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sumptions are limiting: Many situa-
tions exist in which it is impossible to
know the state of the world exactly,
and the effects of actions cannot be
predicted with certainty, but it is still
necessary to plan because recovery at
run time is not feasible. For example,
in both medical and military systems,
the precise state of the world is usual-
ly unknowable, and the exact effect of
interventions cannot be predicted;
however, one still cannot proceed
blindly, hoping to recover from blun-
ders. What is needed is a way to eval-
uate candidate plans in the face of
such uncertainty. This panel was con-
cerned with the ways in which ideas
from probability and decision analysis
could be applied to planning.

The fifth session was chaired by
Drew McDermott of Yale University.
This session dealt with planning and
execution. Perhaps more than any of
the other sessions, this session called
into question the relevance of our tra-
ditional notions of planning, particu-
larly as they apply to tasks such as
directing the execution of a robot. The
remainder of this report is a collection
of summaries written by the panel
chairpersons.

Planning Paradigms
Thomas Dean

Chair: Thomas Dean, Brown Univer-
sity. Speakers: Mike Georgeff, SRI
International; Matt Ginsberg, Stan-
ford University; Kris Hammond, Uni-
versity of Chicago; and Drew McDer-
mott, Yale University.

For the purposes of this article, a
planner is a program that controls one
or more devices capable of carrying
out actions in the real world in order
to achieve some definite purpose. A
strategic planner is capable of antici-

he workshop was organized into
five sessions. Each session was

intended to examine some aspect of
planning research or point directions
toward future work. The first session,
chaired by Thomas Dean of Brown
University, examined the basic plan-
ning paradigms that have been devel-
oped to date and attempted to deter-
mine their range of applicability. The
second session was led by Ted Linden
of Advanced Decision Systems (ADS).
It provided a detailed look at the rep-
resentation of plans and goals. The
panel for this session dealt with ques-
tions such as the following: What is a
plan? How is it different from a con-
ventional computer program? What
information needs to be represented
in plans and goals that current repre-
sentations preclude?

The third and fourth sessions were
attempts to provide cross-fertilization
from other areas of AI. One way of
gaining insight into possible direc-
tions for future research in planning is
to examine related areas of AI in
which recent progress has been
achieved and attempt to understand
the possible utility of such advances
for planning research. Accordingly,
the third session, chaired by Richard-
Fikes of Price Waterhouse, examined
the ways that truth maintenance
technology has been and might be
used in support of the formation, the
monitoring, and the repair of plans.

The fourth session, chaired by Peter
Cheeseman of NASA/Ames, exam-
ined the use of probability and reason-
ing about uncertainty in planning.
Most current planning systems are
limited because they assume a com-
plete knowledge of the world and the
effects of actions they might take, or
they assume that any inaccuracies can
be corrected at run time. Such as-
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pating (some of) the consequences of
its actions and using such anticipated
consequences to choose between pos-
sible courses of action. Strategic plan-
ning techniques have primarily been
concerned with representing the
world in enough detail to allow pre-
diction and efficiently carrying out
predictions in order to support deci-
sion making. Three of the approaches
explored by the panelists (Variations
on STRIPS, Hierarchical Planning,
and Case-Based Planning) address
issues in strategic planning. Many sit-
uations exist in which accurate pre-
diction is either impossible because of
a lack of information or useless be-
cause of a lack of time. A tactical
planner is primarily concerned with
deciding what to do in situations in
which the available information is
limited and uncertain. The subsection
on situated activity addresses the
problem of deciding what to do on the
basis of what the robot immediately
perceives about its environment. The
basic idea is that highly directed
behavior can arise out of interaction
with a complex environment to satis-
fy our requirement that planning ulti-
mately achieve some definite purpose.
Purely reactive or purely strategic
planners can be considered as
extremes on a continuum (see figure
1) determined by (1) the amount of
time allowed for the system to
respond and (2) the availability and
volatility of the information poten-
tially useful to the system in deciding
how to respond.

The first four subsections summa-
rize the position papers and presenta-
tions of the four panelists. It should
be noted none of the approaches
explored by the panelists constitute a

paradigm in that it is a coherent and
self-contained approach to solving
problems, suggesting research direc-
tions, and assessing theories. The sub-
section entitled “An Emerging Para-
digm” describes an attempt to coalesce
some ideas that might give rise to a
fledgling paradigm. The framework
developed in this subsection is as yet
incomplete but was felt to be promis-
ing by a number of the participants.

Variations on STRIPS

In this subsection1 and the three that
follow, we assume a familiarity with
basic techniques. Readers wishing to
know more about STRIPS should con-
sult the original papers (Fikes and Nils-
son 1971) or an introductory AI text
that covers the material (Nilsson
1980).

STRIPS owes a considerable debt to
Newell and Simon's General Problem
Solver (GPS) (Ernst and Newell 1969).
Somewhat simpler, STRIPS is a spe-
cialized and precisely formulated ver-
sion of GPS that directly addresses the
issue of reasoning about actions
which precipitate change in the
world. Perhaps the most useful contri-
bution of STRIPS involves the form
and content of action representations.
In STRIPS and systems like it, actions
are represented as functions from sets
of sentences to sets of sentences in
some appropriate language. Such a
representation allows for a rather sim-
ple approach to planning often
referred to, somewhat disparagingly,
as linear planning. Linear planning
using the STRIPS action representa-
tion utilizes a fairly efficient means
for computing the results of an action,
which are described in terms of
changes to a database. For an action a,

we can associate a database update
function u(a) described as a function
from sets of sentences to sets of sen-
tences:

u(a):P(L) -> P(L) ,
where L is the language being used to
describe any particular planning
domain, and P(L) is the set of all sub-
sets of L. The particular representa-
tion used by STRIPS associates with
an action an add list A(a) and a delete
list D (a), with u(a) given by

u(a)(S) = S + A(a) - D(a).
Even though the STRIPS action rep-

resentation has been studied exten-
sively over the last two decades, the
advantages and disadvantages of the
approach are still being debated. It is
obvious that the STRIPS action repre-
sentation has limited application;
domains exist that cannot adequately
be represented using such simple
functions. The language L influences
the expressivity of STRIPS actions as
well as the efficiency with which the
results of actions can be computed.

Certainly, more expressive lan-
guages exist for reasoning about time
and change, but expressivity is not the
only consideration. In many domains,
efficiency is an important factor, and
given the availability and volatility of
information in such domains, more
expressive languages might not pro-
vide an advantage in predictive abili-
ty, whereas they might prove a decid-
ed disadvantage in terms of speed.

It appears that the idea of represent-
ing actions as mappings from sets of
sentences to sets of sentences in a
suitable language will continue to
play a role in planning research. The
simplicity of the basic framework
makes it amenable to analytic treat-
ment (Lifschitz 1987), and its poten-
tial efficiency makes it a promising
candidate for addressing complexity
issues, such as those involving the
frame and qualification problems
(Ginsberg and Smith 1986).

Hierarchical Planning

Hierarchical planning2 is perhaps the
best known and most misunderstood
of the approaches to planning
explored in this article. A number of
important ideas seem to be tangled in
the current use of the term. This arti-
cle does not make a concerted effort
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Figure 1. Two Extremes in a Continuum of Problems.
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to unravel the tangle, but we try to
identify a couple of important ideas
that have come to be associated with
hierarchical planning.3 Hierarchical
planning arose out of dissatisfaction
with linear planning, as epitomized in
programs such as STRIPS (Fikes and
Nilsson 1971) and HACKER (Sussman
1975). In the linear planning frame-
work, plans correspond to sequences
of actions (usually quite primitive),
and planning decisions tend to follow
the temporal order of the actions
being considered. It seemed that there
should be some way of abstracting
away from (1) the primitive nature of
the actions themselves and (2) commit-
ments to the precise order in which
such actions were to be carried out.

In the STRIPS formulation, a partial
plan corresponds to a sequence of
primitive actions. At any given time,
the planner is attempting to extend its
current partial plan by inserting addi-
tional actions. It would be desirable if
a planner's current partial plan could
always be extended to a complete
plan: a sequence of primitive actions
that achieves the goal specification.
However, because STRIPS often has to
make arbitrary ordering decisions in
order to keep the current partial plan
linearly ordered, the current partial
plan frequently cannot be extended to
form a solution. Work by Sacerdoti
(1977) using partial plans represented
as partially ordered actions appeared
to solve this problem by enabling a
planner to postpone commitment to
the order in which actions are to be
executed. The idea of postponing
ordering commitments was extended
to postponing commitment with
regard to other types of choices (Stefik
1981; Wilkins 1984; Tate 1977). How-
ever, the natural extension of such
postponement strategies, often re-
ferred to as least commitment plan-
ning, has turned out to be problematic.

Planning is generally divided into
two stages: (1) refinement, making
choices (commitments) in the course
of extending a partial plan, and (2)
validation, determining if the com-
mitments made so far are likely to
lead to a complete plan. Postponing
commitments attempts to simplify
the refinement stage by complicating
the validation stage. In the worst case,
validating a plan corresponding to a

partially ordered set of actions can be
exponential in the size of the set of
actions (Chapman 1987). Alternative
incomplete methods for validating
partial plans (Dean and Boddy 1987)
exist, but it is now clear that least
commitment is a heuristic strategy
and not an easy solution to a funda-
mentally hard problem.

