
DART : A Dynamically Reconfigurable Architecture Dealing with

Future Mobile Telecommunications Constraints

Raphael David, Daniel Chillet, Sebastien Pillement, Olivier Sentieys

ENSSAT-LASTI - University of Rennes

6 rue de Kerampont, 22300 Lannion - France

name@enssat.fr

15 mai 2003

Résumé

In addition to the high performance requirements in-

herent to multimedia processings or to W-CDMA, fu-

ture generation mobile telecommunications brings new

constraints to the semiconductor design world. In fact, to

support these processings, a system will have to be very

flexible, in order to support the various algorithms allo-

wed by the norm and the addition of new services, while

keeping an energy consumption level compatible with the

portability notion of this system. In order to associate high

performances and low energy consumption in a flexible

system, we developed a dynamically reconfigurable archi-

tecture called DART. The aim of this paper is to present

this architecture and to estimate its level of performance

and its adequacy with future generation mobile telecom-

munication systems.

1 Introduction

The original idea of futureeedscqsdcsde generation mo-

bile telecommunications, illustrated by the Universal Mo-

bile Telecommunication System (UMTS), is to integrate

all current generation mobile networks associated to mul-

timedia capabilities. In addition to the high performance

requirements inherent to multimedia processings or to ac-

cess technics such as the W-CDMA (Wide-band Code Di-

vision Multiple Access), a data processing sequence of

third generation (Fig. 1) brings new constraints to the

semiconductor design world. In fact, the success of the

UMTS will be linked to a greater flexibility of the stan-

dard than that of the current generation mobile network

such as the Global System for Mobile Communication

(GSM) or the north American Interim-Standard(IS)-95.

Hence, UMTS must be able to support various standards

and algorithms for each kind of processing and to support

their evolutions. For example, a speech signal can be co-

ded according to the GSM norm with an Enhanced Full

Rate (EFR) coding but also with a more powerful and

adaptative AMR (Adaptative Multi Rate) coding, which

is recommended for third generation telecommunications.

Furthermore, UMTS will integrate new services as soon

as they will be developed.

video

audio

data

Processing

MPEGx, H.26x,

...

EFR, AMR,

CELP, RPE-

LTP, ...

V34, V8,

H225, H245, ...

Source coding

Viterbi, turbo coding,

Reed Solomon, ...

TDMA, FDMA,

CDMA, ...

Channel coding Access

PSAK, MSK, ASK,

QAM, ...

Modulation

FIG. 1 – Block diagram of a third-generation transmission

system

Moreover, from an architectural point of view, a multi-

media terminal will successively have to ensure the exe-

cution of very different applications in terms of calcula-

tion and data access patterns, and which handles various

data types. The lack of flexibility of ASIC and the low

level of performance of DSP processors has led to study

the alternative proposed by reconfigurable architectures

[16]. Nevertheless, in spite of the numerous project on re-

configurable architectures, none of them ambition to as-

sociate flexibility, high performance with the low power

constraints inferred by the portability of these systems

[12].

Among these projects, some architectures related to our

work can however be distinguished. The Pleiades project

for example [1] is an architecture template supporting va-

rious granularity of calculation. For example, MAIA [17],

the specialization of this architecture for the speech co-

ding associates some arithmetic operators like Multiplier-

ACcumulators (MACs) and Arithmetic and Logic Units

(ALUs) to FPGA cores. Although this architecture has

been designed under low power constraints, it does ho-

wever not met all our requirements. In fact, even if this

architecture associates low energy consumption and high

performance, its flexibility is limited since it is domain

specific.

The dynamic reconfiguration proposed by the

Chameleon
�✂✁

processor [20] allows a flexibility which

does not limit the use of this architecture to dedicated

applications. This architecture, thanks to the amount of

operators that are integrated, allows the processing of

third-generation telecommunication systems but in spite

of this degree of flexibility and this level of performance,

its high power consumption prohibits its use in an

embedded system.

Moreover these two examples, many other projects on

reconfigurable computing, are based on the use of FPGA.

Some of these projects, like GARP [13] or NAPA [18],

associate a reconfigurable circuit to a programmable pro-

cessor who schedule the different tasks to be executed.

Others architectures such as Piperench [9] or RAPID [4]

can be reconfigured at a higher level in a most efficient

way, respectively at the operator and at the functional le-

vel. However, they do not met all the requirements that

come from the application domain. In fact, some are low

power, others are very flexible or very powerful, but none

of them associate the high performance to the flexibility

and the low energy consumption of the system.

