local search algorithms in the sense that, it

changes its current state, mainly based on the global
optimal one and not only by evaluating information

from the current and the candidate states. Over and

above, DARP algorithm approximates the behavior of

a gradient decent algorithm, with an extra capability

to search effectively and reach the global optimal, even

in case with multiple local minima.

6.4 Computational &Memory Complexity Analysis from

an Approximation Point of View

The memory needs of the algorithm can be calculated

straightforwardly, as it utilizes a constant number β of

matrices with dimensions (nr × n). In other words, the

algorithm’s memory complexity is linear to the size of

input (nr × n), i.e. O (β × nr × n).

The main optimization loop performs α × nr × n
operations, where α is a constant number, resulting

inO (α× nr × n)6 computational complexity. However,

5 The interested readers are kindly referred to
http://tinyurl.com/DARP-live to watch an additional
recorded execution of the DARP algorithm.
6 Please note that, in both complexity calculations, there

is an additive constant which is omitted, due to its negligible
influence

https://youtu.be/YF2PLP9Q6Vo
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(a) T = 0 (b) T = 40 (c) T = 80

(d) T = 120 (e) T = 200 (f) T = 260

Fig. 3 Progression of the robots sub-regions over iterations

the number of times which the main optimization loop

is executed (MaxIter) is not constant or linear, but it

depends on the specific characteristics of the current

problem in a non-linear fashion. As it is not possible to

find the closed form that relates the maximum needed

(main optimization loop) iterations with the number of

robots nr, initial deployments χi(t0) and the grid size n,
the following approximation scheme for the algorithm’s

computational needs is adopted.

A series of simulations were conducted in order to
measure the MaxIter (main optimization loop) itera-

tions that were needed for the construction of the opti-
mal solution (Definition 3). For each configuration (nr

and n) the results were validated by repeating the ex-

periment with different, randomly chosen, initial χi(t0),

in order to be able to approximate the MaxIter for the
worst case scenario.

Please note that, it is practically infeasible to com-

pute exhaustively, the actual worst case for each con-

figuration, due to the vast number of possible combi-

nations of the initial robots positions. Nonetheless, in

every different set-up the number of randomly created

instances was proportional to the input parameters (nr

and n). By doing so, it is ensured that the computed

worst case complexity is representative of the num-

ber of possible occurring configurations. The number

of the experiments for each configuration starts form

50 for {nr = 3, n = 500} and reaches up to 5000 for

{nr = 20, n = 5000}, constructing a pool of more than
120000 different experiments.

In order to present the overall approximation on

the DARP’s complexity (MaxIter× nr × n), for each

{nr, n} scenario was extracted the worse-case (maxi-
mum) of the needed iterations (MaxIter). These worse

cases for each scenario are translated into a surface by

applying a polynomial least squares curve fitting tech-

nique. The produced surface is illustrated with blue

color in figure 4, where the operations’ needs growth,

with respect to the input, is representing both in linear

and logarithmic scale. Moreover, and in order to evalu-

ate the produced complexity results a number of poly-

nomial surfaces is utilized. More specifically, with yel-
low, magenta and green color is illustrated the complex-
ity curves in cases of f1(nr, n) = n2

r × n2 , f2(nr, n) =

n3
r × n2, and f3(nr, n) = n2

r × n3, respectively. The

evidences of this representation indicate that DARP’s

complexity is cubic with respect to the input of the

problem (nr×n), as the approximation on the complex-

ity curve is strictly bounded under the n3
r×n2 curve, at

least until the maximum simulated parameters nr = 20

and n = 5000.

Concluding this section, it is worth mentioned that

the proposed algorithm cannot bypass the NP-nature of
the mCPP problem, but it provides an approximately
polynomial algorithm until a specific (practical inter-
esting) input. If both the size of the robots and num-

ber of the cells grow beyond the aforementioned order
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Fig. 4 Approximation on DARP’s complexity, a comparison with known polynomial surfaces

of magnitude of the input, the algorithm may lose its

polynomial behavior.