In retrospect, perhaps the most
important use of hierarchical abstrac-
tion is concerned with the relation
between tasks and subtasks (McDer-
mott 1977). A planner can decide to
perform action A and later decide to
do A by doing A1...An. We use task to
represent an action the planner is
committed to and subtask for a task it
is committed to as a means of carry-
ing out another commitment. Usual-
ly, when a researcher states that a
planner is hierarchical, the researcher
means that system uses this sort of
abstraction.

The basic ideas behind hierarchical
planning have come to be recognized
not so much as an approach to plan-
ning but rather as part of the problem
statement. In an important sense,
planning is hierarchical and abstract.
The subsection “An Emerging Para-
digm” attempts to extract from the
work of the last two decades a frame-
work that might be considered as the
basis for a research paradigm.

Case-Based Planning

Case-based planning(CBP)4 takes as a
starting premise that the organization
of experience is paramount in formu-
lating new plans and debugging old
ones. Competing approaches differ on
how experience is stored in memory
and how experiences are retrieved and
exploited during planning. Given that
storage and retrieval are so important,
most case-based approaches involve
some theory of learning and memory
organization.

HACKER (Sussman 1975) is an
early example of an approach to plan-
ning that took learning into account.
HACKER's memory organization
techniques were somewhat simplistic,
involving libraries of plans, debugging
techniques, and domain axioms, and
retrieval was done using standard pat-
tern-matching techniques. Neverthe-
less, two important ideas surfaced
from this work. First, planning con-

sists of using and debugging known
plans, and second, once a planner has
constructed a useful plan, it should
store the results for later use. Ham-
mond's (1986) work emphasizes that
what you learn from constructing and
debugging a plan is much more than
just the resultant plan: You learn
about how and when to apply the
plan; how to debug similar plans;
when and where to apply your general
knowledge about the world; and
finally, how to index your newly
found knowledge in such a way that
you are likely to find this knowledge
the next time you need it. Another
memory-based approach draws on the
learning research of Newell and Simon;
the SOAR program (Laird, Newell, and
Rosenbloom 1987) solves problems,
generalizes on what was learned during
problem solving, and caches the results
for subsequent reuse.

Another offshoot from Sussman's
work concerns the notion of debug-
ging techniques that serve to trans-
form a buggy plan into an alternative
and, hopefully, bug-free plan. The idea
of debugging “almost right” programs
using transformations has received a
fair amount of attention in automatic
program synthesis (Green and West-
fold 1982), and interest is picking up
once more in planning (Simmons and
Davis 1987).

During the discussions at the work-
shop, it became apparent that much of
the terminology surrounding CBP was
not well defined. In particular, terms
such as rules, plans, and cases ap-
peared to mean different things to dif-
ferent people. At one point, a group of
participants attempted to make sense
of the following equation:

Cases + Transformations = Plans +
Refinement Strategies .

It was finally agreed that function-
ally the equivalence holds; that is,
given enough time, a traditional hier-
archical planner using traditional
plans and refinement strategies can
come up with exactly the same plans
that a case-based planner comes up
with using cases and transformations.
CBP advocates claim, however, that
on the average, the case-based planner
comes up with a plan faster and that
the plan is bug free more often than
for the traditional planner. This issue
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is interesting because it seems to be
addressing a basic time-space trade-off
in planning. However, the issue can-
not be resolved until there is some
agreement about the meaning of the
basic terms. This impasse points out
the pressing need for precise terminol-
ogy and appropriate analytic tools for
comparing competing approaches.
The intuitions behind CBP are excit-
ing and have served to breathe new
life into various areas of planning and
learning research; however, without
some agreement on terminology, fur-
ther progress will be slow.

Situated Activity

For the most part, the planning
approaches discussed thus far are con-
cerned with offline strategic plan-
ning: problem solving with an empha-
sis on reasoning about change as a
result of action.

Strategic planners tend to assume
that the situation in which a plan is
to be carried out can be predicted at
the time planning occurs. If the cur-
rent situation is completely known,
and the planner has an accurate model
of how actions serve to change the
world, then, perhaps, this assumption
is warranted (we haven't said any-
thing about how long it takes to make
the requisite predictions).
Situated activity5 is concerned with
deciding what to do based on what is
currently known, where what is
known is assumed to be significantly
less than what is true. A situated plan-
ning system is responsible not only for
formulating plans but for seeing that
its plans are carried out properly.

In situations in which precise mod-
els are unavailable, or the system
lacks critical information concerning
the current situation, offline strategic
planners are of limited use. With
many interesting domains, much of
the information required to decide
how best to carry out a given task will
have to be acquired by carrying out
specific actions to gather this infor-
mation. Strategic planners attempt to
deal with such domains by (1) con-
structing highly conditional plans
with many branches, most of which
will never be used, or (2) using primi-
tive operators that serve to invoke
highly conditional routines which can
themselves react quickly to a changing

situation. The first method works well
only in restricted domains; generally,
far too many contingencies need to be
dealt with. The second method simply
ignores the problem by relegating it to
someone else's module.

To deal with the problem of gener-
ating plans in uncertain environ-
ments, researchers have turned to sys-
tems that interleave plan formation
and execution (Chien and Weissman
1975; Durfee and Lesser 1986). In such
hybrid systems, it is possible to defer
planning until information of a
specific sort is available. We have
already seen in the subsection on hier-
archical planning that decisions about
whether to defer commitment are
fraught with complications. The
trade-offs are complex, and issues
such as dynamic replanning are just
beginning to be addressed. As Georg-
eff notes in his position paper from
the workshop, most existing systems
are far too committed to the plans
they formulate and tend to rely heavi-
ly on models of the environment and
not enough on the environment itself.
Such systems tend not to tailor their
planning to the situation at hand.
Given the same abstract task to
achieve, these systems perform the
same computations no matter how
much time and information is avail-
able. They cannot determine when
further planning is futile, and they do
not have the capability to consider
alternative strategies when pressed for
time (Dean 1987).

In the last few years, a number of
systems have been developed for deal-
ing flexibly with uncertain environ-
ments. Brooks (1985) proposes decom-
posing the overall problem into task-
achieving units realizing distinct
behaviors. Rosenschein, Kaelbling,
and Pack's (1987) approach to describ-
ing the behavior of situated planning
systems promises to yield interesting
formal properties (Rosenschein 1987).
Chapman and Agre (1987) propose a
scheme whereby a highly reactive sys-
tem can achieve complex behaviors
without the use of traditional abstract
plans represented as quantified formu-
lae. Georgeff and Lansky's (1987) work
points out the need for a rich vocabu-
lary for reasoning about intentions:
what the planner is committed to
doing, how important individual com-

mitments are, and how various com-
mitments are related to one another.

Until recently, the work in situated
activity and strategic planning has pro-
ceeded along separate tracks, driven
largely by orthogonal issues and run by
separate groups of devotees. It appears
from the workshop discussions that
each of the groups is finally conceding
that the issues which are of central
concern to the other are important and
deserve attention. This broadening
view should set the stage for a synthe-
sis of ideas resulting in a new genera-
tion of situated planning systems.

An Emerging Paradigm

In this subsection, we consider some
ideas that might form the basis for a
paradigm for planning research. A use-
ful paradigm for planning would pro-
vide an analytic framework for design-
ing, comparing, and communicating
ideas about planning systems. A small
group of workshop participants engaged
in a lengthy and productive discussion
aimed at developing just such a frame-
work. In the following paragraphs, I will
summarize some of the basic ideas put
forth in these discussions.

In this framework, planning is a
two-phase process, consisting of pro-
jection (a term owed to Wilensky
1983) and refinement. The planner
has at all times an abstract plan that
it is working on. Projection involves
quantifying over instances of such
abstract plans in order to determine
how best to further specify (or refine)
the plan. Refinement consists of
transforming an abstract plan into
another abstract plan. An abstract
plan is likely represented as a set of
sentences in some language expres-
sive enough to capture facts about
time. An instance is likely represent-
ed as a superset of the set of sentences
corresponding to the abstract plan. It
is useful, however, to speak directly in
terms of the model theory.

A model of a set of sentences in the
chosen language corresponds to one or
more time lines (McDermott 1982) or
possible worlds (Lewis 1973). An
abstract plan, then, is a set of possible
worlds, and an instance is a member
of such a set. A transformation is just
a function from sets of possible
worlds to sets of possible worlds. The
transformations used by existing plan-
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ners include instantiating operators
(adding sentences that introduce new
action events) and ordering operator
instances (adding sentences which
restrict the order of action events).
Still, this (emerging) paradigm is
incomplete. We have said nothing
about how the examination of in-
stances of abstract plans affords any
insight into how the abstract plan
should be transformed. We haven't
mentioned comparing plans, choosing
a good plan, or choosing an optimal
plan. Nevertheless, the approach,
even as it stands, appears promising.
The approach seems to provide an
appropriate framework for categoriz-
ing planners (for example, most of the
participants believed that NOAH and
ABSTRIPS could profitably be ana-
lyzed using such a framework). The
approach could be used as a tool for
synthesizing new planners; some dis-
cussion took place of planners (Finger
1987) that manipulate sets of sen-
tences which are inconsistent, that is,
the abstract plan corresponds to the
empty set of possible worlds. A num-
ber of techniques already exist that
could be cast directly into the above
paradigm (Genesereth 1984) as well as
a growing literature describing meth-
ods for directly analyzing formal sys-
tems in terms of their model theoretic
properties (Shoham 1986).