In order to solve the overall problem of future gene-

ration mobile telecommunication systems, we develop a

new architecture called DART. The aim of this paper is

to present this architecture and the concepts used to as-

sociate high performance and flexibility in a low power

architecture. In the first part of this paper the DART ar-

chitecture will be described. Then, in the second part, we

shall discuss about the performance and the energy effi-

ciency of DART. We will moreover verify its adequacy

with our application domain before to conclude on the

work in progress and to come.

2 The DART architecture

Since a third generation telecommunication system

should be able to handle several tasks concurrently, DART

has been broken up into clusters, as illustrated in figure

2, that may work independently the one with the others.

The first advantage of this decomposition is to limit the

complexity of the controller which manages the circuit.

Indeed, the primary function of this controller is to sche-

dule the different tasks to be executed on DART’ clusters

according to their priority and resource availability. Thus,

the controller do not have to sequence the instructions of

every task but simply to specify to the clusters which task

they have to execute. Hence, the control is distributed bet-

ween the clusters which have their own controller to ma-

nage the processings of the task.

Ctrl

maison

DPR

DPR

DPR

DPR

DPR

DPR

DPR

DPR

DPR

DPR

Task controller

Ctrl

maison

FPGA

DPR

DPR

DPR

DPR

DPR

DPR

DPR

DPR

DPR

DPR

Data memory

inst°

memory

config.

memory

Ctrl

E/S

cluster1

cluster3
Mem

L1Cluster4

cluster2

FIG. 2 – System level architecture of DART

The hierarchical organization of DART allows not only

the distribution of the control but also that of the proces-

sing resources. Hence, it is possible to efficiently connect

a very large number of resources without being too pena-

lized by the interconnection cost. Indeed, distributing the

processing resources allows the definition of hierarchical

interconnect network that are much more efficient on a

performance and energy point of view, for large design,

than typical global interconnect network [21]. With this

kind of network, the lowest level of the resource hierarchy

is fully connected, while the higher level communicates

with segmented network. Since they are smaller and less

loaded than that of a flat design, the local connections are

much more efficient on a performance and energy point

of view and thanks to the flexibility of this topology, the

resulting architecture becomes a better target for the de-

velopment tools.

The last but not least interest of this organization is to

simplify the programming model of the architecture, by

exploiting every parallelism level, i.e. thread, instruction

and word levels. In fact, thanks to this decomposition, the

development flow of an application may be partitioned

into tasks liable to run concurrently. By breaking down

the application as the architecture, it is then possible to

obtain a development flow centered on the compilation of

low complexity processings, e.g. loop kernel, on a very

simple and orthogonal architecture presented in section

2.2.

2.1 Cluster architecture

As mentioned earlier, a mobile telecommunication sys-

tem will successively have to ensure the execution of very

different applications in terms of calculation or data ac-

cess pattern and which handle different data types. In or-

der to efficiently support the execution of both video co-

ding and channel coding, which are respectively working

at the arithmetic and at the logic level, each cluster of

DART integrates two kind of processing primitives : some

Reconfigurable DataPath (DPR in french) and an FPGA

core. The DPRs, depicted in section 2.2, are reconfigu-

rable at the functional level in order to optimize the in-

terconnections between arithmetic operators (multiplier,

ALU, . . .) for the calculation pattern.

On the other hand, the FPGA core is reconfigurable at

the bit level in order to efficiently support logic proces-

sings like the generation of Gold or Kasami code in W-

CDMA [6]. Hence these two kinds of operators allow the

adequacy between the algorithm and the architecture for

a large set of applications like that of a data processing

sequence of third generation.

Each cluster of DART, fitted in figure 3, integrates one

FPGA core and six DPRs. The DPRs may be connec-

C
o
n
tro

ller Data

Mem

FPGA

DPR

DPR

DPR

DPR

DPR

DPR

DMA ctrl

Config

Mem

M
em

o
ry

 co
n
to

ller
SB

SB

SB

SB

SB

FIG. 3 – Architecture of a cluster

ted the one with the others thanks to a segmented mesh

network for the massively parallel processings or may be

disconnected to work independently on different threads.

