
Dart: A Geographic Information System on Hadoop

Hong Zhang∗, Zhibo Sun∗, Zixia Liu∗, Chen Xu† and Liqiang Wang∗

∗Department of Computer Science, University of Wyoming, USA
†Department of Geography, University of Wyoming, USA

Email: {hzhang12,zsun1,zliu5,cxu3,lwang7}@uwyo.edu

Abstract—In the field of big data research, analytics on spatio-
temporal data from social media is one of the fastest growing
areas and poses a major challenge on research and application.
An efficient and flexible computing and storage platform is
needed for users to analyze spatio-temporal patterns in huge
amount of social media data. This paper introduces a scalable and
distributed geographic information system, called Dart, based on
Hadoop and HBase. Dart provides a hybrid table schema to store
spatial data in HBase so that the Reduce process can be omitted
for operations like calculating the mean center and the median
center. It employs reasonable pre-splitting and hash techniques to
avoid data imbalance and hot region problems. It also supports
massive spatial data analysis like K-Nearest Neighbors (KNN)
and Geometric Median Distribution. In our experiments, we
evaluate the performance of Dart by processing 160 GB Twitter
data on an Amazon EC2 cluster. The experimental results show
that Dart is very scalable and efficient.

Index Terms—Social Network; GIS; Hadoop; Hbase; Mean
Center; Median Center; KNN

I. INTRODUCTION

Social media increasingly becomes popular, as they build

social relations among people, which enable people to ex-

change ideas and share activities. Twitter is one of the most

popular social media, which has more than 500 million users

by December 2014 and generates hundreds of GB data per

day[1]. As tweets capture snapshots of Twitter users’ social

networking activities, their analysis potentially provides a

lens for understanding human society. The magnitude of

data collection at such a broad scale with so many minute

details is unprecedented. Hence, the processing and analyzing

of such a large amount of data brings the big challenge.

As most social media data contain either an explicit (e.g.,

GPS coordinates) or an implicit (e.g., place names) location

component, their analysis can benefit from leveraging the

spatial analysis functions of geographic information systems

(GIS). However, processing and analyzing big spatial data

poses a major challenge for traditional GIS[?]. As the size of

dataset grows exponentially beyond the capacity of standalone

computers, on which traditional GIS are based, there are

urgencies as well as opportunities for reshaping GIS to fit the

emerging new computing models, such as cloud computing

and nontraditional database systems. This study presents a

systematic design for improving spatial analysis performance

in dealing with the huge amount of point-based Twitter data.

Apache Hadoop[2][3] is a popular open-source implemen-

tation of the MapReduce programming model. Hadoop hides

the complex details of parallelization, fault tolerance, data

distribution, and load balancing from users. It has two main

components: MapReduce and Hadoop Distributed File System

(HDFS). MapReduce paradigm is composed of a map function

that performs filtering and sorting of input data and a reduce

function that performs a summary operation. HDFS is a

distributed, scalable, and portable file system written in Java

for the Hadoop framework, which provides high availability

by replicating data blocks on multiple nodes.

Apache HBase[4] is an open-source, distributed, column-

oriented database on top of HDFS, providing BigTable-like

capabilities. It provides a fault-tolerant way and ability of

quick accessing to large scale sparse data. Tables in HBase

can serve as the input and output for MapReduce jobs, and be

accessed through Java API. An HBase system comprises a set

of tables. Each table contains rows and columns, much like a

traditional database, but each row must have a primary key,

which is used to access HBase tables.

In big data computing, Hadoop-based systems have advan-

tages in processing social media data[5]. In this study, we use

two geographic measures, the mean center and the median

center, to summarize the spatial distribution patterns of points,

which are popular measurements in geography[6]. The method

has been used in a previous study to provide an illustration

of social media users’ awareness about geographic places[7].

The mean center is calculated by averaging the x- and y-

coordinates of all points and indicates a social media user’s

daily activity space. However, it is sensitive to outliers, which

represent a user’s occasional travels to distant places. The

median center provides a more robust indicator of a user’s

daily activity space by calculating a point from which the

overall distance to all involved points is minimized. Therefore,

the median center calculation is far more computing intensive.

One social media user’s activity space comprises geographic

areas in which he/she carries out daily activities such as

working or living. The median center thus shows a gravity

center of that person’s daily life.