Conclusions

Initially, there was some reluctance
on the part of the workshop partici-
pants to serve on the paradigms panel.
The impression was that the older
methods have little to offer us in the
way of foundations, especially with
regard to STRIPS and hierarchical
planning. In retrospect, it seems that
just the opposite is true. Those
approaches which have been around
the longest have the most to offer in
terms of a set of ways for thinking
about planning. New problems have
been discovered and the older meth-
ods found wanting, but many of the
basic intuitions that gave rise to the
older methods have stood the test of
time. Today, these basic and intuitive-
ly appealing methods are known
largely by association with archaic
and poorly understood programs;
these methods cry out for careful
reexamination and precise formula-

tion. To be fair, some of the founda-
tions have already been laid (Nilsson
1980). A great deal remains to be
done, however.

The newer approaches (for example,
CBP and situated activity) have yet to
sort out what problems they are
designed to solve. The researchers
promoting these approaches have only
recently succeeded in convincing the
rest of the research community that
the issues they consider important are
not adequately addressed in existing
approaches. The paradigm discussed
in the previous subsection is by no
means complete. It does not attempt
to address the basic problems in con-
trolling processes; it says nothing
about gathering information concern-
ing processes not under the direct
control of the planner. In fact, our
fledgling paradigm says nothing at all
about computation, search, or sens-
ing, aspects that cannot be neglected
in any complete paradigm. A single
paradigm that addresses all the plan-
ning issues is still needed.

A great deal of work must be done,
and unfortunately, only a small num-
ber of competent researchers are
working on the problem. In the early
1970s, a flurry of activity took place
in planning research. This initial
surge of interest was followed by near-
ly 10 years of inactivity, largely the
result of the major funding agencies
losing interest and withholding their
support. The promise of planning
technology for military and industrial
applications is enormous. For the
small investment made, a great deal
of progress in planning has already
been made in the 1980s, but without
continued support for basic research,
this progress will not continue.

Plan and Goal Representations
Theodore Linden

Chair: Theodore Linden, Advanced
Decision Systems. Speakers: Reid
Simmons, Massachusetts Institute of
Technology; Barbara Hayes-Roth,
Stanford University; Drew McDer-
mott, Yale University; Nils Nilsson,
Stanford University; and Phil Agre,
Massachusetts Institute of Technology

This session focused on plan and
goal representations as one of the key

problems when building planning sys-
tems that integrate multiple planning
methods. Not one of the planning
paradigms discussed in the previous
session offers a complete solution for
most practical planning applications,
and the effective integration of multi-
ple planning methods depends on a
common plan representation that is
shared by the different methods.

In most planning systems, a plan
representation is used for com-
munication between a planner and a
plan executor. In addition, many plan-
ning systems (especially those which
use blackboard-based or transforma-
tional approaches to planning) repre-
sent intermediate states of the plan
and then allow multiple planning
methods to evolve the plan into a form
suitable for execution. Thus, the plan
representation not only communicates
the plan to the plan executor but also
serves as the primary means by which
different planning methods cooperate.

Material covered in this summary is
based on written material prepared by
the panelists and by James Allen in
preparation for the session, presenta-
tions during the session, and other rel-
evant discussions and reflections from
the workshop.

What Is a Plan?

Planning researchers are currently fac-
ing many new challenges, and the
basic planning paradigms are chang-
ing. Thus, it is no surprise that a con-
troversy exists about what a plan is.

As chairman, I tried introducing an
analogy between plan representations
and programming languages, with the
idea that plans could be described as
similar to programs except…. I was
expecting responses along the lines of
the following, which came from Sim-
mons: “The type of language one
would use to tell the executor how to
carry out actions is analogous to a
programming language, such as LISP.
However, just as research in automat-
ic programming (e.g., Programmer's
Apprentice) has found that program-
ming languages are impoverished
with respect to the types of informa-
tion needed to do program synthesis
and explanation (e.g., they need data
flow as well as control flow, design
history, etc.), so too we find that,
although planning and plan execution
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share a common representational
framework, the language needed to do
planning must be much more expres-
sive than that needed for execution."

The idea that plans are like pro-
grams was radically challenged by
Agre. Agre argued against any model
where a smart planner gives detailed
instructions to a dumb plan executor.
A plan executor needs to be smart
enough to deal with most situations
that might arise, and once the user of
the plan is this smart, then the lan-
guage in which a planner communi-
cates with the plan user depends
strongly on the competence and the
needs of the plan user.

Hayes-Roth also disagreed with the
analogy between plans and programs.
She characterized a plan as a “tempo-
rally organized pattern of intended
action descriptions.” The action
descriptions and the temporal rela-
tions between them are much less
rigid than the operators and control
flows that can be expressed in most
programming languages. The work by
Hayes-Roth and her colleagues in
applying the BB1 architecture to plan-
ning applications represents some of
the earliest and most long-standing
work on integrating diverse planning
methods. Her recent work on declara-
tive representations of actions and
plans is implemented in several plan-
ning applications, and it shows the
integration of skeletal planning, hierar-
chical planning, linear (assembly) plan-
ning, CBP, and planning by analogy.

The idea of having a denotational
semantics for plan representations
was raised during the session. This
direction seems a good one for
research; however, this idea was not
developed by any of the panelists. I
return to the question about what a
plan is at the end of this summary;
first, I cover some additional points
made by the panelists.

Information Content for Plans

Greater agreement existed about the
kinds of information that should be
represented as part of a plan. Simmons's
elaboration on the minimal information
content needed in a plan was consistent
with comments from many others.

Plan representations are needed for
two separate but related tasks: planning
and plan execution. For plan execution,

certain basic knowledge is needed.
• A list of actions: The actions should
have some duration and must describe
how the action can be executed in the
real world, for example, by being asso-
ciated with a program that sends a
sequence of commands to the robot.
• Temporal information constraining
the order of actions; This information
should include the full range of tem-
poral orderings between sequences of
commands to the robot.
• Parameter bindings for the actions,
describing which objects participate
in an action.
• Preconditions of action: It is desir-
able to represent the action's precon-
ditions separately from the actual
body of the action so that the plan
executor can use this information to
decide if and when to perform sensory
operations to decide whether an
action is executable.

In addition to these four items,
three more types of information are
needed for planning:
• The effects of actions: These effects
must be represented in a form that the
planner can reason about.
• The goals one is trying to achieve.
• Dependency information relating the
effects of actions to the achievement of
goals and subgoals: This information is
necessary for efficiently determining
how changes to one part of the plan
affect the plan's global character.

This framework should be relative-
ly noncontroversial. However, it is
relatively weak in that many plans
might be difficult to represent in the
framework. Some additional informa-
tion is needed to ease the burden of
planners (and executors):
• Abstraction: This is widely recog-
nized and does not need much expla-
nation. One observation is that plan
executors, as well as planners, can
benefit from the abstraction hierar-
chy, for example, by checking whether
the preconditions of an abstract action
are met before attempting to execute
its detailed subactions.
• The planning decisions and assump-
tions underlying the model of causali-
ty and the model of planning should
be made explicit. For example, the
planner (and, in particular, the replan-
ner) should have access to informa-
tion describing why, in achieving a
particular goal, one action was chosen

over another or what assumptions
helped decide an action ending at
time T1 to achieve a goal at time T2.

Goal Representation

Goal representations appear in the
interface between the planner and the
human. Although these representa-
tions could be represented differently
from the plans appearing in the inter-
face between the planner and the plan
executor, good reasons exist to look
for a single wide-spectrum representa-
tion scheme that can represent inten-
tions at all levels, from abstract goals
to the lowest level of executible plans.
A wide-spread representation encour-
ages generality in the planning meth-
ods by allowing each method to be
applied at any level of abstraction.

McDermott, Simmons, and James
Allen discussed the need to represent
goals or intentions that cannot be ex-
pressed as a simple conjunction of
statements about a single achievable
state. As they pointed out, it is possi-
ble to write statements about the
future that deal with sequences of
goals, define goals which are to
remain true or false while other goals
are achieved, and so on. The problem
is not in writing complex statements
about future states of the world. The
problem, quoting McDermott, is that
“every planning method we know of
relies on dividing a problem into
pieces, producing plans for the pieces,
and reconciling them. It is hard to
divide an arbitrary statement (replete
with quantifiers, connectives, and
modalities) into pieces that make
sense.” Thus, just as there seems to be
no practical, ultimately general plan-
ning method, it appears also there is no
useful, ultimately general plan represen-
tation that allows goals to be decom-
posed in domain-independent ways.

Control Structures for Plans

It was generally agreed that for many
applications, the plans produced by a
planner need to be able to express con-
ditional, iterative, and concurrent
action executions. Partially developed
plans need to be able to represent general
temporal constraints between actions.

Nilsson is “exploring the alternative
of creating plans expressed in a produc-
tion-system programming language
rather than in ordinary programming
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languages. Such programs have a short
sense-act cycle and have more built-in
conditionality. Thus, they can respond
to environmental changes in a more
timely fashion. They can also be easily
modified by adding and/or subtracting
production rules, and thus planning
and plan execution processes can be
more tightly integrated. In this view,
we regard the planning process as one
of maintaining the production rules
(governing the system's actions) in
rational balance with the systems
beliefs and goals."