6.5 Beyond the classical mCPP

It is worth to point out that, the DARP algorithm

is an optimization based one, which allows the inclu-

sion of other secondary objectives, depending on the

final multi-robot application, such as robot’s subareas

smoothing etc., by just revising the appropriate per-
formances’ criteria. In the literature, the problem of
mCPP is usually defined as in section 3, where it is de-

sirable to produce balanced paths, in order to exploit all

the available robots’ capabilities. However, there might

be cases where specific robots’ characteristics (e.g. sens-

ing module, battery life, etc.) impose different utiliza-

tion portions among the different robots. The proposed
approach is able to straightforwardly encompass this
additional information, by appropriately modifying the

calculation of Ji (16). More precisely, the objective func-

tion for the ith robot is going to alternate as

Ji =
1

2
(ki − pi)

2
(22)

where pi is the corresponding portion of the map that

the ith robot has to covered based on its capabilities or

limitations (
∑nr

i=1 pi = 1).

However in order to be in-line with the ordinary

mCPP formulation we limit our simulation evaluation

(section 8) only to scenarios where an equal cells’ divi-

sion between the robots is considered desirable.

7 Overview of the proposed multi-robot cover-

age path planning algorithm

This section summarizes the complete algorithm for

mCPP problem (6), by fusing the findings of the DARP
and STC algorithms. The proposed algorithm is sepa-
rated into two phases: During the first phase, the DARP

algorithm divides the cells of L set into nr exclusive ar-

eas Li, for each available robot, as explained in section

6. The outcome Li of that process serves as the opera-

tional area for each robot separately (section 4).

After the applying of DARP algorithm and the cor-
responding production of Li sets, the original multi

robot optimization problem (6) is downgraded to nr

single robots CPP problems, alleviating its explosive

combinatorial complexity. Each one of these problems

can be expressed as:

minimize
Xi

|Xi|

subject to Xi ⊇ Li

(23)

where Xi denotes a robot path as defined in Definition

2. As shown in section 4 this class of optimization prob-

lems (single robot inside grid connected environments)

can be solved in an optimum manner (optimal solution

- polynomial time), utilizing the STC Algorithm.

Even though the final path {X1, X2, . . . , Xnr
} con-

struction takes place in a fully distributed manner, the

union of the produced solutions is actually an optimal

solution for the eq. (6) problem, without any compro-

mise in the quality or the generality of the solution. In
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essence, this can be attained by the original construc-

tion, during the first phase (section 6), of the Li sets,
ensuring that the conditions of the Definition 3 are sat-

isfied. The aforementioned feature of the algorithm not

only allows the fully parallelization of the algorithm,

but dramatically reduces the complexity of the initial

mCPP problem to the order of magnitude of the STC

algorithm.
Figure 5 depicts an example execution of the pro-

posed algorithm. Sub-figure 5(a) illustrates the initial

robots positions along with the placements of the fixed

obstacles. The sub-figure 5(b) represents the result from

the area division approach, as described in figure 2.

Each sub-area’s Minimum Spanning Tree is represented

in sub-figure 5(c) with spatial information about the

nodes inside the L world. Finally, the proposed algo-

rithm let the robots move along the path that circum-

navigates the corresponding spanning tree, as is shown

in sub-figure 5(d). It is worth noticing that, the pro-

duced paths constitute an optimal solution, as the num-

ber of cells that have been assigned to each robots

are [12 13 12 12 12 13 12 12 12 ] (Definition 3, condition

3)). The corresponding summation, translated to the

operational world, is 4 (12 ∗ 7 + 13 ∗ 2) = 440, which is

exactly the number of cells to be covered (Definition 3,

condition 2)).

8 Simulation Results

This section presents a comparison study between the

proposed DARP+STC algorithm and two of the state-

of-the-art methods (“MFS” and “Optimized MSTC”

see related work). In order to produce comparable re-

sults, we adopt the same simulation set-up as in [39].

More precisely:

– The size of the terrain is always [rows, cols] = 98×98.

– We considered two kind of terrains: 1) The empty

terrain [empty] and 2) the one, which has the 10%

of its cells occupied by obstacles [outdoor]. The ob-

stacles’ arrangement follows a random uniform dis-

tribution.

– The number of robots varies from 2, 8, 14 to 20

robots.

– The robots initial placement can take three differ-

ent types, according to their in-between maximum

distance (clustering). More precisely, the maximum

distance between two robots can be at most 1) 30%

[30] or, 2) 60% [60] of the maximum terrain’s dimen-

sion correspondingly, and 3) without any distance

constraint (free selection) [none].

In order to obtain a fair comparison with MFC and

Optimized MSTC algorithm, we repeated each scenario

100 times. The results for each combination of differ-

ent evaluation scenario and algorithm, are illustrated in
Table 8, where it is reported the maximum [Max] and
minimum [Min] coverage time for all robots, in terms

of paths lengths. Simultaneously, for each scenario we

provide the idealized coverage time [Ideal Max], which

represents the optimal solution to the problem. In other

words, this value is simply calculated by dividing the

number of unoccupied cells with the number of robots

(f). Apparently, the larger deviations from the ideal

coverage time, the bigger the difference between the

robots paths, resulting in unbalanced, sub-optimal routes.