We design a spatial analyzing system, called Dart, on

top of Hadoop and HBase in purpose of solving spatial

tasks like K-nearest neighbors (KNN) and geometric median

distribution for social media analytics. Its major advantages

lie in: (1) Dart provides a computing and storage platform

that is optimized for storing social media data like Twitter

data. It employs a hybrid table design in HBase that stores

geographic information into a flat-wide table and text data into

a tall-narrow table, respectively. Thus, Dart can get rid of the

unnecessary reduce stage for some spatial operations like cal-

culating mean and median centers. Such a design not only cuts

down users’ development expenditures, but also significantly

improves computing performance. In addition, Dart avoids

load imbalance and hot region problems by using pre-splitting

technique and uniform hashes for row keys. (2) Dart can

conduct complex spatial operations like the mean center and

median center calculations very efficiently. Its methodology

layer is a completely flexible and totally extensible module,

which provides a better support to the upper analysis layer.

(3) Dart provides a platform to help users analyze spatial data

efficiently and effectively. Advanced users also can develop

their own analysis methods for information exploration.

We evaluate the performance of Dart on Amazon EC2[8]

with a cluster of 10 m3.large nodes. We demonstrate that our

grid algorithm for the calculation of median center is signif-

icantly faster than the algorithm implemented by traditional

GIS, and we can gain an improvement of 7 times on a 160

GB Twitter dataset and 9 to 11 times on a synthetic dataset.

For instance, it costs 1 minute to compute the mean or the

median center for 1 million users.

The rest of this paper is organized as follows. Section II dis-

cusses the architecture of Dart, and describes its optimizations

based on Hadoop and HBase. We then describe algorithms

for calculating the geographic mean, midpoint, and median

center in Section III. Section IV details two data analysis

methods: KNN and geometric median distribution. Section V

shows the experiment results. Section VI provides a review of

related works. Conclusions and future work are summarized

in Section VII.

II. SYSTEM ARCHITECTURE

Figure 1 shows an outline of our spatial analyzing system

Dart for social network. Our system can automatically harvest

Twitter data and upload them into HBase. It decomposes data

into two components: the geographic information, and the text

information, then insert them into tall-narrow and flat-wide

tables, respectively. Our system targets two types of users:

GIS engineers and GIS users. GIS engineers can make use

of our system to develop new methods and functions, and

design additional spatial modules to provide more complex

data analysis; GIS users can build complicated data analysis

models based on current spatial data and methods for tasks

such as analyzing the geographic mean and median centers.

All input and output data are stored in HBase to provide easy

and efficient search. It also supports a spatio-temporal search

for fine-grained data analysis.

Dart consists of four layers: computing layer, storage layer,

methodology layer, and data analysis layer. The computing

layer offers a MapReduce computing model based on Hadoop.

The storage layers employs a NoSQL database, HBase, to store

spatio-temporal data. We design a hybrid table schema for

data storage, and use pre-splitting and uniform hashes to avoid

data imbalance and hot region problems. Our implementation

on Hadoop and HBase has been optimized to process spatial

data from social media like Twitter. The methodology layer is

to carry out complex spatial operations such as figuring out

the geographic median or facilitate some statistical treatments

Dart

Data File

HDFS

(Hadoop Distributed File System)

MapReduce

(Distributed Computing Framework)

HBase (Column DB)

Application

(GIS Applications)

Methodology

(GIS Technology and Methods)

Geographic

Information
Flat-Wide Table

Text

Information
Tall-Narrow Table

Others

GIS User

GIS Engineer

Fig. 1. System architecture of Dart.

Key Q1 Q2 Q3

u1 a Null b

u2 Null c Null

u3 Null b a

u4 b Null Null

Key Qualifier Value

u1 Q1 a

u1 Q3 b

u2 Q2 c

u3 Q2 b

u3 Q3 a

u4 Q1 b

Fig. 2. Representations of Horizontal table and Vertical table.

to support the upper data analysis layer. In the data analysis

layer, Dart supports specific analytics like KNN and geometric

median distribution from customers.

A. Horizontal v.s. Vertical

Efficient management of social media data is important in

designing data schema. There are two choices when using

NoSQL database: tall-narrow, or flat-wide[9]. The tall-narrow

paradigm is to design a table with few columns but many rows,

while the flat-wide paradigm is to store data in a table with

many columns but few rows. Figure 2 shows a tall-narrow

table and its corresponding realization in the flat-wide format.