The Role of Plans 
in Controlling Actions

Let us return to the basic question
about what a plan is. I focus
specifically on the role of planning in
robotics and other dynamic control
applications. (Many other planning
applications exist, such as the
Defense Advanced Research Projects
Agency battle management applica-
tions, where execution of the plan is
not automated; these questions then
do not arise in the same form).

A simplistic view was that a plan-
ner provides the intelligence and is
the source of all decisions about what
a robot should do. The problem with
this view is that traditional planners
build models of possible futures and
then generate and evaluate plans with
respect to these models. Most robotic
control decisions must be made
quickly; furthermore, it is often
impossible (and unnecessary) to fore-
see enough to model it in any reason-
able way.

Everyone probably agrees that most
of the decisions which need to be
made by a robot (especially lower-
level decisions) do not require the
construction of elaborate models
about possible futures. So the ques-
tion comes down to whether we want
to view these simpler decisions as
based on some new, simplified form of
planning (called reactive planning, sit-
uated planning, or whatever) or
whether we want to admit that most
activity does not require planning.
The latter seems a reasonable choice,
but this question really needs to be
discussed in the context of a more
sophisticated model of hierarchically
structured control systems.

Hierarchical Systems 
for Controlling Activity

During the workshop, abstraction lev-
els and hierarchies were mentioned
frequently; however, when talking
about hierarchical control systems, it
is important to distinguish different
hierarchies within a planning system.
Hierarchical levels can be based on
subtasking, abstraction levels, and
reflection.

These principles—largely orthogo-
nal—interact in complex ways and
they are principles by which a system
can be decomposed into levels. Plan-
ning systems, of course, make exten-
sive use of goal decomposition (sub-
tasking) and abstraction levels. Note
that abstraction is the technique
which offers a way out of the expo-
nential growth in complexity that
characterizes most planning algo-
rithms (see, for example, Korf 1987).

Reflection is the principle that dis-
tinguishes between acting and think-
ing about acting. If we take action as
basic (a point advocated by Agre), then
planning is reflection about acting,
and metaplanning is reflection about
planning. Thus, we can view planning
as metaactivity; it is also reasonable
to assume that there should be an
order of magnitude or more of activity
than there is of metaactivity.

A reflection hierarchy is orthogonal
to an abstraction hierarchy. This dis-
tinction was made clear in Molgen,
where there was reasoning about
domain objects at multiple levels of
abstraction as well as metaplanning.
In Molgen, one could view the
reflection hierarchy as primary, with
the domain objects organized in an
abstraction hierarchy. For robot con-
trol, one might rather view abstrac-
tion levels as primary, leading to an
opportunity for reflection (planning)
in the control decisions at each
abstraction level. A robot's abstrac-
tion levels might include levels for
deciding where to go, avoiding obsta-
cles while traveling, extracting linear
features from an image, and so on.
Discussions about planning versus
execution should be relative to a
given abstraction level. What is exe-
cution on one level of abstraction
might well involve planning on a
lower level of abstraction. Thus, no

single distinction exists between a
planner and an execution agent;
rather, at each level of abstraction,
control decisions must be made (pos-
sibly by a planner).

This proposal that the distinction
between planning and execution
should be relative to abstraction lev-
els is one approach toward imple-
menting the kinds of smart plan users
that Agre argued for. However, Agre
explicitly argued against this approach
toward implementing smart plan
users because it is difficult (the alter-
natives are not yet clear).

We should not assume that all deci-
sions about actions are made by plan-
ning. At each abstraction level, the
builder of a robot can choose whether
the system should just act or whether
it should first think about how to act.
This decision involves the usual
trade-off between performance and
flexibility. At any level of abstraction,
if we build the decision criteria into
the control system, then we will have
better performance and, typically, less
flexibility. If the run-time system first
thinks about alternative actions it
could take, it has greater opportuni-
ties to take additional factors into
account when deciding how to act but
not without a clear run-time perfor-
mance cost. Furthermore, reflection is
useful only when there is enough
information available to build and rea-
son about a world model. When this
information is available, reflection
enables decisions that are more flexible
and more complex than the kind of
decision-making which can be handled
in practice by building decision criteria
directly into the run-time system.
Reflection is more likely to be useful
at higher levels of abstraction, where
flexibility is more important and per-
formance is less important; however,
the choice of whether to act or reflect
applies at all abstraction levels.

The distinction between acting and
thinking about acting is somewhat
elusive; a hierarchy based on
reflection does depend on one's view-
point. All hierarchical structures are
simply design issues; in principle, a
system with the same functionality
can be built without using any of the
hierarchical design principles. Indeed,
one of the standard effects of compila-
tion is to map a system designed with
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hierarchical structures into a flat,
high-performance system. Stan Rosen-
schein, Nilsson, and others are work-
ing on ways to compile planning sys-
tems into high-performance action
systems, achieving much of the flexi-
bility of the planning system and pre-
serving the performance of systems
that do not have to reflect on their
own activity at run time.

These “reflections” lead to the con-
clusion that plans are representations
for proposed courses of action which
can be reasoned about and evaluated
before the action is undertaken. Plan-
ning is the most important technique
available for building systems that
can act in flexible and intelligent
ways; however, planning is not the
only way to achieve flexible systems,
and planning is not a prerequisite for
acting.

The Use of Truth Maintenance
in Planning Systems

Richard Fikes

Chair: Richard Fikes, Price Waterhouse.
Speakers: Phil Agre, Massachusetts
Institute of Technology; Paul Morris,
IntelliCorp; Yoav Shoham, Stanford
University; and Dave Smith, Stanford
University.

In this session, we examined ways

in which truth maintenance technolo-
gy has been and might be used in the
formation, monitoring, and repair of
plans. Truth maintenance technology
enables efficient maintenance of
explicit records of the assumptions
made in a model and of the
justifications for beliefs derived from
these assumptions. It promises to be a
valuable tool in planning systems
because of the centrality of making
assumptions about an external envi-
ronment while a plan is being con-
structed and of responding to varia-
tions from these expectations as the
plan is executed. In addition to explor-
ing this potential, the session high-
lighted a collection of pitfalls that
occur in the use of truth maintenance
for planning. This discussion is an
overview of the potential of the tech-
nology; some of the pitfalls of the tech-
nology are also discussed.

Truth Maintenance Systems

The development of truth mainte-
nance systems (TMSs) seems to have
been motivated primarily by two per-
ceived defects in previous inference
techniques. First, the deficiencies of
chronological backtracking had
become apparent from experience
with languages in the PLANNER fam-
ily (Bobrow and Raphael 1974). Sec-
ond, it was recognized that reasoning
in many practical situations requires
the making of assumptions which
could be retracted later if they turned
out to be incorrect. Because this rea-
soning based on assumptions meant
the set of believed facts could dimin-
ish as well as increase, it was referred
to as nonmonotonic reasoning.

Nonmonotonic reasoning allows
conclusions to be drawn in the
absence of contrary information. For
example, if we leave our car in the
parking lot, we expect that it will still
be there when we return. If a meeting
takes place every week in a certain
room, we expect this schedule to con-
tinue unless we are notified other-
wise. These conclusions are really
assumptions, which might turn out to
be wrong. Further reasoning can pro-
ceed from these assumptions. To
allow for recovery in case of error, the
system needs to maintain a record of
dependencies so that it can undo all
the consequences of invalidated
assumptions.

The need to retain records of
justifications for beliefs led to the
development of a TMS by Doyle
(1979) that maintained explicit
records of the assumptions made in a
model and the justifications for beliefs
derived from these assumptions. By
keeping track of these justifications, a
TMS is able to determine the assump-
tions on which a conclusion is based,
withdraw a conclusion if these
assumptions cease to be believed, and
efficiently reinstate the conclusion if
the assumptions are believed once
again. In the event of a contradiction,
the assumptions underlying it can be
quickly determined so that they can
be revised as appropriate.

The ability of a TMS to identify the
assumptions that cause a contradic-
tion led to the development of a
search technique called dependency-
directed backtracking (Stallman and
Sussman 1977), which is much more

efficient than chronological back-
tracking in many situations. The
reduction in search is obtained by rep-
resenting each choice made by the
searcher as an assumption and supply-
ing justifications to the TMS for all
derivations based on these choices.
When a contradiction is derived, the
TMS identifies which choices are
responsible for the failure so that the
searcher can proceed directly to
changing them, even if they are not
the most recent choices made. Note
that in general, a TMS implicates a
set of choices in the failure. The prob-
lem of which of the implicated choic-
es to consider changing remains.

Truth Maintenance and Planning

The creation of a plan is based on a
set of assumptions about task goals,
the external environment, and the
actions available as plan steps. The
planner makes choices during plan
creation that can be considered fur-
ther assumptions.

During plan creation, when a situa-
tion that is expected to be produced
by executing plan steps is inconsis-
tent or is a dead end with respect to
achieving the plan's goals, a TMS can
be used to implicate the assumptions
responsible for the failure. A point
made in the session is that for such
plan creation failures, assumptions
representing planner choices are typi-
cally the ones to be reconsidered, not
the assumptions about the environ-
ment or action repertoire. Changing
assumptions about the environment
or action repertoire to fix an expected
failure corresponds to a form of wish-
ful thinking. For example, a planner
might predict that opening the door of
a bird cage would produce the desir-
able result of allowing the bird to be
fed and the undesirable result of let-
ting the bird escape. We would not
want the planner to avoid the undesir-
able result by simply changing its
environmental assumption that the
bird wants to escape. Instead, we want
it to change its choice about opening
the door.