All the processing primitives, i.e. FPGA and DPRs, ac-

cess a same data memory space and their reconfigurations

are managed by a controller. The reconfiguration of the

FPGA is realized in a serial manner in order to minimize

the control. For that, the cluster controller has only to spe-

cify an address bound to the DMA controller which will

manage the data transfers from a configuration memory

towards the FPGA.

In addition to this, the cluster controller also manages

the reconfiguration of the DPRs. This operation is reali-

zed via instructions and the main task of the controller

is to sequence these instructions. Its architecture is simi-

lar to that of a typical programmable processor but ho-

wever, it sequences configurations rather than instructions

and so, it does not have to access an instruction memory at

each cycle. Indeed, the memory readings are realized only

when a reconfiguration occurs and are so very occasional.

This drastic reduction of the instruction memory readings

leads to a very significant energy saving.

2.2 The DPR

The arithmetic processing primitives in DART are the

DPRs (Fig. 4). Every DPR is organized around functional

resources and memories, interconnected according to a

very powerful communication network. Every DPR have

4 Functional Units (depicted in section 3.1) followed by a

register and supporting SWP (sub-Word Parallelism) pro-

cessings [7]. The use of the concept of SWP is justified

by the numerous data sizes in a typical data processing

sequence. In fact, even if audio and video coding are both

arithmetic processings they are working on different data

sizes (8 and 16 bits). Consequently we have developed

some arithmetic operators that are optimized for the most

common data format (16 bits) but which support SWP

processings for the smaller data.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

..

..

.

.

Data

Mem 1

MUL

.

.

..

.

.

..

. .

.

..

.

.

..

. .

Data

Mem 2

ALU

.

.

..

.

.

..

. .

Data

Mem 3

MUL

.

.

..

.

.

..

. .

Data

Mem 4

ALU

.

.

..

.

.

..

. . .

.

..

..

.

..

..

.

..

..

.

..

.

Global

Buses

.

. . . .

.

CB

Address

Unit 1

Address

Unit 2

Address

Unit 3

Address

Unit 4

FIG. 4 – Architecture of a DPR

The functional units are dynamically reconfigurable

(see section 2.3) and are working on data stored in 4 small

local memories which permit 4 read/write per cycle. In ad-

dition to these memories, 2 registers are also available in

every DPR. These registers are particularly useful for data

flow oriented applications where the different functional

units are working on the same data flow but on samples

delayed from one iteration to the following. In that case,

these registers will be used to build a delay chain to share

the data in the time.

All these resources are connected via an entirely

connected multibus network. The hierarchical organiza-

tion of DART permits to kept these buses relatively small

and so to limit its energy consumption. Thanks to this net-

work, every resource may communicate with every others

in the DPR and hence, the datapath may be optimized for

every kind of calculation pattern. Moreover, this flexibi-

lity allows some data sharing, and so some energy sa-

vings, since a memory can simultaneously be red by 4

functional units. The right part of the figure 4 also shows

some connections with global buses to allow the connec-

tion of several DPRs for the massively parallel processing.

2.3 Dynamic reconfiguration in DART

The dynamic reconfigurations of the DPRs are realized

thanks to instructions carried out from the cluster control-

ler and concern the interconnections and the operators.

The interconnection reconfigurations have to allow the

specification of the way in which the resources are com-

municating and so, to optimize the datapath according to

the calculation pattern. 88 bits are required to specify the

connections inside a DPR and between the DPR and the

global buses. For the second level of the interconnection

hierarchy 40 bits are also needed to specify the transac-

tions on the segmented network between the DPRs. The

reconfiguration of the operators are less expensive from a

data volume point of view since only 34 bits are enough

to specify : the operations to be done on each operator of

a DPR, the size of the data handled during the processings

(and so the use of SWP) and eventually the disconnection

of the operator clock that are not in use during the execu-

tion.

All these configuration data are stored in instructions

carried out by the cluster controller. With six DPRs in

each cluster, the configuration data size is 772 bits. Even if

most of the time of a data processing sequence of mobile

communication is spent in compute intensive task (refer-

red to as regular task), such as loop kernel, there are still

some portions of code which are irregular and for which

the operations to be realized from one cycle to the fol-

lowing change without particular order and in a non re-

petitive way. Thus, to be efficient, the architecture must

be able to change the configuration of the cluster (nearly

800-bit width instruction) at each cycle. In order to avoid

the use of a disproportionately large memory, two kinds

of reconfiguration have been distinguished : hardware and

software reconfigurations.