For a flat-wide schema, it is easy to extract a single user’s

entire information in a single row, which can easily fit into

a MapReduce program. For a tall-narrow table, each row

contains a single record of a user’s entire information to avoid

data imbalance layout and too much data stored in just a single

row.

For sparse data, the tall-narrow table is a common way and

can support e-commerce type of applications very well[10].

In addition, HBase only splits at row boundaries, which also

contributes to the users’ choice of tall-narrow tables[9]. Using

a flat-wide table, if a single row outgrows the maximum of a

region size, HBase cannot split it automatically, which makes

data stored in that row overloaded.

In our system, we employ a hybrid schema, in which we

store geographic data by a flat-wide table, and store other data

like text data by a tall-narrow table. Since numerical location

information is significantly smaller than text data, each user’s

location data can easily fit into a region size (256M by default).

Our design can make complex geographic operations more

efficient due to removing the reduce stage from a MapReduce

job.

B. Pre-splitting

Usually HBase handles the splitting of regions automati-

cally. That means if a region reaches the maximum size, it

will be splitted into two halves so that each new region can

handle its own data. This default behavior is sufficient for

most applications, but we need to execute insert operation

frequently. For example, in social media data, it is unavoidable

to have some hot regions, especially when the distribution of

data is skewed. In our system, we firstly pre-split the table

into 12 regions (the size depends on the scale of cluster)

by HexStringSplit. The format of a HexStringSplit region

boundary is the ASCII representation of a MD5 checksum.

Then we employ a hash function on the row key, extract the

first eight characters as a prefix to the original row key. In this

way, we could make data distribution uniform and avoid the

data imbalance problem.

In order to make spatial analysis more efficient on Dart,

we also investigate optimizations of system parameters. As

shown in [?], the number of maps is usually determined by

the block size in HDFS, and it also has a significant effect

on the performance of a MapReduce job. Smaller block size

usually makes system launch more maps, which costs more

time and resources. If a Hadoop cluster does not have enough

resources, some of the maps have to wait until resources

are released, which may degrade the performance further.

In contrast, a large block size could decrease the number

of maps and parallelization. In addition, each map needs

to process more data and could be overloaded. Moreover,

failure is an unavoidable situation. If the block size is large,

we need longer time to recover it, especially for straggler

situation. Furthermore, too big block size may cause data

layout imbalance. According to the performance measurement

in our experiments, we decide to set the block size to 256 MB

instead of the default one (64MB) because the performance

with larger size (than 256 MB) does not increase obviously.

The region size of HBase is also 256 MB, which makes

accessing to the data faster. In the map stage, the sort and spill

phase costs more time than other phases. So it is necessary

to configure a proper setting in this phase. Since the sort and

spill phase happens in the container memory, according to

our job features, setting a larger minimum JVM heap size and

sort buffer size could affect performance remarkably. Since we

need to analyze hundreds of GB data and our EC2 instances

has 7.5 GB memory, we set our JVM heap size to 1GB instead

of 200MB through “mapred.child.java.opts” and set the buffer

size to 512 MB through “mapreduce.task.io.sort.mb”, thus we

could allocate more resources for this phase.

III. METHODOLOGY

In this section, we describe how to calculate the geo-

graphic mean, midpoint, and median. We present a brand-

new algorithm for the geometric median calculation that (1)

starts the iteration with a more precise initial point and (2)

imposes a grid framework to the process to reduces the total

iteration steps. These three geographic indicators are important

estimators for summarizing location distribution patterns in

GIS. For example, it could help us estimate a person’s activity

space more accurately.

Lat =

n∑

i=1

lati/n

Lon =
n∑

i=1

loni/n

(1)

A. Geographic mean

The main idea of the geographic mean is to calculate an

average latitude and longitude point for all locations. The

projection effect in mean center calculation has been ignored

in this study because the areas of daily activity space of Twitter

users are normally small. Equation 1 shows basic calculation

steps. The main problem here is how to handle points near or

on both sides of the International Date Line. When the distance

between two locations is less than 250 miles (400 km), mean

is approximate to the true midpoint[11].

B. Geographic midpoint

The geographic midpoint (also known as the geographic

center, or center of gravity) is the average coordinate for a

set of points on a spherical earth. If a number of points are

marked on a world globe, the geographic midpoint is at the

geographic center among these points.