Note that in situations where alter-
native plan choices are highly unde-
sirable (for example, costly or danger-
ous), questioning critical assumptions
about the environment or action
repertoire can be a reasonable strategy
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(for example, “Is that bridge really
out?” “Can the truck carry additional
cargo?"). In such cases, the planner
can recommend information-gather-
ing actions to confirm or refute the
assumptions. In extreme situations, it
might be necessary to change or
ignore environmental assumptions
(“Damn the torpedoes!”) and proceed
at risk.

In contrast, failures during plan exe-
cution are typically recognized as
undesirable properties of the current
situation. Because it is no longer
meaningful to change the choices that
produced the current situation, analy-
sis of such failures involves determin-
ing which of the environmental or
action assumptions implicated by
TMS are invalid (for example, “The
book wasn't in the library.” “The car
would not start."). Diagnosis might
need to be done to determine which
assumptions must be revised to
account for the unexpected state (for
example, which component of the car
failed). The justification structures
and built-in search capabilities of an
assumption-based truth maintenance
system can be used as the basis for a
diagnostic procedure to do this task
(as in the work on multiple-fault diag-
nosis by de Kleer and Williams 1986).

Danger, Proceed with Caution

Although the integration of truth
maintenance technology into plan-
ning systems seems attractive, plan-
ning system designers need to be
aware that there are subtle problems
involved in its use which can cause
significant difficulties in planning sys-
tems. A good example is the much
publicized Hanks and McDermott
(1986) anomaly in which an intuitive
formulation in the default logic of an
action sequence produces a nonintu-
itive interpretation of the events.

In this session, we explored two
such problems. The first, presented by
Morris, was the wishful thinking
issue described earlier. The second,
presented by Smith, was what he con-
siders to be a fundamental problem
with using truth maintenance when
reasoning about temporal quantities.

Suppose that a fact A is true at time
t0 (denoted as [A,t0]), and we have the
implication (ForAll t) ([A,t] implies
[B,t]), allowing us to conclude [B,t0].

Now suppose that an action takes
place causing A to become false at t1.
What happens to our belief in B? As it
turns out, this question does not have
a simple answer; cases exist where B
should be retracted at t1, but cases
also exist where B should be preserved
at t1 (even when no other supporting
justification is present for B). Indis-
criminantly applying truth mainte-
nance can result in the loss of impor-
tant information. For example, we can
apply the transitivity property of Left-
Of to conclude that because X is Left-
Of Y and Y is LeftOf Z that X is Left-
Of Z. Now, if we move Y so that it is
no longer LeftOf Z, then TMS would
remove the conclusion that X is Left-
Of Z, even though the movement of Y
does not affect the relationship
between X and Z.

In order to solve this problem, we
require additional information about
the connection between the proposi-
tions. The question becomes, “What
information is required and how do
we supply it? We can fix the problem
by supplying frame axioms or explicit-
ly listing all the ramifications of each
action. However, this solution is hard-
ly satisfactory because of the episte-
mological and computational prob-
lems that result.

Dependencies and Planning

TMSs maintain dependencies
between derived information and the
explicit assumptions on which the
derivations are based. Planning sys-
tems can exploit a general notion of
dependency links in several additional
ways. For example, a planner might
have identified for each plan step a set
of propositions whose truth before
this step assures that nominal execu-
tion of the remainder of the plan
achieves the task goals (that is, the
notion of a kernel as developed in
Fikes, Hart, and Nilsson 1972). An
important augmentation of the basic
kernel idea is to associate with each
kernel entry (that is, proposition) the
goal(s) in the plan the entry is expect-
ed to satisfy (that is, which task goal
or plan step precondition) (as in Tate's
goal structures).

Given such dependency informa-
tion associated with kernel entries,
the monitor can, for example, respond
to a failed kernel by invoking a depen-

dency-directed replanning effort in
which new plan fragments are con-
structed only for the goals affected by
the failed kernel entry. For example, if
two towers are to be constructed, and
a failure occurs during the construc-
tion of the first, then a new plan is
constructed only for the remainder of
the first tower; the existing plan for
the second tower is left intact. Such
dependency information is important
basic information about the structure
and intent of the plan that can be use-
ful in most replanning efforts.

Another important use for depen-
dency information is in linking plan-
ner decisions to environmental
assumptions. If a plan monitor knew
which environmental assumptions
were used during plan construction,
then it could monitor these assump-
tions and reinvoke the planner when
any of them were invalidated. For
example, if an obstacle is unexpected-
ly removed from a path, then the plan
steps to circumvent the obstacle
could be replaced by more direct
steps. In order to identify and monitor
all the environmental features that
were used to choose a given plan frag-
ment over all others, the planner
would need to provide the monitor
with TMS-style justifications for
choosing one plan step over another,
one ordering of steps over another,
and so on.

It is doubtful whether a system can
effectively monitor all such environ-
mental features in nontrivial domains
because the justifications need to
include in some form all the subgoals
considered in all the alternative plans,
because if any of the subgoals in an
alternative plan completion become
true during plan execution, then this
alternative needs to be reevaluated.6
In addition, the monitor needs to
know what facts cause new alterna-
tives to become available to the plan-
ner (for example, a new block being
put on the table). For example, a new
operator instance could become avail-
able that satisfies a given goal. That
occurrence might happen if the opera-
tor repertoire is added to or changed.
More interestingly, the occurrence
might happen if a new binding
becomes available for an operator
parameter (for example, a new block
is discovered).
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A practical approach to monitoring
for the opportunity to change to an
alternative plan will apparently
require identifying, during plan cre-
ation, only the subset of alternatives
and factors that would make a
significant difference in some way (for
example, in resource expenditures or
risk) and monitoring only these. In
any case, the TMS-style dependency
structures will play a central role in
the process.

Uncertainty and Planning: 
A Summary

Peter Cheeseman

Chair : Peter Cheeseman, NASA/
Ames Research Center. Speakers:
Larry Fagan, Stanford University; Ben
Wise, Dartmouth University; and
Mike Genesereth, Stanford University.

The panel on probability in plan-

ning focussed primarily on planning
under uncertainty. A summary of the
themes of the presentations and sub-
sequent discussions is shown in figure
2. This summary is entirely the view
of the author and should not be
blamed on the panelists.

The basic idea behind this diagram
is that there is a trade-off between the
predictability of the environment in
which the plan is to be executed and
the degree of reactivity which is nec-
essary to successfully achieve the
goals of the plan. Traditional AI plan-
ning lies at one extreme of this trade-

off, where complete knowledge of the
world and the effects of possible
actions on the world is assumed. Tra-
ditional control theory lies at the
other end of this trade-off because
here there is almost no look ahead
(advance planning); instead, the sys-
tem reacts immediately to differences
between its predicted state and its
observed state. In order of increasing
reactivity, the kinds of planning repre-
sented in this trade-off are traditional
AI planning, conditional planning,
automatic programming, plan moni-
toring and replanning, deferred plan-
ning, and game playing.

Traditional AI Planning.   Traditional
AI planning includes such well-
known systems as STRIPS, NOAH,
NONLIN, SIPE, and DEVISOR as well
as many scheduling systems. The
important characteristic of these sys-
tems is how much predictability they
assume about their domain. Typically,
all the relevant aspects of the initial
world are assumed known, and the
effects of actions (as represented by
operators) are assumed correct. Few
real-world domains meet these strong
predictability requirements. The only
ones I know of are manmade cases,
such as remote spacecraft (complete
isolation) or machine setups (where
the environment can be forced to
agree with assumptions) and schedul-
ing. Even with these assumptions,
many problems of theoretical interest
exist, in particular, the frame prob-

lem, temporal persistence, search con-
trol of a potentially huge search space,
truth maintenance, interaction detec-
tion and resolution, temporal repre-
sentation and reasoning (that is both
expressive and efficient), goal repre-
sentation (including trade-offs
between goals), constraint handling,
and so on. Although these problems
are far from solved, the consensus at
the meeting was that the main prob-
lems in building realistic planning
systems lie in the relatively neglected
area of planning under uncertainty.

Conditional Planning.   If a traditional
AI planner is missing information
about the world at plan time, or non-
deterministic operators exist with
multiple outcomes, then standard
planning methods will not work. A
method of coping with a limited
amount of such uncertainty is condi-
tional planning. Conditional planning
involves generating alternative plans
for each possible outcome or world
state, including an appropriate test in
the plan to choose from the alterna-
tives. Successful conditional planning
requires solving a number of prob-
lems. The main problem is the explo-
sion of possible worlds if many condi-
tions exist. This explosion occurs
because the world is in a different
state, depending on which branch is
taken; thus, subsequent choices can
depend on earlier choices, leading to a
potential exponential growth in the
number of possible worlds. The explo-
sion can largely be avoided if actions
are taken to ensure that the world is
effectively in the same state regard-
less of which branch is taken (that is,
the branches rejoin, avoiding an
exploding tree of possible worlds). In
general, conditional branches should
be generated for all situations where
failure is considered likely, and the
number of possibilities is small. Note
that the introduction of conditions
removes the uncertainty as far as the
planner is concerned because every
branch in the plan is completely
determined. The loss of predictability
is the result of a lack of knowledge
about which branches will actually
execute at run time.