2.3.1 Hardware reconfiguration

The hardware reconfiguration is used for regular pro-

cessings which are realized during long periods of time

and are composed of very few operations, e.g. loop ker-

nels. Those configurations being used for a long time,

their modifications are very occasional and they can so

require a large amount of data without disturbing the exe-

cution of the entire processing. Hence, in this case, a total

flexibility of the DPR will be ensured and they will be

reconfigured in 4 cycles, which is far less than the time

of a typical regular processing. The datapath will thus be

optimized according to the calculation pattern.

Moreover, we can notice that the reconfiguration per-

iods of the different DPRs in the cluster will be disjoin-

ted unless these DPRs are executing the same task. The

reconfiguration can so concern only one DPR per cycle

without lowering the performances. This property allows

the controller to manage only one instruction per cycle

and so to be less complex while authorizing the simulta-

neous reconfiguration of several DPRs in the cluster. In

that case, every DPR concerned by the reconfiguration

will have its datapath optimized for the same processing

pattern. This is defined as the Single Configuration Mul-

tiple Data (SCMD) concept. A hardware reconfiguration

of the cluster will thus require between 4 and 9 instruc-

tions of 50-bits width.

Reconf.

4 cyclesX +
16 16

32

Config. 1

32

y(n)+=x(n)*c(n)

- X

Mem1

8

8

Config. 2

16

8

Mem3

y(n)=(x(n)-x(n-1))²

Mem1 Mem2

FIG. 5 – Hardware reconfiguration

This kind of configuration can for example be illustra-

ted by the figure 5. In this figure, the datapath is optimized

at first in order to compute a filtering based on Multiply-

ACcumulate operations. Once this configuration has been

specified, the computation model is of dataflow type and

no other instruction memory readings are done during the

filtering. At the end of the computation, after a reconfigu-

ration step which needs 4 cycles, a new datapath is speci-

fied in order to be in adequacy with the calculation of the

square of the difference between x(n) and x(n -1). Once

again, no control is necessary to conclude this computa-

tion.

2.3.2 Software reconfiguration

For irregular processings that need to change the confi-

guration of the DPRs at each cycle, without particular or-

der and in a non repetitive way, a software reconfiguration

has also been defined. Thus, in order to be able to recon-

figure the DPR in one cycle with an instruction of reaso-

nable size, their flexibility has been limited. It has been

decided to adopt a calculation pattern of Read-Modify-

Write type, such as that of conventional DSP. In that case,

for each operator useful for the execution, the data are red,

computed, then the result is stored in the memory associa-

ted with this operator at each cycle.

+

Mem1

16

Mem2

16

. 1

S=A+B

Reconf.

1 cycle

X

Mem1

8

Mem4

8

Config. 2

S=C*D

FIG. 6 – Software reconfiguration

This software reconfiguration thus concerns only the

functionality of the operators, the size of the data and their

origin. Thanks to these flexibility limitations, the DPR

may be reconfigured at each cycle with only one 50-bit

instruction. This is illustrated on figure 6 which represents

the reconfiguration needed to replace an addition of data

stored in the memories 1 and 2 by a SWP multiplication

on data stored in memories 1 and 4. As for hardware re-

configuration, the controller handles only one DPR confi-

guration instruction per cycle. This sufficient since the ir-

regular processings have little parallelism.

Thanks to these reconfiguration modes, DART is able

to support every kind of processings while being able

to be optimized for the critical and regular processings.

These two kind of reconfiguration can moreover be mixed

without any constraints and even if the calculation effi-

ciency of DART is lowered for the irregular processings,

this drawback is not a real problem since these computa-

tions have a low complexity and have very little paralle-

lism. The use of only one DPR is thus sufficient to support

them.

2.4 Address generation units

Since the controller task is limited to the management

of the reconfigurations, DART must integrate some dedi-

cated resources for address generation. These units must

provide the addresses of the data handled in the DPRs

for each memory during the dataflow tasks, i.e. the regu-

lar tasks. In order to be efficient in a large variety of ap-

plication, they support numerous addressing pattern (bit-

reverse, modulo, pre/post increment. . .). These units are

built around a module in charge of sequencing the ac-

cesses at an instruction memory (64x16-bits). In order to

minimize the energy consumption, this accesses will take

place only when an address has to be generated. For that,

the sequencer may be put in wait state thanks to an ins-

truction which will moreover specify its number of wait

state. Another module is then in charge of waking up the

sequencer after the number of cycle specified in the ins-

truction.