Initially, latitude and longitude of each location are con-

verted into three dimensional cartesian coordinates after

changing unit to radians. We then compute the weighted

arithmetic mean of cartesian coordinates of all locations (use

1 as weight by default). After that, the three dimensional

average coordinate is changed back to latitude and longitude

in degrees.

C. Geographic Median

To calculate the geographic median of a set of points, we

need to find a point that minimizes the total distance to all

other points. A typical problem here is the Optimal Meeting

Point (OMP) problem that has considerably practical signifi-

cance. The implementation of this algorithm is more complex

than the geographic mean and the geographic midpoint since

the optimal point is approached iteratively.

Algorithm 1 The original algorithm for median

Input: Location set S = {(lat1, lon1),, (latn, lonn)}
Output: Coordinates of the geographic median

1: Let CurrentPoint be the geographic midpoint

2: MinimumDistance =
totalDistances(CurrentPoint, S)

3: for i = 1 to n do

4: distance = totalDistances(locationi, S)
5: if (distance < MinimumDistance) then

6: CurrentPoint = locationi

7: MinimumDistance = distance
8: end if

9: end for

10: Let TestStep be diagonal length of the district

11: while (TestStep < 2× 10−8) do

12: updateCurrentPoint(CurrentPoint, TestStep)
13: end while

14: return CurrentPoint

1) The Original Method: Figure 1 shows the general steps

of the original algorithm. Let CurrentPoint be the geo-

graphic midpoint computed above as the initial point, and

let MinimumDistance be the sum of all distances from

CurrentPoint to all other points. In order to find a relatively

precise initial iteration point, we count the total distance from

each place to other places; if any of these places has a smaller

distance than CurrentPoint, replace CurrentPoint by it

and update MinimumDistance. Let TestStep be PI/2
radians as the initial step size, then generate eight test points in

all cardinal and intermediate directions of the CurrentPoint.
That is, to the north, northeast, east, southeast, south, south-

west, west and northwest of the CurrentPoint with the same

distance of TestStep. If any of these eight points has a smaller

total distance than MinimumDistance, make this point as

CurrentPoint and update MinimumDistance. Otherwise,

reduce TestStep by half, and continue searching another eight

points around CurrentPoint by the new TestStep until

TestStep meet the precision (2× 10−8 radians by default).

We can compute the distance using the spherical law of

cosines. If distances between each pair of points are small, we

then use distance of spatial straight line between two points

to replace circular arc. The equation of the spherical law of

cosines is shown as follows.

distance = arcsin(sin(lat1) ∗ sin(lat2)+

cos(lat1) ∗ cos(lat2) ∗ cos(lon2 − lon1))
(2)

Algorithm 2 The improved algorithm for greographic median

Input: Location set S = {(lat1, lon1),, (latn, lonn)}
Output: Coordinates of the geographic median

1: Let CurrentPoint be the geographic midpoint;

2: MinimumDistance =
totalDistances(CurrentPoint, S)

3: Divide the district into grids;

4: Calculate the center coordinates for each grid and count

the number of locations distributed in each grid as weight;

5: Calculate the total weighted distance between center of

each grid to centers of other grids;

6: If any center has a smaller distance than CurrentPoint’s,

replace it with this center, and update;

7: Let TestStep be diagonal length of grid divided by 2;

8: while (TestStep < 2× 10−8) do

9: updateCurrentPoint(CurrentPoint, TestStep)
10: end while

11: return CurrentPoint

2) Improved Method: We observe that in order to select

a better initial iteration point, the original algorithm has to

compute distances between every couple of points. The time

complexity of such selection procedure is O(n2). In fact, if we

remove this procedure (from line 3 to line 9 in Algorithm 1),

the time complexity for finding the initial point will be reduced

to O(n). It shows a significant improvement for total running

time of calculating Geographic Median in our experiments

compared to the original algorithm, especially when the point

set is large (more than 100 points).

The time cost of the initial point detection procedure in

the original algorithm outruns its performance improvement,

which is the reason why it should be omitted. However, a

good initial point selection schema can potentially decrease

the number of iterations and ameliorate total performance.