Automatic Programming.   Automatic
programming is usually regarded as a
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Figure 2: The Predictability-Reactivity Trade-Off
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separate area of research in AI, rather
than as a form of planning. This situa-
tion is unfortunate because both areas
are closely related. In automatic pro-
gramming, the execution system is
always a particular computer or a par-
ticular target language (for example,
LISP). Because a computer is simple
minded and predictable in its behav-
ior, it is possible to produce plans
(programs) with a large number of
steps and prove properties of program
execution (for example, termination)
that would be impractical for an error-
prone real-world execution system.
Conditional planning, described earli-
er, corresponds to IF statements in
programming, and simple commands
(for example, assignment, +, and
CONS) correspond to actions in AI
planning. The main difference from
AI planning is that automatic pro-
gramming is more concerned with
planning for a whole class of possible
goals (for example, inverting a matrix
and reversing a list) than planning for
a set of specific goals. Also, in pro-
gram loops, the world only changes as
dictated by the program; in planning,
however, iterative loops are more like-
ly to fail because of unpredictable
world events. These differences are
only of emphasis and not a fundamen-
tal distinction; so, many of the meth-
ods developed for automatic program-
ming could be applied to planning,
and vice versa. As for conditional
planning, the only uncertainty con-
cerns what will actually execute in
particular cases—the program must be
correct for all the allowed input.

Plan Monitoring and Replanning.   An
AI planner not only produces a plan
(that is, a [partially] ordered set of
actions) but also a model of the world
over the period covered by the plan.
During execution, it is important that
the observed situation be checked
against the expected world state(s) and
that any mismatches be discovered.
This check can be achieved by the
planner inserting sensor steps in the
plan to verify that the desired world
state is achieved and remains
achieved. To do such sensor planning,
the planner must have a model of
what the sensors can detect and what
conditions are necessary for their
application. This requirement implies

that the available sensors have well-
defined capabilities. The sensor capa-
bilities can be captured as operators
similar to the standard action opera-
tors in AI planning; the main differ-
ence is that the effect of a sensor oper-
ator is to generate information, not
change the physical state of the world.
The modeling of sensors as operators
allows the planner to reason about
information goals using the same pro-
cedures it uses for state goals. This
integration of action and sensor plan-
ning allows the use of active sensors
that require actions in order to per-
ceive. For example, a camera attached
to a robot arm requires movement of
the arm to see difficult areas; this
robot motion can potentially interfere
with other actions. This example
makes it clear that sensor planning
must be integrated with action plan-
ning and generally cannot be done as a
separate postplanning step.

An alternative to the planner doing
all the sensor planning is to allow the
execution system to take some of the
responsibility for correct plan execu-
tion. This possibility is the only one if
prior information is insufficient to
decide appropriate sensor choices at
plan time. For example, possible cam-
era occlusion is often difficult to
decide in advance; so, the choice of
camera location should be deferred to
execution time when occlusions can
easily be detected and alternative
locations selected. Sensor steps can be
included in predefined operators in a
form transparent to the planner. For
example, if there is a sensor that can
track a seam, a weld operator can be
specified which only requires the
robot welder to be positioned at the
beginning of the seam; the weld oper-
ator does the rest through sensor
feedback. Without such a sensor, the
planner would have to do detailed
geometric reasoning to compute a
welding path. The optimal balance
between advance sensor planning and
execution time sensor selection de-
pends strongly on the context.

Replanning is necessary when new
information is found that invalidates
the previous plan (before or during
plan execution), or situations arise
during execution which were not
planned for. Replanning is not differ-
ent from planning; the main differ-

ence is in the trade-off between speed
and optimality. During planning, con-
siderable effort can be expended to
search for an optimal (or near optimal)
plan; in online replanning, however, it
is usually more important to produce
a correct plan quickly, even if it is
suboptimal. If time is critical, it
might be necessary to sacrifice cor-
rectness because to act on a plan that
has not been fully checked is usually
better than to not act at all. If during
planning, particular execution failures
are considered likely, the planner
should preplan responses—a form of
reflex response. These reflexes can be
elaborate, precompiled conditional
plans and should be considered condi-
tional planning rather than a replan-
ning response.

Deferred Planning.   If important in-
formation is missing in the initial
world description, it is possible to
insert into the plan a call to the plan-
ner to achieve the unplanned goal(s) at
execution time. This approach is pos-
sible if the missing information is
expected to be available when (if) the
planner is called at execution time.
For example, it might not be known
at plan time where free space will be
to put something. Instead of failing at
this point, the planner should insert a
call to itself in the plan, so that when
(if) it gets called, it is able to decide, in
the particular context, where the
placement should be. This procedure
is possible because at execution time
the information about the location of
objects will be available through sen-
sors. This deferred planning greatly
extends the range of situations that
can be planned for. However, for it to
work, the planner should check (at
plan time) that the information and
resources needed to plan (at run time)
will be available, that is, deferred
goals are likely to be achievable at
execution time. If most of the plan-
ning is deferred, the result is a high-
level plan that defines an overall
structure, with all the detailed actions
to be decided during execution.
Humans seem to rely heavily on such
high-level planning, and automatic
planners can also benefit in many sit-
uations by deferring decision making
to execution time, when additional
information is available.
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Game Playing.   The essential differ-
ence between game playing and plan-
ning is the lack of predictability as a
result of the uncertainty of other play-
ers' responses. Multiagent planning is
a type of cooperative game, where the
planner could be one of the agents or a
dictatorial agent that to some degree
can control the other agents through a
centralized enforcement. Planning
under these circumstances is difficult
primarily because of the possible
interactions and uncertainties in the
other agents' behavior. This uncer-
tainty is true even for perfect informa-
tion games, such as chess. When plan-
ning is extended to include actively
hostile other agents (opponents), the
goals of these opponents give some
degree of predictability to their behav-
ior (moves), but the range of possible
responses (and your response to their
response, and so on) makes detailed
long-range planning impossible.
Under these circumstances, planning
is reduced to taking immediate
actions (moves) that are likely to
advance the planners' goals regardless
of what the opponent(s) do. based on
lookahead. When there is uncertainty
about the world and the effects of
operators, traditional AI planning is
perhaps better viewed as a game
against nature. This view shows, for
example, the implausibility of plans
consisting of long chains of actions,
each dependent on the previous so
that game playing is necessarily high-
ly reactive.

Discussion

The trade-off between predictability
and reactivity shown in figure 2 leads
to a number of consequences, as
defined in the following paragraphs.

Reactivity and response time. The
more reactive a system is, the shorter
the available response time tends to
be, leading to faster feedback cycles.
Because of the shorter cycle time,
highly reactive systems have little
time to think before responding; so,
precompiled stimulus-response-type
reflexes are necessary, as with stan-
dard control theory. Note that where a
possibility exists of the system going
into oscillation because of overreac-
tion, the methods of standard control
theory are needed. AI approaches
tend to assume that if there is a

divergence between the model and
the observed world, then it is only
necessary to apply the appropriate
operator to correct the problem. This
kind of “bang-bang” control is not
always appropriate.

Plan length and predictability. The
more predictable the execution envi-
ronment, the longer the plan can be
with a reasonable expectation for suc-
cessful completion. Automatic pro-
gramming, in particular, can produce
plans (programs) millions of steps long
that usually complete successfully.
Producing such big plans is only pos-
sible because a computer is such a
predictable environment; the main
source of unpredictability here con-
cerns the input to the program.

Sensor information and pre-
dictability. Highly reactive situations
tend to require large amounts of sen-
sor data to compensate for the lack of
predictability. The quality and quanti-
ty of sensor data that is needed varies
inversely with the ability to model
(predict) the world; if there is
sufficiently good sensor information,
it might not be necessary to model
the world at all.

Reactivity and hierarchical plan-
ning. The higher the level in the plan-
ning and control hierarchy, the more
predictable the environment tends to
be. The hierarchy tends to be chosen
specifically to make this statement
true.

Correctness versus robustness. Tra-
ditional AI planning systems tend to
concentrate on producing correct
plans. Although this method is appro-
priate for highly predictable environ-
ments, it is much more important to
produce robust plans in realistic situa-
tions. Robustness means that the plan
is likely to succeed no matter what
unanticipated conditions arise; that is,
robust plans avoid including commit-
ment to courses of action which allow
few options if they fail in execution.
For example, we try to avoid travel
plans that include tight airline con-
nections even though such a plan is
“correct."

Many sources of unpredictability in
planning require greater reactivity.
The main source could be called
model uncertainty, which includes
lack of information about the initial
state, uncertainty about the effects of

operators (for example, nondetermin-
istic operators), and uncertainty about
the actions of other agents (if present).
Sometimes, this uncertainty can be
reduced by performing actions that
force the world into a known state.
For example, shaking a table ensures
that no object is on top of another
object or offering sufficient rewards
persuades other agents to act in
specified ways, and so on. However, a
planning system must cope with the
fact that it is not always possible to
achieve a particular set of goals; so,
finding a suitable trade-off between
the utility of a partially achieved goal
set and the cost of achieving them
becomes the main problem.