Address

generation

instruction

Memory 1

64x16 bits

Sequencer 1

Instruction

decoder 1

Datapath

1

Address 1

Instruction 1

Zero-overhead loop support

Data

Memory 1

Address

generation

instruction

Memory 4

64x16 bits

Sequencer 4

Instruction

decoder 4

Datapath

4

Data

Memory 4

Address 4

Instruction 4

FIG. 7 – Address generation units and their zero-overhead

loop support

Even if this method need some additional resources,

its interest is largely justified with the energy savings.

Once, the instruction has been red, it is decoded in or-

der to control a small datapath which will supply the ad-

dress. On top of the four address generation units of each

DPR (one per memory), a module will provide a zero-

overhead loop support. Thanks to this module, up to four

levels of nesting will be supported, each loop kernel being

able to contain up to eight instructions, without any ad-

ditional cycle for its management. Two address genera-

tion units are represented on the figure 7 with their shared

zero-overhead loop support.

3 Performance evaluation

This section analyzes the performance, area and energy

consumption of DART. This analysis is based on some

synthesis results of key components of the DPRs. These

units, as well as their performances are described below,

before the estimation of the performance of DART and of

its adequacy with mobile telecommunications algorithms.

3.1 The functional units

The functional units have been synthesized with the Sy-

nopsys design tool framework with a 1.95V ST Microe-

lectronics 0.18 �✂✁ process. For the energy consumption

estimation of the operators, done with Design Power, we

have used 10,000 test vectors randomly generated. Hence,

this estimation does not take into account the correlation

between the data and is so slight pessimistic [5]. Thanks to

the DART simulator, developed in SystemC [15], the ove-

rall energy consumption of this architecture is then eva-

luated from the activity of the different architectural mo-

dules (functional units, memory, glue-logic, . . .) and their

energy consumption estimation realized with Design Po-

wer.

One of the critical elements in a DPR is the multiplier

unit, at both energy, area and latency levels. This unit is

constituted with a double precision signed 16-bit multi-

plier with saturation, followed by a shifter allowing the

scaling of the data in the same cycle. The design of this

SWP multiplier led to the conclusion that an important

gain may be obtained by distinguishing the 8 and 16 bits

multiplication and by integrating this two kind of ope-

rator. Even if this solution leads to a slight increase of

the area (+10%) in comparison with a more classic 4-

M decomposition of a 16-bit multiplier [3], it is largely

compensated by the gain in latency (-30%). Moreover, as

the 8-bit multipliers are not on the critical path of the

unit, they can be optimized under energy consumption

constraint. On the other hand, the 16-bit multiplier have to

satisfy a trade-off between latency and energy consump-

tion.

Finally, the unit is built around a 16-bit booth-Wallace

multiplier and two 8-bit carry-save-array multipliers (Fig.

8). In order to minimize the energy consumption, some

latches have been inserted in the design to stop the mul-

tipliers that are not in use during the execution. These

16

 16 bits

Booth-

Wallace

Multiplier

8 bits

carry-save

Multiplier

Input A

Input B

Output

SIMD

16

32

LL L L L : Latche

SHIFTER

8 bits

carry-save

Multiplier

Multiplexer

Demultiplexer

FIG. 8 – Multiplier Unit

latches led to an increase of the area (+5.8%) and of the

latency (+11.4%) of the unit, but the energy consump-

tion decreases appreciably (-23% for 16-bit multiplica-

tions and -72% for SWP 8-bit multiplications). Hence, the

critical path of this unit is 4.21ns, the area is 40,443 �✂✁
�

,

and the energy consumed is of 129.7pJ for 16-bit multi-

plications and 47.6pJ for SWP 8-bit multiplications.

The second unit synthesized is in charge of the basic

arithmetic processings such as addition, subtraction, com-

parison or logic processings (AND, OR, XOR, . . .). In ad-

dition to these arithmetic and logic processings, this unit

integrates a shifter to increase the precision of one of its

input and another one for the scaling of the result. These

scalings are realized during the same cycle than the arith-

metic operation.