Thus, we design a brand-new algorithm that employs grid

segmentation to decrease the cost of searching a proper initial

point, which can also reduce the initial step size at the

same time. Its efficiency and performance improvement are

demonstrated by our experiments. As shown in Algorithm

2, after computing the geographic midpoint, we partition the

district into grids with the same size. Since our algorithm

reduces at least one iteration, in order to search a better initial

point, we take the expense of at most one iteration to select a

better initial point from centers of grids. We count the number

of points located in each grid as weight, and calculate the total

weighted distances from the center of each grid to centers of

other grids. If any center is better than CurrentPoint in the

sense of less total distance, replace CurrentPoint. As the

centers of eight neighbor grids of CurrentPoint is not better

than its own, we can reduce the initial step to half of distance

between two diagonal centers.

Algorithm 3 MapReduce program for KNN

function: Map(k,v)

1: p = context.getPoint()
2: for each cell c in value.rawCells() do

3: if column family is “coordinates” then

4: if qualifier is “minipoint” then

5: rowKey = c.row()
6: location = c.value()
7: distance = calculateDistance(location, p)
8: end if

9: end if

10: end for

11: emit (1, rowKey + “,” + distance)

function: Combine, Reduce(k,v)

12: K = context.getK()
13: for (each vi in v) do

14: (rowKeyi, distancei) = vi.split(,)
15: end for

16: Sort all users by distances, and choose K smallest distance

locations to emit;

IV. DATA ANALYSIS

In this section, we introduce two common spatial appli-

cations, namely, KNN and geometric median distribution.

KNN is a method for classifying objects based on the closest

training examples according to some metrics such as Euclidean

distance or Manhattan distance. KNN is an important module

in social media analytics to help user find other nearby users.

Geometric median distribution is to count users’ distribution

in different areas, which might be useful for business to

promote products. Due to the mobility of users, the geographic

median is one of the best values to stand for users’ geographic

positions.

A. K Nearest Neighbors

Algorithm 3 shows the process of MapReduce on Hadoop.

In the map function, we extract point for KNN search and

K value from context. Then we calculate the distance from

each point to point, and send top K points to the combine

function and then the reduce function. Both of them sort users

by distances computed by the map function. The difference

between the combine function and the reduce function is that

the former sends results to the reduce task, but the later one

uploads K nearest neighbors to HBase.

B. Spatial distribution

Algorithm 4 describes how to calculate the distribution of

users in a district. In the map function, we obtain the grid

length (0.01 degree by default) from context to build a mesh

on the region of interest, and compute which grid each point

locates in. Then the key-value pair of grid index and the

number of users is sent to the combine function and afterwards

reduce function. The combine and reduce functions sum the

number of users in each grid, and finally upload results into

HBase.

(a) uniform (b) two-area (c) skew

Fig. 3. Data distributions.

Algorithm 4 MapReduce program for geometric median dis-

tribution

function: Map(k,v)

1: gridLength = context.getGridLength()
2: for each cell c in value.rawCells() do

3: if column family is “coordinates” then

4: if qualifier is “minipoint” then

5: (lat, lon) = c.value()
6: latIdx = (lat−miniLat)/gridLength
7: lonIdx = (lat−miniLon)/gridLength
8: end if

9: end if

10: end for

11: emit ((latIdx, lonIdx), 1)
function: Combine, Reduce(k,v)

12: total = 0
13: for (each vi in v) do

14: total += vi
15: end for

16: emit (k, total)

V. EXPERIMENTS

In this section, we describe the experiments to evaluate the

performance of Dart based on Hadoop and HBase, including

the computations on mean center, median center, KNN, and

geometric median distribution.

A. Experimental setup

Our experiments were performed on Amazon EC2 cluster

that contains one Namenode and nine Datanodes. Each node is

an Amazon EC2 m3.large instance, which provides a balance

of compute, memory, and network resources. EC2 m3.large

instance has Intel Xeon E5-2670 v2 (Ivy Bridge) processors,

7.5 GB memory, 2 vCPUs, SSD-based instance storage for fast

I/O performance, and runs CentOS v6.6. Our Hadoop cluster

is based on Apache Hadoop 2.2.0, Apache HBase 0.98.8, and

Java 6.

In our experiments, we extract Twitter data from 38 degrees

North latitude and 73 degrees West longitude to 41.5 degrees

North latitude and 77.5 degrees West longitude with a total size

of 160 GB and more than 1 million users. This area mainly

includes the metropolitan areas from New York City, Philadel-

phia, to Washington DC. In order to show the performance of

our algorithm on a single machine, we generate random points

to simulate three common scenarios shown in Figure 3: (1)

0

200

400

600

800

1000

1200

1400

1600

20 GB 40 GB 80 GB 160 GB

T
im

e
 (

S
e

co
n

d
s)

Data Size

mean median-original median-Dart

Fig. 5. Performance comparison between mean and median.