The assumption behind the discus-
sion so far is that it is always better to
do advanced planning if the available
information permits, instead of just
reacting as needed. Advanced plan-
ning can avoid situations where it is
necessary to undo actions because of a
lack of forethought. For example, it
would not be desirable for the mem-
bers of a NASA mission to Mars to
discover that the exit hatch can only
be opened from the outside. However,
several workshop participants noted
that humans manage well without a
great deal of advanced planning, large-
ly because we rely on generalized pre-
compiled plans (such as a “go-to-
work” plan) that include steps whose
effects are not needed until later. For
example, the general “go-shopping”
plan includes the “pick-up-keys” step,
even though they are not needed at
this stage of the plan. Presumably,
such steps have been learned and
compiled as a result of experience. It
is because we live in a reasonably
benign world that we can usually
achieve our goals no matter what hap-
pens (or do we change our goals to fit
what does happen?). For those cases
where we would be seriously inconve-
nienced by a lack of forethought, we
seem to rely on our generalized expe-
rience to avoid such situations.
Whether machines can be trusted to
learn from their experience, given
their greater potential for damage and
general lack of commonsense, is
another question.

Recommendations

In the following paragraphs, I outline
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what I consider to be the main recom-
mendations from the panel and dis-
cussions.

The AI planning community should
make much greater use of probabili-
ties to represent and reason about
uncertainties in planning, including
uncertainty in temporal intervals, spa-
tial uncertainty, and uncertainty of
possible outcomes. A major advantage
in explicitly representing uncertainty
in planning is that it provides useful
search control information: It can
show when the uncertainty has accu-
mulated to the point where further
advance planning is useless.

Increased use should be made of
decision analytic methods. In particu-
lar, the AI use of goals needs to be
extended to utilities, so that trade-offs
between competing goals can be
arrived at. This approach allows plan-
ning to produce useful plans, even
when the given list of goals cannot be
satisfied.

AI planners should increase their
use of compiled procedural knowledge
to avoid rediscovering the wheel with
every planning problem. Many techni-
cal difficulties exist in suitably gener-
alizing previous plans, but precompi-
lation represents an important escape
from the usually exponential search
problem inherent in most difficult
planning problems.

Planning and Execution
Drew McDermott

Chair: Drew McDermott, Yale Uni-
versity. Speakers: Phil Agre, Mas-
sachusetts Institute of Technology;
David Payton, Hughes Research Labo-
ratories; and David Miller, Virginia
Polytechnic and State University.

It was once thought that there was
a problem with interleaving planning
and execution. To a large extent, our
perceptions of this problem have
changed so much that it is hard to rec-
ognize it any more. Of course, we
have new problems to worry about in
its place, but they might be easier to
solve or, at least, more interesting.

The problem of interleaving plan-
ning and execution arose when plan-
ning was thought of as the process of
generating a sequence of action
descriptions at the level of (PUTON A

B). Much of this research abandoned
execution altogether and focused on
methods for arriving at provably cor-
rect action sequences. When people
did think about execution, they tend-
ed to ask questions such as, What if
the world weren't the way the planner
thought it would be? What if actions
didn't always have their intended
effects? Asking the questions this way
encouraged a focus on inserting extra
steps to ensure step preconditions
were met and to make unexpectedly
false preconditions true.

This discussion revealed that these
questions have been superseded by a
whole new viewpoint.7 Experience
with real agents acting in the world,
that is, robots, has shown that the
level of abstraction at which planners
have traditionally worked is of no
interest, at least not in isolation. In
order to control real behavior, it does
no good to issue a command such as
(PUTON A B). Instead, one must be
prepared to engage in behavior tightly
coupled to the world through sensory
feedback. Finding A and B, making
sure A is held properly, following a
collision-free path, and verifying that
A made it to B must all be part of the
behavior the agent engages in.

Thus, at the very least, we must rid
ourselves of the idea that sensory
feedback is put in as a separate phase
having to do with execution monitor-
ing. The behavior must involve senso-
ry monitoring from the beginning.

I use the word behavior here with
caution. A chance exists that the
whole concept of plans and planning
might be relatively unimportant.
Instead, perhaps we should focus on
an entirely different set of issues. For
instance, why do we want our robot
to put A on B? Can we really expect it
to know precisely which objects are
denoted by these symbols? Suppose
what we really care about is getting
shiny metallic objects on top of
tables. Getting the particular shiny
object A on top of a particular table B
then ceases to be important. We can
build a machine to home in on shiny
objects and then gravitate toward
objects that look like tables. In Rod
Brooks's immortal phrase, we can just
try to produce a program that “does
the right thing.” After all, if we can't
write this program, we certainly can't

write a planner that does what the
program does.

This tilt toward the realities of
robot programming is clearly healthy.
It makes us realize that planning algo-
rithms, no matter how clever or deep,
will not compensate for incompetence
in getting around in the world. A
robot must be equipped with good
sensors and behavior controllers (in
hardware or software) that can
respond sensibly to most conditions
which occur as a prerequisite to plan-
ning. Planning, when it is necessary,
must go on against a backdrop of
behavior that is already in progress.
This image raises the possibility that
we can dispense with the whole idea
of planning and just focus on compe-
tent behavior. There are some (Rod
Brooks, Phil Agre, and David Chap-
man) who would do just this.

However, most researchers believe
that planning exists and can be stud-
ied, and it is hard to disagree
(although there is room for disagree-
ment on effective research directions).
Once we decide to study planning,
then the following issues become
important: (1) What is planning for?
(2) When must a planner step in and
alter what the agent is doing? What do
such alterations consist of? (3) What
are the properties of a good domain for
studying planning? In particular, can
we hope to simulate realistic domains
in sufficient detail?

Answering the first question
requires that we clarify some con-
cepts. Given that a computer is al-
ways executing some program, we
must be clear about the distinction
between planning and behaving and
between plan time and execution
time. We define planning as reasoning
about future events in order to select
or, at least, verify the existence of a
reasonable series of commitments to
undertake in order to accomplish top-
level goals (for a robot, the instruc-
tions issued by its human masters).
The terms plan time and execution
time do not refer to separate periods
not even interleaved. Instead, we
define execution time for an action or
a set of actions as the time when they
are executed. Plan time for this set of
actions is then any prior time when
they are reasoned about.8

Why should a basically competent
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agent engage in planning? The answer
seems intuitively obvious. Planning is
an attempt to map out future activity
so that the agent does not become
trapped in local minima as it acts. As
David Miller put it, “Planning should
be done in order to properly allocate
the needed resources for doing execu-
tion.” For instance, the planner can
note that it has several jobs to do at
several different locations and arrange
for them to be done in a particular
order rather than have the execution
system just drift from job to job or
even thrash among several jobs at
once. A planner can consult a map to
realize that a tempting path toward a
shiny object ends in a cul-de-sac. Its
job is to think about the future
enough to have appropriate activities
ready to go as current activities finish.
The agent can intend, not just to
engage in a certain sensor-controlled
interaction with the world now but to
detect when this interaction is
finished and go on to another way of
interacting.

In other words, the activity-
specification language must be rich
enough to include semicolon, that is,
to specify a sequence of actions.
Because traditionally that's all which
could be specified, there has been a
tendency to reject the whole concept
of intended sequences of plan steps or
to see sequences of action as being at
a different level of abstraction from
reactive specifications, such as pro-
duction systems. No reason really
exists to compartmentalize things
this way a priori. A behavior-
specification language ought to be
able to specify loops, sets of produc-
tions, and sequences, and it ought to
allow these things to be composed in
arbitrary ways so that sequences can
occur on the right-hand sides of pro-
ductions, and loops can include sets of
productions as steps. We might as
well use the term plan to refer to the
intended activity, present and future,
specified in this notation.9 (In addition
to the intention structure, the plan
must also represent estimates of
resource consumption, annotations
about competing plans that were
rejected, and so on.)

It would be outside our topic to
dwell on what the planning process
consists of. However, we must go into

this question to some extent in order
to clarify the relation between plan-
ning and execution. Planning is
almost tautologically a process of plan
revision. A planner starts with an
empty plan (in some sense) and revis-
es it until it works. Different planners
revise in different ways: linearly, hier-
archically, transformationally, and so
on. Replanning after an execution fail-
ure is also a process of plan revision;
when an agent fails to reach yonder
shiny object, it must at least abandon
the goal of reaching it. What is the
relationship between these two pro-
cesses?

Before we can answer this question,
we must ask, What is an execution
failure? In the no-planning view, there
is no such thing. The agent is always
acting and always reacting as appro-
priately as it can to current circum-
stances. There is no stage in this pro-
cess to label a failure. (One might
choose to point to where a high-level
controller steps in to disable or reset a
low-level controller, but past this
event, execution just continues.)
Given a planner, there is a natural
model of execution failure. The cur-
rent plan can specify the proper reac-
tion to a wide range of sensory input,
but it can also classify certain input as
outside the tolerable envelope. When
an input in this range is detected, the
current plan just doesn't specify what
to do. An event of this type is an exe-
cution failure.10

When a failure occurs, behavior
cannot cease. Presumably, behavior is
under the control of a plan consisting
of several active processes. A failure
in one does not cause the robot to
cease to exist. Other modules remain
active and take over. Indeed, their
activity can be triggered by the failure
itself. For example, if a robot has lost
track of the road it is supposed to be
following, then it might come under
the control of a backup plan to sit qui-
etly and periodically send out a dis-
tress signal (or wait to detect nearby
enemy robots and explode when they
get close). Meanwhile, it has a certain
amount of time to replan. It might be
able to estimate how long it will take
to be rescued and how many of its
top-level goals will have to be given
up once it is restarted.