This unit is built around a 40-bit Schlantsky adder, sup-

port SWP processings for data coded on 8 or 16 bits, and

allows the utilization of 8 guard bits to increase the dy-

namic of the data during the accumulation of operations

like MAC. In order to minimize the energy consumed by

the ALU, the different parts of the unit, i.e. shifters, lo-

gic unit, adder, . . . handle data through a latch. Hence, the

energy consumed by this unit for 40-bits operations is lo-

wer than 40pJ. The flexibility of this unit and its limited

energy consumption come however at the price of a quite

important latency since its delay is about 5.97ns and area

since it needs 28,853 �✂✁
�

of silicon.

3.2 Energy efficiency and calculation power

of a DART’s cluster

A synthesis of the DPRs estimates the operating fre-

quency at 130MHz. On the basis of this operating fre-

quency estimation, DART will thus provide a calcula-

tion power on our ambition scale. Indeed, when handling

16-bits data, DART allows to realize 260 MMACS/DPR

or 1.56 GMACS/cluster (this figure is doubled when the

operators handle 8-bit data as in video coding). From

an instruction point of view, DART may deliver up to

520 MIPS/DPR or 3.12 GIPS/cluster. As an instruction

includes an address generation, a memory access and

up to 2 operations per multiplier (1 shift and 1 mul-

tiply(+saturate)) or 3 operations per ALU (2 shift + 1

ALU operation), this may be translated in 10.9 16-bit

GOPS/cluster or 18.7 8-bit GOPS/cluster.

Moreover this level of performance, DART must be

efficient in an energy point of view. Thanks to the first

consumption estimations, we can coarsely estimate the

energy efficiency of DART. In fact, in a cluster, there are

four major sources of energy consumption : the operators,

the address generation units, the memory and the inter-

connection network. The address generation unit is built

around an 8-bit ALU and one 64x16-bits memory and its

energy consumption is 15.5pJ while a data memory ac-

cess consumes 9.15pJ. Given those figures and those des-

cribed in the previous paragraph, the energy efficiency of

DART is about 9.2 MIPS/mW for 16-bits operations, and

about 15.8 MIPS/mW for SWP operations. In an opera-

tion point of view, DART may deliver up to 32 MOPS for

each mW consume during the 16-bits operations and up

to 55 MOPS for the sub-Word Processings.

It has to be noted that these 9.2 MIPS/mW are obtai-

ned in the worst case since the consumption is calculated

for the case where at each cycle, each memory is accessed

and so 4 addresses are generated, and where the functional

units realize an arithmetic operation on 16-bit data. This

is however not the typical case since one of the main ad-

vantages of this architecture is to allow a large amount of

data sharing. Practically, there will not be 4 accesses to the

memories at each cycle, since the operators will usually

be chained, there will be a lot of 8-bit operations and

these operations will not always be additions or multipli-

cations but also scaling or logical operations. Practically,

the energy consumption of the implementations described

below are between 11.6 MIPS/mw and 16.7 MIPS/mW.

3.3 Mapping an application on DART

In order to evaluate the adequacy between DART and

mobile telecommunication algorithms some key applica-

tions of the UMTS have been implemented. These proces-

sings have been chosen because they are representative of

three main kinds of critical processings in this application

domain : the video processing, the speech processing and

the W-CDMA.

To illustrate video processing we have implemented

a Discrete Cosine Transform, which is working on 8x8

pixel macroblocs, since this kind of algorithm is nearly

systematic in video compression standards like MPEGx

or H.26x [11]. The 2 loop kernels of this algorithm are

based on Multiplication-ACcumulation.

Even if the main critical processing of the W-CDMA

is a FIR filter, we do not implement it since we already

know that the regularity of this algorithm will be very well

exploited on DART. Hence, to verify the effectiveness of

DART for the W-CDMA [14], a subset of the norm has

been implemented, a finger of a rake receiver which rea-

lizes the complex despreading with a spreading factor of

256.

Finally, since multimedia terminals of third generation

will still be used for the transmission of speech between

two distant persons and so need very efficient speech co-

dec, we have implemented an autocorrelation, on a signal

of 240 samples, preamble of Levinson-Durbin algorithm

which permits the adaptation of the prediction filter co-

efficients in speech coders such as the EFR or the AMR

[2].

The table 1 resumes the implementation results. It re-

veals the potential of DART in two ways. The columns

of this table specify for each application : the number of

DPRs needed for the implementation ; its number of ope-

ration ; the number of execution cycles ; the processing

power of DART for the application ; the number of access

to the instruction memory ; the number of access to data

memories and finally the energy consumed for the execu-

tion of the algorithm.