Uniform is a scenario where all points are scattered uniformly

in the district; (2) Two-area is that all points are clustered into

two groups, which is very common in real world. (3) Skew is

a scenario where most of points gather together but few points

scatter outside.

B. Experimental results

Figure 4 shows the time of calculating the geographic

median in three different scenarios. These experiments were

conducted on a single m3.large node in Amazon EC2 cluster,

and the number of points vary from 100 to 12800. We

evaluated three algorithms: (1) The original algorithm most

commonly used in geography[11]. (2) The algorithm without-

initial-detection, which removes the procedure of selecting a

better initial point from the original algorithm as we mentioned

in Section III-C. This algorithm reduces the time complexity

of selecting initial point from O(n2) to O(n). (3) Our own

grid algorithm, which utilizes grid technique to improve the

accuracy of initial point and reduce the step size dramatically

at a reasonable time cost. This algorithm reduces the overall

iteration number. As Figure 4 shows, when the number of

points increases from 100 to 12800, the performance of

Dart increases gradually. In all scenarios, our algorithm can

outperform the original one by 9 to 11 times when the number

of points is 3200. When the number of points is 12800, our

new algorithm in Dart gains an improvement of 38%, 26%,

and 15% compared to the without-initial-detection algorithm

in the uniform, two-area, and skew scenarios, respectively. We

find that the without-initial-detection and the grid algorithms

cost less time in the skew scenario compared to the uniform

and two-area scenarios because the midpoint is closer to the

median center.

Figure 5 shows the performance comparison of calculating

the geographic mean and geographic median on Hadoop

cluster, where the input data size varies from 20 GB to 160 GB.

When the input data size is 160GB, our algorithm achieves

an improvement of 7 times compared to the traditional one.

The calculation of geographic median consumes 30% more

time than the calculation of mean on 160 GB data since it is

0

10

20

30

40

50

60

70

20 GB 40 GB 80 GB 160 GB

T
im

e
 (

se
co

n
d

s)

Data Size

(a) knn

0

10

20

30

40

50

60

70

20 GB 40 GB 80 GB 160 GB

T
im

e
 (

se
co

n
d

s)

Data Size

(b) distribution

Fig. 6. Results of KNN and Distribution.

Fig. 7. Results of Distribution

more complex and requires more iterations to approximate the

optimal point.

Figure 6(a) measures the performance of computing KNN,

where k value is 10, when increasing the input data size from

20 GB to 160 GB. As it shows, the time does not grow linearly,

but relatively slowly. Figure 6(b) shows the performance trend

of geometric median distribution, which is similar to KNN.

We only spend 1 minute to finish KNN and geometric median

distribution on 160 GB dataset, which demonstrates that the

Dart system is quite scalable.

Figure 7 shows the median centers of all mobile Twitter

users discovered from the real tweet dataset, which covers a

geographic area from Washington, DC to New York City. The

distribution pattern of Twitter users’ daily activity locations

reveals that Twitter users are more likely to live in urban areas.

The main contribution of this study is in the development

of a system for rapid spatial data analysis. The crafting of this

system lays a solid foundation for future research that will

look into the spatio-temporal patterns as well as the socio-

economic characteristics of a massive population, which are

crucial inputs for effective urban planning or transportation

management.

0

200

400

600

800

1000

1200

1400

1600

1 0 0 2 0 0 4 0 0 8 0 0 1 6 0 0 3 2 0 0 6 4 0 0 1 2 8 0 0

T
IM

E
 (

M
IL

LI
S

E
C

O
N

D
)

THE NUMBER OF POINTS

Traditional Without Initial detection Grid

(a) uniform

0

200

400

600

800

1000

1200

1400

1600

1 0 0 2 0 0 4 0 0 8 0 0 1 6 0 0 3 2 0 0 6 4 0 0 1 2 8 0 0

T
IM

E
 (

M
IL

LI
S

E
C

O
N

D
)

THE NUMBER OF POINTS

Traditional Without Initial detection Grid

(b) two-area

0

200

400

600

800

1000

1200

1400

1600

1 0 0 2 0 0 4 0 0 8 0 0 1 6 0 0 3 2 0 0 6 4 0 0 1 2 8 0 0

T
IM

E
 (

M
IL

LI
S

E
C

O
N

D
)

THE NUMBER OF POINTS

Traditional Without Initial detection Grid

(c) skew

Fig. 4. Performance comparison of calculating mean and median.