The overall scoring for each scenario per algorithm,

against the ideal coverage time, is depicted in [Ratio]

column and reports the ratio of actual (maximum) trav-
eled path and the ideal coverage time.

The direct observation is that the performance of

the proposed algorithm DARP+STC seems to be im-
mune to the number of robots and/or the obstacles
and/or the initial clustering of the robots, as it per-
forms with almost the same ratio over the different

scenarios. Additionally, all the results are close to the

[Ideal Max], and the maximum difference between two

robots path is at most 4 cells, independent of the num-

ber of robots or/and the grid size, i.e. ‖|Xi| − |Xj |‖ ≤
4, ∀i, j ∈ 1, . . . , nr. The above effectiveness bound is
straightforwardly incoming from the DARP algorithm

optimality guarantee. The DARP algorithm calculates
the Li areas, having at most 1 cell difference among the

different ith robots (see figure 2). This maximum dis-

crepancy is translated into 4 cells after the appliance

of STC algorithm (section 4). Overall, these findings

seal experimentally, the performance of the proposed

algorithm.

The afore-mentioned optimal performance does not

come without shortcomings. In all cases, initial config-

urations that lead to sub-optimal results are discarded

from the pool of test cases, while both the other two

algorithms are able to straightforwardly produce some

sub-optimal operation plans. A proper categorization of

the cases where optimal solutions cannot be obtained, is

provided in A, where also preliminary solutions, in-line

with the proposed approach, are also presented.

9 Conclusions and Future Work

The proposed approach orchestrates the optimal co-

ordination of a multi-robot team, so as to completely

cover an area of interest. During the preliminary analy-

sis, the underlying mCPP problem is translated into a

constraint satisfaction problem, by formally define the

exact attributes that have to be hold in order to achieve
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(a) Initial cells discretization, robots cell and obstacles (b) DARP outcome - robots’ exclusive areas

(c) Constructing Minimum Spanning Trees for each one of
the robots sets

(d) Final Paths, designed to circumnavigate the MSTs

Fig. 5 DARP+STC Proposed Approach, sample execution with 24x24 grid size, 9 robots and 100 obstacles

the optimal performance. In heart of the proposed ap-

proach lies the DARP methodology, a search algorithm,

which finds the optimal cells assignment for each robot

utilizing a cyclic coordinate descent approach, which

takes into account both the robots initial positions and

the obstacles formation. The outcome of the DARP al-

gorithm constitutes a set of exclusive operation areas

for each mobile robot. These well-defined regions, are

forwarded to each robot’s planner, where by employ-

ing STC algorithm, the exact route that covers the as-
signed area is calculated. The overall navigation scheme
achieves to traverse the complete operation area, with-

out backtracking in already visited areas, starting from

the exact initial robot positions. To the best of our

knowledge, no other method from the literature exhibits
all the aforementioned features at the same time.

Several avenues of exploration are left open for fu-

ture work. One direction could be the relaxing of one

or more constraints of Definition 3. For instance, in ex-

pense of the non-backtracking attribute, the produced

paths can be constructed to be convex only (less messy)

or/and the shape of the STC can be appropriately mod-

ified in order of the turns in robots’ paths to be mini-

mized. In addition, we intend to include in our method-

ology another stage, which will be in charge for the

automatic recognition/detection of non-optimal cases,
in order to directly apply the appropriate, predefined
solution scheme. Finally, in our future plans is the de-

velopment of an online version of DARP algorithm, so

as to be able to operate inside completely unknown ter-

rains.
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Terrain Robots Clustering Ideal Max DARP+STC MFC Optimized MSTC
Max (Min) Ratio Max (Min) Ratio Max (Min) Ratio