On each application previously quoted, the flexibility of

the DPRs permits to obtain very good performances. The

table 1 shows for example that a finger of a rake receiver

may be implemented on 2 DPRs which is allowing us to

integrate 3 fingers in each cluster for a processing power

bigger than 3.6 GOPS. The connection of the DPRs being

made thanks to a segmented mesh network, they can work

independently or together. This property may be particu-

larly useful. For example, to treat simultaneously a 2-D

DCT (4 DPRs) and a finger of a Rake Receiver (2 DPRs)

it would be possible to have the two elementary tasks wor-

king concurrently on a single cluster, for a processing po-

wer of 4.9 GOPS. On the other hand, the massively paral-

lel processing such as the autocorrelation should occupy

all the DPRs, for a very effective execution.

If there are some architectures that can reach such le-

vel of performance, e.g. the Chameleon [19], DART dif-

fers from its competitors by allowing a very significant

energy saving thanks to the data sharing and the memory

access minimization. Indeed, the flexibility of program-

mable processors is usually obtained at the price of a

large amount of energy waste in the data accesses and

control distribution. In that kind of architecture, the ins-

truction memory readings and the decoding of these ins-

tructions are responsible of most energy waste [10]. If this

drawback is absent in FPGA type architectures, they suf-

fer from the fine grain of their calculation resources. In

fact, creating a 16-bits adder from logic cells will imply

to make the signal to pass in transit through multiplexers,

latches and other logic resources that are not useful for the

execution. Thus, the latency and the energy efficiency of

the resulting adder is lowered by these additional connec-

tions [8].

The ASIC solution, which does not suffer from these

drawbacks, seems so to be the ideal one from a perfor-

mance and energy efficiency point of view. However, as

it has been said before, these architectures are unusable

in our application domain since they are not flexible. Wi-

thout pretending to reach the efficiency level of ASIC in

performance or in energy consumption, DART can ho-

wever be discussed as a new alternative to the traditional

trade-off between flexibility and performance by integra-

ting the dedicated operators described above and by mi-

nimizing the energy waste due to the control distribution

through the design and to the memory accesses.

In fact, table 1 shows that only 5 instructions permit

the control of the autocorrelation processing. Once these

5 instructions of configuration have been red, the only

control that is necessary to conclude the execution is the

sequence of the data addresses which are manipulated. On

Application DPR operations cycles GOPS inst. read data read energy

Complex Despreading 2 2048 258 1.21 4 1032 435.8nJ

DCT 2-D 4 2048 72 3.69 5 256 64.7 nJ

Autocorrelation 6 57600 1520 2.97 5 3040 3.15 �
�

TAB. 1 – Implementation results on DART

a conventional DSP processor more than 57,000 readings

from the instruction memory would have to be done. Gi-

ven the cost in energy of a memory access, the gain in

energy consumption is therefore very important. The se-

cond source of energy savings in DART is the data sha-

ring. For example, on the autocorrelation, DART allows to

divide by 12 the number of accesses to the data memory

and so the energy waste due to these accesses (which is

typically very high). This data sharing is made easier by

the high degree of flexibility of the interconnection net-

work and by the use of the registers in data flow oriented

applications.

In addition to the minimization of memory accesses,

the energy consumption of DART is lowered by the mini-

mization of transistors activity. This point is essential in

an architecture like DART since it must integrate a large

amount of resources in order to be effective, even in the

worst case. However, all the resources integrated will not

be used at every time. DART has so to avoid making them

work when they are not in use to the execution thanks

to guarded clocks. The energy is also saved in DART by

optimizing the operators at the bit level (see section 3.1)

and by scaling the voltage and the operating frequency of

the clusters according to the complexity of the tasks to be

implemented.

4 Conclusion

In this paper, we have presented a dynamically re-

configurable architecture which supports the three main

constraints of the third generation telecommunication do-

main : high performances, low energy consumption and

flexibility. Thanks to our first synthesis results, we have

shown that the dynamic reconfiguration can allow the eli-

mination of a large amount of energy waste while offe-

ring a very high level of performances. The presentation

of the implementation results of key tasks of the UMTS

have moreover permitted to verify the interest of the use

of functional reconfiguration which mainly targets the in-

terconnection of arithmetic units. It has to be noticed that

the results presented in this paper do not exploit the FPGA

since the applications have only been implemented on the

DPRs. Hence, to improve the performances of DART, the

next step in our study is to develop an FPGA architecture

which will allow the association of high performances

and low energy consumption. Finally, since all the im-

plementations presented in this paper have been done at

the assembly level we will have to provide tool support

for the development flow, in order to quickly provide a

code optimized under performances and power consump-

tion constraints.