VI. RELATED WORK

Some GIS over Hadoop and HBase have been designed

to provide convenient and efficient query processing. How-

ever, they do not support complex queries like geometric

median. A few systems employ Geographic Index like grid,

R tree, and Quad tree to improve the processing, which are,

unfortunately, not helpful for calculating geometric median

efficiently. SpatialHadoop[12] extends Hadoop and consists of

four layers: language, storage, MapReduce, and operations.

The language layer supports a SQL-like language to simplify

spatial data query. The storage layer employs a two-level

index to organize data globally and locally. The MapReduce

layer allows Hadoop programs to exploit index structure. The

operations layer provides a series of spatial operations like

range query, KNN, and join. Hadoop-GIS[13] is a spatial data

warehousing system that also supports a query engine called

REQUE, and utilizes global and local indexes to improve

performance. MD-HBase[14] is a scalable data management

system based on HBase, and employs a multi-dimensional

index structure to sustain an efficient insertion throughput and

query processing. However, these systems are incapable of

offering a good data organization structure for social network

like Twitter, and their index strategies cannot calculate the

geometric median efficiently due to an extra load on data

management, index creation and maintenance.

CG Hadoop[15] is a suite of MapReduce algorithms, which

covers five different geometry spatial operations, namely, poly-

gon union, skyline, convex hull, farthest pair, and closest pair,

and uses the spatial index in SpatialHadoop [12] to achieve

good performance. Zhang et al. [16] implements several kinds

of spatial queries such as selection, join, and KNN using

MapReduce and proves that MapReduce is appropriate for

small scale clusters. Lu et al. [17] designs a mapping mech-

anism that exploits pruning rules to reduce both the shuffling

and computational costs for KNN. Liu et al. [18] employs the

MapReduce framework to develop a scalable solution to the

computation of a local spatial statistic (G∗

i
(d)). GISQF[19]

is another spatial query framework on SpatialHadoop [12] to

offer three types of queries, Longitude-Latitude Point queries,

Circle-Area queries, and Aggregation queries. Yet, there is no

operation or discussion for calculating geometric median on

top of Hadoop and HBase.

VII. CONCLUSION

In this paper, we introduce a novel geographic information

system named Dart for spatial data analysis and management.

Dart provides an all-in-one platform consisting of four layers:

computing layer, storage layer, methodology layer, and data

analysis layer. Using a hybrid table schema to store spatial data

in HBase, Dart can omit the Reduce process for operations

like calculating the mean center and the median center. It

also employs pre-splitting and hash techniques to avoid data

imbalance and hot region problems. In order to make spatial

analysis more efficient, we investigate the computing layer

configuration in Hadoop and the storage layer configuration

in HBase to optimize the system for spatial data storage and

calculation. As demonstrated in Section V, Dart achieves a

significant improvement in computing performance in contrast

to the performance of traditional GIS. The improvements

have been illustrated by carrying out two typical geographic

information analyses, the KNN calculation and the geometric

median calculation.

For the future work, we plan to extend Dart to implement

more spatial operations like spatial join and aggregation.

We also plan to extend Geohash or R-tree and incorporate

them into our system to speed up spatial search and prune

unnecessary location information.

VIII. ACKNOWLEDGEMENT

This work was supported in part by NSF-CAREER-1054834

and NSFC-61428201.

REFERENCES

[1] Twitter from Wikipedia website. http://en.wikipedia.org-

/wiki/Twitter.

[2] T. White. Hadoop: The Definitive Guide. O’Reilly

Media, 2012.

[3] Apache Hadoop website. http://hadoop.apache.org/.

[4] Apache HBase website. http://hbase.apache.org/.

[5] P. Russom. Big Data Analytics. TDWI Research, 2011.

[6] D.W. Wong and J. Lee. Statistical Analysis and Modeling

of Geographic Information. John Wiley & Sons, New

York, 2005.

[7] C. Xu, D.W. Wong, and C. Yang. Evaluating the

“geographical awarenes” of individuals: an exploratory

analysis of twitter data. In CaGIS 40(2), pages 103–115,

2013.

[8] Amazon EC2 website. http://aws.amazon.com/ec2/.