Empty 2 30 4801 4803 (4799) 1.001 4878 (4731) 1.02 5337 (4410) 1.11
2 60 4801 4803 (4799) 1.001 4886 (4720) 1.02 5513 (4241) 1.15
2 none 4801 4803 (4799) 1.001 4888 (4725) 1.02 5602 (4168) 1.17
8 30 1200 1203 (1199) 1.003 1399 (838) 1.17 3817 (45) 3.18
8 60 1200 1203 (1199) 1.003 1415 (904) 1.18 3539 (93) 2.95
8 none 1200 1203 (1199) 1.003 1394 (956) 1.16 3281 (146) 2.73
14 30 685 687 (683) 1.006 841 (431) 1.23 3756 (5) 5.48
14 60 685 687 (683) 1.006 819 (522) 1.20 3461 (16) 5.05
14 none 685 687 (683) 1.006 830 (513) 1.21 3072 (40) 4.48
20 30 479 483 (479) 1.008 615 (307) 1.28 3685 (3) 7.69
20 60 479 483 (479) 1.008 604 (332) 1.26 3439 (9) 7.18
20 none 479 483 (479) 1.008 604 (321) 1.26 2867 (18) 5.99

Outdoor 2 30 4321 4321 (4321) 1 4380 (4269) 1.01 4772 (4031) 1.10
2 60 4321 4321 (4321) 1 4382 (4266) 1.01 4854 (3954) 1.12
2 none 4321 4321 (4321) 1 4377 (4269) 1.01 4923 (3903) 1.14
8 30 1079 1082 (1078) 1.003 1263 (789) 1.17 3561 (26) 3.30
8 60 1079 1082 (1078) 1.003 1278 (790) 1.18 3229 (70) 2.99
8 none 1079 1082 (1078) 1.003 1247 (873) 1.16 3099 (94) 2.87
14 30 616 620 (616) 1.006 746 (450) 1.24 3452 (6) 5.60
14 60 616 620 (616) 1.006 750 (482) 1.22 3228 (20) 5.24
14 none 616 620 (616) 1.006 746 (464) 1.21 2819 (37) 4.58
20 30 431 434 (430) 1.007 572 (280) 1.33 3437 (3) 7.97
20 60 431 434 (430) 1.007 557 (285) 1.29 3140 (9) 7.29
20 none 431 434 (430) 1.007 551 (296) 1.28 2740 (18) 6.36

Table 1 Cover time (in terms of path length) for DARP+STC, compared with MFC and Optimized MSTC

A Cases where the optimal solution does not ex-

ist

The problem formulation, as it is defined in section 3, it may
contain cases where the given placement of the obstacles or
the robots blocks the access to one or more cells. Although
these cases are considered out of the scope of the paper, and
excluded from the considered scenarios, here in the appendix
we categorize them and propose some preliminary solutions
in-line with the proposed approach.

The first class consists of cases where an optimal solution
to the mCPP problem can not be attained, due to the initial
placements of the robots (sub-figure 6(a)). In these cases, one
could spend some preparatory steps in order to rearrange the
robots, so as to transform the problem into a solvable sce-
nario (by the proposed approach DARP+STC). This rear-
rangement is not trivial and is forming another optimization
problem, where now the objective is to find the minimum
path to travel in order to render the problem tractable. Al-
ternatively, one could apply a relaxed version of DARP algo-
rithm by removing its non-backtracking property (Definition
3, condition 1).

Another case, where the coverage task cannot be equally
separated among the available robots, might be occurred,
where one or more robots are trapped inside non-avoided,
bounded sub-areas (sub-figure 6(b)). In these cases one could
straightforwardly apply the proposed approach, as many times
as the number of bounded zones, and the optimal attain-
able solutions is again guaranteed. Apparently, in this case
it is highly unlikely to end up having a balanced path length
across all the robots’ planners. In fact, now the produced path
lengths are highly dependent on the size of the correspond-
ing bounded area. However, different robots that lie in same
sub-area should have almost the same workload (Definition
3, condition 3).

(a) The robots ini-
tial placement lim-
its some robots op-
eration plans

(b) The obstacles
and robots place-
ment forms two ex-
clusive sub-areas

(c) The obstacles
do not allow the
fully coverage of
the area of interest

Fig. 6 Cases where the robots and/or obstacles arrangement,
do not allow the acquisition of optimal solution

Moreover, there are non-recoverable cases, where one or
more sub-areas cannot be reached (sub-figure 6(c)). In such
situations the proposed algorithm can be applied on the re-
maining terrain, ensuring the optimal robots’ path construc-
tion. Finally, it might be occurred a combination of the above
scenarios and then one could apply a hybrid version of the
aforementioned solutions.

Over and above, it should be highlighted that, in all these
cases the fact that the proposed approach is not able to deliver
an optimal set of paths, is not some kind of weakness, but it
is due to the fact that the optimal solution, at least with the
properties as defined in Definition 3, does not exist.
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