There is a consensus of workers in

this area that (to quote David Payton)
“any notion of optimality for run-
time replanning must take into
account the cost of the replanning
time itself. ... Unfortunately, many
opportunities may be lost if too much
time is spent reconstructing an entire-
ly new plan. These lost opportunities
may mean that regenerating a plan
from scratch will not yield a truly
optimal plan.” During the time spent
planning, the world is changing.
Hence, it is pointless to base planning
decisions on the details of the world
model at the point where replanning
is required.

It is important to be careful about
who is taking into account the cost of
replanning. The planner itself cannot
deeply deliberate about whether to act
or contemplate. Any planning algo-
rithm must be run under circum-
stances where the time it takes is
short compared to the rate of change
of world states it depends on. Whoev-
er devises such an algorithm (for
example, a heuristic traveling sales-
man procedure or a procedure for
choosing a sonar-sampling schedule)
must also spell out the circumstances
where it makes sense to use it, and it
must be trivial to test whether these
circumstances apply.

Now let's return to the issue of
plan-time versus run-time revision. In
some cases, there is a natural “time
zero” before a robot is sent on a mis-
sion. In this context, it hasn't really
started to behave until it first plans. It
starts with a complete set of instruc-
tions and attempts to generate a plan
to carry them out. The generation pro-
cess, as described earlier, is a search
through some space of partial plan
descriptions, which terminates in a
plan that is specified well enough for
execution to begin. In this scenario,
once execution is in progress, the sys-
tem has the option, when a failure
occurs, of resuming the plan-genera-
tion process, which will now find a
different plan.

For example, the planning search
might be through a space of plan
refinements guided by a heuristic
evaluation function. An execution
failure changes the robot's world
model, altering the value of this func-
tion. Hence, the search for a good plan
can be restarted with the values
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assigned to partial plans altered. For
example, the planner might be consid-
ering two different routes to a destina-
tion. Route 1 might look better, but
after detecting the destruction of a
bridge along this route, the alterna-
tive, route 2, might suddenly look bet-
ter. We restart the planning process,
and this time route 2 looks better, gets
attention, and ends up being the basis
for a revised plan. The planner might
also possess operators that transform a
plan to eliminate bugs anticipated at
plan time (as suggested by Ted Linden).
In many cases, an execution failure can
be modeled as just another bug, and
transformations can be brought to bear
to get rid of it. One way to deal with an
anticipated protection violation is to
insert plan steps to restore the violated
condition, and this strategy will work
at execution time as well as at plan
time (Linden, Reid Simmons, and
David Wilkins).11

There are limits to how well execu-
tion failures can be identified with
plan-time bugs. Route 2 might have
been the best alternative to route 1,
but by the time we have executed half
of route 1 and discovered a missing
bridge, it is too late to start route 2.
The closest we could come is to go
back where we started and take route
2 but this option might be one of the
worst around. In general, there is
nothing special about the alternative
plans the agent had before an execu-
tion failure or even about the plan it
was executing. The failure represents
new information, which, in principle,
could have an impact on all aspects of
the current plan. If time were not an
issue, the planner might as well dis-
card its entire plan and rethink it
from the state it now finds itself in.
However, because time is an issue, we
must in practice retain the pieces of
the plan that are probably unaffected
by the failure.

For this idea to make sense, plans
must be decomposable into pieces. At
least two notions of decomposability
are relevant here. First, a system can
have several plans active simultane-
ously. It can be (1) monitoring the
edge of the road and correcting devia-
tions (as a step in a plan to get to a
destination), (2) keeping velocity at
about 20 km/h, (3) scanning for other
vehicles (with the intent of avoiding

colliding with them), (4) scanning the
horizon for landmarks (to keep track
of global position), or (5) monitoring
radiation and chemical levels (with
the intent of activating emergency
escape behavior if high levels are
detected).

We can use the term process to
describe each of these pieces. Second,
the current plan can be described at
different levels of detail. The agent
can intend to go to Hill 224, with this
intention carried out by following a
certain route, which involves travel-
ing at 20 km/h and monitoring road
edges. Hence, each process can be
described at different levels.

To some level of abstraction, the
candidate pieces to abandon when a
failure occurs are the processes that
failed. If the road-following process
fails, the agent should kill the route-
following process below some level of
detail. Choosing the level is probably
not too difficult. A planner must asso-
ciate estimates of the time and the
resources that it will consume with
every piece of its plan.12 Whenever it
replans a piece, it can check whether
the new plan consumes significantly
more resources than originally
allowed. If so, it can discard the
revised plan, ascend to a level in the
abstraction hierarchy at which the
magnitude of the resource increase is
not catastrophic, and replan this level.
For instance, suppose the robot
detects that a bridge it intended to use
has been destroyed, and its first
attempt at plan revision is to figure
out some other way to get across the
river at this point, leaving the rest of
the route intact. If another bridge is
close by, then the revised plan might
not exceed the time allotted for get-
ting across the river, and the rest of
the plan can survive. However, if the
best alternative for getting to the
other side of the bridge involves
finding a boat or going miles out of its
way, then it will require much more
time than originally allotted. If we
call this time t, then the correct level
at which to rethink is the lowest level
whose time scale is commensurate
with t (Payton).

This idea reflects pessimism about
our ability to exploit opportunities.
The new information we receive
might make it possible to do much

better at some higher level, but the
procedure I outlined won't notice.
Suppose that one of the robot's high-
level purposes is to cut a road in order
to deny it to the enemy. It might have
decided to travel down the road a cer-
tain distance and lay mines. When it
detects a missing bridge, it would be
nice if it could realize that its mission
is accomplished; instead of finding an
alternative route that doesn't cost
much more than it originally intend-
ed, it needn't make the trip at all. A
trade-off exists between how much of
the plan we revise and how many
opportunities we miss.

Another sense of “opportunism” is
even harder to exploit. Suppose our
robot is given the mission of attacking
enemy vehicles that it believes to be
in a certain area. It comes up with a
plan of following a certain route to
this area and then looking for enemy
vehicles to attack. If it passes an
enemy vehicle on the way, then it
will have overlooked an obvious
opportunity. Unfortunately, that's
exactly what it will do unless it is
already expending some sensory
resources to look for enemy vehicles
before it reaches its destination. Pre-
sumably, the correct approach to this
problem is to have high-quality sen-
sors deliver an enormous quantity of
information that is continuously
monitored against all goals at all lev-
els of abstraction. For the foreseeable
future, sensors will probably not be
good enough for this idea to be worth
pursuing.

Mention of sensors raises a sticky
issue. The research issues we want to
look at in planning are mostly beyond
what current sensor and effector tech-
nology can handle. It is easy to talk
about road-following plans, but in
fact, actually making such plans feasi-
ble is a major undertaking, which
involves more person-hours (in the
ALV program) than all of planning
research. Does it make sense to study
planning and execution based on ideal
models of sensors that might turn out
to be completely wrong? My own
opinion would be that there are lots of
architectural issues which can be
investigated independent of the
details of individual sensors. Howev-
er, it is important to keep in mind
that planners can make plans which

SUMMER  1988    129



are more grandiose than real execu-
tors can execute. Most of these plans
end up being executed only by virtual
robots in simulated worlds. Of course,
the use of simulators is essential in
almost all engineering disciplines.
What is worrisome is our ignorance
about what the sensors will actually
look like when they exist.

Conclusions

Everything said in this section should
be taken with a grain of salt. First, the
research it is based on is in its initial
stages. Second, the position presented
here is a composite of the positions of
several researchers; so, no one will
agree with all of it, not even me. I
hope the key conclusion is correct:
Broadening plan representations to
include sensor-controlled behavior
gives us a clearer picture of how exe-
cution failures are detected and elimi-
nates any special problem of replan-
ning after a failure. Planning and
replanning are essentially the same
process. An agent is always planning
as it acts. The information brought in
by its sensors just pushes the planning
process in new directions.
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Notes
1. This section borrows from the ideas put
forth in a position paper written by Matt
Ginsberg for the workshop.

2. This section borrows from the ideas put
forth in a position paper written by Drew

McDermott for the workshop.

3. The interested reader is urged to consult
Wilkins (1986) or Charniak and McDer-
mott (1985) for detailed discussions of the
issues involved in hierarchical planning.

4. This section borrows from the ideas put
forth in a position paper written by Kris
Hammond for the workshop.

5. This section borrows from the ideas put
forth in a position paper written by Mike
Georgeff for the workshop.

6. One need not consider all the subgoals
in the alternative plan completions, only
those which were not achievable and those
which required steps to be added to the
plan to achieve.

7. This discussion, most of which took
place electronically beforehand, involved a
large group of people who took the time to
put their views in writing: Phil Agre, Rod

Brooks, David Chapman, Tom Dean, Rich
Fikes, Paul Lehner, Ted Linden, David
Miller, David Payton, Reid Simmons, and
David Wilkins. Contrary to one's usual
expectation, they all said provocative and
intelligent things, which I try to do justice
to.

8. There might be some tricky philosophi-
cal issues here about what it means to rea-
son about possible events, especially
events that never actually take place, but
these issues don't have to detain us here.

9. Some people object to this extension of
traditional terminology on the grounds
that it will confuse the uninitiated and
make some carefully drawn distinctions
murky. Here, as everywhere in this
research area, a pressing need exists for the
standardization of terms.

10. We probably want to include items
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