[9] L. George. HBase: The Definitive Guide. O’Reilly

Media, 2011.

[10] R. Agrawal, A. Somani, and Y. Xu. Storage and querying

of e-commerce data. In VLDB Endowment, pages 149–

158, 2001.

[11] Website for calculating mean, midpoint, and center of

minimum distance. http://www.geomidpoint.com/.

[12] A. Eldawy and M. Mokbel. SpatialHadoop: towards

flexible and scalable spatial processing using mapreduce.

In the 2014 SIGMOD PhD symposium, pages 46–50,

New York, NY, USA, 2014.

[13] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang,

and J. Saltz. Hadoop-GIS: A high performance spatial

data warehousing system over mapreduce. In VLDB

Endowment, pages 1009–1020, 2013.

[14] S. Nishimura, S. Das, D. Agrawal, and A. Abbadi. MD-

HBase: A scalable multi-dimensional data infrastructure

for location aware services. In MDM, pages 7 – 16, 2011.

[15] A. Eldawy, Y. Li, M. Mokbel, and R. Janardan. CG-

Hadoop: Computational geometry in mapreduce. In

SIGSPATIAL, pages 294–303, 2013.

[16] S. Zhang, J. Han, Z. Liu, K. Wang, and S. Feng. Spatial

queries evaluation with mapreduce. In GCC, pages 287

– 292, 2009.

[17] W. Lu, Y. Shen, S. Chen, and B. Ooi. Efficient processing

of k nearest neighbor joins using MapReduce. In VLDB

Endowment, pages 1016–1027, 2012.

[18] Y. Liu, K. Wu, S. Wang, Y. Zhao, and Q. Huang.

A mapreduce approach to Gi*(d) spatial statistic. In

HPDGIS, pages 11–18, 2010.

[19] K. Al-Naami, S. Seker, and L. Khan. Gisqf: An efficient

spatial query processing system. In CLOUD, pages 681

– 688, 2014.

[20] C. Lam. Hadoop in Action. Manning Publications, 2010.

[21] E. Sammer. Hadoop Operations. O’Reilly Media, 2012.

[22] C. Bajaj. Discrete and Computational Geometry. 1988.

[23] Defination of geometric median from Wikipedia website.

http://en.wikipedia.org/wiki/Geometric median.

[24] L. Wang, B. Chen, and Y. Liu. Distributed storage

and index of vector spatial data based on HBase. In

GEOINFORMATICS, pages 1–5, 2013.

[25] K. Wang, J. Han, B. Tu, J. Dai, W. Zhou, and X. Song.

Accelerating spatial data processing with mapreduce. In

ICPADS, pages 229 – 236, 2010.

[26] P. Bajcsy, P. Nguyen, A. Vandecreme, and M. Brady. Spa-

tial computations over terabyte-sized images on hadoop

platforms. In Big Data, pages 816 – 824, 2014.

[27] L. Duan, B. Hu, and X. Zhu. Efficient interoperation of

user-generated geospatial model based on cloud comput-

ing. In GEOINFORMATICS, pages 1–8, 2012.

[28] A.Aji and F. Wang. High performance spatial query pro-

cessing for large scale scientific data. In SIGMOD/PODS,

pages 9–14, 2012.

[29] C. Zhang, F. Li, and J. Jestes. Efficient parallel kNN

joins for large data in mapreduce. In EDBT, pages 38–

49, 2012.

[30] Y. Zhong, X. Zhu, and J. Fang. Elastic and effective

spatio-temporal query processing scheme on Hadoop. In

BigSpatial, pages 33–42, 2012.

[31] L. Alarabi, A. Eldawy, R. Alghamdi, and M. F. Mokbel.

Tareeg: A mapreduce-based web service for extracting

spatial data from openstreetmap. In SIGMOD, pages

897–900, 2014.

[32] M. Trad, A. Joly, and N. Boujemaa. Distributed knn-

graph approximation via hashing. In ICMR, 2012.

[33] Y. Vardi and C. Zhang. The multivariate L1-median and

associated data depth. In National Academy of Sciences

of the United States of America, 1997.

[34] S. Khetarpaul, S. K. Gupta, L. Subramaniam, and

U. Nambiar. Mining GPS traces to recommend common

meeting points. In IDEAS, 2012.

[35] D.Jiang, B.C.Ooi, L.Shi, and S.Wu. The performance of

mapreduce: An in-depth study. In PVLDB, 2010.