Acknowledgments

This work is part of a project, associating the University

of Brest and ST Microelectronics, funded by the industry

and research French ministry. We would like to thanks B.

Pottier (University of Brest), T. Ben-Ismael and O. Co-

lavin (ST Microelectronics) for their contributions to this

project.

Références

[1] A. Abnous and J. Rabaey. Ultra low-power specifi c multi-

media processors. VLSI Signal Processing IX, pages 459–

468, Nov. 1996.

[2] T. Amada, T. Amada, K. Miseki, and M. Akamine. CELP

speech coding based on an adaptative pulse position code-

book. In ICASSP, 1999.

[3] J. Cavanagh. Digital Computer Arithmetic, design and

implementation. Mc Graw-Hill Computer Science Series,

1984.

[4] D. C. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and

C. Ebeling. Architecture Design of Reconfi gurable Pipeli-

ned Datapath. In Advance Research in VLSI, 1999.

[5] M. Denoual, D.Saille, J.-G. Cousin, and O. Sentieys. Fast

Power Estimation at the architectural level. In Design of

Circuits and Integrated Systems Conference (DCIS), Nov.

2000.

[6] E. Dinan and B. Jabbari. Spreading Codes for Direct Se-

quence CDMA and Wideband CDMA Cellular Network.

IEEE Communications Magazine, 1998.

[7] J. Fridman. Sub-Word Parallelism in Digital Signal Pro-

cessing. IEEE Signal Processing Magazine, 17(2) :27–35,

Mar. 2000.

[8] V. George. Low Energy Field-Programmable Gate Array.

PhD thesis, University of California, Berkeley, 2000.

[9] S. C. Goldstein, H. Schmit, M. Budiu, S. Cadambi,

M. Moe, and R. R. Taylor. PipeRench : A Reconfi gurable

Architecture and Compiler. IEEE Computer, Apr. 2000.

[10] R. Gonzalez and M. Horowitz. Energy dissipation in gene-

ral purpose microprocessors. IEEE Journal of Solid-State

Circuits, 31(9) :1277–1284, sept. 1996.

[11] L. Hanzo and E.-L. K. P. Cherriman. Interactive cellular

and cordless video telephony : State-of-the-art system de-

sign principles and expected performance. Proccedings of

the IEEE, 2000.

[12] R. Hartenstein. A Decade of Reconfi gurable Computing :

A Visionary retrospective. In Design Automation and Test

in Europe (DATE), 2001.

[13] J. Hauser and J. Wawrzynek. GARP : A MIPS processor

with a reconfi gurable coprocessor. In IEEE Symposium on

FPGA-based Custom Computing Machines (FCCM), June

1997.

[14] T. Ojanperä and R. Prasard. Wideband CDMA For Third

Generation Mobile Communication. Hartek Publishers,

1998.

[15] Open SystemC Initiative. SystemC version 2.0 Uers’s

Guide. Technical report, 2001.

[16] J. Rabaey. Reconfi gurable Processing : The Solution To

Low-Power Programmable DSP. In IEEE International

Conference on Accoustics, Speech and Signal Processing

(ICASSP), Apr. 1997.

[17] J. Rabaey. A low-energy heterogeneous reconfi gurable

DSP IC. In Design Automation Conference (DAC), June

2000.

[18] C. Rupp, M. Landguth, T. Graverick, E. Gomersall, and

H. Holt. The NAPA Adaptative Processing Architecture.

In FCCM, Apr. 1998.

[19] C. Systems. Wireless Base Station Design Using Recon-

fi gurable Communications Processors. Technical report,

2000.

[20] X. Tang, M. Aalsma, and R. Jou. A compiler direc-

ted aproach to hiding confi guration latency in chame-

leon processors. In International Conference on Field-

Programmable Logic and Applications, Apr. 2000.

[21] H. Zhang, M. WAN, V. George, and J. Rabaey. Intercon-

nect Architecture Exploration for Low-Energy Reconfi gu-

rable Single-Chip DSPs. In IEEE Workshop on VLSI, Apr.

1999.

